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Characterizing the genome-wide dynamic regulation of gene ex-
pression is important and will be of much interest in the future.
However, there is currently no established method for identifying
differentially expressed genes in a time course study. Here we
propose a significance method for analyzing time course microar-
ray studies that can be applied to the typical types of comparisons
and sampling schemes. This method is applied to two studies on
humans. In one study, genes are identified that show differential
expression over time in response to in vivo endotoxin administra-
tion. By using our method, 7,409 genes are called significant at a
1% false-discovery rate level, whereas several existing approaches
fail to identify any genes. In another study, 417 genes are identified
at a 10% false-discovery rate level that show expression changing
with age in the kidney cortex. Here it is also shown that as many
as 47% of the genes change with age in a manner more complex
than simple exponential growth or decay. The methodology pro-
posed here has been implemented in the freely distributed and
open-source EDGE software package.
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The identification of genes that show changes in expression
between varying biological conditions is a frequent goal in

microarray experiments (1). Differential expression can be studied
from a static or temporal viewpoint. In a static experiment, the
arrays are obtained irrespective of time, capturing only a single
moment of gene expression. In a temporal experiment the arrays
are collected over a time course, allowing one to study the dynamic
behavior of gene expression. A large amount of work has been done
on the problem of identifying differentially expressed genes in static
experiments (2). Because the regulation of gene expression is a
dynamic process, it is also important to identify and characterize
changes in gene expression over time. Here we present a general
statistical method that identifies genes differentially expressed over
time.

Several clustering methods have been applied to time course
microarray data, including hierarchical clustering (3, 4), principal
components-based clustering (5), Bayesian model-based clustering
(6), and K-means clustering of curves (7, 8). None of these
clustering methods is directly applicable to identifying genes that
show statistically significant changes in expression over time. The
K-means clustering method has been modified to compare expres-
sion over time between two groups (9), but this method can only be
applied to a few hundred genes at a time because of the compu-
tational cost of fitting a single model to all genes simultaneously (7,
8). This approach also requires that the statistical significance be
calculated under the assumption that the clustering model esti-
mated for one of the groups is true, which is nonstandard and
potentially problematic.

The method that we propose draws on ideas from the extensive
statistical literature on time course data analysis (10, 11), particu-
larly spline-based methods (12–16). It is applicable to detecting
changes in expression over time within a single biological group and
to detecting differences in the behavior of expression over time
between two or more groups. Individuals may be sampled at

multiple time points, or each time point may represent an inde-
pendently sampled individual. The computational cost is not sub-
stantially greater than methods for static experiments, so there is no
impeding limit on the number of genes that may be tested. For
example, the method is applied here to microarray studies that each
measures �40,000 genes.

The proposed method is applied to two recent studies carried out
on humans. These studies encompass both types of sampling
(longitudinal and independent; discussed below) and both types of
differential expression over time (between groups and within a
single group). In one study, gene expression was monitored over
time in control individuals and endotoxin-treated individuals. En-
dotoxin [lipopolysaccharide (LPS)] is widely used to study acute
inflammatory and immune response; our goal was to understand
the mechanism of endotoxin response by identifying genes with
expression that is different over time between the treated and
untreated groups (17). In a second study, we examined the effect of
age on gene expression in the kidney, where samples were obtained
from human subjects ranging in age from 27 to 92 years. The goal
here was to identify genes whose expression changes significantly
with respect to age in human kidney cortex tissue (18). Genes are
identified in both studies that corroborate previous findings and
provide insights into these problems.

Existing methods for detecting differential expression from static
sampling designs (2) are appropriate for comparing unordered
categorical conditions, such as three different cancer tumor types
(19) or two different treatments (20). It can be shown that these are
not generally applicable to time course experiments (see Supporting
Appendix, which is published as supporting information on the
PNAS web site). Typically these existing methods fail to properly
use the temporal structure present in the data, either leading to a
loss in power or incorrect calculation of significance. The method
that we propose is specifically designed for time course experi-
ments; expression over time is modeled flexibly, and statistical
significance is calculated while accounting for sources of depen-
dence over time.

Materials and Methods
Sample Preparations. Details on the protocols are described in refs.
17 and 18. For the endotoxin study, four subjects were administered
endotoxin and four were administered a placebo. Blood samples
were collected before infusion and at 2, 4, 6, 9, and 24 h afterward.
The leukocytes were isolated from the blood samples by using a
modified lysis protocol (17). Total RNA was extracted by using an
RNeasy kit (Qiagen, Valencia, CA). Samples from hours 4 and 6
were unavailable for one of the controls. For the kidney aging study,
samples were obtained from normal kidney tissues removed at
nephrectomy or renal transplant biopsy from 74 patients ranging in
age from 27 to 92 years. The samples were dissected into cortex and
medulla sections based on histological evaluation. Each frozen
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tissue section was homogenized, and total cellular RNA was
isolated according to TRIzol reagent protocol. Comprehensive
evaluations were performed and reported elsewhere on various
medical factors of the patients (18), and it is unlikely that these
factors have confounded age-regulated changes in gene expression
(18, 21). Only cortex samples (72 in total) were used in our analysis.

Microarray Analysis. Messenger RNA was amplified and hybridized
onto human U133A and U133B GeneChips according to the
protocols recommended by Affymetrix (Santa Clara, CA); 44,924
probe sets on the arrays were analyzed. Normalization was per-
formed by using DCHIP, and expression levels were calculated by
using the perfect-match-only model (22). Expression values were
then transformed by taking log2(Data � 10), where the relatively
negligible number 10 was added to stabilize the variance of values
close to zero. The human subjects observed in the kidney aging
study did not represent a purely random sample. We attempted to
alleviate potential confounding from this sampling scheme by
selecting 35,068 probe sets whose expression is well explained by the
available sex variable, irrespective of any age-dependent behavior
(Supporting Appendix).

Statistical and Computational Details. Thorough details, including
formula derivations, algorithms, and theoretical justifications can
be found in Supporting Appendix.

Functional Analysis of Significant Genes. Probe sets on Affymetrix
U133 GeneChips were mapped to gene IDs. Among the 4,163
probe sets significant at 0.1% for the endotoxin study, 2,914 unique
genes were identified from 3,892 probe sets having mapped gene
IDs. Among the 417 probe sets significant at 10% for the kidney
study, 300 unique genes were identified from 364 probe sets with
mapped gene IDs. In both studies, the Ingenuity Pathways Knowl-
edge Base (Ingenuity Systems, Mountain View, CA) was used for
functional analysis of genes. Briefly, the Ingenuity Pathways Knowl-
edge Base consists of �106 individually modeled relationships into
an ontology of �550,000 biological concepts. Relationships be-
tween genes, proteins, small molecules, complexes, cells, processes,
and diseases were manually extracted by Ph.D.-level scientists from
�200,000 peer-reviewed articles (17).

Results
Experimental Objectives and Statistical Formulations. We developed
a general statistical method that identifies genes showing tem-
poral differential expression. This method was applied to two
human studies encompassing both types of temporal differential
expression.

In one study, kidney cortex samples were obtained from 72
human subjects ranging in age from 27 to 92 years. Only one array
was obtained per sample, and the age of the subject was recorded
(see Materials and Methods). Fig. 1a displays a simulated example
of expression measured from a single gene for this type of study.
The solid line is the population average time curve for the probe set,
which is its true average expression over time with all sources of
variation removed. The points are the observed expression values,
one per each individual, and these can be thought of as independent
random deviations from the solid line due to biological and
measurement variation. ‘‘Independent sampling’’ was performed in
this study because each sample of cortex tissue represents an
independently sampled individual.

To determine whether each gene has expression that changes
with age, our method involves performing a hypothesis test on each
gene of whether its population average time curve is flat. We call
this type of differential expression “within-class temporal differen-
tial expression.” Fig. 1b shows the expression measurements from
a highly significant gene, CRABP1, a cellular retinoic acid-binding
protein. The gene was tested by first fitting a model under the null
hypothesis that there is no differential expression, and then under

the alternative hypothesis that there is differential expression. The
null model is the dashed flat line that minimizes the sum of squares
among all possible flat lines. The alternative model is the solid curve
that minimizes the sum of squares among a general class of curves,
namely natural cubic splines. A statistic is calculated that compares
the goodness of fit of these two models. This statistic is a quanti-
fication of evidence for differential expression, and the larger it is
the more differentially expressed the gene appears to be. For every
gene, a statistic was calculated in this way, and a significance cut-off
is applied to them by using a false discovery rate criterion (23). This
process involves calculating the null distribution of the statistics
when there is no differential expression and is accomplished
through a data resampling technique.

In another study, eight human volunteers were randomly divided
into endotoxin-treated and control groups of equal size (see
Materials and Methods). Fig. 2a is a simulated example of expression
measurements from a single gene in a group of four individuals. The
solid line is the population average time curve for this gene. The
dashed lines are the average time curves for the individuals,
meaning that these are the true underlying time curves for each
individual with the sources of variation removed up to their
individual variation. The deviation of an expression value from its
corresponding ‘‘individual average time curve’’ can be thought of as
an independent random event. The deviation of an individual
average time curve from the population average can also be thought
of as an independent random event. However, this implies that the
deviations of expression values from the population average time
curve are correlated within individuals. The sampling performed in

Fig. 1. Example of independently sampled time course expression data. (a)
Simulated example of a gene’s expression measurements obtained by inde-
pendent sampling. The solid line is the population average time curve and the
open circles are observed expression values. (b) Expression values of a signif-
icant gene in the kidney aging study. The solid line is the curve fit under the
alternative hypothesis of differential expression, and the dashed line is the
curve fit under the null hypothesis of no differential expression. The � symbols
represent observed expression values.
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this study is called ‘‘longitudinal sampling’’ because each individual
is observed at more than one time point.

Here, the goal is to identify genes that show significant differ-
ential expression across time between the endotoxin-treated and
control groups. We call this type of differential expression “be-
tween-class temporal differential expression.” The approach used
here is conceptually similar to that in the kidney study. Fig. 2b shows
the expression measurements from a significant gene in the study,
IFN regulatory factor 1. Under the null hypothesis of no differential
expression, the treated and control groups have the same popula-
tion average time curve. Therefore, a single curve (a natural cubic
spline) is fit to the combined groups, which is represented by the
dashed curve in Fig. 2b. The alternative model is formed by fitting
a separate curve to each group, as is shown by the solid lines in Fig.
2b. A statistic is computed based on the improvement in goodness
of fit in going from a single curve to the separate curves for each
group. As before, this statistic is a quantification of evidence for
differential expression, and the larger it is the more differentially
expressed the gene appears to be. A significance cut-off is applied
to these statistics in the same fashion as in the kidney aging study.

In contrast to a static experiment, it is more difficult in the time
course setting to form statistics that accurately quantify differential
expression. Determining the distribution of the statistics when there
is no differential expression is also more challenging. The behavior

of expression over time may vary greatly from gene to gene, so a
flexible modeling approach must be taken in forming statistics.
Under certain study designs (e.g., the endotoxin study) there may
be dependence between the expression measurements within a
single individual, which complicates the formation of statistics and
the simulation of the null distribution. Finally, simple permutation
methods cannot be used to simulate null statistics because of the
complex structure of time course measurements.

Proposed Statistical Method. Methodology was developed to ad-
dress these issues in a statistically rigorous fashion. In doing so, a
general model for gene expression over time within a single
biological group was first formulated. Although a single model can
be applied to both studies (Supporting Appendix), a simplified
version is possible for the kidney study because of its independent
sampling scheme. Let yij be the relative expression level of gene i in
individual j, where there are i � 1, 2, . . . , 35,068 probe sets and j �
1, 2, . . . , 72 individuals. Individual j is observed at age tj, which lies
somewhere between 27 and 92 years. The expression values are
modeled by

yij � �i�tj� � �ij,

where �i(tj) is the population average time curve for gene i
evaluated at time tj and where �ij is the random deviation from this
curve. In terms of Fig. 1a, �i(t) is shown by the solid line. The
distance between this curve and an observed expression value is �ij.
The �ij are assumed to be independent random variables with mean
zero and gene-dependent variance �i

2.
The following model was developed for the endotoxin study and

for longitudinal sampling in general. Let yijk be the relative expres-
sion level of gene i on individual j at the kth time point, where there
are i � 1, 2, . . . , 44,924 probe sets and j � 1, 2, . . . , 8 different
individuals sampled (four within each group). For each individual,
there were k � 1, 2, . . . , 6 time points observed at times tjk, except
for the one control, who is missing two time points. The expression
values are modeled by

yijk � �i�tjk� � �ij � �ijk.

The population average time curve for gene i is again �i(t).
Individual j deviates from �i(t) by �ij, implying that �i(t) � �ij is the
individual average time curve for individual j. The measurement
error and remaining sources of random variation are modeled by
�ijk. The solid line in Fig. 2a is represented by �i(t), and the dashed
lines are represented by �i(t) � �ij. Each expression value deviates
from its corresponding dashed line by �ijk. The �ij and �ijk are
assumed to be independent random variables with means equal to
zero and gene-dependent variances �i

2 and �i
2, respectively. The case

for which �ij is modeled as a curve will be dealt with elsewhere;
however, the endotoxin study did not contain enough observations
to permit this extra level of complexity.

The population average time curve �i(t) is parameterized in
terms of an intercept plus a p-dimensional linear basis:

�i�t� � �i � 	i
Ts� t�

� � i � 	 i1s1� t� � 	 i2s2� t� � · · · � 	 ipsp� t� ,

where s(t) � [s1(t), s2(t), . . ., sp(t)]T is a prespecified p-dimensional
basis, �i is the unknown gene-specific intercept, and 	i � [	i1,
	i2, . . . , 	ip]T is a p-dimensional vector of unknown gene-specific
parameters. A natural choice for the basis is a polynomial of degree
p, which would result in modeling �i(t) � �i � 	i1t � 	i2t2 � � � � �
	iptp. The polynomial basis was effective in both studies, although
a natural cubic spline basis is more flexible and makes fewer
assumptions (12–16). Furthermore, a natural cubic spline param-
eterization of �i(t) resulted in increased power in both studies. For
either type of basis, the curve was estimated by minimizing the sum

Fig. 2. Example of longitudinally sampled time course expression data. (a)
Simulated example of a gene’s expression measurements obtained from
longitudinal sampling of four individuals. The solid line is the population
average time curve. The dashed lines are the average time curves for the
individuals. The points of a common shape correspond to one of the individ-
uals. (b) Expression values of a significant gene from the endotoxin study. The
solid lines are the curves fit under the alternative hypothesis of differential
expression, and the dashed line is the curve fit under the null hypothesis of no
differential expression. The � symbols represent controls, and the open circles
represent treated individuals.
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of squares between the curve and the observed expression values,
which involves assigning values to only �i and 	i. The model fitting
procedure for longitudinal sampling is slightly more complicated in
that it also takes into account the dependence of measurements
within an individual (Supporting Appendix). We also developed a
method to automatically choose a single value of the basis dimen-
sion p for all genes based on a singular value decomposition of the
expression data (Supporting Appendix). We found that allowing p to
vary from gene to gene or choosing a single p in a post hoc fashion
lead to anticonservative inflation of significance due to overfitting.

Not only does the basis representation of �i(t) facilitate model
fitting, but it also greatly simplifies the hypothesis tests for differ-
ential expression. The tests can now be written in terms of the �i and
	i for each gene, which implies that the tests do not depend on
specific time points, so general sampling schemes may be analyzed
as we have claimed. In the kidney aging study, the null hypothesis
of no differential expression is equivalent to restricting �i(t) to be
a constant, and the alternative hypothesis of differential expression
allows �i(t) to be a curve. Thus, the null hypothesis model is fit
under the constraint that �i(t) � �i and 	i � 0, and the alternative
hypothesis model is fit under the general parametrization of �i(t).
For the endotoxin study, the null hypothesis is that the treated and
control groups have equal �i(t) (i.e., equal �i and 	i), and the
alternative hypothesis is that they are not equal. The null hypothesis
model is obtained by fitting a curve to the two groups combined,
and the alternative hypothesis model is obtained by fitting a
separate curve to each group. In this particular study, we were not
interested in a difference in the intercepts �i because all individuals
started out as untreated at time 0. Therefore, the intercept was
implicitly assumed to be equal between the two groups under both
hypotheses, which comes down to a test for equality of the 	i

between the two groups. This equality will not always be the case
when testing for between-class temporal differential expression, so
we have developed model fitting methods for both scenarios
(Supporting Appendix).

A statistic for each gene was then formed that quantifies differ-
ential expression. The statistic was defined to be an analogue of the
t and F statistics that are commonly used in static differential
expression methods. The statistic compares the goodness of fit of
the model under the null hypothesis to that under the alternative
hypothesis. First, fitted values from the null and alternative models
are calculated for each observed value. The residuals of the model
fits are then obtained by subtracting the fitted values from the
observed values. Calculating SSi

0 to be the sum of squares of the
residuals obtained from the null model, and SSi

1 from the alterna-
tive model, the statistic for gene i was constructed as

Fi �
SSi

0 
 SSi
1

SSi
1 .

This statistic is proportional to the typical F statistic used in
comparing two nested models. The intuition behind the formula is
that SSi

0 � SSi
1 quantifies the increase in goodness of fit, and

dividing this difference by SSi
1 provides exchangeability of the Fi

across the genes. Justification and exact formulas for all cases can
be found in Supporting Appendix.

The null distribution of these statistics is calculated through a
data resampling method called the bootstrap (24), where residuals
from the alternative model are resampled and added back to the
null model to simulate the case where there is no differential
expression (Supporting Appendix). We note that our resampling
scheme takes into account dependence between time points when
the study involves longitudinal sampling. The observed statistics
and null statistics were used to estimate a Q value for each gene
(Supporting Appendix), which estimates the false-discovery rate
incurred when calling the gene significant (23, 25).

Analysis of Systemic Inflammatory Response Induced by LPS. In the
endotoxin study there are 4,163, 7,409, and 12,720 significant probe
sets at respective Q-value cut-offs of 0.1%, 1%, and 5%. These
results indicate that an endotoxin injection causes a profound gene
expression response in blood leukocytes, which is expected for a
number of reasons. First, in vivo administration of LPS invokes an
acute systemic inflammation that dramatically perturbs the body’s
physiology. Second, some differential expression may be due to
changing distributions of cell populations in the blood in addition
to transcriptional changes (17). Also, measuring differential expres-
sion over time is a more sensitive study design than the typical static
design; any change over time qualifies as differential expression. A
t test (23) and the SAM software (20, 23) were used to test for
differential expression between 0 and 2 h and between 0 and 4 h.
The significance results are displayed in Table 1, where it can be
seen that an actual time course analysis offers a sizeable increase in
statistical power over a static design analysis.

Under the assumption that the control individuals have flat
expression over time, it would have sufficed to simply test the
endotoxin individuals for within-class temporal differential expres-
sion. However, we found that, among the controls, at least 6% of
the probe sets show within-class temporal differential expression.
We also tested the endotoxin-treated individuals for within-class
temporal differential expression and found the significance to be
inflated to unrealistic levels. Therefore, it is necessary to include
both treated and control individuals in a test for between-class
temporal differential expression to identify genes differentially
expressed because of LPS injection.

To get a broad picture of the behavior of differentially expressed
genes, a singular value decomposition was performed on the 4,163
most significant probe sets. Fig. 3 shows the top two eigen-genes
that explain 66% and 16% of the variance, respectively. The
relevant information is the shape of each eigen-gene, not the
magnitude or direction of differential expression. Among the 4,163
most significant probe sets, 27% are up-regulated as the eigen-gene
is drawn; 73% are down-regulated, which is simply the reflection of
the eigen-gene’s shape across the time axis. The second eigen-gene
shows more complex behavior, where changes in expression occur
in both directions over the time course. We identified 2,914 unique
genes among the 4,136 probe sets; 756 showed up-regulation during
the time course, and 2,158 showed down-regulation. Global func-

Table 1. A comparison of the number of probe sets called
significant as found by the proposed method, a standard t test,
and a SAM test

Q value
cutoff, %

Proposed method
t test SAM

Eight
subjects,
46 arrays

Four
subjects,
16 arrays

0 h vs.
2 h

0 h vs.
4 h

0 h vs.
2 h

0 h vs.
4 h

1 7,409 548 0 0 0 0
2 9,188 2,683 226 91 65 0
3 10,467 4,392 1,678 837 1,756 695
4 11,642 5,859 2,524 1,826 2,535 1,718
5 12,720 7,229 3,202 2,686 3,101 2,694

Shown is a comparison of the proposed method to a standard t test and a
SAM test, which is a t test with adaptive asymmetric thresholding. The ratio of
the number of probe sets called significant is an estimate of the increase in
power that our procedure provides. For the static methods, eight subjects and
16 arrays were used to compare two time points (0 h vs. 2 h and 0 h vs. 4 h). The
proposed method was compared to the static methods in two ways. First, all
8 subjects and 46 arrays were used, potentially giving our method an advan-
tage due to a decrease in technical replication variance. Second, only four
subjects were used at times 0, 4, 6, and 24 h for a total of 16 arrays, giving the
static methods a substantial advantage in that they have twice as many
biological replicates. The fairest comparison lies in between these two, al-
though both applications outperform the static methods substantially.
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tional analysis was performed by using a gene ontology built from
experimental evidence compiled in the Ingenuity Pathways Knowl-
edge Base (Fig. 4 and Data Set 1, which is published as supporting
information on the PNAS web site).

The most significant functional groups from the 756 up-regulated
genes take part in immune response (121 genes), inflammatory
disease (41 genes), cellular movement (84 genes), tissue morphol-
ogy (72 genes), and cell death (144 genes). These groups are
consistent with an intense response of leukocytes to LPS. The
apparent expression of many elements of inflammation are up-
regulated, including secretive cytokines, chemokines, and associ-
ated proteins (CCL20, CCL3, CCL4, CXCL16, CXCL2, IL-1A,
IL-1B, IL-8, TNF, TNF-SF13B, IL-1RAP, IL-1RN, TNF-AIP3,
and TNF-AIP6); their membrane receptors (CCR1, IL-10RB,
IL-18R1, IL-18RAP, IL-1R1, IL-1R2, IL-4R, IL-8RA, IL-9R, and
TNF-RSF6), Toll-like receptors (TLR4, TLR5, TLR6, and TLR8),
Fc receptors (FC-AR, FC-ER1G, FC-GR1A, FC-GR2A, and
FC-GR2B), IFN receptors (IFN-GR1, IFN-GR2, and IFN-AR1),
protein tyrosine phosphatases (PTP-4A1, PTP-N2, PTP-N22,
PTP-NS1, PTP-RC, PTP-RJ, PTP-RN2, and PTP-RO), Janus
tyrosine kinases�signal transducers and activators of transcription
(JAK2, JAK3, STAT2, STAT3, STAT5A, and STAT5B), and
NF�B�IKB proteins (NF�B-2, NF�B-IA, and NF�B-IE). These
and other elevated genes participate in the activation of innate
immune response and many functions of leukocytes, including cell
movement of leukocytes, infiltration, migration, phagocytosis, ac-
tivation, chemotaxis, proliferation, and recruitment. The most
significantly up-regulated gene is ORM1, a key acute phase plasma
protein.

The most significant functional groups from the genes showing
down-regulation are protein synthesis (83 genes), including genes of
elongation initiation factors, ribosomal proteins, mitochondrial
ribosomal protein; and RNA posttranscriptional modification (60
genes), including genes such as heterogeneous nuclear ribonucleo-
proteins, small nuclear ribonucleoproteins, and splicing factors.
Members of RNA polymerase II are also decreased. Correspond-
ingly, genes involved in oxidative phosphorylation, such as mito-
chondrial complexes I (NDUF), II (SDH), III (UQCR), and IV
(COX) are down-regulated. This concerted suppression of the cell’s
protein syntheses, transcription programs, and energy productions
may reflect a generalized stress response in blood leukocytes.
Interestingly, expression levels of members associated with the

MHC class II are also suppressed, consistent with the reduced
antigen-presenting capability after LPS shock.

Taking these results together, we observed a comprehensive
transcriptional response to LPS stimulation, where leukocyte cells
reallocate resources and up-regulate transcription of genes involved
in innate immune and defense mechanisms.

Analysis of Age-Related Genes in the Kidney Cortex. We detected
substantial differential expression in this study, although not nearly
as much as in the previous study. At Q-value cutoffs of 5% and 10%,
there are 187 and 436 significant probe sets, respectively. Among
the 436 probe sets significant at Q � 10%, 320 unique genes were
identified, with 240 show increasing expression with age and 80
show decreasing expression.

A functional analysis was also performed on these age-regulated
genes (Data Set 2, which is published as supporting information on
the PNAS web site). The most significant functional group is
immune response (69 genes), which includes genes associated with
the complement component (C1QA, C1QB, C1QG, C1QR1, C1R,
C1S, and C4A), cytokines, chemokines, and receptors (CCL2,
CCL20, CCR1, CX3CR1, CXCL9, CXCR4, IL10RB, CSF1R, and
CSF2RB), and the MHC II complex (FCER1G, HLA-DMA,
HLA-DPA1, HLA-DQB1, HLA-DRB1, and HLA-DRB3). All but
three of these genes show up-regulated expression with age, which
suggests an increased abundance of immune response genes in the
kidney cortex, perhaps as a result of a low level of inflammation
over life or as a compensation for the decreased immune function

Fig. 4. Functional analysis of genes found to be significant at Q � 0.1% in the
endotoxin study. Shown are representative functions differentially enriched
[difference in log(significance) � 4] between the groups of up-regulated (light
gray) and down-regulated (black) genes. The significance values of these
functions in the combined group are shown in dark gray.

Fig. 3. Smoothed version of the top two eigen-genes obtained from probe
sets significant at Q � 0.1% in the endotoxin study. The solid lines are
smoothers fit to endotoxin-treated individuals, and the dashed lines are fit to
the control individuals. The first eigen-gene explains 66% of the variance and
is represented by the black lines. The second eigen-gene explains 16% of the
variance and is represented by the gray lines.
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in older age. Renal infiltration with immunocompetent cells, which
is known to correlate with renal diseases and increase over age, can
also account for some of these observed changes.

The aging process has previously been shown to involve a
widespread and complicated alteration in gene expression (18). In
our analysis, significant genes were identified that have a variety of
cell-to-cell signaling and interaction (68 genes). For example, 34
genes are involved in the quantity or mobilization of calcium and 14
genes in tyrosine phosphorylation. Fifty-nine genes were identified
to be involved in apoptosis and cell death. The expression levels of
apoptosis-enhancer proteins MYC (C-MYC), SP1 (Sp1 transcrip-
tion factor), caspase 1, and ubiquitin D increase with age in the
kidney, whereas the antiapoptosis protein HSPA9B (mortalin-2)
decreases with age. However, the expression of BCL2A1, an
inhibitor of the intrinsic apoptosis pathway, is observed to be
increasing with age (26).

Gene expression may change with age in response to declining
kidney function and increased susceptibility to kidney disease.
Interestingly, a group of 12 genes known to be localized in mito-
chondria (HSPA9B, COX8A, COX7C, AKAP1, BCKDHA,
CLPP, FDX1, AMT, DBT, ATP5G3, AK2, and NME4) are
identified as significant, and their expression level uniformly de-
clines in older age. A number of age-regulated genes are also known
to be involved in renal diseases, including C1QA, CCR1, LYN,
PTPRC, and TNFSF13B, which all show increasing expression with
age (27–31). The expression of TRPM6 (a transient receptor
potential cation channel) negatively correlates with age, and mu-
tations of this gene cause hypomagnesemia with secondary hy-
pocalcemia (32).

We used a 4-dimensional basis in the significance analysis,
although other choices of p are possible. A 1-dimensional basis is
equivalent to identifying differential expression by fitting a linear
regression and testing whether the slope is zero. Applied to
log-transformed expression data, a linear regression is only able to
identify genes that show simple exponential behavior in their
differential expression. By testing the null hypothesis of linear or
flat log-transformed expression, we found that at least 25% of the
35,068 probe sets are differentially expressed in a manner more
complex than an exponential function of age. Among the 417 most
significant probe sets when using the 1-dimensional basis, it is
estimated that at least 47% of these are more complex than simple
exponential behavior. At Q � 5%, just over half of the genes found
to be significant using the 4-dimensional basis are also significant
when using the 1-dimensional basis. Therefore, there is potentially
a functional class of genes showing simple exponential temporal
differential expression and another functional class showing sub-
stantially more complex differential expression.

Discussion
We have proposed a significance method to identify differentially
expressed genes in time course microarray experiments and applied
it to studies involving two types of sampling and both types of
temporal differential expression. The method may also be applied
to more complicated situations, where three or more groups are
compared, for example. We have justified the method in terms of
well established statistical concepts (Supporting Appendix).

Temporally differentially expressed genes were identified in two
time course microarray studies on humans. The human in vivo
model of bacterial endotoxin represents a unique opportunity to
examine the onset of systemic inflammation in blood leukocytes.
Our analysis suggests that a genome-wide transcriptional response
takes place where blood leukocytes reallocate resources and up-
regulate transcription of genes involved in innate immune and
defense mechanisms. The inclusion of controls in this study played
an important role, in which the controls themselves showed differ-
ential expression over time. In the clinical setting, comparing a
treatment group to time 0 does not provide a proper control over
the entire time course. The significance analysis of the kidney aging
study indicates that a large proportion of genes have expression that
increases with age, including those involved in signal transduction,
cell growth, and genome stability. Genes related to metabolism
were found to be decreasing with age. It was also shown that a large
proportion of gene expression changing with age does so in a
manner more complex than exponential growth. Therefore, in
general it is important to use flexible models when identifying genes
that are temporally differentially expressed.

We have developed a freely available point-and-click software
package called EDGE that includes this methodology and new
methodology for static experiments. EDGE is available from
J.D.S. upon request.
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