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Which chiral knots can be unknotted in a single step by a + to − (+−) crossing change,
and which by a − to + (−+) crossing change? Numerical results suggest that if a knot with
6 or fewer crossings can be unknotted by a +− crossing change then it cannot be unknotted
by a −+ one, and vice versa. However, we exhibit one chiral 8-crossing knot and one chiral
9-crossing knot which can be unknotted by either crossing change. Furthermore, we address
the question analytically using results of Taniyama and Traczyk. We apply Taniyama’s
classification of unknotting operations to chiral rational knots and fully classify all those
which, in a single step, can be unknotted by either type of crossing change; the first of
these is 813. As a corollary, we obtain Stoimenow’s result that all chiral twist knots can be
unknotted by only one of the two crossing change types, +− or −+. Thus, as was observed
numerically, all chiral knots with unknotting number one, and seven or fewer crossings, can
be unknotted by only one of the two crossing change types. Traczyk’s results allow us to
address the question for some non-rational chiral unknotting number one knots with 9 or
fewer crossings, however, for others the question remains open. We propose a numerical
approach for investigating the latter type of knot. We also discuss the implications of our
work in the context of DNA topology.

§1. Introduction

DNA topology is the study of geometrical (supercoiling) and topological (knot-
ting and linking) properties of closed DNA molecules.1) Important biological pro-
cesses such as DNA replication and transcription alter the supercoiling of their DNA
substrates. For example, replication of circular DNA interlinks the two newly repli-
cated molecules. The resulting links are all (2, 2p)-torus links, which need to be
unlinked to allow the cell to survive.2) Other processes, such as DNA packing and
site-specific recombination, yield knotted DNA (e.g. see Refs. 3)–6)). It has been
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Knot Chirality Discrimination of Strand Passages 79

shown experimentally that DNA knots interfere with vital cellular processes and may
lead to cell death.7),8) The cellular issues resulting from DNA knot or link formation
are resolved by type II topoisomerases.

Type II topoisomerases are essential enzymes found in every organism. They
play crucial unknotting, unlinking and supercoiling simplification roles that help
facilitate important cellular processes and ensure stable chromosome and plasmid
inheritance. Certain type II topoisomerases are also able to knot, link and super-
coil DNA. For example gyrase of Escherichia coli is the only type II topoisomerase
known to introduce negative supercoils into its circular DNA substrate. Type II
topoisomerases are reviewed in Refs. 9)–12).

Type II topoisomerases change the topology of DNA by passing one DNA seg-
ment through another (strand-passage). The strand-passage mechanism is reviewed
in Refs. 13),14). This strand passage activity permits linking or unlinking, knotting
or unknotting, as well as relaxing or supercoiling of DNA molecules. Members of
the type-2 class of topoisomerases include bacterial DNA gyrase, bacterial topoiso-
merase IV (topo IV) and eukaryotic topoisomerase II (topo II), all of which have
similar structures (reviewed in Ref. 15)).

Here, we are interested in the potential chirality discrimination abilities (the
ability to distinguish between mirror images) of type II topoisomerases. With regards
to the mathematics of this, we assume that the reader is familiar with the standard
knot theory definitions and results from Refs. 42), 43) and 44). However, when it
comes to questions of chirality it is important to establish which convention is being
used. For this, given a diagram D of a knot we define the chirality or sign of a
crossing in D to be either positive (+) or negative (−) according to the right-hand
rule sign convention of Fig. 1. Then, a +− strand passage (or +− sign change) is
a strand passage based on a diagram D that converts a positive crossing in D to
a negative one. By interchanging the +’s and −’s in this definition, a −+ strand
passage is analogously defined. In §2, we give a brief summary of some other knot
theory definitions and results relevant to this paper. In particular, we review the
definition for chiral knot and define a convention for assigning a “sign” (either − or
+) to each chiral knot we consider.

Returning to type II topoisomerases, it has been reported that some exhibit chi-
rality discrimination by acting more efficiently on molecules with a given topology
(summarized in Ref. 12)). Experimentally it has been observed that some type II
topoisomerases preferentially relax one type of supercoiling over the other.12),16),17)

In the case of gyrase, the enzyme does not seem to have a binding preference, but
it mainly introduces (−) supercoils into DNA by forcing the inversion of (+) cross-

Fig. 1. Right-hand rule sign convention.
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ings formed before strand-passage.18),19) Shaw and Wang reported in Ref. 20) that
the knotting of nicked DNA rings (i.e. relaxed DNA circles) by an excess of type
II topoisomerase from Saccharomyces cerevisiae (a type of yeast) produces more
negative-noded than positive-noded trefoils. Several models have been proposed to
explain the chirality preferences of different topoisomerases: reviews of those for the
chiral action of bacterial gyrase are given in Refs. 18),19),21)–24); for bacterial topo
IV, in Refs. 25)–28); and for other topoisomerases, in Refs. 16), 17).

Recent numerical results of Szafron and Soteros for a simplified lattice model of
the type II topoisomerase strand-passage reaction provide evidence that selecting a
synapse of specific chirality at the strand-passage site could account for knot chirality
discrimination.29)–31) For example, from their simulations, whenever an unknotted
polygon is converted into a trefoil via a +− strand-passage, then the trefoil is always
negative. Similarly, when trefoils are produced from an unknot after a single −+
strand-passage, only positive trefoils result. The same chirality discrimination is
observed for other transitions from the unknot to a knot K, where K = 52, 61, 62

(modulo mirror image). These results prompted us to address the following question:
Does the sign of the crossing at a strand-passage site in an unknot determine the
chirality-type of the post-strand-passage knot? For example, if a positive trefoil
can be obtained from the unknot by a single −+ strand-passage, can it also be
obtained from the unknot by a +− strand-passage? More generally, we consider the
following question: if a chiral knot K can be obtained from the unknot by a +−
strand-passage, can it also be obtained from the unknot by a −+ strand-passage?

In this paper we first address this question by reviewing what is known about un-
knotting operations and about signed unknotting numbers. The unknotting number
of a knot K, denoted by u(K), is the minimal number of crossing changes (regard-
less of their sign) needed to unknot K. In this definition the minimum is taken over
all knot diagrams of K. Using the right-hand rule sign convention of Fig. 1, we
define the positive unknotting number, u+(K), to be the minimal number (over all
knot diagrams of K) of +− sign changes needed to unknot a knot K when no −+
changes are allowed. Correspondingly, the negative unknotting number, u−(K), is
taken to be the minimum number of −+ sign changes needed to unknot K when no
+− changes are allowed. If a knot cannot be unknotted with such crossing changes
only, we define the corresponding signed unknotted number to be ∞. In this context,
the question above can be rephrased as follows.

Main Question Given a chiral unknotting number one knot K, is exactly one of
u+(K) and u−(K) equal to 1?

In order to address this question, we use results about (unsigned) unknotting
numbers, u(K), and about knots with unknotting number one. Unknotting numbers
have been of considerable interest to knot theorists (cf. Refs. 32), 33)). For the
set of rational knots (see §2 for a definition), all unknotting number one knots have
been characterized by Kanenobu-Murakami.34) Unknotting operations for such knots
have been classified up to equivalence by Taniyama.35) Motegi36) showed that the
unknotting number of a Montesinos knot defined with at least four non-integral
rational tangles is strictly greater than 1, while there are Montesinos knots defined
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with three rational tangles with unknotting number one. Recently, the papers by
Gordon-Luecke32) and Ozsváth-Szabó33) complete the table of unknotting numbers
of prime knots up to 10 crossings.

The concept of signed unknotting numbers was introduced and studied by
Cochran and Lickorish.37) More recently, Traczyk38) tabulated information related to
signed unknotting numbers (he denotes u+(K) and u−(K), respectively by u++(K)
and u−−(K)) for knots up to nine crossings. Also, Stoimenow39) has a recent result
for rational knots. Darcy40) and Moon41) have looked at generalizations to signed
distances between knots. Here we use the results of Taniyama and Traczyk to ad-
dress the Main Question above. We show an affirmative answer for all knots up to
seven crossings. However, we exhibit one eight crossing and one nine crossing knot
for which u+ = u− = 1, thus indicating that this is not a universal property. We
also address the question for all rational knots. To do this, we use Taniyama’s classi-
fication of unknotting operations for rational knots to classify the signed unknotting
operation for chiral rational unknotting number one knots. Using this classifica-
tion we provide an answer to the Main Question for all chiral rational knots. In
particular, for every chiral twist knot, the answer is yes (this was also established
by Stoimenow using a different approach), and the first rational knot for which the
answer is negative is an eight-crossing knot.

The paper is structured as follows. We first give a brief overview of some relevant
knot theory definitions. Next, we review the numerical strand-passage results which
motivated the Main Question. Then we prove that Taniyama’s classification scheme
for unknotting operations can be used to fully classify signed unknotting operations
for chiral unknotting number one rational knots. We then combine this result with
results from Traczyk to address the Main Question for all rational knots and for each
of the non-rational knots (up to 9 crossings) investigated by Traczyk. We find two
such knots for which the answer to the Main Question remains open, and for those,
we address the Main Question using a numerical approach.

§2. Knot theory definitions

In this section we give a cursory review of some relevant knot theory definitions
and direct the interested reader to Refs. 42), 43) and 44) for fuller details.

A knot is defined as the image of an embedding of the 1-dimensional sphere
into R3 or S3. A disjoint union of knots is called a link. Two knots are equivalent
if they are ambient isotopic, i.e. one can be deformed continuously into the other
without any intersections. A knot is said to be chiral if it is not ambient isotopic
to its mirror image. Otherwise it is called achiral. A knot diagram is a regular
(only transverse double-point intersections allowed) projection of the knot with over
and under strand information indicated at each crossing. The sign of a crossing is
obtained by assigning an arbitrary orientation to the knot and using the right-hand
rule of Fig. 1). The least number of crossings over all knot diagrams for a given
knot K is invariant for K and is called its crossing number. A minimal diagram
for a knot K is one with the least possible number of crossings. A knot diagram is
said to be alternating if, when walking along the knot, the strands alternate between
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being over and under at the diagram crossings. A knot which has an alternating
diagram is said be an alternating knot. In order to define other classes of knots that
are relevant here, we discuss some tangle theory results and definitions next.

A 2-string tangle, or simply tangle, is a 3-dimensional ball with two properly
embedded arcs. There are three classes of tangles: rational, locally knotted, and
prime. Rational tangles are the simplest class of tangles (see Fig. 2 for examples).
There is a one-to-one correspondence between the set of rational tangles and Q∪{∞},
where ∞ corresponds to the tangle shown on the left of Fig. 2.45) In particular,
any rational tangle can be arranged in a canonical form, which can be untied by
a finite number of horizontal and vertical half twists; the corresponding rational
number is then obtained by inserting the numbers of horizontal and vertical half-
twists sequentially into a continued fraction. A tangle is said to be integral if it
consists of a horizontal row of k-half twists and is denoted by (k), where k is an
integer.

The numerator operation on a tangle T is obtained by connecting the top two
endpoints of T by an arc and the two lower endpoints of T by another arc (see Fig. 3).
The result, N(T ), is a knot or link. From two tangles T1 and T2, a new tangle can
be obtained by connecting the two right endpoints of T1 to the two left endpoints of
T2 as is shown in Fig. 4. The resulting tangle is called the sum of T1 and T2, and
is denoted by T1 + T2. Rational knots and links are those obtained from rational
tangles via the numerator operation. Furthermore, the numerator of the tangle sum
of two rational tangles is also a rational knot.46) The set of rational knots coincides
with that of 2-bridge knots, and that of 4-plats. One important subclass of rational
knots are the twist knots, which each have a knot diagram as shown in Fig. 5.

In this paper, when referring to a chiral knot, we need to be able to distinguish
between the knot and its mirror image. For the trefoil, we use the notation 3+

1

to refer to the trefoil whose minimal diagram has three positive crossings and 3−1

Fig. 2. Rational tangles: trivial tangle ∞ on the

left and tangle −30/7 (which can be untied by

−4 horizontal, −3 vertical and then −2 hori-

zontal half-twists) on the right.

Fig. 3. The numerator N(T ).

Fig. 4. The tangle sum T1 + T2. Fig. 5. A knot diagram for a twist knot.
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denotes its mirror image. A similar approach can be used for many alternating
knots. Specifically, for an alternating knot the projected writhe of a minimal diagram
(obtained by summing over its crossings, with a + crossing contributing +1 and a
−, contributing −1) is known to be invariant over all minimal diagrams (see for
example Ref. 47)). Let sWr(D) ∈ {−, 0, +} denote the sign of the writhe of a
minimal knot diagram D, with sWr(D) = 0 if the writhe is 0. Thus, for each chiral
alternating knot K, if the projected writhe in a minimal diagram D is non-zero,
then sWr(K) ≡ sWr(D) can be used to distinguish between the knot and its mirror
image. For example, 3+

1 has a minimal diagram with three crossings all of which
are positive and hence sWr(3+

1 ) = +, while for 3−1 , sWr(3−1 ) = −. All rational
knots are alternating (see for example Ref. 42)) and all knots with seven or fewer
crossings are rational. Furthermore, all the chiral alternating knots considered here
satisfy sWr(K) �= 0, and hence we can use sWr to distinguish an alternating knot
from its mirror image. However, since this is not universally applicable, we use
sWr(K) ≡ sWr(D) where D is the minimal diagram given in Rolfsen’s knot table
(hereafter referred to as Table R) to assign a sign to each chiral knot. Specifically,
for each chiral pair of knots, K and its mirror image K∗, only one diagram is given
in Table R, however, non-zero sWr(K) and sWr(K∗) are necessarily opposite in
sign. Thus, here, the notation K+ will refer either to the knot K whose diagram
appears in Table R with sWr(K) = + or to the knot K∗ whose mirror image diagram
appears in Table R with sWr(K) = −. The notation K− is defined analogously.
We will also use Table R as a reference point for naming knots and, unless stated
otherwise, the unsuperscripted notation mj will refer to the jth knot with crossing
number m whose minimal diagram is labelled mj in Table R, while m∗

j will refer to
its mirror image. Note that Portillo et al.48) propose using the sign of the overall
mean writhe, calculated over sets of random polygons with a given chiral knot-type,
to distinguish between a chiral knot and its mirror image. Specifically given a set
of random polygons with knot-type K: they define the writhe of a polygon to be
the average of its projected writhe taken over all possible projections; the mean
writhe of K for some specific length n is then the writhe averaged over all n-edge
polygonal realizations of K; and the overall mean writhe of K is the mean writhe
averaged over all such realizations of K and over all lengths. In Ref. 48), they have
estimated overall mean writhes (using two distinct sets of random polygons (simple
cubic lattice self-avoiding and off-lattice equilateral random polygons)) for all knots
up to 8-crossings and have recently extended this to 9-crossing knots. For the knots
studied in this paper, we found that calculating sWr(K) from the minimal diagram
for the knot as given in Rolfsen44) yields the same sign as that obtained for the knot
by the approach of Portillo et al.48)

§3. A lattice model for crossing-sign dependent strand passage

In Refs. 29), 49), Szafron and Soteros developed a simple cubic lattice self-
avoiding polygon model to model local strand passage. In the model, it is assumed
that two strands of the polygon have already been brought close (i.e. pinched) to-
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gether to facilitate strand-passage. The pinched portion of the polygon is modelled by
a fixed structure anchored at the origin, denoted by Θ (Fig. 6(a)). Any self-avoiding
polygon (SAP) containing Θ is called a Θ-SAP. Strand-passage at Θ replaces it with
the structure Θs, shown on the right in Fig. 6(a). Note that this process only yields
a lattice polygon if the sites marked with open circles around Θ are unoccupied by
the original polygon. In the case where these sites are unoccupied, Θ is referred to
as Θ0, and any polygon containing it, as a Θ0-SAP. The left diagram of Fig. 6(b)

(a)

strand−−−−−→
passage

(b)

str
an

d

−−−−
−→

pa
ssa

ge

mirror
−−−−−−→operation

Fig. 6. (a) The left diagram shows the strand-passage structure Θ anchored at the origin (i.e.

B = (0, 0, 0)). Θ’s vertices and edges are indicated by solid circles and bonds, respectively.

Dashed lines and open circles represent, respectively, lattice edges and vertices which may or

may not be occupied in a Θ-SAP. In the case where the open circles are not occupied, the

strand-passage structure is called Θ0. The after-strand-passage structure Θs is shown on the

right. (b) An unknotted 14-edge Θ0-SAP ω (on left) and the corresponding 18-edge after-strand-

passage polygon ωs (top right). The diagram on the bottom right is the Θ+
0 -SAP eω obtained

from the Θ−
0 -SAP ω via the mirror operation e.
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shows a 14-edge Θ0-SAP ω. The upper right diagram of the same figure shows the
after-strand-passage lattice polygon ωs obtained from ω by replacing Θ0 with Θs.

Using Θ0-SAPs, in Refs. 29),49), Szafron and Soteros investigate, both theoret-
ically and numerically, the distribution of knots obtained after performing a single
strand passage. For their numerical work, Markov Chain Monte Carlo was used
to generate samples of Θ-SAPs. In particular, in Ref. 49) an algorithm, called the
Θ-BFACF algorithm, was developed to generate Θ-SAPs with varying lengths but
fixed knot-type. In the case that the initial polygon is an unknotted Θ-SAP, in
Ref. 49) the Θ-BFACF algorithm was proved to have exactly two ergodicity classes
depending on the sign of the crossing at Θ in a projection onto the xy-plane. If the
crossing sign at Θ in a given polygon is positive, the polygon is called a Θ+-SAP
and otherwise, a Θ−-SAP. Thus, from the ergodicity proof in Ref. 49), if one starts
with an unknotted Θ+-SAP, the Θ-BFACF algorithm can, in the long run, gener-
ate any other unknotted Θ+-SAP. Likewise the Θ-BFACF algorithm only generates
Θ−-SAPs when starting with a Θ−-SAP. Furthermore, the transition probabilities
can be chosen so that each equal-length Θ+-SAP (or Θ−-SAP) is equally likely to
occur in the equilibrium distribution. Thus the Θ-BFACF algorithm provides a way
to investigate knot distributions after a unidirectional crossing-sign change in an
unknotted polygon.

Figure 6(b) shows a 14-edge Θ−
0 -SAP ω on the left and a 14-edge Θ+

0 -SAP ω̃ on
the bottom right. ω̃ can be obtained from ω by the simple “mirror” operation
which takes (x, y, z) ∈ Z3 to (−x, y, z). It is also proved in Ref. 49) that this
mirror operation provides a one-to-one mapping between unknotted Θ−- and Θ+-
SAPs which preserves their after-strand-passage knot-types, except with opposite
chirality. Thus the after-strand-passage knot distribution for unknotted Θ+-SAPs
can be obtained from that for unknotted Θ−-SAPs, and vice versa.

A composite (a.k.a. multiple) Markov Chain (CMC) version of the Θ-BFACF al-
gorithm has been used to generate 2,491,776,147 unknotted Θ−

0 -SAPs whose lengths
vary from 14 to 5000.29),30) Strand passage was performed once on each of these
sample polygons and the after-strand-passage knot-type was assessed using both the
Alexander and the HOMFLY polynomials. For unknotting number one knots up to
1042, no two knots (ignoring chirality) have the same Alexander polynomial50) and
the HOMFLY polynomial can be used to distinguish between a knot and its mirror
image. We expect the occurrence of high crossing number knots to be rare and make
the assumption that the only knots possible are those up to 1042. Based on this, the
chiral knot distribution that resulted consisted of knots of only one chirality type,
e.g. only 3+

1 (31,161,421), 5+
2 (36,596), 6+

1 (417) and 6+
2 (436) were observed. This

was one of the main motivations for investigating the Main Question.
The CMC Θ-BFACF algorithm has also been used to generate trefoil Θ−

0 -
SAPs.31) The Θ-BFACF algorithm is known to preserve the initial polygon’s knot-
type (including chirality) as well as its crossing-sign at Θ. We generated 1,501,867,897
Θ+

0 -SAPs with knot type 3−1 . Among these, we never observed an after strand-
passage knot with trivial Alexander polynomial and hence we never observed an
after strand-passage unknot. This gives numerical support to the conjecture that a
+− crossing change on a 3−1 knot cannot yield the unknot. This is consistent with
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the fact that no after-strand-passage 3−1 knots were observed in the unknot Θ−
0 -SAP

simulation. These results provided further motivation for investigating the Main
Question.

§4. Main Question results

In this section, we first review known results and theorems related to unknotting
operations and signed unknotting number, and then we apply them to address the
Main Question.

From the literature, knot theorists primarily study signed unknotting numbers
and signed distances between knots to resolve questions about unsigned unknotting
numbers and distances. In fact, in the knot theory literature very few knot tables
exist which provide signed unknotting number or signed distance information.38),41)

Traczyk appears to be the first to present a table of knots along with signed un-
knotting information.38) More recently, Stoimenow39) proved a theorem for rational
unknotting number one knots which can be used to obtain information about their
signed unknotting numbers. Prior to this, Taniyama35) completely classified, up to
equivalence, the unknotting operation of rational knots with unknotting number one.
We show first that for such knots that are chiral, the +− unknotting operation is not
equivalent to the −+ unknotting operation. Thus Taniyama’s results can be used
to completely answer the Main Question for rational knots. We then use Traczyk’s
results to address the question for the non-rational unknotting number one, chiral
knots in his table.

4.1. Taniyama’s results and their consequences

First we review the equivalence class definitions for crossing change and unknot-
ting operation given by Taniyama.35) Let K be a knot in S3. Suppose a 3-ball B3

in S3 meets K in a rational tangle T as on the left of Fig. 7. If we replace (B3, T )
by the rational tangle (B3, T ′) (as shown in Fig. 7), we have another knot K ′. This
operation on K at (B3, T ) is considered a crossing change on K. Let (B3

1 , T1) and
(B3

2 , T2) be the initial rational tangles for any two crossing changes on K. Two such
crossing changes are considered equivalent if there is a homeomorphism h : S3 → S3

such that h(K) = K, h(B3
1) = B3

2 and h(T ′
1) = T ′

2. Since an unknotting operation
is a crossing change, we can also define equivalence for unknotting operations in the
same way.

Taniyama classified the unknotting operation for unknotting number one rational
knots up to this equivalence. Note that from the definition of knot equivalence in

Fig. 7. Crossing change.
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Fig. 8. C(3, 2, 2, · · · , 2,−2,−2, · · · ,−2) with odd n has two inequivalent unknotting operations

with opposite sign, cf. Fig. 5 in Taniyama’s paper.35)

Fig. 9. Crossing change circle.

his paper, a knot and its mirror image are equivalent, but, by our definition of knot
equivalence they are distinct. Taniyama showed for a rational knot that the number
of equivalence classes of unknotting operations is either 0, 1, or 2. Moreover he
showed an unknotting operation for a twist knot is unique up to equivalence, and
that a rational knot has two inequivalent unknotting operations if and only if the
knot can be expressed using 4-plat notation (see Ref. 42) for the notation definition)
as

C(3, 2, 2, · · · , 2,−2,−2, · · · ,−2), (4.1)

or its mirror image, where the number of 2’s is n and that of −2’s is n + 1, for
some positive integer n. For the case that n is odd, the knot with 4-plat notation
C(3, 2, 2, · · · , 2,−2,−2, · · · ,−2) is depicted in Fig. 8.

Next we consider unknotting operations of chiral knots. From now on we assume
that knots are oriented. Let D be a properly embedded disk in B3 such that D meets
K in the opposite direction. We call D a crossing disc. The boundary ∂D = C is
called a crossing circle (see Fig. 9). Since a positive to negative crossing change is
given by a right handed twist along D and a negative to positive crossing change is
given by a left handed twist, a positive to negative crossing change can be realized
by a +1-Dehn surgery on C and a negative to positive by −1-Dehn surgery.51) Note
that the crossing circle is determined up to isotopy in ∂B3 − T . Let C ′ denote the
surgery core of the Dehn surgery. Let C1 and C2 be the crossing change circles of
two equivalent crossing changes and let γ1 and γ2 be their respective surgery slopes.
Then we can assume that the homeomorphism h will send C1 to C2 and γ1 to γ2.

Proposition 1. Suppose a knot K is chiral. Then a positive to negative crossing
change of K is not equivalent to a negative to positive crossing change of K.

Proof. Let C+ and γ+ be the crossing change circle and the surgery slope for a
positive to negative crossing change and C− and γ− be those for a negative to
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positive crossing change. Suppose the two crossing changes are equivalent. Let
h : S3 → S3 be a homeomorphism which gives the equivalence. Then we can assume
that h sends C+ to C− and γ+ to γ−. Since the slopes γ+ and γ− have opposite signs,
h reverses the orientation of the meridian-longitude coordinate. Hence h reverses the
orientation of S3. Since h(K) = K, K is achiral.52) This completes the proof.

As a consequence of Proposition 1, if a chiral knot can be unknotted by switch-
ing crossings of either signs, it has at least two equivalence classes of unknotting
operations. Taniyama showed there is only one equivalence class of unknotting op-
erations for twist knots. As twist knots other than the figure-8-knot are chiral, this
establishes, by a different argument, Stoimenow’s result:

Result 1 (Proposition 3.2139)). The only twist knot which unknots by switching
crossings of either signs (not necessarily in the same diagram) is the figure-8-knot.

Taniyama also showed for rational knots that the number of equivalence classes
is at most two and a rational knot with two equivalence classes has the form given
in (4.1) or its mirror image. If we put an orientation on such a knot, we can see that
the crossings of the two unknotting operations have the same sign if n is even and
opposite sign if n is odd (see Fig. 8 for the case that n is odd, and Figs. 10 and 11
for the cases that n = 1 and 3, respectively). Moreover by, for example, Proposition
4 in Ref. 53), C(3, 2, 2, · · · , 2,−2,−2, · · · ,−2) is chiral for each n. Hence we have
the following result.

Result 2. A chiral unknotting number one rational knot can be unknotted by switch-
ing crossings of either signs (not necessarily in the same diagram) if and only if it
can be expressed as: C(3, 2, 2, · · · , 2,−2,−2, · · · ,−2), or its mirror image, where the
number of 2’s is n and that of −2’s is n + 1, for some positive odd integer n.

Remark: In Refs. 54) and 39), it is shown that for any alternating diagram of
an unknotting number one rational knot, there is a crossing corresponding to an
unknotting operation. If we apply a similar move to those shown in Figs. 10 and 11
to Fig. 8 (or Fig. 5 in Ref. 35)), we obtain an alternating diagram with two crossings
which correspond to inequivalent unknotting operations. By the affirmative answer
to the Tait flyping conjecture by Menasco and Thistlethwaite,47) any reduced (i.e.
without nugatory crossings) alternating diagram of the knot can be obtained by a

Fig. 10. C(3, 2,−2,−2) is 813. By a move in a paper by Nakanishi,54) two inequivalent unknotting

operations can be seen in alternating diagrams. The diagram in Fig. 12 can be obtained by a

flype and isotopy on S2.
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Fig. 11. C(3, 2, 2, 2,−2,−2,−2,−2) has crossing number 16. The bottom diagram is a reduced

alternating diagram with 16 crossings. Hence this knot has crossing number 16 (cf. Murasugi,55)

Thistlethwaite,56) and Kauffman57)).

Fig. 12. 813 (left) and 944 (right) with both types of crossing changes marked.

sequence of flypes from this diagram. Since crossings which correspond to unknot-
ting operations do not disappear after a flype, for any alternating diagram of the
knot we can always find two crossings which correspond to inequivalent unknotting
operations. Recall that all rational knots are alternating. Hence, for any of the
chiral unknotting number one rational knots which can be unknotted by switching
crossings of either sign, there do exist diagrams in which either crossing change can
be applied to unknot the knot.

In summary, Result 1 tells us that the Main Question is answered affirmatively
for all chiral twist knots; this is consistent with the results from the Θ-SAP sim-
ulation since the knots 31, 52 and 61 are all chiral twist knots. Result 2 tells us
that there is exactly one rational knot with 15 or fewer crossings for which the
Main Question is not answered affirmatively. Specifically this is 813 (see Fig. 12),
which is C(3, 2,−2,−2) (see Fig. 10). The next such knot is a 16 crossing knot
C(3, 2, 2, 2,−2,−2,−2,−2) (see Fig. 11). This explains the Θ-SAP simulation re-
sults regarding 62, which is rational but not twist.
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4.2. Traczyk’s results and their consequences

In this section, we review the results of Traczyk38) to address the Main Question
of this paper. We thus focus on the knots up to 9 crossings as tabulated in section
5 in Ref. 38) (hereafter we refer to this tabulation as Table T). Of these, the only
chiral unknotting number one knots are

31, 52, 61, 62, 72, 76, 77, 81, 87, 811, 813, 814, 820, 821,

92, 912, 914, 919, 921, 922, 924, 926, 927, 928, 930, 933, 934, 939, 942, 944, 945. (4.2)

(In Table T, the unknotting numbers of 810 and 816 are listed as uncertain, however,
their unknotting numbers have since been resolved as two.33),58),59)) In this section
we present a table (see Table I) for these knots which is similar to Table T except
that we have used Results 1 and 2 of this paper to update the information. Since
signed unknotting number information is chirality-class dependent, knowing to which
chirality class each of the knots in the table belongs is important. As discussed in
§2, we use the sign of the projected writhe, denoted sWr(K), of the knot diagrams
in Table R to distinguish between a chiral knot K and its mirror image K∗. We
understand from Traczyk that the naming convention in Table T is related to that
given in Jones [60), Table 15.9], which is not the same as that in Table R.44) Here,
in column one of Table I, we specify the name of the knot according to Table R,
where a ∗ superscript indicates that it is the mirror image of the knot in Table R;
the value of sWr (as calculated using KnotPlot61)) for the specified knot is given in
the fourth column of our table.

Following Ref. 38), we define the function fK(n) (for a knot K) to be the min-
imum number of −+ changes necessary to unknot K if at most n +− changes are
allowed. Thus for a chiral unknotting number one knot K, the answer is yes to the
Main Question if either

fK(0) = fK(1) = 1,

since this means that u− = 1 and u+ > 1; or

fK(0) > 1 and fK(1) = 0,

since this means that u+ = 1 and u− > 1. Meanwhile the answer to the Main
Question is no if

fK(0) = 1 and fK(1) = 0,

since this means that u+ = u− = 1. To determine fK(n), Traczyk uses at least
two results. First, if the signature, σK , (as defined by Murasugi62)) of the knot is
positive then a +− change cannot decrease the signature and hence, since σ01 = 0,
K cannot be unknotted by any number of only +− changes. Second, he establishes
a criterion [38), Theorem 3.1] for the positive signed unknotting number of a knot
K based on u(K) and the evaluation of the Jones polynomial, VK , at ω = e2πi/6 (see
also Lemma 2.1 of Ref. 63)). For an unknotting number one knot K, the criterion
yields that: if K is unknotted by a +− change, then VK(ω) ∈ {±1, i

√
3} while if it

is unknotted by a −+ change, then VK(ω) ∈ {±1,−i
√

3}. Except for the cases of
813, 933 and 944 discussed below, we have used the definition of VK as in Ref. 63)
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Table I. Signed unknotting information for the chiral unknotting number one knots of Table T [38),

section 5]. Items marked with a † are corrections to Table T; details of the corrections are given

in the text. The column titled “Main Question” gives the answer to our Main Question. sWr

denotes the sign of the projected writhe from the Table R diagram of the knot K, or its opposite

sign for K∗. VK(ω) = ±(i
√

3)v is reported as ±v in column 6.

K fK(0) fK(1) σK sWr ±v u− u+ Main Question Knot Class

31 1 1 2 − −1 1 > 1 YES twist

52 1 1 2 − −0 1 > 1 YES twist

61 2 0 0 − −0 > 1 1 YES twist

62 1 1 2 − +0 1 > 1 YES rational

72 1 1 2 − +0 1 > 1 YES twist

76 1 1 2 − −0 1 > 1 YES rational

7∗
7 2 0 0 − +1 > 1 1 YES rational

81 ∈ {2, 3} 0 0 − +0 > 1 1 YES twist

8∗
7 1 1 2 − +0 1 > 1 YES rational

811 1 1 2 − −1 1 > 1 YES rational

813 1 0† 0† + −0 1 1 NO rational

814 1 1 2 − −0 1 > 1 YES rational

820 1 1 0 − −1 1 > 1 YES not rational

821 1 1 2 − −1 1 > 1 YES not rational

92 1 1 2 − −1 1 > 1 YES twist

912 1 1 2 − +0 1 > 1 YES rational

914 ∈ {2, 3} 0 0 + +0 > 1 1 YES rational

919 1 1† 0 − −0 1 > 1 YES rational

9∗
21 1 1 2 − −0 1 > 1 YES rational

9∗
22 1 1 2 − −0 1 > 1 YES not rational

924 1 1 0 − −1 1 > 1 YES not rational

9∗
26 1 1 2 − +0 1 > 1 YES rational

927 2† 0 0 − +0 > 1 1 YES rational

928 1 1 2 − −1 1 > 1 YES not rational

930 ∈ {1, 2} 0 0 − −0 > 1? 1 ? not rational

9∗
33 ∈ {1, 2} 0† 0 + +0 > 1? 1 ? not rational

934 2 0 0 − +1 > 1 1 YES not rational

9∗
39 1 1 2 − −0 1 > 1 YES not rational

9∗
42 1 1 2 − −0 1 > 1 YES not rational

944 1 0 0 − −0 1 1 NO not rational

945 1 1 2 − +0 1 > 1 YES not rational

along with the values of fK in Table T to establish the correspondence between the
knots in Table T and those of Table R and we indicate this in column one of Table I.
Consistent with Table T, the value of VK(ω) = ±(i

√
3)v for a knot is presented (in

column 6) in the form ±v. Table I also shows updated values for fK(0) and fK(1)
for the chiral unknotting number one knots, where we have used updated unknotting
number information and Results 1 and 2 of this paper. The last column indicates
which knots are rational and amongst those which are twist knots.

The column titled “Main Question” in Table I includes the answer to the Main
Question for the given knot. Result 2 of this paper is used to obtain the answer
for all the rational knots, and the fK values are used to answer the question for the
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non-rational knots. Thus there is at least one non-rational knot for which the answer
to the Main Question is negative, namely 944. Figure 12 exhibits a knot diagram
(equivalent to the minimal diagram in Rolfsen’s book) for this knot with the two
relevant crossings marked.

For the knots 930 and 9∗33 the answer to the Main Question remains uncertain.
These knots have been investigated via the CMC Θ-BFACF algorithm. For each
of these two knot-types, after testing over 25 million essentially independent Θ−

0 -
SAPs of varying lengths, no unknots were obtained after a −+ strand passage. In
addition, we investigated these knots using another strand passage model. Specifi-
cally, the Hua et al.64) strand passage model has recently been extended to include a
topological filter with a chirality bias.65) Using numerical results from this model for
20000 essentially independent lattice polygons of length 100, neither 930 nor 9∗33 was
unknotted by a −+ strand passage. All this leads us to conjecture that the answer
to the Main Question is yes for these two knots.

Values in Table I marked by a dagger have been modified from Table T. These
modifications are as follows. Table T had an uncertainty regarding f927(0), namely
1 ≤ f927(0) ≤ 2. Since 927 is rational, this can be resolved, using Result 2, to
f927(0) = 2. In particular, for f927(0) to be 1, it would mean that u−(927) = 1 and
u+(927) = 1, contradicting Result 2. Similarly for 919, the uncertainty in Table T
for f919(1) is resolved.

There is also an uncertainty in Table T regarding 933, namely 1 ≤ f933(0) ≤ 2.
Table T also indicates fK(1) = 1 for this knot. Based on the uncertainty in fK(0),
we believe the knot in Table T corresponds to 9∗33. This knot can be unknotted in
a single +− crossing change as seen directly from its minimal diagram, and hence
fK(1) = 0; we have reported this in Table I. However, the uncertainty in fK(0)
remains.

Finally 813 (regardless of its chirality-class) has signature 0 and fK(1) = 0 (by
Result 2) hence the entries for these two quantities are incorrect in Table T and have
been corrected here.

Thus all the knots other than 813, 930, 933 and 944 have been proved to satisfy
the property that exactly one of u+ and u− is 1. These knots are

31, 52, 61, 62, 72, 76, 77, 81, 87, 811, 814, 820, 821,

92, 912, 914, 919, 921, 922, 924, 926, 927, 928, 934, 939, 942, 945. (4.3)

§5. Discussion

Because of the supercoiled nature of DNA in the cell, twist knots are expected
to be the most likely non-trivial knots produced after a single strand passage on an
unknotted substrate. Result 1 of this paper tells us that a twist knot K can either
be unknotted in one step by a +− crossing change or by a −+ crossing change but
not by both. In particular, if K can only be unknotted by a +− crossing change,
then its mirror image K∗ can only be unknotted by a −+ crossing change. Thus
this gives another way to distinguish between a twist knot and its mirror image.
Furthermore, if a hypothetical topoisomerase is selective for a positive crossing (say)
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at a strand passage site, then after a single strand passage, selectivity for twist knots
of only one chirality class (those unknotted by a −+ crossing change) is guaranteed.
This is because only these twist knots could result from a +− strand passage on the
unknot, and no +− strand passage on such a twist knot could unknot it (however
knots which have the twist knot in their prime decomposition could result). Result
2, gives a similar conclusion for all rational knots with seven or fewer crossings.
Furthermore, there is only one 8 crossing knot for which there could be knots of
both chirality classes after a single strand passage. Although topoisomerases appear
only to have a preferential (as opposed to selective) chirality bias, our results imply
that this will influence the chirality of the post-strand-passage knots.

With respect to strand passage models, the Θ-SAP and the recent He et al.
model65) both incorporate a chirality bias and are hence useful for studying knot
chirality discrimination via strand passage. They can and have been used to model
the chirality preferences of enzyme action on DNA and to investigate knot theoretic
questions such as the Main Question of this paper. Furthermore, the knot theory
results of this paper can be used to better understand the models. For example,
with respect to the Θ-BFACF algorithm, the affirmative answer to the question for
each knot K in (4.3) makes it clear that the after-strand-passage knot distribution
for Θ+

0 -SAPs can be very different from that for Θ−
0 -SAPs (for positive trefoils, for

example, the latter contains unknots, while the former does not). However the mirror
operation defined previously still gives a one-to-one mapping between a knot-type K
Θ+

0 -SAP and a knot-type K∗ Θ−
0 -SAP which preserves the after-strand-passage knot-

type but with opposite chirality, and hence the after-strand-passage knot distribution
for Θ0-SAPs can be investigated using Θ0-SAPs of either type (Θ+

0 or Θ−
0 ).
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