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Abstract

Motivation: Mutational signatures can be used to understand cancer origins and provide a unique

opportunity to group tumor types that share the same origins and result from similar processes.

These signatures have been identified from high throughput sequencing data generated from can-

cer genomes by using non-negative matrix factorisation (NMF) techniques. Current methods based

on optimization techniques are strongly sensitive to initial conditions due to high dimensionality

and nonconvexity of the NMF paradigm. In this context, an important question consists in the de-

termination of the actual number of signatures that best represent the data. The extraction of muta-

tional signatures from high-throughput data still remains a daunting task.

Results: Here we present a new method for the statistical estimation of mutational signatures

based on an empirical Bayesian treatment of the NMF model. While requiring minimal intervention

from the user, our method addresses the determination of the number of signatures directly as a

model selection problem. In addition, we introduce two new concepts of significant clinical rele-

vance for evaluating the mutational profile. The advantages brought by our approach are shown

by the analysis of real and synthetic data. The later is used to compare our approach against two al-

ternative methods mostly used in the literature and with the same NMF parametrization as the one

considered here. Our approach is robust to initial conditions and more accurate than competing al-

ternatives. It also estimates the correct number of signatures even when other methods fail.

Results on real data agree well with current knowledge.

Availability and Implementation: signeR is implemented in R and Cþþ, and is available as a R

package at http://bioconductor.org/packages/signeR.

Contact: itojal@cipe.accamargo.org.br

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Cancer is a collection of diverse pathological entities that harbour

and probably derive from a complex collection of genomic alter-

ations. Today, it is widely accepted that the accumulation of these

alterations, including somatic mutations, is one of the major causes

of the malignant transformation triggering the expansion of tumour

cell clones. As tumors evolve, these mutations are found across

many genomic loci, but also tend to preferentially affect certain

pathways (Ciriello et al., 2012). The diversity and complexity of

somatic mutational processes in these clones is a conspicuous feature

orchestrated by DNA damaging agents and repair processes, includ-

ing the exposure to exogenous or endogenous carcinogenic/muta-

genic agents, retro-insertion of endogenous retroviruses, defects in

DNA mismatch repair enzymes and enzymatic modifications of the

DNA among others (Roberts and Gordenin, 2014). The actual iden-

tification of the underlying mutational processes is central to an

understanding of cancer origin and evolution (Alexandrov, 2013;

Alexandrov and Stratton, 2014; Helleday et al., 2014; Roberts and

Gordenin, 2014).

Most somatic mutations comprise single base substitutions, in-

sertions and deletions, rearrangements and copy number variations

(CNV). Single base substitutions fall into one of six possible base

changes, namely C:G>A:T, C:G>G:C, C:G>T:A, T:A>A:T,

T:A>C:G and T:A>G:C. According to Alexandrov et al. (2013),

this set may be further enlarged by including the 50 and 30 neigh-

bouring bases of each substitution site, leading to an alphabet A

with 96 trinucleotide mutation types. More generally, the definition

of A could in principle accommodate mutations of various other

kinds such as indels, rearrangements, copy number changes and

even wider neighbouring contexts. Once A is properly defined, the

counts for the mutations found in G different genomes are

assembled into a K�G matrix M with K ¼ jAj. A crucial assump-

tion consists in viewing the counts in M as the additive effect of N

mutational processes, each defined as a K�1 vector of mutational

rates. The later defines what is known as a mutational signature.

More precisely, the mutations across all genomes result as the linear

combination of N basis vectors of dimension K�1, with mixture

coefficients defined by N exposure vectors of dimension 1�G. If

the basis vectors are merged into a K�N matrix of signatures P,

and the coefficient vectors into a N�G matrix of exposures E, then

the data can be simply factored as M¼PE. An example of this is

shown in Figure 1.

For any given mutation-count matrix there are essentially two

interrelated questions that should be addressed: 1. the determination

of the underlying signatures and exposures to best account for the

observations, and 2. the determination of the actual number of sig-

natures N. Nik-Zainal et al. (2012) and Alexandrov et al. (2013) ad-

dressed the first issue by using nonnegative matrix factorization

(NMF) techniques. NMF as conceived by Lee and Seung (2001)

finds the factors P, E that approximately solve the following non-

convex optimization problem

min
P�0;E�0

jjM� PEjj; (1)

for a given fixed rank N and an appropriately chosen norm. To deal

with the second question, Nik-Zainal et al. (2012) and Alexandrov

et al. (2013) perform the factorization of the same data for various

ranks, namely for 1 � N � minfK;Gg � 1. The rank is then deter-

mined rather indirectly by studying the clustering properties of the

obtained factors via a criterion developed by Brunet et al. (2004) or

by using the residual sum of squares, Hutchins et al. (2008).

An alternative approach to mutational signature discovery, and

to NMF in general, follows from a statistical interpretation of the

problem posed by (1) in which M is assumed to be a random matrix

distributed according to a member of the exponential family para-

meterised by P and E. The optimization problem posed by (1), under

the norm induced by a specific Bregman divergence (see Banerjee

et al., 2005), turns out to be equivalent to the maximum likelihood

estimation of P and E. For instance, if M is Poisson distributed with

rate PE, then the likelihood maximization with respect to P and E is

equivalent to the minimization of (1) under the norm defined by the

Kullback-Leibler divergence. The maximization of a Gaussian likeli-

hood is equivalent to the minimization under the Frobenius norm. A

key aspect of this perspective is that it allows to treat the determin-

ation of the factorization rank N as a model selection problem. The

statistical interpretation was developed by Cemgil (2009), Févotte

and Cemgil (2009) and Schmidt et al. (2009) in the general NMF

context and then considered by Fischer et al. (2013) for the muta-

tional signature application. Fischer et al. (2013) modelled M as

Poisson distributed and then considered the estimation of P and E

by using an expectation maximisation (EM) algorithm. The number

of mutational signatures was estimated by considering an (unneces-

sary) saddlepoint approximation to the Bayesian information criter-

ion (BIC). Recently, Shiraishi et al. (2015) and Rosenthal et al.

(2016) also considered a statistical approach to the determination of

mutational signatures. The former, however, considers a different

NMF parametrization in which the features composing each muta-

tion type in A are assumed independent. The latter considers the

simpler problem of the estimation of E for given M, P and N.

In this article we consider an empirical Bayesian treatment to the

NMF model as initially described by Alexandrov et al. (2013) for
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Fig. 1. A factorization for a mutation counts matrix M. The mutation matrix shown at the centre is defined over an alphabet with K¼11 symbols, 1� i�11, and

G¼15 genomes, 1� j� 15. The matrices at the left and the right represent respectively a signature and an exposure matrix P and E, obtained for a factorization

with rank N¼ 5
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the estimation of mutational signatures. Following Fischer et al.

(2013), our model also incorporates the genome frequencies of the

triplets where each mutation type in A can occur, which are known

as opportunities. These enter the model as a matrix of weights W,

leading to observations generated at rate PE�W with � as

Hadamard’s element wise matrix product. Both, the effectiveness

and the advantages of our method are shown by using real and syn-

thetic datasets.

2 Approach

2.1 Hierarchical model
2.1.1 Likelihood and latent variables

Let pin ¼ ðPÞin be the i, n-entry of P and likewise let enj ¼ ðEÞnj and

wij ¼ ðWÞij. The random variables Mij are assumed to be independ-

ent and Poisson distributed with rates ðPE�WÞij ¼ wij

PN
n¼1pinenj:

For a given sample of M, say m, this formulation is sufficient to de-

fine the likelihood function L ðh;W; mÞ if one identifies the matri-

ces P, E as model parameters h, for h 2 H ¼ R
K�N
þ � R

N�G
þ . The

opportunities are either known or set to W¼1, and hence regarded

as fixed parameters. To simplify notation we omit any further refer-

ence to W. An expression for L ðh; mÞ is presented as supplemen

tary material by the equation (s1).

This relatively simple model allows for a latent variable repre-

sentation in which the observed counts are expressed as the sum of

N�1 independent Poisson variables

Mij ¼ Zi1j þ Zi2j þ � � � þ ZiNj; (2)

each with rate respectively equal to pinenjwij. This description is an im-

mediate consequence of the properties of sums of independent Poisson

random variables. Biologically, this accounts for the observation that

the total number of mutations of a specific type, say (i, j), arise as the

linear combination of N mutational processes Zinj, n ¼ 1; . . . ;N.

From a statistical perspective, (2) enables a data augmentation scheme

that becomes instrumental for a Bayesian treatment to NMF. As

observed by Cemgil (2009), this allows the implementation of several

powerful techniques such as the Expectation Maximisation (EM) algo-

rithm, Markov chain Monte Carlo (MCMC) and variational Bayesian

approximations. Our approach to NMF fully exploits the data aug-

mentation scheme defined by (2). Hereafter we denote by Z the ran-

dom tensor fZinj : 1 � i � K; 1 � n � N; 1 � j � Gg and then

let z be a generic value for Z.

2.1.2 Priors and hyperpriors

We consider conjugate priors for the matrices P and E by modelling

each of their entries as being independent Gamma distributed random

variables. Specifically, pin is Gamma distributed with shape ap
in þ 1

and rate bp
in � 0 for ap

in � 0. Likewise, enj are Gamma with shape ae
nj

þ1 and rate be
nj � 0 for ae

nj � 0. Shape parameters are shifted by 1 to

ensure bounded values for the Gamma densities, improving stability

of the computational methods described in subsequent sections. Let

Ap and Bp be K�N matrices respectively with entries ap
in and bp

in

and Ae, Be be N�G matrices with elements ae
nj and be

nj, and then let

w ¼ ðAp;Bp;Ae;BeÞ denote the hyperparameters.

A further hierarchy in our model is set by considering the distri-

butions for the hyperparameters w. By conjugancy to the prior, we

define the entries of Bp as being independent and distributed accord-

ing to a common Gamma distribution with shape and rate ap>0,

bp>0. Similarly, the elements of Be are Gamma distributed with

shape ae>0 and rate be>0. The situation for the matrices Ap and

Ae is however different. While a Gamma distribution for the entries

of Ap and Ae is conjugate to the Gamma prior (see Miller, 1980), the

resulting full conditional distribution necessary to draw inferences

about Ap and Ae does not have a standard form. This fact has long

been recognized in the Poisson hierarchical model (George et al.,

1993) and may be dealt with by choosing any parametric family of

distributions with the appropriate support. Here we take the elem-

ents of Ap and Ae as independent and exponentially distributed with

rates kp>0 and ke>0. Let g be the vector of hyperprior parameters

(ae, be, ap, bp, kp, ke) defined on K ¼ ðRþn0Þ6.

2.2 Bayesian treatment
We follow an empirical Bayesian approach in which the parameters

h, the hyperparameters w and the hyperprior parameters g are all

estimated from the data. Inferences about the mutational signatures

and their exposures are driven by the posterior distribution for the

NMF model by combining MCMC and EM techniques as encour-

aged by Casella (2001). Specifically, for a given value of g we con-

sider a Metropolized Gibbs sampler targeted towards the

conditional posterior pðhjM; gÞ. This entails the iterative generation

of a sequence of samples ðZðrÞ; hðrÞ;wðrÞÞ; r � 1, from the set of full

conditional distributions

Zðrþ1Þ � pðZjhðrÞ;wðrÞ;M; gÞ; hðrþ1Þ � pðhjZðrþ1Þ;wðrÞ;M; gÞ;

and wðrþ1Þ � pðwjZðrþ1Þ; hðrþ1Þ;M; gÞ:

These samples are used to update the value of g via a stochastic

EM step and the later is then used to draw a subsequent sequence of

samples for Z, h and w. The successive iteration of these steps de-

fines a convergent sequence ðgðuÞÞ; u � 1, allowing the estimate

ĝ ¼ gðUÞ for sufficiently large U. A final set of MCMC samples for

Z, h and w drawn by conditioning on bg provide the following esti-

mate of the required posterior pðhjM; gÞ.

bpðhjM;bgÞ ¼ 1

R

XR

r¼1

pðhjZðrÞ;wðrÞ;M; gðUÞÞ (3)

The MCMC samples are used to compute estimates and all other

related posterior statistics for the signatures and their exposures.

The sampled matrices are first rescaled such that the columns of P

sum to 1 and the product PE is left unaltered. The full set of rescaled

samples is used to exploit the posterior distribution of those param-

eters, allowing to define two novel applications described in

Sections 2.4 and 2.5. Point estimates for the signatures and their ex-

posures are considered for visualization and comparison purposes.

These are computed as the sample median and denoted hereafter bybP and bE respectively.

Details about the implementation of Gibbs sampler are relatively

standard and are included in Section 2 of the supplementary material.

The following section presents and justifies the MCMC EM approach.

2.2.1 MCMC EM

For a given data sample m and Z¼ z, direct use of Bayes theorem

allows to express the marginal likelihood for g, i.e. the function

L : K! R induced by g 7!pðM ¼ mjgÞ, as

L ðg; mÞ ¼ L ðg; m; z; h;wÞ
pðz; h;wjm; gÞ : (4)

Here L ðg; m; z; h;wÞ is defined as being equal to p(M¼m,

Z¼ z, h, wjg) but considered as a function of g. This quantity can be

evaluated by observing the conditional decomposition

10 R.A.Rosales et al.
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L ðg; m; z; h;wÞ ¼ pðM ¼ m;Z ¼ zjhÞpðhjwÞpðwjgÞ;

where p(hjw) and p(wjg) stand respectively for the prior and the

hyperprior distributions, and pðM ¼ m;Z ¼ zjhÞ is the complete

data likelihood. An expression for the later is included as supplemen

tary material by equation (s2). Taking logarithms and integrating

with respect to the posterior distribution pðZ; h;wjm; gÞ with g¼ g0

at both sides of (4) gives

E½ln L ðg; mÞjg0� ¼ E½ln L ðg; m;Z; h;wÞjg0�

�E½lnpðZ; h;w jm; gÞjg0�:

This expression is the basic identity on which the EM algorithm

is built and justifies therefore the convergence of the sequence

gðuþ1Þ ¼ arg max
g2K

E½ln L ðg; m;Z; h;wÞjgðuÞ�; u � 0; (5)

towards the maximum likelihood estimate of g for any

gð0Þ ¼ g0 2 K. The integral involved in the above expectation cannot

be computed directly but it may be estimated via Monte Carlo, lead-

ing to the sequence

bgðuþ1Þ ¼ arg maxbg ðuÞ2K
(

1

R

XR

r¼1

ln L ðbgðuÞ; m;ZðrÞ; hðrÞ;wðrÞÞ
)
: (6)

The maximization steps involved in (6) are relatively simple to

implement and further detailed in Section 3.1 of the supplementary

material.

The procedure described is valid because the sampler developed

throughout generates ðZðrÞ; hðrÞ;wðrÞÞ approximately from the poster-

ior distribution that is actually used to define the expectation in (5),

see for instance Fort and Moulines (2003). This raises however the

issue as to in what sense bpðhjM;bgÞ defined by (3) can be regarded as

an estimate for pðhjM; gÞ. The answer to this is provided by the fol-

lowing result. Let f ðhjM; gÞ be the density of the posterior distribu-

tion pðhjM; gÞ.
THEOREM 1. For any measurable set B 	 �, b�ðBjM;b�Þ converges in

total variation towards �ðBjM; �Þ as R;U!1, that is

lim
U;R!1

sup
B

�����
ð

B

hbpðhjM;bgÞ � f ðhjM; gÞ
i

dh

����� ¼ 0:

The proof to this is included in Section 3.2 of the accompanying

supplementary material.

The implementation of the MCMC EM used to estimate g and

generate the samples for ðZ; h;wÞ conditionally on g for the rank N

is shown in Algorithm 1. Model parameters h are initialized by sam-

pling from the prior or by considering the optimization approach to

(1), implemented in R via the NMF package by Gaujoux and

Seoighe (2010). The constants R0 and R2 are set to 1000 and R1 and

U are set to 100, but all may also be changed by the user.

2.3 Model dimension
The samples for h generated by the last iteration of the MCMC EM

analysis are considered for the estimation of the number of muta-

tional signatures N. To this end let T ¼ minfK;Gg � 1 and then for

each 1�k�T let

BIC
ðrÞ
k ¼ 2ln L ðm; hðrÞk Þ � kðGþKÞlnG; r ¼ 1; . . . ;R

with hðrÞk as the sequence of sampled signatures and exposure matri-

ces of rank k. It is important to observe that in contrast to the

approach in Fischer et al. (2013), the evaluation of the BIC here

does not requires any further approximation because the likelihood

L ðhðrÞN ; mÞ is directly available, see (s1). Let BICk be the median of

fBIC
ðrÞ
k ; r ¼ 1; . . . ;Rg. The number of signatures N is estimated as

N ¼ f1 � k � T : BICk � BICq; q 6¼ kg:

The evaluation of the Bayesian information criterion for all

1�k�T can be expensive for relatively large T because this in-

volves a full MCMC EM analysis at each k. The Algorithm 2 de-

scribes a simple mode finding strategy that works for unimodal BIC

sequences and reduces the overall computational cost.

2.4 Differential exposure score
The exposure matrices EðrÞ; 1 � r � R, keep important informa-

tion about the contribution of each signature across the genome

samples. This can be associated with independent knowledge such

as clinical data in order to check how the activity of each mutational

process correlates to the latter. In particular, when a priori informa-

tion motivates the division of samples in two or more categories,

we propose the use of the Kruskal–Wallis test to check whether ex-

posure values are significantly different among categories. This test

is applied to each sample of the exposure matrix E(r) generating a set

of P-values, pðrÞ; 1 � r � R, for each signature. The median of

minus the logarithm of these values defines what we call the

Differential Exposure Score (DES). Signatures with a DES above a

prescribed level are considered as differentially active among

groups.

2.5 Genome sample classification
The samples EðrÞ; 1 � r � R, can also be used for the classification

of genomes. The same as in Section 2.4, assume there exists prior

Algorithm 1 MCMC EM

1: Input : M, W, N, start

2: Initialize g;w; h;Z :

3: u 0; � 1

4: gð0Þ  ð1; . . . ; 1Þ
5: wð0Þ  wprior � pðwjgð0ÞÞ
6: if start¼“NMF” then

7: hð0Þ  NMFðM=WÞ
8: else

9: hð0Þ  hprior � pðhjwð0ÞÞ
end if

10: Zð0Þ  Zconditional � pðZjhð0Þ;wð0Þ;M; gð0ÞÞ
11: Burning phase: run the Gibbs sampler for R0 iterations

12: while � > 0:05 and u � U do

13: Iterate the Gibbs sampler to get

ðZðrÞ; hðrÞ;wðrÞÞ; 1 � r � R1

14: Update bgðuÞ according to the MCMC EM formula

(6)

15: � jjbgðuÞ � bgðu�1Þjj1
16: u uþ 1

end while

17: Final run: Set bg  bgðuÞ and iterate the Gibbs sampler to

obtain the final sequence of samples

ðZðrÞ; hðrÞ;wðrÞÞ; 1 � r � R2
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information motivating the division of samples in two or more cate-

gories and suppose there are genomes for which this information is

not available (unlabelled samples). Assigning those genomes to one

of the categories based on their mutational profiles could be of inter-

est, especially in clinical settings. We propose the use of classifica-

tion algorithms, e.g. k-Nearest Neighbours to accomplish this task.

The selected algorithm is applied to each sample E(r) in order to clas-

sify the unlabelled genomes according to their exposures to muta-

tional processes. This procedure generates a set of possible

classifications for each unlabelled sample, and one can apply a ma-

jority rule to find the final group assignment. Unlabelled samples are

assigned to a group if there is more than 75% of agreement among

possible classifications, otherwise they are labeled as undefined.

This approach clearly provides a valuable tool for prognostic.

3 Methods

3.1 Data
Single base substitutions were mapped onto trinucleotide sequences

by including the 50 and 30 neighbouring base context to construct a

96�G matrix of mutation counts. The (i, j)th element of the oppor-

tunity matrix was computed as the frequency of the triplets in the

jth genome where the ith mutation can occur. A dataset containing

183916 somatic point mutations from G¼21 breast cancer gen-

omes was obtained from ftp://ftp.sanger.ac.uk/pub/cancer/Nik-

ZainalEtAl, by following the instructions in Nik-Zainal et al.

(2012), Table S1. A second dataset containing 38 157 curated som-

atic mutations identified in G¼114 gastric cancer genomes were

retrieved from the portal of The Cancer Genome Atlas (TCGA).

This data is a subset of the original data described in Bass et al.

(2014), restricted to samples grouped according to Laurén’s classifi-

cation. Additional details can be found as supplementary material.

3.2 signeR
All analyses described here are implemented in the open-source R

language. Low level functions for the generation of random samples

were coded in Cþþ. The design of our algorithm provides a combin-

ation of speed and low memory overhead enabling the execution on

a standard computer. The stand alone algorithm, signeR, is avail-

able at http://bioconductor.org/packages/signeR. This package

allows the extraction of the sequence context of somatic variants ne-

cessary to construct the M matrix from VCF files and also provides

a variety of graphics to facilitate the interpretation of results.

Further instructions about how to install and run this software are

included as supplementary material.

4 Results

4.1 The 21 breast cancer data
The analysis of the 21 breast cancer data made by considering

opportunities revealed 5 distinct signatures (Fig. 2A) that agree well

with existing knowledge as documented in Sanger’s catalogue of

somatic cancer mutations (COSMIC, http://cancer.sanger.ac.uk/cos

mic/signatures), and in Helleday et al. (2014) and Alexandrov

(2013). The number of signatures necessary to describe the data was

obtained by considering the median BIC value out of the set of val-

ues computed via the MCMC samples. The BIC boxplots obtained

by varying N from 1 to 12 are shown in Figure 2B. Signatures S1

and S5 (respectively signature 2 and 13 in COSMIC) are attributed

to activity of the APOBEC family of cytidine deaminases. Signature

S2 (signature 1 in COSMIC) is associated with a process initiated by

the spontaneous deamination of 5-methylcytosine and correlates

with the patient age at cancer diagnosis. Signature S3 (signature 3 in

COSMIC) is associated with failure of DNA double-strand break-re-

pair by homologous recombination, whereas signature S4 has not

been reported previously.

Results for the differential exposure score obtained while group-

ing the data into two categories defined by samples with and with-

out germinative mutations in BRCA1 and BRCA2 genes are

presented in Figure 2C. The proteins encoded by the genes BRCA1

and BRCA2 play important roles in maintaining genomic stability

and are involved in a variety of cellular processes such as damage,

signalling and DNA repair (Liu and West, 2002). Disruption of such

processes often leads to a rapid and widespread accumulation of

somatic mutations in cancer cells (Lord and Ashworth, 2016). DES

highlights three mutational signatures (Fig. 2: S3–S5), one is associ-

ated with inactivating mutations in BRCA1/BRCA2 genes (S3), an-

other is implicated with the activity of APOBEC genes (S5). Taken

together, these findings are consistent with existing knowledge and,

at the same time, they reinforce and help demonstrating the failure

in the response to DNA damage by homologous recombination in

BRCA-defective breast cancer. Interestingly, the signature S4 is pref-

erentially exposed in patients with deletions and mutations in gene

p53 (Tables S.1 and S.2, supplementary material), associated with

more aggressive tumours in triple negative breast cancers (Dang and

Peng, 2013). We observe that the signatures S1 and S2, which are

not differentially exposed, have been reported as being present in

most cancer types by Sanger’s catalogue. We conclude that the DES

method is quite effective at revealing genotype-phenotype relation-

ships between groups of interest.

A leave-one-out cross-validation strategy was applied to test our

classification approach by examining the same sample categories

used in the DES analysis. This study is motivated by the fact that pa-

tients with mutational profiles similar to those found in genomes

with mutated BRCA genes could respond to treatments targeting de-

fective DNA double-strand break repair mechanisms (Lord and

Ashworth, 2016). Each one of the 21 genome samples had its label

removed and was then subsequently classified based on the remain-

ing 20 samples. Results presented in Figure 2D show that only one

Algorithm 2 Model Selection

1: d 2d for d 2 N such that 1
8 T < d � 1

4 T

2: T  f1;1þ d; 1þ 2d; . . . ;Tg
3: i 1

4: k
  k T ½1�
5: Compute BICk
 via Algorithm 1 with N  k


6: while k < ðk
 þ 2dÞ and i < lengthðT Þ do

7: k T ½iþ 1�
8: Compute BICk via Algorithm 1 with N  k

9: if BICk > BICk
 then k
  k

10: i iþ 1

end while

11: while d > 1 do

12: d 2d=2

13: T  fk
 � d; k
; k
 þ dg
14: k
  fk 2 T : BICk � BICq; q 2 T g

end while

15: Final estimate: N  k
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Fig. 2. Results for the 21 breast cancer data. A presents the five signatures obtained for the highest NMF model rank according to the BIC score presented in B.

Signatures are labelled according to the order induced by the total signature exposure defined as be n ¼
P

j
be nj , with S1 being the most exposed signature. Bars

are located at the MCMC sample median, i.e. bP , while other horizontal level marks are located at the sample percentiles 0.05, 0.25, 0.75 and 0.95. B: Boxplots for

the BIC
ðrÞ
k ; 1 � r � R, values obtained at various NMF ranks, N. C: Differential exposure scores - signatures showing median of log-P-values above thresholds

were selected as differentially active among groups, and labels show group where they were most active. Dashed horizontal lines are located at the levels 0.05,

0.01 and 0.001. D: Classifications obtained for each breast cancer genome based on the remaining 20 samples. The sample marked as ‘*’ was the only misclassifi-

cation found, ‘wt’ stands for wild type BRCA1/BRCA2 condition. Percentages show the proportion of agreement among classifications for each genome sample

(Color version of this figure is available at Bioinformatics online.)
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sample carrying a mutation at the BRCA1 gene was misclassified,

thus reinforcing the efficacy of our classification approach.

4.2 Simulation study
Synthetic datasets mimicking real observations were assembled by

taking a group of four mutational signatures commonly found in

breast cancer genomes. These include the signatures 1, 2, 3 and 13

described in Sanger’s catalogue. Throughout, let ~P denote the result-

ing signature matrix. The exposures are generated by maximising

the likelihood L ðh; mÞ for a given data sample m with respect to

the exposure matrix E by assuming the data as being generated by
~P. The maximization of the likelihood in (s1) with P fixed at ~P is

achieved by using R’s nlopt package, but it may also be made by

using Lee and Seung (2001) multiplicative update algorithm to solve

(1). A matrix of simulated mutation counts ~m is finally generated by

sampling each entry ~mij from a Poisson distribution with rate

ð ~P ~E�WÞij.
Two synthetic datasets ~m1 and ~m2 were generated by using the

21 breast cancer data respectively without and with opportunities,

i.e. by setting W¼1 or taking W from the real data. The former is

used to compare the estimates for h produced by signeR and the

method in Alexandrov et al. (2013). The latter was used to establish

a comparison between signeR and the method in Fischer et al.

(2013). We refer to these two alternative methods respectively as

LBA and EMu. The dataset ~m1 was analyzed 100 times by both

signeR and LBA and ~m2 500 times by signeR and EMu. The

NMF rank was set to 4 for all analyses made by LBA. Whereas all

analyses made with signeR (500/500) correctly estimated four sig-

natures, only 51/500 of the analyses performed by EMu detected

four signatures, the remaining 449/500 analyses estimated only

three. The accuracy of each method was compared by the sum of

squared errors between ~P and the estimated signature matrix bP,

defined by squaring the Frobenius norm of bP � ~P. This actually led

to the consideration of

min
r
k ~P� bP½r�k2F ¼ min

r

X
in

j~pin � bpirðnÞj
2;

where bP½r� is a permutation of the columns of bP introduced to ac-

count for the order in which each method exports the signatures.

Only those runs where EMu correctly estimated the dimension of P

where included for this analysis. These results are presented in

Figure 3A, B. Clearly, the estimates produced by signeR are more

accurate than those obtained by EMu (P<2.2e–16, Wilcoxon rank

sum test with continuity correction) or by LBA (P<2.2e–16). For

the analysis with opportunities, the mean and the standard deviation

for the sum of squared errors for signeR are 0.095 and 0.016, and

for EMu respectively 0.23 and 0.007. For the analysis without

opportunities the values for signeR are 0.044 and 0.029 and for

LBA, 0.203 and 0.012.

Further insights into the differences between signeR and EMu

can be gained by inspection of the likelihood at the estimates for P

and E, despite signeR being not just a likelihood maximization

technique. An analogous comparison between signeR and LBA was

not considered because LBA sets by default various entries of P to 0,

leading to an undefined log likelihood. The estimates obtained by

EMu cluster about two different likelihood values (Fig. 4), the lower

one is identified with those runs where only three signatures are

found and the higher with those instances with four signatures. The

estimates obtained for signeR cluster at a single likelihood value.

These results reveal the stability of signeR as opposed to EMu. It is

well known that the optimization approach to NMF, as posed by (1),

is very sensitive to the initial condition because of high dimensional-

ity and because (1) does not have a unique global minimum. This

problem has deserved special attention in the optimization commu-

nity and several initialization strategies in this context have been sug-

gested, see for instance Berry et al. (2007); Boutsidis and Gallopoulos

(2008). Both the methods by Fischer et al. (2013) and Alexandrov

et al. (2013) do not take these into account and consider instead a

random initialization for the matrices P and E.
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Fig. 3. Sum of squared errors for the estimated signatures. A: comparison be-

tween signeR and EMu by modelling a synthetic dataset with opportunities.

B: comparison between signeR and LBA by modelling a dataset without

opportunities
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tained by the analysis of a 4 signatures synthetic dataset via signeR and

EMu. The analysis was made by including a mutation opportunity matrix W
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4.3 Gastric cancer dataset
To further demonstrate our framework this section presents the ana-

lysis of 114 gastric cancer (GC) genomes sequenced at TCGA.

Although heterogeneous, most GC cases can be grouped as intestinal

or diffuse subtypes, according to the classic Lauren’s histological clas-

sification. Here we aim at the identification of signatures that show

significantly different levels of exposure in the Laurén’s subtypes. The

analysis with signeR reveals the data as being best described by 4

signatures (supplementary Figs S.9, S.10). The DES presented in

Figure 5 shows that two of these signatures are differentially enriched

for the intestinal type which has a better prognosis, Ma et al. (2016).

These signatures are described at the COSMIC database as Signatures

3 and 17 respectively. None of the signatures found is significantly

more active in the diffuse group. We also considered the sample classi-

fication approach by using a weight parameter to restrict the analysis

to the signatures highlighted in the DES analysis. By following the

same cross-validation approach as the one considered in the breast

dataset, we were able to classify 65% of the samples (Fig. 5B).

Among these our classification reached 75% of success. We conclude

that the analyses pursued here provide an additional roadmap for pa-

tient stratification that could aid in planning therapeutic strategies.

5 Discussion

The detection of mutational signatures from whole genome sequenc-

ing data has significantly helped to advance the understanding of

mutagenesis and the development of cancers. In this article we pre-

sent a new method to identify mutational signatures based upon an

empirical Bayesian treatment to the Poissonian NMF model. The

empirical approach requires minimal intervention on the part of the

user and is specially suited for the applied practitioner. A key aspect

of our analysis is that it addresses the model selection problem dir-

ectly, i.e. the estimation of the underlying number of signatures,

without using further approximations or ad hoc heuristics previ-

ously considered. In addition, we introduce two concepts, namely

the Differential Exposure Score (DES) and posterior sample classifi-

cation, which may have potential impact in clinical practice.

The effectiveness of our method is shown by the analysis of real

and synthetic datasets. The results obtained with publicly available

data consisting of whole genome somatic mutations of 21 breast

cancers agree well with those in previous studies. A second analysis

allowed to identify two signatures in a gastric cancer subtype char-

acterized by a good prognosis. Results obtained with synthetic data

show that our method presents several advantages when compared

to the two other techniques mostly used in the literature and with

the same NMF parameterization as the one considered here. When

compared to Fischer et al. (2013), our method always estimates the

correct number of signatures and even in those cases where the for-

mer estimates the correct model dimension, our estimates are more

accurate. A comparison against the results produced by Alexandrov

et al. (2013) with the correct dimension also shows that our esti-

mates are more accurate.

The estimation of the NMF rank is perhaps the most challenging

question regarding statistical inferences in the mutational signature

paradigm. Our approach to model choice relies on the use of the

Bayes Information criterion, which is a rough but simple approxi-

mation to Bayes factors, see Kass and Raftery (1995). These factors

typically require the computation of the marginal likelihood, defined

as the normalising constant of the posterior pðZ; hN ;wN jM; g; MNÞ,
with MN as the model indicator corresponding to the factorization

rank N, and hN and wN respectively the associated parameters and

hyperparameters. By setting g ¼ bg and conditioning on bg, Bayes the-

orem renders the marginal likelihood as the ratio

‘ðMjbg; MNÞ ¼
pðM;Z; hN ;wN jbg; MNÞ
pðZ; hN ;wN jM;bg; MN

Þ; (7)

with g fixed, contrary to what is assumed in definition of L ðg; mÞ
by (4). The numerator is easily computed by observing the condi-

tional decomposition defined by the hierarchical model. Indeed, this

is simply given by

pðZ;MjhN ;wN ; MNÞpðhN jwN ; MNÞpðwN jbg; MNÞ:

The evaluation of the denominator in (7) is however more

involved as it requires the joint posterior over the latent variables
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and the parameters hN and wN. This could be estimated at any point

of high probability by using the output from the MCMC EM algo-

rithm by using the approach suggested by Chib (1995) or by other

means. Although promising, further work along these lines is

required.
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