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The similarity of two nucleotide sequences is often expressed in terms of evolutionary 

distance, a measure of the amount of change needed to transform one sequence 

into the other. Given two sequences with a small distance between them, can their 

similarity be explained by their base composition alone? The nucleotide order of 

these sequences contributes to their similarity if the distance is much smaller than 

their average permutation distance, which is obtained by calculating the distances 

for many random permutations of these sequences. To determine whether their 

similarity can be explained by their dinucleotide and codon usage, random sequences 

must be chosen from the set of permuted sequences that preserve dinucleotide and 

codon usage. The problem of choosing random dinucleotide and codon-preserving 

permutations can be expressed in the language of graph theory as the problem of 

generating random Eulerian walks on a directed multigraph. An efficient algorithm 

for generating such walks is described. This algorithm can be used to choose random 

sequence permutations that preserve (1) dinucleotide usage, (2) dinucleotide and 

trinucleotide usage, or (3) dinucleotide and codon usage. For example, the similarity 

of two 60-nucleotide DNA segments from the human beta-l interferon gene (nu- 

cleotides 196-255 and 499-558) is not just the result of their nonrandom dinucle- 

otide and codon usage. 

Introduction 

A useful measure for comparing two nucleotide sequences is evolutionary distance, 
the lowest cost for changing one sequence into the other (Sellers 1974, 1980, 1984). 

Costs are chosen for replacing one nucleotide by another and for inserting or deleting 

a nucleotide (Erickson and Sellers 1983). Each alignment of two sequences has an 

associated cost. The lowest-costing of all possible alignments is called the evolutionary 

distance. This measure has been useful for comparing nucleotide sequences from 

influenza viruses (Shaw et al. 1982), immunoglobulins (Litman et al. 1985), interferons 

(Erickson et al. 1984), and enkephalin and dynorphin (Lewis and Erickson 1985). 

Evolutionary distance and related measures of sequence similarity have recently been 

reviewed by Waterman (1984). 
How small should the distance between two sequences be for their similarity to 

be interesting? A common practice is to permute each sequence, which involves ran- 

1. Key words: interferon, graph theory, Eulerian walks, edge ordering, permutation algorithms. Ab- 
breviations: DP = doublet preserving, DtP = doublet and triplon preserving, DTP = doublet and triplet 
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= triplon preserving, UL = upper-lowercase, Z = last-edge graph. 

Address for correspondence and reprints: Professor 
1230 York Avenue, New York, New York 10021. 

Bruce W. Erickson, The Rockefeller University, 

Mol. Biol. Evol. 2(6):526-538. 1985. 

0 1985 by The University of Chicago. All rights reserved. 
0737-4038/85/0206-0266$02.00 

526 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
b
e
/a

rtic
le

/2
/6

/5
2
6
/9

8
1
7
8
0
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Sequence Permutations 527 

domly rearranging its nucleotide order while preserving its nucleotide usage (base 

composition). The distance between the pair of permuted sequences is called a per- 

mutation distance. Calculation of a large number of permutation distances gives an 

estimate of the probability that any two permuted sequences would have a permutation 

distance less than or equal to the evolutionary distance. If this probability is small 

enough, it is often asserted that the similarity of the two initial sequences is the result 

not just of their nucleotide usage but also of their nucleotide order. Thus, the initial 

sequences may be related by evolutionary divergence or convergence. 

This approach can be too optimistic in claiming sequence similarity. Natural 

nucleotide sequences are often statistically nonrandom, which can increase their sim- 

ilarity compared to that of artificial nucleotide sequences generated by random per- 

mutation. For instance, dinucleotide usage can differ significantly from that predicted 

from base composition alone (Swartz et al. 1962; Fitch 1983a; Lipman et al. 1984). 

In coding regions, the codon usage can be markedly nonrandom (Smith et al. 1983). 

It is important to avoid claiming that sequence similarity is the result of nucleotide 

order if it can be explained merely by nonrandom usage of dinucleotides and/or codons. 

Fitch (1983b) has discussed two methods that can be used to simulate nonrandom 

dinucleotide and codon usage. The Markov method, which is based on Markov chains, 

produces sequences that preserve the chosen properties of the original sequence only 

on the average. The permutation method chooses sequences at random among those 

that exactly preserve the chosen properties. As noted by Fitch (1983b), the permutation 

method requires but the Markov method only expects a random sequence to preserve 

the chosen properties. This paper describes and illustrates a method that generates 

with equal probability all permutations with a given dinucleotide usage or dinucleotide 

and codon usage. 

Fitch ( 1983b) states that for two sequences of sufficient length (N 300 residues 

for dinucleotide usage), the two methods should be equivalent. For two interferon 

DNA sequences of length 60 bp described below, we found that the Markov and 

permutation methods yielded notably different distributions of distances. A sample 

of 1,000 pairs of sequences that preserved dinucleotide usage was generated. The 

sample mean and standard deviation (SD), respectively, were 4 I .74 and 3.86 for the 

Markov method but 39.24 and 2.93 for the permutation method. The range of distances 

was broader for the Markov method (27-55) than for the permutation method (30- 

46). Fitch (1983b) has discussed the appropriateness of using these methods in different 

contexts. 

Terminology 

Although their formulation is specifically motivated by their capacity for gen- 

erating permutations of nucleotide sequences, the following algorithms can be applied 

to sequences of any kind. They are based on a theorem first proved by van Aardenne- 

Ehrenfest and de Bruijn (195 1) and later restated by Kasteleyn (1967, p. 77), Knuth 

(1973, p. 375), and Zaman (1984, p. 225). The statement and proof of this theorem 

presented below contain as little mathematical terminology as possible in order to 

make the operation of the algorithms comprehensible to the general reader. 

We shall use the term singlet rather than mononucleotide, doublet in place of 

dinucleotide, and triplet instead of trinucleotide. Rather than speak of codons, we 

define a triplon as being a member of a set of consecutive nonoverlapping triplets. 

These terms are illustrated in figure 1. 
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528 Altschul and Erickson 

1 5 10 15 20 25 

5 = AGACATAAAGTTCCGTACTGCCGGGAT 

s2 = AAGTTACGAATACATCCCTGGAGGCGT (DP) 

s3 = AGTACTGCCGTTCCGGGATAAAGACAT (DTP) 

s4 = AAAGATCCGGTTAGACGGTACTGCCAT (DtP) 

( __ __ m m  __ __ _- 

( __ __ __ __ __ __ __ 

D ; __ __ __ we __ -_ 26 

I 
I 

a- __ -- __ -_ -_ 

4 8 12 16 20 24 
; ___ --- ___ -a- mm_ mm_ w-w 

; __I _a_ MM_ __a -mm _-- 25 

T ( - - -  a__ w-e w-m ___ -__ 

I I - - -  -__ - - -  w-w --_ W -B 

4 8 12 16 20 24 
1 ___ a-- --- m-m w-m 

t ; -_- -__ ___ ___ 

I 2 4 6 8 

FIG. 1 .-Sequence Si and three permutations of Si . The set of doublets (D), triplets (T), and one set 

of triplons (t) for S, are illustrated. Sz is a doublet-preserving (DP) permutation, S’s is a doublet-and-triplet- 

preserving (DTP) permutation and S, is a doublet-and-triplon-preserving (DtP) permutation. 

By definition, sequence permutation preserves singlet usage and sequence length. 

Generation of a random triplon-preserving (tP) permutation is easy, since it involves 

only random permutation of one set of nonoverlapping triplons. Generation of a 

random doublet-preserving (DP), doublet-and-triplet-preserving (DTP), or doublet- 

and-triplon-preserving (DtP) permutation is more difficult because the elements to be 

preserved overlap. Fitch (19833) has described an algorithm for generating DP per- 

mutations, but it does not generate all permutations with equal probability.’ We de- 

scribe a modification of Fitch’s algorithm that does generate random DP permutations. 

Lipman et al. (1984) mention without details that they have used such an algorithm. 

We show how our algorithm can be extended to generation of random DTP or DtP 

permutations. 

As Fitch (1983b) has noted, generating a random DP permutation is equivalent 

to finding a random Eulerian walk in a directed multigraph. This statement can be 

explained by using the following terms. A directed graph is a set of vertices (points) 

and a set of directed edges (edges, arrows) between certain pairs of vertices. An edge 

from vertex x to vertex y is both an edge from x and an edge to y. A loop is an edge 

from a vertex to the same vertex. A multigraph is a graph that can have two or more 

2. For example, there are two DP permutations of the sequence AATAT, the original sequence and 
ATAAT. Fitch’s algorithm generates the original sequence with probability i/3 and the second sequence with 
probability %. If one adds the extra edge TA to the doublet graph as Fitch suggests, his method still generates 
ATAAT twice as frequently as it does AATAT. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
b
e
/a

rtic
le

/2
/6

/5
2
6
/9

8
1
7
8
0
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Sequence Permutations 529 

edges from x to y. An ordered graph is a graph whose edges are ordered in a sequence 

from the first to the last. A subgraph of a graph G consists of the set of vertices in G 

and a subset of the edges in G. A walk in a graph is a sequence of vertices x1 ~2 l l l 

x,, such that every pair of consecutive vertices Xixi+l is joined by an edge from Xi to 

Xi+1 - A vertex can be present in a walk more than once. An Eulerian walk is a walk 

that uses each edge in the graph exactly once. Vertex x1 is connected to vertex x2 in 

a graph G if there is a walk from x1 to x2 in G. Note that xl may be connected to x2 

even though x2 is not connected to x1. Every vertex is connected to itself. 

Random Doublet-preserving Permutation 

Graphs and Edge Orderings 

Given a sequence S = s1 s2 l l l s-, construct a doublet graph G that has a vertex 

for each singlet that appears somewhere in S and one edge from vertex si to vertex 

si+ 1 for each occurrence of the doublet SjSi+l in S. The s edge list is an ordered list of 

all edges from vertex s. An edge ordering E of the graph is a complete set of edge lists 

for G. Note that the sequence S determines an edge ordering E(S) as well as the graph 

G, because the doublets beginning at sls2 occur in a specific order in S. For example, 

DNA sequence Si of figure 1 specifies the graph G(Si) of figure 2 and determines edge 

ordering E(SI) of figure 3. As in this example, the doublet graph of a sequence is a 

directed multigraph that may contain loops. 

Just as S uniquely determines an edge ordering E(S) of its graph, so conversely 

this edge ordering uniquely determines S. Furthermore, E(S) uniquely determines an 

Eulerian walk in G from s1 in the obvious way: follow the first edge in the s1 edge list 

to s2, strike this edge from the list, follow the first edge of the s2 edge list to s3, and so 

forth. For this reason, E(S) will be called an Eulerian edge ordering. On the left of 

figure 4, the edges of G are numbered according to the edge ordering E(Si). This 

numbering can be interpreted as an Eulerian walk in G. 

If sequence S’ is a doublet-preserving permutation of S, it determines the same 

doublet graph as S because each doublet of S’ corresponds to a doublet of S, which 

in turn corresponds to an edge of G. The edge orderings E(S) and E(S) differ only in 

the internal order of their edge lists. For example, sequence S2 of figure 1 is a DP 

permutation of S1 . Its edge ordering E(S2) is shown in figure 3 as a set of edge lists 

and in the center of figure 4 as the edge numbering of an ordered graph, which can 

FIG. 2.-The doublet graph G(SJ. Ten edges are used twice, as indicated. 
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530 Altschul and Erickson 

Edge 

list 

US, 1 E(S2) E’ 

13 5 7 8 91726 1 2 6 g 10 12 14 22 1 211132023 

A: AC AC AT AA AA AC AC AT AA AC AC AA AT AC AT AG - AA AC AT AC AC AT [AA &I 

4 13 14 18 21 22 7 13 16 17 18 25 4 9 14 15 21 22 

c: CA CC CC CT CC CG CC CA CC CC CT CC CT CC CC CG CC CA - - - 

2 10 15 20 23 24 25 3 8 20 21 23 24 26 3 6 7 10 16 17 
G: GA CT GT CC GG CC GA CT GA GG GA GG GC CT CC GG GT GA GG CT CGA1 - - - 

6 11 12 16 19 4 5 11 15 19 5 8 12 18 19 
T: TA TT TC TA TG TT TA TA TC TG TG TC TA TT TA 

FIG. 3.-The edge orderings E(S,), E(&), and E*. In each edge ordering, numbers indicate the order of 

each edge in the corresponding long walk. Edges in brackets are not used in the long walk. Underlined edges 

belong to the last-edge graph determined by the ordering. 

be interpreted as an Eulerian walk on G. In general, each DP permutation S’ of S 

preserves the terminal singlets s1 and sf of S and specifies a unique Eulerian edge 

ordering of G. Conversely, each Eulerian walk in G from s1 to sf specifies a unique 

DP permutation of S. 

A new edge ordering of G can be generated by separately and randomly permuting 

each edge list of E(S). This random edge ordering determines a long walk in G that 

starts at vertex s1 and ends at a vertex whose edge list has been exhausted. This vertex 

must be sf, the final vertex of S. Since such a long walk in G usually ends before every 

edge is used, it is seldom an Eulerian walk. For example, consider the edge ordering 

E* on the right of figure 3. Its long walk on the right of figure 4 is not Eulerian because 

three edges (AA, AG, GA) are still not used when final vertex T is reached for the last 

time. It is inefficient to trace a long walk most of the way through G before finding 

that it is not Eulerian. The following theorem provides a general criterion for quickly 

determining whether or not an edge ordering of G is Eulerian. Given an edge ordering 

E of G, let the last edge from vertex x be the final edge of the x edge list. The Zast- 

edge graph Z is the subgraph of G consisting of all last edges except that of the final ver- 

tex SF 

Eulerian Edge-ordering Theorem 

An edge ordering E is Eulerian if and only if all vertices in the last-edge graph Z 

are connected in Z to SF We prove this theorem in two parts. 

FIG. 4.-Three long walks. Lef the Eulerian long walk determined by E(S,). Center, the Eulerian long 

walk determined by E(&). Right, the non-Eulerian long walk determined by E*. The emphasized edges 

belong to the last-edge graph determined by the corresponding edge ordering. 
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Sequence Permutations 53 1 

Part A: If E is Eulerian, then All Vertices Are Connected in Z to sf 

A vertex is exhausted during a walk in G when its last edge is used. Note that 

when a vertex other than sf is exhausted, not only have all edges from it been used 

but also all edges to it. If E is Eulerian, the long walk determined by E exhausts all 

vertices in G. Except for SJ, number these vertices from 1 to N in the order in which 

they are exhausted. The last edge from N must point to sfbecause all long walks must 

end at sf and all other vertices have been exhausted. Thus vertex N is connected in Z 

to SF The last edge from N - 1 must point to N or sfbecause vertices 1, l l . N - 1 

have been exhausted; thus N - 1 is also connected in Z to SF By similar reasoning, 

every vertex is connected in Z to So 

Part B: If E Is Not Eulerian, then Not All Vertices Are Connected 

in Z to sf 

Let U be the set of all vertices not exhausted during the long walk determined 

by E. Since E is not Eulerian, U must contain at least one vertex because the long 

walk determined by E does not use all edges of G. Vertex sf is not a member of U 

because sf is exhausted in all long walks. Each edge not used in the walk points to a 

vertex in U because all other vertices are exhausted. In particular, the last edge of each 

vertex in U points to a vertex in U. Thus all walks in Z that begin at a vertex in U 

must end at a vertex in U. Therefore, no vertex in U can be connected in Z to SF This 

completes the proof. 

Random Doublet-preserving Permutation Algorithm 

A random doublet-preserving permutation S’ of sequence S is generated by fol- 

lowing steps (1) to (6). 

(1) Construct the doublet graph G and edge ordering E corresponding to S. 

(2) For each vertex s in G except sf, randomly select one edge from the s edge 

list of E(S) to be the last edge of the s list in a new edge ordering. 

(3) From this set of last edges, construct the last-edge graph Z and determine 

whether or not all of its vertices are connected to sf. 

(4) If any vertex is not connected in Z to sf, the new edge ordering will not be 

Eulerian, so return to (2). If all vertices are connected in Z to sf, the new edge ordering 

will be Eulerian, so continue to (5). 

(5) For each vertex s in G, randomly permute the remaining edges of the s edge 

list of E(S) to generate the s edge list of the new edge ordering E(S). 

(6) Construct sequence S’, a random DP permutation of S, from E(S’) as follows. 

Start at the s1 edge list. At each si edge list, add si to S’, delete the first edge SiSj of the 

edge list, and move to the si edge list. Continue this process until all edge lists are 

exhausted. 

By the Eulerian edge-ordering theorem, E(S’) is Eulerian because all vertices of 

its last-edge graph are connected to sfi Sequence S’ is a DP permutation of S because 

by construction both S and S’ specify Eulerian edge orderings of the same graph G. 

Finally, S’ is a random DP permutation because edge ordering E(S’) was randomly 

selected from the set of all Eulerian edge orderings. 

DNA Examples 

list 

This algorithm is efficient because only one edge must be chosen from each edge 
except the sf edge list in order to determine whether or not a DP permutation will 
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532 Altschul and Erickson 

result. In particular, the Eulerian edge-ordering theorem guarantees that for any DNA 

sequence no more than three last edges (doublets) need to be selected before deciding 

whether or not a DP permutation will result. For example, generation of the random 

DP permutation & from Si is illustrated in figure 3. AG was randomly selected from 

the eight doublets of the A edge list to be a new last edge. Similarly, CG was selected 

from the C edge list and GT from the G edge list. As shown in the middle graph of 

figure 4, all vertices of the emphasized last-edge graph are connected to T, so E(&) is 

Eulerian. The last edge of the T edge list is not present in Z because T is the final 

singlet of S, . In contrast, as shown by the graph on the right in figure 4, three vertices 

of this emphasized last-edge graph are not connected to T, so this edge ordering of 

G(S,) is not Eulenan. 

The Eulerian edge-ordering theorem can be used to calculate not only the prob- 

ability (P) that a random edge ordering of a graph G will be Eulerian but also the 

number of possible Eulerian walks starting at s1 (van Aardenne-Ehrenfest and de 

Bruijn 195 1). Although P depends on graph G, an approximate value of P can be 

calculated by assuming that the last edge from each vertex is equally likely to point 

to any vertex. For a long DNA sequence S containing all four nucleotides, P = -l/4. 

In other words, -3/4 of the random edge orderings of G are not Eulerian. Each of 

these undesired edge orderings is efficiently rejected as soon as one vertex of its last- 

edge graph is known to be not connected to SF 

Random Doublet-and-Triplet-preserving Permutation 

The DP permutation algorithm can be modified to generate a random permutation 

of sequence S that preserves not only singlet and doublet usage but also triplet usage. 

The triplet graph G’ of S is the graph having a vertex for each doublet that appears 

somewhere in S and an edge from SiSi+l to Si+iSi+z for each occurrence of the triplet 

siSi+lSi+2 in S. S uniquely defines an Eulerian walk in G’ from sls2 to ~f_~sf and vice 

versa. A random Eulerian walk in G’ starting at s1s2 corresponds to a random DTP 

permutation of S. 

The Eulerian edge-ordering theorem can be applied to G’ just as it was to the 

doublet graph G. The random DP permutation algorithm is readily extended to an 

algorithm for generating a random DTP permutation of sequence S. For instance, 

DNA sequence Si specifies an edge ordering E’(SJ that consists of 16 edge lists (fig. 

5). Edge ordering E’(&) was generated by separately and randomly permuting these 

lists. The 15 edges of Z(&) are underlined. All 16 doublet vertices in Z(&) are connected 

to AT, so edge ordering E’(&) is Eulerian and sequence & of figure 1 is a random 

DTP permutation of S, . 

These algorithms can be extended to a set of algorithms for finding random 

permutations that preserve all doublets, triplets, l l l n-tuplets of sequence S. As the 

length of the largest preserved n-tuplet increases, the number of possible permutations 

decreases, until at some point only S is possible. 

Random Doublet-and-Triplon-preserving Permutation 

Both dinucleotide usage and codon usage of coding DNA sequences are often 

nonrandom. The appropriate permutation method for this situation should preserve 

both the doublet usage and usage of just one of the three sets of triplons. Consider a 

sequence S whose length is divisible by three and whose first triplon is tl = ~1~2~3, as 

illustrated in figure 1. Since triplon SiSi+iSi+z contains doublets SiSi+i and Si+iSi+z 3 pres- 

ervation of a triplon also preserves both intratriplon doublets. Thus, the problem of 

preserving the triplons and doublets is reduced to the problem of preserving the triplons 
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Sequence Permutations 533 

Edge 

list 

EVS,) E'(S3) Edge E'(S,) E'(S3) 
list ---- 

7 8 20 21 2 25 17 23 

AA: AAA AAG AAA AAG GA: GAC GAT CAT GAG 
- - - - 

3 17 4 24 20 7 

AC: ACA ACT _ ACT ACA CC: GCC CCC - - - 

1 9 1 22 23 24 15 16 

AG: AGA AGT ACT AGA GG: GGG GGA GGG CGA - - - - 

5 18 10 15 2 10 

AT: ATA ATA CT: GTT GTA GTA GTT - - 

4 25 6 16 3 19 

CA: CAT CAT TA: TAA TAC TAC TAA - - - - 

13 21 8 13 12 12 

cc: CCG CCC CCG CCC TC: TCC TCC 
- - - - 

14 22 9 14 19 6 

CC: CGT CGG _ CGT CGG TG: TGC TGC - - - 

18 5 11 11 

CT: CTG CTG TT: TTC TTC - - - - 

FIG. 5.-Edge orderings E’(S,) and E’(&) for the triplet graph G’(S,). 

and intertriplon 

gorithm. 

doublets, which is solved by using the random DP permutation al- 

Random Doublet-and-Triplon-preserving Permutation Algorithm 

A random doublet-and-triplon-preserving permutation S’ of sequence S is gen- 

erated by following steps ( 1) to (6). 

( 1) Represent sequence S as a sequence of uppercase letters. 

(2) Change the uppercase letters at positions 3,6,9, l l l n into the corresponding 

lowercase letters to generate sequence S*. 

(3) Assign each triplon to an ordered triplon list according to its first and last 

letters and its order in S*. For example, AGa and ATa are both stored in the Aa 

triplon list. 

(4) Delete the letters at positions 2,5,8, l l l n - 1 from S* to form a reduced 

sequence I?, which contains alternating upper-lowercase (UL) doublets and lower- 

uppercase (LU) doublets. 

(5) Treating the upper- and lowercase letters as distinct, generate from sequence 

R a random DP permutation R’ by using the algorithm described above. 

(6) Expand random DP permutation R’ into the random DtP permutation S’ as 

follows. Randomly permute each triplon list. Start at the first UL doublet of R’. Replace 

the current UL doublet in R’ with the first triplon of the corresponding triplon list, 

delete this triplon from the list, and move to the next UL doublet in R’. Continue this 

process until the triplon lists are exhausted. Change each lowercase letter back into 

the corresponding uppercase letter to produce S’. 

During step (5), the UL doublets correspond to triplons in S and the LU doublets 

correspond to intertriplon doublets in S. The random DP permutation R’ preserves 

the alternation of these distinct sets of doublets. The intratriplon doublets are stored 

during step (3), removed in step (4), and replaced during step (6). Since each triplon 

list is randomly permuted before R’ is expanded, sequence S’ is a random DtP per- 

mutation of S. This algorithm is readily extended to a set of algorithms that preserve 

all doublets and one set of n-tuplons, where an n-tuplon is a member of a set of 

contiguous nonoverlapping n-tuplets. 
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534 Altschul and Erickson 

A DNA Example 

The random DtP permutation algorithm is illustrated by the generation from 

DNA sequence S, of the new sequence S,, which preserves all eight triplons (codons) 

and 23 doublets (dinucleotides) of S1. First, Si is converted into equivalent sequence 

ST by changing A to a at positions 3 and 9, C to c at positions 18 and 2 1, G to g at 

positions 15 and 24, and T to t at positions 6, 12, and 27, as shown in figure 6. Next, 

the nine triplons are stored in the five triplon lists of ST shown in figure 7. Then 

reduced sequence R, is generated by deleting the middle singlet of each triplon. R, 

contains 18 singlets of eight types (A, C, G, T, a, c, g, t) and 17 doublets, which 

represent five of the 16 possible UL doublet types and eight of the 16 possible LU 

doublet types. 

Next, edge ordering E(Ri) is constructed and seven doublets are randomly selected, 

one from each edge list except the t list, as shown in figure 7. The eight vertices of the 

last-edge graph having these seven doublets as its edge set are connected to final vertex 

t, as shown at the top of figure 8. Thus a new edge ordering having these last edges 

will be Eulerian. One such edge ordering, E(&) of figure 7, is randomly selected by 

completing the random permutation of each list of E(R,). This edge ordering corre- 

sponds to the Eulerian long walk at the bottom of figure 8. Then random DP per- 

mutation R4 is expanded into sequence S,* of figure 6 by replacing each UL doublet 

of R4 by the next unused triplon from the corresponding permuted triplon list. Finally, 

the eight lowercase letters are changed back into uppercase letters to generate DNA 

sequence S4, which is a random DtP permutation of DNA sequence S1 . 

Significance of an Interferon Alignment 

A practical application of these permutation algorithms is embodied in the sig- 

nificance of the similarity of two sequences from the human gene for beta- 1 interferon 

(Erickson et al. 1984). The DNA sequence of this gene was determined by Ohno and 

Taniguchi (198 1) and by Fiers et al. (1982). Using a substitution cost of one and an 

insertion/deletion cost of two, the evolutionary distance between sequence A (nu- 

cleotides 196-255) and sequence B (nucleotides 499-558) is 25. The alignment having 

this distance is shown in figure 9. Can this distance be explained by base composition 

alone? To answer this question, each sequence was permuted 1,000 times, and 1,000 

permutation distances were calculated. A histogram of these distances is shown at the 

top of figure 10. The distance of 25 is 6.0 SDS less than the mean permutation distance. 

If the distribution of permutation distances is assumed to be Gaussian, this is a highly 

significant result. In fact, the distribution is somewhat non-Gaussian. If one wishes to 

3 6 9 12 15 18 21 

Y 
=AGACATAAAGTTCCGTACTGCC 

24 

GG 

27 

CAT 

2 5 8 11 14 17 20 23 26 

s,* = AGaCAtAAaGTtCCgTAcTGcCGgGAt 

1 3 5 7 9 11 13 15 17 18 

Y 
=A aC tA aG tC gT CT CC gG t 

1 3 5 7 9 11 13 15 17 18 

R4 
=A aG tC gG tA aC gT CT CC t 

2 5 8 11 14 17 20 23 26 

S4* 
=AAaGAtCCgGTtAGaCGgTAcTGcCAt 

3 6 g 12 15 18 21 24 27 

S4 
=AAAGATCCGGTTAGACGGTACTGCCAT 

FIG. 6.-A series of sequences constructed during generation of S,, a DtP permutation of S, . 
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Edge 

list 

E(R,) E(R4) Triplon S,* 

list 
s4* 

-- --- 

15 19 13 15 

A: Aa & Aa & AXa: AGa Ma AAa AGa 

3 915 5 11 17 58 36 

c: ct cg a Cg Cg ct cxg: CCg CGg CCg CGg 

G: 

T: 

a: 

7 17 

Gt Gt - 

11 13 

Tc E 

2 6 

aC aG - 

3 7 
Gt Gt - 

13 15 

Tc z 

2 10 

aG s TXc: 

2 

CAt 

4 9 
GTt GAt 

6 7 
TAc TGc 

9 
CAt 

2 4 

GAt GTt 

7 8 
TAc TGc 

12 14 14 16 

c: CT g CT CC - 

10 16 6 12 

g: gT & gG Q 

4 8 4 8 

t: tA tC tC tA 

FIG. 7.-Edge orderings E(R,) and E(RJ and triplon lists for S: and S$ . 

make no assumptions about tail behavior, order statistics can be used to assess the 

significance of the result. If N permutation distances are calculated and M of the N 

are as small or smaller than the evolutionary distance in question, then the probability 

that the distance is due to chance is (M + l)/(N + 1). In the present case, order statistics 

allow one to reject with 99.9% confidence the null hypothesis that the evolutionary 

distance between A and B is explainable by the similarity of their base composi- 

tions alone. 

The algorithms described above were used to permute DNA sequences A and B 

while preserving their codon usage, dinucleotide usage, or both simultaneously. His- 

tograms representing 1,000 tP, DP, and DtP permutation distances are shown in figure 

10. The evolutionary distance of 25 is respectively 5.3,4.9, and 4.7 SDS less than the 

mean permutation distance. The DP and DtP distributions are definitely non-Gaussian, 

so it is best to use order statistics when assessing the significance of the evolutionary 

distance. The hypothesis that the distance between A and B can be explained by the 

A C G T 

A C G T 

FIG. 8.-Last-edge graph Z(h) and the Eulerian long walk in G(R,) determined by E(k). 
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196 200 210 220 230 240 250 255 

CTCCTGTGGCAATTGAATGGGAGGCTTGAATACTGCCTCAA~ACAGGATGAACTTTGAC 

C CCTG AT ATGGGAGG TT A T CCT AAGG CA G G AC T AC 
CACCTGAAAAGATATTATGGGAGGATTCTGCATTACCTGAAGGCCAAGGAGTACAGTCAC 

499 510 520 530 540 550 558 

FIG. 9.-Alignment of sequences A and B from the human beta-l interferon gene. The center line 

echoes the 35 nucleotide identities. 

similarity of their dinucleotide and codon usage alone can be rejected with 99.9% 

confidence. 

In this example, the small distance between the beta-l interferon sequences A 

and B is better explained by the order of their nucleotides (Erickson et al. 1984). In 

other cases, the dinucleotide and codon usage may be sufficient to explain an evolu- 

tionary distance that would seem significant if only base composition were consi- 

dered. The permutation algorithms described in this paper are useful in recognizing 

such cases. 

For example, let sequence C be the same as B except that it begins CACCT- 

TAAAAGATATGGGGAGAG l l l , where the italicized elements are different from 

DtP 
ri 

-100 

+fIrc_L - 
is 30 35 40 45 ;o 

FIG. lO.-Four histograms of 1,000 permutation distances for sequences A and B from the human 

beta- 1 interferon gene. Top, simple permutations; fP, triplon-preserving permutations; DP, doublet-preserving 

permutations; DtP, doublet-and-triplon-preserving permutations. 
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B. The evolutionary distance between A and C is 30. Sequence C was chosen to have 

the same singlet and doublet usage as B, so the DP histogram of figure 10 also applies 

to the comparison of A and C. Since five of these permutation distances are <30, the 

hypothesis that the distance of 30 between A and C can be explained by the similarity 

of their dinucleotide usage alone cannot be rejected with 99.5% confidence. But from 

the top histogram of figure 10, the hypothesis that the distance of 30 can be explained 

by base composition alone can still be rejected with 99.9% confidence. 
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