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ABSTRACT

We discuss some commonly used methods for determining the significance of peaks in the

periodograms of time series. We review methods for constructing the classical significance

tests, their corresponding false alarm probability functions and the role played in these by

independent random variables and by empirical and theoretical cumulative distribution func-

tions. We discuss the concepts of independent frequencies and oversampling in periodogram

analysis. We then compare the results of new Monte Carlo simulations for evenly spaced time

series with results obtained previously by other authors, and present the results of Monte Carlo

simulations for a specific unevenly spaced time series obtained for V403 Car.

Key words: methods: data analysis – methods: statistical – stars: oscillations.

1 IN T RO D U C T I O N

Periodogram analysis is used to identify periodicities in oscillations

of stars and is a vital ingredient of asteroseismology. Typically,

the data analysed are noisy. As a result, spurious peaks arise in

periodograms of the data, not because of any periodicity in the

observed system, but because of the way that the noisy signal has

been sampled. These spurious peaks can be surprisingly large. It is

essential therefore to have reliable tests by which to determine the

significance of periodogram peaks.

This topic has already received attention in the literature. Key

classical papers include those of Deeming (1975), Lomb (1976),

Scargle (1982) and Horne & Baliunas (1986, hereafter HB). We

discuss pertinent aspects of these papers in the sections that fol-

low. These papers were criticized in the work of Koen (1990) and

Schwarzenberg-Czerny (1998), amongst others. Much of the criti-

cism revolved around the appropriate means for attaching signifi-

cance to peaks that arise in a calculated periodogram.

Significance tests for periodograms are hugely important to the

asteroseismologist who relies on periodograms to deliver precise

values for purported eigenfrequencies of pulsation. Comparison of

the values of observationally determined eigenfrequencies with the

values predicted by the latest theoretical models should, in principle,

allow the identification of modes actually excited in real stars and,

subsequently, allow for asteroseismological analysis of those stars.

Asteroseismology appears to be on the threshold of a golden

age, as extensive surveys like All Sky Automated Survey (ASAS;

Pojmanski 1998), and space missions in the mold of Convection Ro-

⋆E-mail: fabio.frescura@wits.ac.za (FAMF); chrise@uj.ac.za (CAE)

tation and Planetary Transits (COROT; Baglin et al. 2002), hugely

increase the number of known pulsating stars, as well as the time

coverage available for their analysis. It is expected that periodogram

analysis will continue to play a prominent role in asteroseismology.

Hence, accurate interpretation of periodogram peaks is an issue of

prime importance.

Various authors have recently presented fresh approaches to this

problem. Reegen (2007) has introduced a new and unbiased reliabil-

ity criterion that he calls the ‘spectral significance’, which depends

on a simultaneous treatment of frequency and phase in determining

significances. More recently, he also introduced (Reegen et al. 2008)

the ‘composed spectral significance’ to identify spurious peaks in

multiple spectra and remove instrumental or environmental arte-

facts in calculated spectral signatures. Baluev (2008) presented a

treatment of the significance of periodogram peaks based on ex-

treme value theory in which he proposed formulae in closed form

for false alarm probabilities, suitable for the time series generated

by systematic surveys. We will present a comparative treatment of

these new methods in a future paper.

In this paper, we consider some of the well-established methods

currently in use for assessing the relevance of periodogram peaks.

Our aim is to explore their relative merits. The structure of this paper

is as follows. We first discuss the construction of significance tests

in general (Section 2), and of Scargle’s significance test in particular

(Section 3). We next consider the concept of ‘independent frequen-

cies’ in periodogram analysis (Section 4), and comment on aspects

of the work reported by Scargle (1982), HB and Schwarzenberg-

Czerny (1998). We report our attempts at reproducing the results

of HB by Monte Carlo simulation, and discuss our failure to repro-

duce their results in detail (Sections 5 to 9). Discrepancies between

our results and theirs lead us to a number of important conclusions
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1694 F. A. M. Frescura, C. A. Engelbrecht and B. S. Frank

regarding the concept of independent frequencies described by HB

and the importance of Monte Carlo simulations in assessing the

significance of periodogram peaks. These conclusions are worth

noting, given that, far from being obsolete, the methods introduced

by Scargle (1982) and HB are still in widespread use in many fields

in astrophysics. The following list, though not comprehensive, il-

lustrates the pervasive use of these methods: Benlloch et al. (2001),

Enoch, Brown & Burgasser (2003), Falter et al. (2003), Tackett,

Herbst & Williams (2003), Lamm et al. (2004), Yabushita (2004),

Claudi et al. (2005), Wen et al. (2006), De Cat et al. (2007). We also

consider the problem of oversampling periodograms (Section 8). Fi-

nally, we apply our conclusions regarding methods of significance

testing to an analysis of the pulsation frequencies of the Beta Cephei

star V403 Car. Our method allows the identification of as many as

seven pulsation frequencies with significances of over 90 per cent

(Section 10).

Definitions of the periodogram assumed in our discussion are

given in the appendices of this paper. Detailed discussions of the

phenomena of aliasing and spectral leakage, to which we refer in

the text, may be found in Deeming (1975) and Scargle (1982).

2 SIGNIF ICANCE TESTS

Noisy data produce noisy periodograms. Peaks in a periodogram

may therefore not be due to the presence of any real periodic phe-

nomenon at all. They may simply be random fluctuations in peri-

odogram power caused by the presence of a noise component in the

data. Peaks arising in this way are spurious: they are not due to any

real periodicity in the observed phenomena, but are simply artefacts

of chance events in the accompanying noise. Spurious peaks can

be surprisingly large, so it is important to have reliable tests for

detecting their presence.

In this section, we review the theory underlying a class of general,

model-independent tests which are in common use. These determine

the probability that the periodogram powers1 observed in a data set

might have arisen from pure noise2 alone, with no other form of

signal present. The basis for these tests is the single trial cumulative

distribution function (CDF),

FZ(z) = Pr[Z ≤ z]. (1)

Here, the random variable Z = PX(ω) is the periodogram power at

frequency ω for the time series X, and z is a specified power thresh-

old. The function FZ(z) gives the probability that, when the data

X are pure noise, their periodogram power at the given frequency

ω does not rise above power-level z. This CDF provides a test as

follows. Suppose a model predicts an oscillation at frequency ω.

Then, we expect PX(ω) to be large at this frequency. However, pure

noise by itself could also produce a large value of PX(ω). CDF (1)

provides an objective criterion for assessing whether the observed

large value of PX(ω) is due to noise. Were the data pure noise, the

probability that PX(ω) < z0 for given threshold z0 is p0 = FZ(z0).

Inverting this function, we obtain the threshold power-level z0 for

which a power value Z ≤ z0 has a probability p0 of being due to

pure noise alone. It is given by z0 = FZ
−1(p0). Equivalently, a power

value PX(ω) > z0 has probability 1 − p0 of being due to pure noise

1 The word ‘power’ is not used here in its formal statistical sense of the

probability of rejection of the null hypothesis given that the null hypothesis

is false, but in its accepted physical sense. Thus, ‘periodogram power at

frequency ω’ means PX(ω) as defined in Appendices A and B.
2 Pure noise is defined in Appendix C.

alone. This test is primitive and negative. It does not tell us that p0

is the probability that our signal contains a periodic component of

frequency ω, but only that p0 is the probability that our signal is not

pure noise.

In practice, we do not evaluate the periodogram power at a single

frequency only, but at a selected set {ωμ : μ = 1, 2, . . . , N}.

We then plot PX(ωμ) versus ωμ and scan the plot for peaks. The

conclusion we would like to draw is that a peak that rise substantially

above all others is due to a genuine periodicity, but to justify this

conclusion we must first rule out the possibility that the plot could

have been produced by pure noise alone. We do this by calculating

the probability that the entire observed periodogram profile could be

produced by pure noise alone. Suppose the data are pure noise. To

calculate the probability that all of the periodogram powers {PX(ωμ)

: μ = 1, 2, . . . , N} at the sampled frequencies {ωμ} fall below a

specified power threshold z, define a new random variable,

Zmax = maximum {PX(ωμ) : μ = 1, 2, . . . , N}. (2)

Thus Zmax is the maximum periodogram power among the set of N

sampled powers. Now, the power at each of the sampled values will

fall below some specified threshold z if and only if Zmax ≤ z. We

thus need to calculate the CDF:

FZmax (z) = Pr[Zmax ≤ z]. (3)

The function FZmax (z) gives the probability that, when the data are

pure noise, the periodogram power PX(ωμ) does not rise above the

threshold z at any of the sampled frequencies {ωμ}. The second

significance test is constructed as follows. Let z0 be a specified

power threshold. The probability that pure noise alone will produce

periodogram powers PX(ωμ) that do not exceed the threshold z0 at

any of the sampled frequencies {ωμ} is given by

p0 = FZmax (z0). (4)

Inverting this function,

z0 = FZmax

−1(p0). (5)

For given p0, this inverse function defines a threshold power-level

z0 such that, if the periodogram power at each of the frequencies

{ωμ} has value Z ≤ z0, then the observed periodogram profile

has probability p0 of being due to pure noise alone. This test is

more sensitive than the first and reduces the probability of spurious

detections.

3 SCARGLE’S SI GNI FI CANCE TEST

If the data are Gaussian pure noise, the periodogram power Z =

PX(ω) at any given frequency ω of the sampled signal Xk is expo-

nentially distributed with probability density function defined by

(Scargle 1982, p. 848),

pZ(z) dz = Pr[z < Z < z + dz]

=
1

σ 2
X

e−z/σ 2
X dz. (6)

The CDF is thus given by

PZ(z) = Pr[Z < z]

=

∫ z

ζ=0

pZ(ζ ) dζ = 1 − e−z/σ 2
X . (7)

We are interested in the probability that the periodogram power at

the given frequency is greater than a specified threshold z. This is

given by

Pr[Z > z] = 1 − PZ(z) = e−z/σ 2
X . (8)
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Significance tests for periodogram peaks 1695

As the observed power z becomes larger, it becomes exponentially

less likely that so high a power level (or higher) could be produced by

pure noise alone, and correspondingly more likely that the observed

power level is due to a genuine deterministic (i.e. non-noise) feature

in the measured signal.

Note that the argument of the exponential in the CDF is not

simply the observed power z, but the ratio z/σ 2
X , which is the ratio

of the periodogram power to the total variance of the data (called

total input signal power by some). This is an important point, worth

emphasizing, as did HB. If the incorrect power ratio is used, then

the statistical tests considered by Scargle will necessarily fail. Thus,

normalization of the periodogram power by the number N0 of data

points used to calculate the periodogram (classical normalization),

or by the residual power after a sine curve has been removed from

the data, or by the variance of the observational uncertainty, all lead

to completely different statistical distributions for the periodogram

power and invalidate Scargle’s analysis summarized in this paper.

Of course, this does not make alternative normalizations ‘wrong’.

It does mean however that they must be accompanied by alternative

statistical analyses (Schwarzenberg-Czerny 1998).

Suppose now that we evaluate the periodogram at frequencies

{ωμ : μ = 1, 2, . . . , Ni}. Denote the periodogram powers at these

frequencies by Zμ = PX(ωμ). If the data X are pure noise, then the

Zμ are random variables. We are interested in determining the prob-

ability that this entire set of observed periodogram powers could

have been produced by pure noise alone. In general, no progress

can be made theoretically in this respect unless we assume that the

Zμ are independent random variables. This is an essential ingredient

in any theoretical derivation of a false alarm probability function.

If the random variables considered are independent, a large body of

theorems is available for use. In the absence of independence, we

face very serious complications both in the reasoning and proofs

of the needed results. We will therefore assume with Scargle that

the frequencies ωμ have been chosen such that the Zμ are mutu-

ally independent. HB refer to a set of frequencies chosen in this

way as ‘independent frequencies’. This is an abuse of terminology,

since it is not the frequencies that are ‘independent’, but the random

variables Zμ. However, this lack of precision leads to no ambiguity

and so is tolerable. To calculate the probability that all the sampled

periodogram powers are less than some specified threshold power

z, define a new random variable

Zmax = maximum{Z1, Z2, . . . , ZNi
}.

The probability that any given power Zμ in this set falls below the

threshold is

Pr[Zμ < z] = 1 − e−z/σ 2
X .

Since the Zμ are independent, the probability that they all fall below

the threshold z is given by

Pr[Z1 < z and Z2 < z and . . . and ZNi
< z]

= Pr[Z1 < z]Pr[Z2 < z] . . . Pr[ZNi
< z]

=
[

1 − e−z/σ 2
X

]Ni

.

The probability that not all the powers Zμ are less than the threshold

z, that is, the probability that at least one of the powers Zμ is above

the threshold z, is then

Pr[Zmax > z] = 1 −
[

1 − e−z/σ 2
X

]Ni

. (9)

This is the function that Scargle proposes as a false alarm probability

function. This function is used as follows: choose a probability pA

that we regard as an acceptable level of risk for the false detection

of real deterministic signals; then solve (9) for z to get a reference

power threshold level zA:

zA = −σ 2
X ln

[

1 − (1 − pA)1/Ni
]

. (10)

If we claim a detection whenever the power level at one of the

frequencies {ωμ : μ = 1, 2, . . . , Ni} exceeds the reference level zA,

the probability that we will be wrong is given by pA.

4 INDEPENDENT FREQUENCI ES

Scargle’s test is constructed on the assumption that we can identify

a set of frequencies at which the periodogram powers are indepen-

dent random variables. In the case where the time-domain data are

evenly spaced, we are guaranteed the existence of such a set. These

are called the natural frequencies (Scargle 1982), or the standard

frequencies (Priestley 1981). These are given by

ωk =
2πk

T
, (11)

where T is the total time span of the data set, that is, T = tN0
−t1, and

k = 0, . . . , [N0/2], where [N0/2] signifies the integer part of N0/2.

The statistics of PX(ωk) with k = 0 are different from those with

k �= 0 (Priestley 1981). If we omit PX(ω0), this leaves us with at most

[N0/2] independent frequencies. In practice, the omission of ω0 =

0 from the set of independent frequencies is of no consequence.

This frequency corresponds to a DC component in the signal which

is generally removed from the data before their periodogram is

calculated. Thus, in the case of evenly spaced data, we can easily

construct the Scargle false alarm probability function and apply it

to determine the significance of high periodogram power levels at

these ‘independent frequencies’.

It is worth emphasizing that, since the false alarm probability

function assumes independent powers at the examined frequencies,

we can only use it to put a significance level on the values of the

periodogram power at the chosen independent frequencies. Peaks

found at other frequency values by oversampling the periodogram

cannot be assessed in this way.

In the unevenly sampled case, the situation changes dramatically.

The statistical analysis of the classical periodogram becomes in-

tractable. The results are sampling-grid dependent, and no general

analysis applicable to all cases has yet been produced. To simplify

the statistical analysis, Scargle proposed that the definition of the

periodogram be modified. His modified periodogram had already

been used by Barning (1963), Vanicek (1969) and Lomb (1976).

These authors did not view the modified periodogram as an attempt

to estimate the Fourier power spectrum from unevenly sampled data,

but as a spectral method for searching for the best-fitting harmonic

function to their data. The novelty of Scargle’s approach was that

he generated the same spectral method as used by these authors by

imposing simple constraints on a generalized form of the Fourier

transform (FT): the modified periodogram should mimic as closely

as possible the statistical properties of the classical periodogram,

and the resulting spectral function should be insensitive to time

translations of the data in the time domain.

The first demand was only partially successful. Forcing time

translation invariance, and demanding that the statistics of the

random variable PX(ω) at a single selected frequency remain un-

changed, that is, demanding that PX(ω) be exponentially distributed,

exhausts the free parameters in Scargle’s modified FT and yields

Lomb’s spectral formula. In this way, Scargle was able to reproduce

some properties of the periodogram for the evenly sampled case.

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 388, 1693–1707
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1696 F. A. M. Frescura, C. A. Engelbrecht and B. S. Frank

However, most other familiar properties of the evenly sampled case

are lost. The most important loss is the existence of independent

frequencies.

All relevant information about correlation and mutual depen-

dence of the random variables {PX(ω)} is contained in the window

function, G(ω). (For a discussion of the window function, see Scar-

gle 1982, appendix D, p. 850, and also his discussion on p. 840.)

Thus, the coefficient of linear correlation between PX(ω) and PX(ω′)

is given by G(ω′ − ω) (Lomb 1976). For independence of PX(ω)

and PX(ω′), it is necessary (but not sufficient) that G(ω′ − ω) = 0.

Furthermore, for mutual independence of a set {PX(ωk): k = 1, 2,

. . . , r} of more than two periodogram powers, it would also be nec-

essary (but not sufficient) to have the ωk evenly spaced. These are

very difficult conditions to realize in practice. Koen (1990) searched

numerically for such mutually uncorrelated sets in a variety of sam-

pling schemes and failed to turn up more than two simultaneously

uncorrelated frequencies.

For Scargle, this loss of independent frequencies is not debilitat-

ing. He says (p. 840, column 1) that ‘. . . if the frequency grid is well

chosen, the degree of dependence between the powers at the differ-

ent frequencies is usually small’, and (p. 840, column 2) that, ‘With

a wide variety of sampling schemes G(ω) does have nulls, or rela-

tively small minima, that are approximately evenly spaced. . . Such

nulls comprise a set of natural frequencies at which to evaluate the

periodogram. At these frequencies the P(ω) form a set of approxi-

mately independent random variables – thus closely simulating the

situation with evenly spaced data’. The implication, though not ex-

plicitly stated by Scargle, is that in spite of the loss of independence

of the random variables P(ω) at the natural frequencies, the false

alarm probability given by our equation (9) (equation 14 in Scargle

1982, p. 839) still provides a reliable significance test in the wide

variety of sampling schemes that he considered.

It seems that Scargle’s recommendation for the case of unevenly

spaced data is as follows: evaluate the modified periodogram at the

natural frequencies defined by the given data span, and use the false

alarm probability calculated for the evenly spaced case to evaluate

the significance of the periodogram peaks. He further recommends

that, to improve the detection efficiency, we decrease the number of

frequencies inspected (p. 842). The effect of this reduction is that

we reduce the power threshold for a given significance level of peak

heights.

The value of Ni is a critical ingredient in Scargle’s false alarm

probability function. There has been some debate concerning its

correct value, as well as its meaning. HB appear to have been

unsatisfied with the value Ni = [N0/2] and proposed to determine

Ni by a method which we describe in the following section.

5 H O R N E A N D BA L I U NA S D E T E R M I NAT I O N
O F N i

HB determined Ni by the following procedure. They simulated a

large number of data sets, each consisting of pseudo-Gaussian noise.

The periodogram of each data set was evaluated from ω = 2π/T to

ω = πN0/T , where T is the total time interval. They then chose

the highest peak in each periodogram, combined these and fitted

the Scargle false alarm probability function to the peak distribution

using Ni as the variable parameter.

The HB simulations investigated three major types of spacing

in the time coordinate. In the first, the data were evenly spaced

in time. In the second, each time followed the previous one by a

random number between 0 and 1. In the third, the data were clumped

in groups of three at each evenly spaced time interval.

In the case where the data are evenly spaced in time, theoretical

statistical analysis provides us with a very clear, unambiguous pic-

ture of what to expect from the simulations: the random variables

{PX(ωk) : k = 1, . . . , [N0/2]}, where ωk = 2π k/T and T is the total

time interval covered by the data, are mutually independent; the

window function, which contains all relevant information about de-

pendencies and correlations of the random variables PX(ω), shows

that these are the only frequencies at which the periodogram powers

are independent (Scargle 1982, p. 840 and 843); the listed frequen-

cies ωk contain maximal information about the power distribution

of the sampled signal. This is seen from the fact that the discrete

FT (DFT) evaluated at these frequencies contains exactly enough

information to reconstruct completely the original data. So, from

theory, we expect the total number Ni of independent frequencies

in the case of evenly spaced time series consisting of zero mean

pure noise to be exactly [N0/2]. In practice, a simulated time series,

generated from a zero mean distribution, will not have precisely

zero mean. We must therefore remove its mean before finding its

periodogram. Once this is done, theory guarantees that a simulated

data set will have exactly [N0/2] independent frequencies. If the

data are used also to estimate other parameters, this number will be

reduced further. The value [N0/2] is therefore the maximum num-

ber of independent frequencies expected in a periodogram of evenly

spaced data.

Surprisingly, the best fits obtained by HB consistently produced

values of Ni which were substantially higher than this expected

upper limit (HB, table 1, p. 759). In fact, their fitted values are

consistently higher than N0, with the exception of their two smallest

data sets (10 and 15 points, respectively) where the fitted value of

Ni is slightly less than N0, but still about twice as large as expected.

These results are puzzling. Theory and simulations appear to be

in conflict. Cumming, Marcy & Butler (1999) note that Baliunas

has indicated typographical errors in the values listed in HB. Koen

(1990) and Schwarzenberg-Czerny (1996) have also noted mistakes

in HB. We have repeated the HB simulations for the case of even

sampling in the time domain. We have also extended somewhat the

scope of their investigations to consider the alternative false alarm

probability function proposed by Schwarzenberg-Czerny (1998),

as well as the effects of oversampling the periodogram. The results

are interesting, and we report them in the corresponding sections

below.

In our first set of simulations, we attempted to reproduce the re-

sults reported by HB in their table 1, p. 759, for the case of evenly

spaced data. HB describe the method they followed in their simula-

tions as follows: ‘The periodogram of each data set was evaluated

from ω = 2π/T to ω = π N0/T . . . The highest peak was then chosen

in each periodogram.’ It was not clear to us whether they sampled

the periodogram values PX(ω) only at the natural frequencies ωk =

2πk/T , and then chose the highest periodogram power from this

restricted sampled set, as prescribed by Scargle; or whether they

followed the practice of a not insubstantial number of astronomers

who search for the highest periodogram peak in the given range by

grossly oversampling the periodogram, and then choose the max-

imum value obtained irrespective of whether it occurs at one of

the natural frequencies ωk . Accordingly, we ran two sets of simu-

lations implementing both procedures. We fitted the Scargle false

alarm function to our results by the method of least squares. All

our periodograms were normalized using the sample variance of

the simulated data, and not the variance of the distribution used

to generate the sample. We failed to reproduce the HB results in

detail. Sampling the periodogram at the natural frequencies only

and choosing the highest value among these yielded values of Ni

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 388, 1693–1707
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Significance tests for periodogram peaks 1697

Table 1. Results of Monte Carlo simulations.

Oversampled Natural frequencies

N0 HB value Number Scargle function SC function Scargle function SC function

of Ni of tests best-fitting Ni best-fitting Ni best-fitting Ni best-fitting Ni

10 9.70 1395 9.09 26.80 5.00 8.70

15 14.45 347 14.09 32.80 7.90 13.60

25 27.38 213 24.91 47.80 12.80 20.00

35 38.40 214 35.64 60.40 18.50 26.50

50 54.45 369 54.00 84.00 25.70 34.40

64 71.76 512 70.45 102.80 33.00 42.40

75 86.05 153 85.82 121.90 39.30 50.10

100 119.58 296 113.91 152.10 51.60 62.80

128 152.53 913 149.09 191.80 65.50 77.70

170 218.33 218 210.09 261.40 89.30 103.00

256 369.97 224 306.36 361.20 128.40 143.00

300 455.95 107 361.45 420.20 148.40 163.30

400 618.69 106 477.18 540.10 204.30 221.60

Note. Comparison of HB values of Ni with the results of our numerical simulations, fitting both Scargle

and Schwarzenberg-Czerny (SC) false alarm functions to CDFs constructed from oversampled periodograms

and from periodograms sampled at the natural frequencies. The corresponding best-fitting functions are dis-

played in Figs 2 and 3, together with the corresponding functions constructed with the correct value of Ni = [N0/2].

that were consistently lower than those obtained by HB. In fact, we

obtained values very close to [N0/2], as expected theoretically, but

in conflict with the results published by HB. Searching for the high-

est peak by oversampling also yielded values that were consistently

lower than HB, but higher than sampling at the natural frequencies.

More precisely, our results agree closely with those of HB for the

smaller data sets up to 170 data points. This leads us to suspect

that the HB table was constructed by gross oversampling. However,

our results strongly deviate from theirs for the larger data sets with

N0 > 170, with our values being substantially lower. Plotting Ni

versus N0 (Fig. 1), we observe the following features. The values

yielded by our simulations increase linearly with N0, as expected.

In contrast, the results published by HB in their table 1 appear to lie,

not on a quadratic (as claimed by them), but on two straight lines of

different slope, a sharp change in slope appearing for data sets with

0 50 100 150 200 250 300 350 400
0

100

200

300

400

500

600

700

N
0

N
i

Figure 1. Plots of Ni versus N0 of the data published by Horne & Baliunas

(1986) in their table 1, p. 759, for the case of evenly spaced data, and of

our simulations, fitting the Scargle and Schwarzenberg-Czerny false alarm

functions to the empirical CDFs obtained by sampling at the natural fre-

quencies and by oversampling. Solid dots: published HB values; asterisks:

Scargle function fitted to empirical CDFs obtained by sampling at the nat-

ural frequencies; circled crosses: Schwarzenberg-Czerny function fitted to

the same; stars: Scargle function fitted to empirical CDFs obtained by over-

sampling; triangles: Schwarzenberg-Czerny function fitted to the same. The

solid line is the theoretically expected relationship Ni = [N0/2].

N0 > 170. This seems to be indicative of a systematic error. Fitting

a quadratic function to these data points, as was done by HB, may

therefore be misleading and renders suspect its use in estimating

the parameter Ni .

Note however that, in the case of oversampling, both our results

and those of HB consistently yield values of Ni that are higher than

the theoretically expected value of [N0/2]. These values are thus

apparently in conflict with the theory. The interpretation of Ni as

the number of independent frequencies is therefore questionable

in this context. The HB method for determining Ni is eminently

practical and reasonable, but it only yields correct values when the

periodogram is sampled at the natural frequencies. This means that,

in the context of oversampling, we cannot assign to the parameter Ni

the meaning that it had in its original derivation, namely the number

of independent frequencies in the associated periodogram. Rather,

we must treat Ni as nothing more than a floating parameter in a

one-parameter family of candidate CDFs which we are attempting

to fit to our data.

Another problem with the HB method should be noted. Inspec-

tion of a plot of the best-fitting Scargle false alarm probability

function shows it to be a very uncomfortable fit to the experimen-

tally obtained cumulative distributions of periodogram peak heights

(see Fig. 2). This is true both in the case of sampling at the natural

frequencies and of oversampling. Its general trend is good, but its

detailed behaviour does not match that of the experimental curve.

This mismatch is most pronounced for small data sets, and becomes

less noticeable as the data sets increase in size. However, it never

vanishes completely. The conclusion forced on us by our simula-

tions is that the Scargle false alarm probability function fails to

reproduce the detailed behaviour of the simulated data sets. This is

both good news and bad news: good news because it shows that the

Scargle function underestimates the significance of periodogram

peaks; and bad news because it leaves us without a useable false

alarm probability function.

In summary, our simulations indicate that (1) the Scargle proba-

bility function incorrectly describes the statistical behaviour of the

periodogram (we discuss a possible reason for its failure in the next

section), and (2) the HB method is not a way to assess the num-

ber of independent frequencies in a periodogram, but is a way for
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Figure 2. Empirical CDFs (heavy dotted line) constructed by oversampling

the periodogram, with best-fitting Scargle false alarm probability function

(solid line) for (a) N0 = 10, (b) N0 = 50 and (c) N0 = 75 data points. The

fit improves with increasing N0. The corresponding best-fitting values of Ni

are (a) Ni = 9.09, (b) Ni = 54.00 and (c) Ni = 85.82. The light dashed

line shows the Scargle function for Ni = [N0/2]. In all cases the best-fitting

value of Ni exceeds [N0/2].

estimating the best-fitting value of Ni in an ill-fitting class of can-

didate CDFs.

6 TH E S C H WA R Z E N B E R G - C Z E R N Y FA L S E
A L A R M F U N C T I O N

Koen (1990) pointed out an important implicit assumption in Scar-

gle’s derivation of his false alarm probability function. Scargle as-

sumed that the variance σ 2
X of the data Xk is known a priori. There

are situations in which this condition is true, but it is satisfied nei-

ther in the case of real astronomical data nor in that of the HB

simulations. In the simulations, pseudo-data are generated using a

pre-selected variance and mean (chosen to be zero), but the variance

and mean of the generated sample will differ in general from those

used in their generation. Thus both variance and mean need to be

estimated from the data.

This changes the statistical analysis significantly.

Schwarzenberg-Czerny (1998), in a particularly clear and

thorough exposition of the issues involved, has shown that the

CDF of maximum peak heights appropriate to the Lomb–Scargle

periodogram and calculated from a finite sample of Gaussian pure

noise is the (regularized) incomplete beta function:

I1−z/[N0/2]([N0/2], 1) =

(

1 −
z

[N0/2]

)[N0/2]

. (12)

To construct the corresponding false alarm probability function, we

need to use this distribution in place of the exponential distribu-

tion used above. If in our periodogram we can identify a set of

frequencies at which the periodogram powers are mutually inde-

pendent, then the probability that the power at at least one of these

frequencies rises above given threshold power z is given by

Pr[Zmax > z] = 1 −

[

1 −

(

1 −
z/σ 2

X

[N0/2]

)[N0/2]
]Ni

, (13)

where Ni is the number of mutually independent frequencies in-

spected, and Zmax = maximum{Z1, Z2, . . . , ZNi
} is the maximum

power among the mutually independent powers Zμ. In our discus-

sion, we shall call equation (13) the Schwarzenberg-Czerny false

alarm probability function. In passing, note that Schwarzenberg-

Czerny (1998) provides a number of alternative distributions and

test statistics appropriate to other methods of data analysis and is

able thereby to resolve extant disputes about the ‘correct’ normal-

ization procedure for periodograms.

In the limit N0 → ∞, the distribution in equation (12) becomes

exponential and coincides with that used by Scargle. Accordingly,

in the same limit, the associated false alarm probability function in

equation (13) reduces to the Scargle false alarm function. A Q–Q

plot of the Schwarzenberg-Czerny versus Scargle false alarm func-

tions (see Schwarzenberg-Czerny 1998, fig. 1, p. 835) shows that,

while the agreement between them is good for large N0, they differ

substantially for small data sets, with Schwarzenberg-Czerny’s false

alarm function yielding consistently smaller false alarm probabili-

ties than Scargle’s. According to this analysis, therefore, for given

Ni , the Scargle false alarm function consistently underestimates the

statistical significance of periodogram peaks.

One reason for the failure of the Scargle function to reproduce

the behaviour of our empirical CDFs may be its implicit assump-

tion that the variance σ 2
X is known a priori. To correct this error,

we replaced the Scargle function by Schwarzenberg-Czerny’s and

repeated the HB simulations for equally spaced data. Using their

method for determining Ni , we fitted the Schwarzenberg-Czerny

false alarm function to our empirical CDFs. We found very good,

but not perfect, agreement between the best-fitting theoretical curves

and the corresponding empirical ones, with the greatest deviations

occurring for small data sets (see Fig. 3). For these, the theoreti-

cal best-fitting curves consistently yield values that are lower than

those of the empirical curves, thus overestimating the significance

of peaks. For the larger values of N0, the deviations of the fitted

from the empirical curves may be understood in the context of

order statistics.

In spite of the excellent nature of these fits, there is neverthe-

less an interesting feature in these results that is worth noting. For

the CDFs of periodogram powers sampled at the natural frequen-

cies, the best-fitting values of Ni are consistently larger than the

theoretically expected number of independent frequencies, which

is at most [N0/2] (see Table 1). Correspondingly, a plot of the

Schwarzenberg-Czerny function for the value [N0/2] of indepen-

dent frequencies yields a curve that deviates badly from the corre-

sponding empirical CDF and which leads to a severe overestimation

of the significance of periodogram peaks. We have no option but
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Figure 3. Empirical CDFs (heavy dotted line) constructed by oversam-

pling the periodogram, with best-fitting Schwarzenberg-Czerny false alarm

probability function for (a) N0 = 10, (b) N0 = 50 and (c) N0 = 75 data

points. The fits are significantly better than the corresponding ones for Scar-

gle’s function. However, for low N0, Schwarzenberg-Czerny’s distribution

is still significantly different from the empirical one and overestimates the

significance of high peaks. The light dashed line shows the corresponding

Schwarzenberg-Czerny false alarm function for Ni = [N0/2]. In all cases,

the best-fitting value of Ni again exceeds [N0/2].

to conclude from these results that, like the Scargle false alarm

function, the Schwarzenberg-Czerny false alarm function, given by

equation (13), appears not to describe the CDFs of our simula-

tions. Note also from Table 1 that the best-fitting values of Ni for

CDFs constructed from oversampled periodograms are higher than

those for the CDFs obtained by sampling at the natural frequen-

cies. This is consistent with our previous results for the Scargle

false alarm function. The results of our simulations again appear

to be at variance with the theory. For evenly spaced data, the the-

ory (which seems unassailable) predicts unambiguously the exis-

tence of at most [N0/2] independent frequencies, with the CDF

for periodogram powers sampled at these frequencies given by the

Schwarzenberg-Czerny false alarm function. Our empirical CDFs

differ substantially from those predicted by this theory, with HB best

fits occurring at values of Ni that are consistently higher than ex-

pected. We are thus forced to the same conclusion as in the previous

section: the HB best-fitting value of Ni does not provide an estimate

of the number of independent frequencies in a periodogram. It is

a floating parameter in a one-parameter family of candidate CDFs.

Further, as candidate CDFs, the Schwarzenberg-Czerny false alarm

function consistently performs better than Scargle’s.

7 FALSE ALARM FUNCTI ONS FOR
U N E V E N LY SPAC E D DATA

The principal difficulty encountered when searching for a theoret-

ical false alarm function when the data are unevenly spaced is the

loss of the independent frequencies. It is not that they are present,

but difficult to identify. They are simply not there at all, and their

absence makes the search for a theoretical false alarm function

intractable. Our only alternative therefore is to use Monte Carlo

simulations.

Schwarzenberg-Czerny (1998) expresses a distinct lack of con-

fidence in this approach. To assess the statistical significance of

periodogram peaks, we use principally the high-peak tail of the

false alarm function. Construction of it by simulations relies on

rare events of low probability. Schwarzenberg-Czerny argues that

the accuracy of random number generators, and the accuracy of

periodogram algorithms, is not well tested in this domain.

On the other hand, observers need a reliable method for assessing

candidate peaks. They clearly cannot rely on the current generation

of theoretical distributions. These are all based on the assumption

of independent frequencies, and all require a value of Ni to be

selected before they can be used. In the case of evenly spaced data,

for periodograms evaluated at the standard frequencies, it might be

argued that the correct value for Ni is [N0/2], suitably reduced by

the number of parameters already estimated from the data. For the

general case, however, even were we to believe the conjecture that

independent frequencies exist, there appears to be no clear a priori

theoretical criterion for choosing the value of Ni . The only practical

method available for estimating Ni is that of HB, which requires us

first to construct the CDF by simulation, and then to fit it with some

chosen one-parameter family of theoretical distributions. Like it or

not, we are therefore left with no option but to use Monte Carlo

methods.

This option is not as bleak as it might at first appear.

Schwarzenberg-Czerny’s opinion regarding random number gener-

ators is not unwarranted. However, their performance is continually

being improved, and there is every reason to believe that exist-

ing problems with them will eventually be resolved, if they have

not been resolved already. In contrast, the problem of the lack of

independent frequencies is permanent.

As regards the use of theoretical false alarm probability functions,

we do not really need them. The empirically generated CDFs contain

all the information that we need, whether or not we have a closed-

form formula for them, and can be used to determine significance

thresholds. A closed-form formula would be useful to facilitate

calculation of the thresholds, but is not essential. If one is needed,

we can resort to fitting the empirical CDF as closely as possible

by any suitable form of trial function. In fact, we do not need even

to fit the entire CDF. We are interested only in the high-peak tail

above a certain minimum confidence threshold and so need only

obtain a good fit in that region. (See Section 10 of this paper for

an example.) Should formulae be needed for other regions, we can

resort to multiple fits that together cover the entire CDF.

8 THE PROBLEM O F OVERSAMPLI NG

Theoretical false alarm probability functions are based on the as-

sumption of the existence of independent frequencies and contain

the number N of frequencies inspected as a parameter. When the
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Figure 4. Scargle false alarm probability function as a function of N for

values N = 10, 50, 100, 200. As N increases, the probability of finding a

peak above any given threshold value increases. This illustrates Scargle’s

‘statistical penalty’: if many independent frequencies are inspected for a

spectral peak, we should expect to find a large peak even when no signal is

present. As N increases, the CDF moves progressively to larger peak height

values without limit.

periodogram is inspected at the maximum number Ni of indepen-

dent frequencies, N = Ni . For example, Scargle’s function is given

by

Pr[Z > z] = 1 − FZmax (z) = 1 − (1 − e−z)N , (14)

when N is the number of independent frequencies inspected.

From Fig. 4, it is seen that, for given z, this probability in-

creases as the number N of sampled independent frequencies is

increased. Scargle (1982, p. 839) describes this property as the sta-

tistical penalty that we must pay for inspecting a large number of

frequencies. He also notes that the expected value of the maximum

power Zmax of a white noise spectrum over a set of N frequencies at

which the power is independent is given by

〈Zmax〉 =

N
∑

k=1

1

k
(15)

which diverges logarithmically with N. These comments seem to

suggest that prodigious sampling of the periodogram at the inde-

pendent frequencies might lead eventually to the dismissal of all

periodogram peaks as spurious. They also appear strongly to dis-

courage oversampling of the periodogram. Were these conclusions

correct, periodogram methods would be severely compromised.

To understand Scargle’s comments correctly, we need first to note

his argument is based on the assumption that we are able to identify

N independent frequencies ωk . For an evenly sampled time series

with N0 data points, there are at most N = [N0/2] of these. There is

correspondingly also a maximum value for 〈Zmax〉. So, in practice,

there is no logarithmic divergence to fear.

Second, if we oversample the periodogram, the powers at the

sampled frequencies are no longer independent, and so equation (9)

is no longer correct. This lack of independence, however, is no ob-

stacle to the construction of a CDF by numerical experiment. The

results of our numerical simulations show that successive oversam-

plings have progressively smaller effects on the CDF, until the CDF

eventually converges to a limiting function beyond which no further

refinement of the sampling grid changes the result (see Fig. 5). With

hindsight, we should have expected this. The original time domain

data contain a finite amount of information. There is therefore a

limit to how much information they can be forced to yield. Based

on the numerical experiments described in this paper, we would

therefore like to refine Scargle’s ‘lesson’, drawn from a consider-

ation of statistical penalties. The (gloomy) lesson he drew was ‘If
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Figure 5. Empirical CDFs as a function of oversampling. The figure shows

the CDFs corresponding to sampling at 1, 2, 3, 4, 5 and 10 times the Scar-

gle sampling rate. The corresponding CDFs converge rapidly to a limiting

CDF. The limiting CDF coincides almost perfectly with the CDF for an

oversampling factor of 10.

many frequencies are inspected for a spectral peak, expect to find

a large peak power even if no signal is present’ (Scargle 1982, p.

840, column 1). Our revision of Scargle’s lesson is this: if many

frequencies are inspected for a spectral peak, expect to find a large

peak power even if no signal is present – but the total number of

independent frequencies present in any given time series is limited,

so do not expect the number of large peaks produced by white noise

to increase without limit. More importantly, oversampling the peri-

odogram does not dramatically increase the number of large peaks

expected.

9 A P R AC T I C A L M E T H O D F O R
DETERMI NI NG FA LSE A LARM
PROBABI LI TI ES

The theoretical false alarm probability functions extant in the litera-

ture all rely for their validity on the existence of a set of independent

frequencies. Such a set is guaranteed for evenly spaced data, but not

for data that are unevenly spaced. Even in the case where the data

are evenly spaced, we may wish to inspect the periodogram at fre-

quencies that do not coincide with Scargle’s natural ones. Such is

the case when a pronounced peak occurs at an intermediate fre-

quency. How do we assess the significance of periodogram peaks

in these cases?

Based on our investigations described above, we suggest the fol-

lowing method is the only one that is viable in the case of unevenly

spaced data. In fact, based on our analysis above, we suggest that

it is also the only viable method even in the special case of evenly

spaced data.

(i) Using the sampling times of the actual data set to be analysed,

construct a large number of pseudo-Gaussian random time series

(i.e. construct a large number of data sets consisting of pseudo-

Gaussian noise).

(ii) Select a convenient grid of frequencies that cover the fre-

quency range in the periodogram that is to be inspected. (We dis-

cuss how to choose these frequencies in the next paragraph. For the

moment, assume that they have been selected.)

(iii) Construct the periodogram for each pseudo-random time

series, sampling it at each of the selected frequencies.

(iv) In each periodogram, identify the highest periodogram power

that occurs at the pre-selected frequencies only, and use these high-

est values to construct the CDF of these highest power values.
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Significance tests for periodogram peaks 1701

The CDF thus obtained is an empirically generated graphical rep-

resentation of the probability function Pr [Zmax ≤ z]. It gives the

probability that pure noise alone could have produced power values

less than or equal to a given threshold value z at each of the selected

sampling frequencies.

The plot of 1 − Pr [Zmax ≤ z] is thus the required false alarm
probability function. It gives the probability that pure noise
alone could produce a peak at the inspected frequencies of value
higher than the threshold z.

How do we choose the frequencies at which to sample the peri-

odogram? In a sense, it makes little difference how we choose them

since, once chosen, we generate an empirical false alarm probabil-

ity function that is tailor-made for our particular choice. However,

for each choice, there is a price to be paid, and the final decision

on how to choose the sampling frequencies is determined by what

we consider to be the best compromise between the price paid and

the advantage gained. For a given false alarm probability pA, the

denser the sampling, the higher the associated threshold z, with the

heaviest penalty being paid for oversampling sufficiently dense as

to produce a fully resolved periodogram curve. In our simulations,

this occurred at approximately five times the Scargle sampling rate,

that is, using � ω = (1/5)(π N0/T) (see Fig. 6). The sampling rate

sufficient to guarantee convergence to the limiting CDF must be

established individually for each data set. This can be done using

plots like those shown in Figs 6 and 7.

If we are interested in pinpointing precisely the frequency of a

peak (as we are in asteroseismology), then gross oversampling may

be the route to follow. However, there is a limit to the amount of

information contained in the periodogram of a finite time series.

There is therefore also a limit to how finely the frequency axis

should be subdivided. This limit is given by �ωmin = π/T , which is

the smallest frequency interval that can reasonably be resolved by

the data set. Dense oversampling in pursuit of the convergence limit

of the CDF may lead to a choice of �ω smaller than this interval.

If the limiting CDF differs substantially from that obtained from

�ωmin, then limiting the sampling interval to �ωmin may be a better

option.

1 0 A P P L I C AT I O N TO V 4 0 3 C ar

Rapid advances in detailed modelling of the interiors of various

classes of pulsating star (see for example Pamyatnykh 2003 and
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Figure 6. Logarithmic plot of the sum of square deviations (from the lim-

iting CDF) of the CDF for ν times oversampling versus the oversampling

factor ν. The convergence to the limiting curve is seen to be very rapid. For

the data set used in this simulation, the convergence occurs approximately

at an oversampling factor of 5. The convergence shows up in this plot as a

sharp levelling off of the graph.
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Figure 7. Log–log plot of the sum of square deviations (from the limiting

CDF) of the CDF for ν times oversampling versus the oversampling rate ν.

Smolec & Moskalik 2007) have made urgent the accurate and com-

plete identification of pulsation modes in real stars.

In this paper, we have considered and evaluated common methods

currently in use for estimating the statistical significance of peri-

odogram peaks. The conclusion forced on us is that the estimates of

significance provided by the available theoretical probability func-

tions are unrealistic and, in many cases, positively misleading. This

makes the estimation of the relevant probability functions by Monte

Carlo simulation more attractive. The simulation method we have

described allows us to generate a unique CDF for any given real

data set irrespective of whether the measurement times of that data

set are equally or unequally spaced. The generated CDF can then

be used to determine quantitatively the significance of candidate

peaks in the periodogram for that data set. For the purpose of as-

teroseismology, the theorist may then be guided by such quantified

significances when constructing models for respective stars. Specif-

ically, potential pulsation modes identified in a star may be included

or excluded from a hypothetical model, with differing amounts of

uncertainty.

As an example of what may be achieved, we illustrate the ap-

plication of these methods to a real data set, previously analysed

in Engelbrecht (1986). The data set consists of 530 observations of

V403 Car (star no. 16 in the designation of Feast 1958 and Turner

et al. 1980 for NGC 3293) in the Johnson B band, obtained with

the 1.0-m telescope at the Sutherland station of the South African

Astronomical Observatory (SAAO) over a period of 70 d in 1984.

The Lomb–Scargle periodogram of the data, normalized by the

variance of the data, is shown in Fig. 8. This periodogram has been

oversampled by a factor of approximately 25.

The limiting empirical CDF computed for the time data, as de-

scribed in preceding sections of this paper, is shown in Fig. 9. An en-

largement of the critical region of this CDF is shown in Fig. 10. The
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Figure 8. Oversampled Lomb–Scargle periodogram for V403 Car.
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Figure 9. Limiting empirical CDF for the V403 Car data set, displayed with

the best-fitting Scargle and Schwarzenberg-Czerny false alarm functions and

their corresponding residuals. The best-fitting Scargle and Schwarzenberg-

Czerny false alarm functions are in good agreement with each other, and

also with the empirical CDF, as may be seen from the residuals. However,

the best-fitting values of Ni are 733 and 804, respectively, and bear no

resemblance to any value that may reasonably have been anticipated for this

parameter.
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Figure 10. Enlargement of critical region of the CDF for V403 Car showing

the empirical CDF for this data set, together with best-fitting Scargle and

Schwarzenberg-Czerny false alarm functions. The corresponding residuals

for the fits are also displayed.

best-fitting Scargle and Schwarzenberg-Czerny false alarm func-

tions, together with their residuals, are also displayed in Figs 9 and

10. Both functions are in good agreement with each other. For this

particular data set, they are also in good agreement with the asso-

ciated empirical CDF. Note however that the best-fitting values of

the parameter Ni are 733 and 804, respectively, and bear no resem-

blance to any value that may reasonably have been anticipated for

this parameter. It should be emphasized that the good agreement of

the theoretical false alarm functions with the empirically generated

one is a property of the particular data set used in this example and

should not be expected in general. For some data sets, particularly

those with small value of N0, the disagreement may be quite severe.

A further enlargement of the critical region is displayed in Fig. 11.

At this scale, differences between the Scargle and Schwarzenberg-

Czerny best-fitting functions become visible, with the Scargle

function providing a closer fit to the empirical CDF than the

Schwarzenberg-Czerny function. The smoothness of the empiri-

cal CDF can be improved by increasing the number of simulations

used in its construction by one or two orders of magnitude. Since the

Scargle function follows the empirical CDF in this region so closely,

we have preferred in this illustrative example to adopt a different

procedure: we have fitted both the Scargle and the Schwarzenberg-

Czerny function to the tail of the CDF in the critical region only.

These best fits are also displayed in Fig. 11. These follow the em-

pirical CDF more closely still, with the Scargle function providing
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Tail:
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Figure 11. Further enlargement of critical region of the CDF for V403 Car,

showing the 90, 99 and 99.9 per cent significance levels. The corresponding

normalized periodogram power levels can be read off on the abscissa, as

indicated by the short vertical lines. Also displayed are the best-fitting

Scargle and Schwarzenberg-Czerny false alarm functions for the entire data

set (solid lines), together with the best-fitting Scargle and Schwarzenberg-

Czerny false alarm functions for the tail region alone (dashed lines). In

this example, the best-fitting Scargle function provides the better estimator

for the empirical CDF. Interestingly, this enlargement also shows that the

theoretical false alarm functions have a shape different from that of the

empirical CDF. In this example, the agreement is so close that this shape

difference is insignificant, but it need not always be so.

Table 2. Significance levels for the V403 Car periodogram.

Significance Periodogram power level

Empirical CDF Scargle function SC function

90 per cent 8.86 8.85 8.79

99 per cent 11.11 11.17 11.06

99.9 per cent 13.31 13.24 13.25

the better fit. In a case like this, it is more efficient to substitute the

best-fitting tail for the empirical CDF rather than to attempt to im-

prove the smoothness of the empirical CDF which would increase

considerably the computational time required to achieve greater

smoothness. The loss of accuracy suffered in the present example

by this substitution is minimal. Note that this option is not available

when the discrepancy between theoretical and empirical CDFs is

substantial. In such a case, there is no alternative to improvement

of the empirical CDF in the rare-event tail.

In Fig. 11, we have also displayed horizontal lines indicating

false alarm probabilities of 10, 1 and 0.1 per cent, respectively (i.e.

peak significances of 90, 99 and 99.9 per cent, respectively). The

periodogram peak values associated with the above significances

were read off the abscissa of the best-fitting Scargle false alarm

function for the tail region only. The power levels corresponding

to the three significance levels mentioned above are displayed in

Table 2.

We now determine the significances of peaks appearing in the pe-

riodogram of V403 Car using the best fit in the critical region of the

empirical CDF. The oversampled, normalized Lomb–Scargle peri-

odogram shown in Fig. 8 was subjected to a standard pre-whitening

procedure, as follows:

(i) determine the frequency at which the highest peak occurs in

the periodogram;

(ii) determine the best-fitting amplitude and phase of a sinusoid

with this frequency by least-squares comparison with the data;

(iii) subtract this sinusoid from the original data;
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Significance tests for periodogram peaks 1703

Table 3. Results of pre-whitening analysis for V403 Car.

Frequency/[rad d−1] Power Significance

f1 25.07 234 >99.99999

f2 6.34 68.3 >99.99999

f3 2.56 30.9 >99.99999

f4 1.37 22 >99.99999

f5 25.75 22.6 >99.99999

f6 30.71 19.3 99.9998

f7 28.91 10.3 97.7

f8 32.65 9.1 92.2

f9 25.18 8.8 89.5

f10 37.58 8.8 89.5

(iv) recalculate the oversampled, normalized Lomb–Scargle pe-

riodogram for the modified data;

(v) repeat step (i) above;

(vi) determine the respective best-fitting amplitudes and phases

of two sinusoids with the frequencies determined in steps (i) and

(v) above;

(vii) iterate steps (iii) to (vi) above, recalculating the respective

best-fitting amplitudes and phases for the entire set of determined

frequencies each time.

The day-to-day and week-to-week spacings in the observations

of V403 Car generate substantial noise in the low-frequency part of

the periodogram. Once the second, third and fourth strongest peaks

(determined through the pre-whitening procedure outlined above)

had been removed, further pre-whitening was limited to frequencies

above 20 rad d−1 (3.18 cycle d−1), since no pulsation frequencies are

expected to lie below this threshold. Pre-whitening was continued

until the 90 per cent significance level (as established by the best

fit to the empirical CDF) of the data set had been reached. The

results of the pre-whitening procedure appear in Table 3, where the

following values are displayed: frequency with highest power in the

periodogram (limited to values above 20 rad d−1, from frequency

5 onwards); amplitude of the peak associated with this frequency

(in units of normalized power); significance of the periodogram

peak, established in this instance by the best fit to the empirical

CDF. The appearance of the periodogram after pre-whitening with

4, 6, 8 and 10 frequencies, respectively, is displayed in Fig. 12.

Many practitioners have been using a signal-to-noise amplitude

ratio of 4 (or sometimes 3.5) in the periodogram (Breger et al.

1993) as a dividing line separating significant peaks from the rest.

The determination of the noise level is to some degree subjective.

Consequently, it is not possible to estimate with precision the level

of periodogram power that corresponds to a signal-to-noise ratio of

4. However, using the empirical CDF, one can explicitly quantify

the significances of periodogram peaks.

As explained above, the second, third and fourth frequencies

appearing in Table 3 are likely to be due to the spacing of the

V403 Car data in the time domain. This conjecture could be tested

by an appropriate multisite campaign on V403 Car. The remaining

seven frequencies are represented in Fig. 13. Frequencies f 6, f 7

and f8 constitute an almost equally spaced triplet of frequencies,

which raises the question of rotational splitting of eigenfrequencies.

Frequencies f6 and f7 are separated by 1.80 rad d−1, while f6 and f8

are separated by 1.94 rad d−1. Heynderickx, Waelkens & Smeyers

(1994) determined a value of log Teff = 4.398 for V403 Car, and

a mass of 13.51 M⊙. Balona (1975) measured a projected rotation
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Figure 12. Periodograms calculated after successive pre-whitenings, as dis-

cussed in the text.

velocity of 50 km s−1 for V403 Car, while Saio (1981) published

coefficients for rotational splitting in a pulsating star modelled as

a polytrope. Reese, Lignieres & Rieutord (2006) recently found

results very similar to those of Saio. Pamyatnykh (2003) found seven

or eight excited pulsation modes in his analysis of a 12 M⊙ model

Beta Cephei star at the same effective temperature as V403 Car, at

least among the radial, dipole and quadrupole modes. Our observed

triplet is very unlikely to be due to rotational splitting. In the first

place, if one assumes (m, −m) splitting (for example, m = 1 and

m = −1, respectively), then the asymmetry in our splitting is the

inverse of what it should be: the second-order rotational splitting
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Figure 13. Frequencies for V403 Car, and their corresponding powers,

found by the pre-whitening process described in the text.

term should split the m = 0 and m = −1 modes less than the

m = 0 and m = 1 modes, which is the opposite of what we observe.

Secondly, for the physical parameters of V403 Car, and using Saio’s

values for dipole and quadrupole modes predicted by Pamyatnykh,

the splitting between the m = 0 and |m| = 1 modes should lie in

the range of approximately 0.6–0.7 rad d−1 for the lowest possible

(sin i = 1) rotation velocity of 50 km s−1. To accommodate the

observed separation of 1.8–1.9 rad d−1 in our observed triplet, one

requires an actual rotation velocity of about 150 km s−1 for |m| =

1, which would correspond to a larger asymmetry in the triplet due

to second-order terms than is actually observed. The second-order

terms will be smaller if the triplet consists of the m = 0 and |m| =

2 modes, but there is no compelling reason for the |m| = 1 modes

to be missing in that case.

We conclude that our observed triplet is not due to rotational

splitting. Table 3 includes three potential pulsation frequencies (f 1,

f 5 and f6) with overwhelmingly large significance. Frequencies f7

through to f10 are more doubtful, although they still have signifi-

cances of 90 per cent or higher. These frequencies could potentially

be reconciled with seven of the excited modes in Pamyatnykh’s

model. However, more detailed modelling, and better observational

analysis, of V403 Car will be necessary to establish a precise iden-

tification of the excited pulsation modes in this star.

1 1 S U M M A RY A N D C O N C L U S I O N S

Currently available theoretical false alarm probability functions are

all derived from what appear to be reasonable assumptions about

the data to be analysed and about the periodograms that they yield.

Their validity, reliability and usefulness therefore strongly depend

on how well these assumptions are met in practice.

A key assumption made by all authors is that the frequency

range inspected in the periodogram contains a set of Ni frequencies

ωk : k = 1, . . . , Ni at which the periodogram powers PX(ωk) are

mutually independent. In theoretical statistical analysis, we have

little hope of obtaining a false alarm probability function in the

absence of this assumption. Without independence, very few general

statistical results are available, and none is relevant to the problem at

hand. The assumption of the existence of independent frequencies

is therefore necessary in any theoretical discussion of the problem

of significance of periodogram peaks and poses the first and most

important obstruction to its resolution.

The existence of independent frequencies is guaranteed when

the data are evenly spaced. We should therefore be able to test

the validity of proposed false alarm probability functions for this

case against the results of Monte Carlo simulations. Reasonable

requirements on candidate functions include a good fit to the em-

pirical CDFs, and their ability to predict correctly the number of

independent frequencies known to exist from the theory.

Though they seem not to have viewed their work in this light, HB

effectively performed this test for Scargle’s false alarm function.

They constructed the empirical CDF for periodogram peak heights

produced by a pure noise time series consisting of N0 evenly spaced

data points, and fitted the Scargle false alarm function to it by

least squares using the number Ni of independent frequencies as

the fitting parameter. According to the theory, they should have

obtained Ni ≤ [N0/2]. However, their results consistently yielded

Ni > N0. HB did not comment on this anomaly.

We have repeated their simulations, obtaining results similar to

theirs only for gross oversampling of the periodogram, and only for

data sets with N0 ≤ 170 data points. For gross oversampling and data

sets with N0 > 170, we were unable to reproduce their results. The

values of Ni obtained by HB are consistently and systematically

larger than ours. In our simulations, the best-fitting value of Ni

increases linearly with N0, in conflict with the quadratic dependence

claimed by HB. Inspection of a plot of the values published in HB

appears to indicate that their points lie on two straight lines, with

a disjunction of slope at N0 = 170 data points. We conjecture

from these results that HB constructed their empirical CDFs by

gross oversampling of the periodogram. This might explain why

they consistently obtained Ni > N0. We also conjecture that the

sharp disjunction in slope at N0 = 170, which is not observed in our

simulations, is due to a systematic error in theirs. If so, the quadratic

dependence of Ni on N0, sometimes exploited by astronomers in the

analysis of their data, might not be a real feature of real astronomical

data but rather a spurious artefact of the HB simulations.

Given the assumption of independence that lies at the heart

of Scargle’s derivation of his false alarm probability function, it

seemed unreasonable to suppose that it would provide an adequate

description of the empirical CDFs obtained by oversampling the

periodograms. Accordingly, we initially ran the HB simulations for

CDFs constructed by sampling the periodograms only at the nat-

ural frequencies. The best-fitting values of Ni were very close to

the theoretically expected value of [N0/2]. The best-fitting Scargle

functions were very poor fits to the empirical CDFs, displaying large

deviations from the empirical CDFs in the domain of most interest

when assessing the significance of periodogram peaks. The theo-

retical false alarm functions were consistently substantially higher

in value than the empirical CDFs, leading to severe underestima-

tion of peak significance. This same behaviour was observed for

the best-fitting curves to the CDFs constructed by oversampling the

periodograms. Researchers using the Scargle false alarm function,

with or without the HB algorithm, are thus at significant risk of

rejecting peaks that reflect real periodicities in their data.

A flaw in Scargle’s derivation of his false alarm function was

pointed out by Koen (1990) and by Schwarzenberg-Czerny (1996):

Scargle assumes that the variance σ 2
X of the noise is known a priori.

This condition is not satisfied either in the simulations (where we

sample pure pseudo-Gaussian noise), or in real data sets (where

the data variance must be estimated from the data themselves).

Both Koen and Schwarzenberg-Czerny correct this error in their

respective treatments of the problem. Koen (1990) concludes that

Scargle’s false alarm function should be replaced by the Fisher

(or Fisher–Snedecor) distribution. Schwarzenberg-Czerny (1998)

pointed out that the Fisher distribution is applicable only for ratios

of independent random variables. With ratios of random variables

that are not independent, the Fisher distribution must be replaced

by the incomplete β-function. He also showed that, in the case of

the Lomb–Scargle periodogram, the correct distribution is given by
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Significance tests for periodogram peaks 1705

the incomplete β-function. On the strength of the work of these

authors, we tested Schwarzenberg-Czerny’s proposed function on

CDFs constructed by oversampling periodograms and also on CDFs

constructed by sampling only at the natural frequencies. In both

cases, we have found the best-fitting Schwarzenberg-Czerny func-

tion, obtained by the HB algorithm, consistently to fit the empirical

CDFs far more closely than Scargle’s function, with impressively

good agreement on all but the smallest data sets, where the theoret-

ical function deviates only slightly from the empirical CDFs.

In spite of the excellent fits provided by the Schwarzenberg-

Czerny false alarm function, our simulations display an alarming

feature: the best-fitting values of Ni that yield such excellent agree-

ment with the empirical CDFs are all consistently higher than the

theoretically expected value of [N0/2]. This is not unexpected for

CDFs constructed by oversampling. In the case of CDFs constructed

by sampling only at the natural frequencies, however, this result is in

conflict with the theory. This means that, as in the case of the Scargle

function, we cannot interpret the best-fitting value of the parameter

Ni as the number of independent frequencies. It must be regarded

rather as a fitting parameter in a one-parameter family of candidate

CDFs that fit the empirical CDFs better than Scargle’s candidate

functions. Note that the Schwarzenberg-Czerny false alarm func-

tions, when constructed independently of simulations and by using

a priori theoretical values rather than fitted values for Ni , badly

overestimate the significance of periodogram peaks and may re-

sult in the acceptance of spurious peaks as genuine. Unqualified

confidence in analytical single-trial probability distributions in the

construction of false alarm probability functions thus seems to be

misplaced.

Ultimately, our principal interest is in the case of unevenly spaced

data, not data that are evenly spaced. The loss of independence of

the variables PX(ω) in this case calls into question the validity and

the expediency of searching for a formula in closed form for a

false alarm probability function. All formulae proposed hitherto

are based on the assumption of the existence of a set of mutually

independent periodogram powers. This assumption is not realistic

in uneven sampling schemes, as shown by Koen (1990). Thus,

theoretical probability distributions provide no predictive power in

determining false alarm criteria appropriate to a given data set which

is independent of the empirical CDFs generated by simulations.

In the final analysis, what we need is a reliable false alarm proba-

bility function. Though we do not possess this function as a closed-

form formula, we nevertheless have a numerical plot of it in the

form of the CDF of maximum peak heights. This plot can be used

as easily as any formula to get the answers that we want. If we

insist on having such a formula to facilitate significance estimation,

the empirical CDF can be fitted in the region of interest by any

number of candidate fitting functions. This obviates the need for a

theoretical formula.

We have applied the method of significance testing using an

empirical CDF, as discussed in earlier sections of this paper, to the

Beta Cephei star V403 Car. To date, only one (Stankov & Handler

2005) or two (Engelbrecht 1986) pulsation frequencies have been

identified in this star. The analysis presented in this paper indicates

that as many as seven pulsation frequencies can be attributed with

a significance above 90 per cent.
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APPENDI X A : C LASSI CAL PERI ODOGRAM

As originally conceived, the classical periodogram may be regarded

essentially as a Fourier power spectrum estimator for an infinite

continuous-time signal X(t) that has been discretely sampled for

a finite time at equally spaced time intervals. The data for this

estimator form a finite discrete time series consisting of N values

Xi = X(ti), i = 1, . . . , N, of the physical parameter X at times ti =

t0, t0 + �t, t0 + 2�t, . . . , t0 + (N − 1)�t. The DFT, DFT X(ω), of

this time series Xi , which is defined by

DFTX(ω) =

N
∑

r=1

X(tr ) e−iωtr , (A1)
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1706 F. A. M. Frescura, C. A. Engelbrecht and B. S. Frank

may be regarded as an estimator of the FT FTX(t) of X(t). The power

spectral density of the signal may then be estimated by the function

|DFTX(ω)|2 ,

with some suitably chosen normalizing coefficient. A commonly

used normalization is

CPX(ω) =
1

N
|DFTX(ω)|2

=
1

N

∣

∣

∣

∣

∣

N
∑

r=1

X(tr ) e−iωtr

∣

∣

∣

∣

∣

2

. (A2)

A simple calculation then yields the formula

CPX(ω) =
1

N

⎡

⎣

(

N
∑

r=1

X(tr ) cos ωtr

)2

+

(

N
∑

r=1

X(tr ) sin ωtr

)2
⎤

⎦ .
(A3)

Following Scargle (1982), we call this function the classical peri-

odogram. This definition agrees with that given originally by Schus-

ter in Schuster (1898), but not with that in his later publications.

It also agrees with the definitions used in Thompson (1971) and

Deeming (1975), and differs by a factor of 2 from that used by

Priestley (1981).

It is easy to see from equation (A2) why the classical periodogram

is useful in identifying the frequencies of harmonic components

in the signal X. Suppose X contains an harmonic component of

frequency ω̃. Then, when ω is very different from ω̃, X(t) and e−iωt

are out of phase, and the product X(t) e−iωt oscillates rapidly. The

sum of the products X(tr ) e−iωtr , which is a discrete estimator of the

integral
∫

X(t) e−iωt dt will thus have a value close to zero, albeit

masked by whatever other signal is present in X(t). As ω approaches

the value of ω̃, the factors X(t) and e−iωt get closer in phase, so the

product X(t) e−iωt oscillates more slowly. The value of the sum of the

products X(tr ) e−iωtr will thus rise, reaching a maximum at ω = ω̃.

The presence of a harmonic signal of frequency ω̃ thus produces a

peak in the periodogram with maximum at ω̃.

The converse however is not true. A peak in the periodogram

does not necessarily reflect the presence of an harmonic component

in the signal X. Peaks might be produced by other effects. Thus,

the presence of measurement error, signal noise or random physi-

cal processes in the observed system might, by a spurious random

fluctuation, also produce a peak. Peaks may also be produced by

aliasing and/or spectral leakage, and the observing window. The po-

tential for producing peaks that are not due to harmonic components

in the observed signal makes the interpretation of peaks in the pe-

riodogram very difficult and presents many hazards and pitfalls for

the unwary. The dangers posed by these effects were already noted

by Schuster as early as 1906, ‘. . . it has generally been assumed that

each maximum in the amplitude of a harmonic term corresponded

to a true periodicity. The extent to which this fallacious reasoning

has been made use of would surprise anyone not familiar with the

literature of the subject.’ (Schuster 1906, p. 71, 72). Strangely, his

warning has often been ignored, and sometimes even disdainfully

brushed aside.

APPENDI X B: LOMB– SCARGLE
P E R I O D O G R A M

Following Scargle (1982, appendix B), we define the Lomb–Scargle

periodogram by the formula

PX(ω) =
1

2

⎧

⎪

⎨

⎪

⎩

[

∑N

i=1 xi cos ω(ti − τ )
]2

∑N

i=1 cos2 ω(ti − τ )

+

[

∑N

i=1 xi sin ω(ti − τ )
]2

∑N

i=1 sin2 ω(ti − τ )

⎫

⎪

⎬

⎪

⎭

, (B1)

where the epoch translation parameter τ (ω) is defined implicitly by

the formula

tan(2ωτ ) =

∑N

i=1 sin(2ωti)
∑N

i=1 cos(2ωti)
. (B2)

The data used to calculate PX(ω) form a finite discrete time series

consisting of N values Xi = X(ti), i = 1, . . . , N, of the physical

parameter X measured at times {ti | i = 1, 2, . . . , N} which are

arbitrarily spaced in time. Lomb (1976), following Barning (1963)

and Vanicek (1969), arrived at this formula via a least-squares fitting

procedure in which sampled values X(ti) are fitted with an harmonic

signal of frequency ω. For these three authors, therefore, PX(ω) does

not represent an attempt at estimating the Fourier power spectrum

of any continuous time physical signal X(t), but is rather a spectral

best-fitting parameter that displays how closely the data may be

fitted with a single harmonic function of frequency ω. The larger

the value of PX(ω), the better the fit.

In contrast with these authors, Scargle (1982) arrived at the same

spectral function by first relaxing the definition of the DFT for appli-

cation to the case of unevenly spaced data (Scargle 1982, appendix

A), and then imposing two demands on the periodogram (which

he calls the modified, or generalized periodogram) calculated from

this relaxed definition: the statistical distribution of the generalized

periodogram will be made as closely as possible the same as it is

in the evenly spaced case; and, the generalized periodogram will

be made invariant to translations in time. These two requirements

yield uniquely the formulae in equations (B1) and (B2). Arguably,

this restores the interpretation of the modified periodogram as an

estimator of the power spectrum of the physical signal X(t) in the

case where the signal is unevenly sampled in time. However, it is

probably more accurate to regard it as a spectral goodness-of-fit

parameter. This view also enables one better to understand a variety

of other, alternative, periodogram formulae currently offered in the

literature.

APPENDI X C : PURE NOI SE

A random process X(t) is said to be a purely random process, pure

noise or white noise, if it consists of a sequence of uncorrelated

random variables. This means that, for all t′ �= t,

cov[X(t), X(t ′)] = 0.

Pure noise is the simplest of all random process models. It corre-

sponds to a case where the process has ‘no memory’ in the sense

that the value of the random variable X(t) at time t has no rela-

tion whatever to its value X(t′) at any other time t′, no matter how

close or distant t and t′ are to each other. In this sense, X(t) neither

remembers its past, nor is aware of its future. Knowing the value

of X(t0) at any time t0 therefore provides no way at all, other than
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Significance tests for periodogram peaks 1707

by the probability distribution pX(t) = p(x, t), of predicting within

reasonable limits and uncertainties the value of X(t) at time t. This

is to be contrasted with correlated noise where the values X(t) and

X(t′) are in general related or ‘correlated’. In this case, we can do

better in predicting the value of X(t + τ ) from X(t) than in the case

of uncorrelated, or pure, noise. From a knowledge of the value X(t),

we can set narrower limits on the probable values of X(t + τ ) than is

possible from the distribution pX(t+τ ) alone (Priestley 1981, p. 114).

Pure noise is said to be Gaussian if the random variables X(t)

are jointly normally distributed. Noise of this kind is often called

Gaussian white noise. In this case, the random variables {X(t)} are

also mutually independent.

Note that some authors define pure noise more stringently. For

them, a random process X(t) is pure noise if the random vari-

ables {X(t)} are independent, and identically distributed with zero

mean.

In this paper, a data set {Xk | k = 1, 2, . . . , N0} is said to be pure

noise if the values Xk are independent, and identically distributed

random variables with zero mean. For simplicity, we assume also

that the Xk are each normally distributed. Denote their common

variance by σ 2
X . Since the Xk have zero mean, their covariance

matrix is given by

Cjk = E[(Xj − μXj
)(Xk − μXk

)] = E[XjXk] = σ 2
Xδjk. (C1)

This paper has been typeset from a TEX/LATEX file prepared by the author.
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