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1. Introduction

In Bioinformatics, it is common to search biological sequences (DNA, RNA, proteins) for
functional motifs such as cross-over hotspot instigators (chi), restriction sites, regulation
motifs, binding sites, active sites in proteins, etc. (Beaudoing et al., 2000; Brazma et al.,
1998; El Karoui et al., 1999; Frith et al., 2002; Hampson et al., 2002; Karlin et al., 1992;
Leonardo Marino-Ramírez & Landsman, 2004; van Helden et al., 1998). Due to evolution
pressure, functional motifs are likely to be more conserved than non-functional motifs. As
a consequence, it is a natural strategy to search biological sequences for motifs which are
statistically exceptional (ex: over- or under-represented).
Given M a motif of interest (from simple strings to complex regular expressions), a recurrent
question is: “how surprising is it to observe n occurrences of M in my dataset ”. In statistical
terms, this is equivalent to compute the p-value of observation n in respect with a relevant
reference model. More precisely, if X1:ℓ = X1 . . . Xℓ is a length ℓ random sequence generated
by our reference model, and if N denotes the random number of occurrences of M in X1:ℓ, for
any n � 0 our objective is to compute the significance score of observation n:

S(n) =

{
+ log10 P(N � n) if n � E[N]
− log10 P(N � n) if n > E[N]

(1)

this score representing the p-value in a decimal log-scale, negative (resp. positive) values
being associated to under- (resp. over-) representation events.
In order to compute such a score for a given motif M and a given dataset, one needs two
essential steps:

1) Counting: count the observed number n of occurrences of motif M in the dataset;

2) Significance: compute the p-value of observation n with respect to a reference model.

In this chapter, we give all the necessary details to perform these two steps using state of the
art approaches including some unpublished results.

2. Counting motifs

2.1 Biological motifs

We can see on Fig. 1 various examples of the kind of biological motifs we usually deal with in
Bioinformatics. In most cases, these motifs are built from a set of active sequences (putative
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2 Will-be-set-by-IN-TECH

AGCGG GSTGGTGG CCWGG CTGCAG GAATTC CAYNNNNNRTG

CPRRRGRQTYTRFQTLELEKEFHF...........NHYLTRRRRIEIAHAL.........

CPRRRGRQTYTRFQTLELEKEFHF...........NHYLTRRRRIEIAHAL.........

VSVRKKRKPYSKFQTLELEKEFLF...........NAYVSKQKRWELARNL.........

-----------------LTKYFNK...........QPYPTRREIEKLAASL.........

-----------------LTKYFNK...........QPYPTRREIEKLAASL.........

-----------------LTKYFNK...........QPYPTRREIEKLAASL.........

SGKRRRRGNLPKESVQILRDWLYEhr........yNAYPSEQEKVLLSRQT.........

SKKRRHRTTFTSLQLEELEKVFQK...........THYPDVYVREQLALRT.........

SKKRRHRTTFTSLQLEELEKVFQK...........THYPDVYVREQLALRT.........

H-D-[LIVMFY]-x-H-x-[AG]-x(2)-[NQ]-x-[LIVMFY]

A [ 3 21 25 0 0 24 1 0 ]

C [13 1 0 0 5 0 0 0 ]

G [ 4 0 0 0 0 1 0 2 ]

T [ 5 3 0 25 20 0 24 23 ]

Fig. 1. Various kind of biological motifs. From top to bottom: strings in IUPAC
(Cornish-Bowden, 1985) alphabet (DNA), multiple alignment (proteins), sequence logo
(proteins), consensus pattern (proteins), and frequency matrix (DNA). Various sources
including ReBase (Roberts et al., 2010), PROSITE (Sigrist et al., 2010), and JASPAR databases
(Bryne et al., 2008).

or confirmed by experiments) in the form of a multiple alignment or a frequency matrix from
which can be derived a consensus. This consensus could sometimes be a simple string (ex:
AGCGG the chi site of B. subtilis) but in most cases it is a degenerated pattern (ex: CAYNNNNNRTG a
restriction site in the IUPAC alphabet, PROSITE signatures). In all cases however, it is possible
to consider our biological motif M as a (possibly large) set of strings.
Formally, let M be a finite set of strings over a finite alphabet A. Ex: A = {A, C, G, T} for
DNA sequences; this is the alphabet we are going to use from now on in our examples. Let
X1:ℓ = X1 . . . Xℓ be an observed sequence of length ℓ over A. Then the number N(M; X1:ℓ) of

174 Bioinformatics – Trends and Methodologies

www.intechopen.com



Significance Score of Motifs

in Biological Sequences 3

 !"#$%&$

(a) NFA for A

 !"#$%&$

(b) NFA for C

 !"#$%&$

(c) NFA for G

 !"#$%&$

(d) NFA for T

 

!"

#

$%&'(&

(e) NFA for (C|T)

 

!
" #

$%&'(&

"

$
"

$

(f) NFA for (C|T)⋆

 !"#$%&$

'
( )

*

(

*
(

*

(g) NFA for A(C|T)⋆

 

!"

#
$%&'(&

)*
+

,

*

,
*

,

(h) NFA for A(C|T)⋆|G

Fig. 2. Glushkov’s construction for A(C|T)⋆|G. (a), (b), (c), and (d) are singletons; (e) results
from the union of (b) and (d); (f) results from the Kleene’s closure of (e); (g) results from the
concatenation of (a) and (f); (h) results from the union of (g) and (c).

matching positions of M in X1:ℓ, is defined by

N(M; X1:ℓ) =
ℓ

∑
i=1

1X1:i∈A⋆M (2)

A⋆M being the set of all finite sequences over A ending with one element of W (this notation
will be explained in the next section), and where 1A is the indicator function of event A.
In the particular case where M contains no strings that are included into each other (which
is a common assumption), the number N of matching position corresponds exactly to the
number of occurrences. However, there is no need to put any restriction on M as long as we
are interested in the number of matching positions like we do.
From now on, if the sequence X1:ℓ is observed, we denote by the number of matching positions
by n, and if the sequence X1:ℓ is random, we simply denote by N the random number of
matching positions.

2.2 Regular languages

Let us denote by A⋆ the set of all finite sequences over A. Any subset L ⊂ A⋆ is then called
a language over A. We denote by P(A⋆) the set of all possible languages over A. We denote
by ε ∈ A⋆ the empty sequence, and for the sake of simplicity, the singletons of P(A⋆) will be
simply denoted by their element. Ex: A instead of {A}, TGC instead of {TGC}, ε instead of {ε}.
We define on these languages three regular operations:

Union (|): for all L1,L2 ∈ P(A⋆), L1|L2 = L1 ∪ L2. The neutral element of the binary
operator | is ∅. Ex: {AT, GA}|{T, GA, TT} = {AT, T, GA, TT}.

175Significance Score of Motifs in Biological Sequences
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4 Will-be-set-by-IN-TECH

Require: remove first all states that are not reachable from σ or that cannot reach any element
of F

1: W ← {F ,Q \ F} and P ← {F ,Q \ F}
2: while W is not empty do
3: select and remove V from W
4: for all a ∈ A do
5: S = {q ∈ Q, δ(q, a) ∈ V}
6: for all R ∈ P such as R∩ S �= ∅ and R � S do
7: replace R in P by R1 ← R∩ S and R2 ← R\R1

8: if R ∈ W then
9: replace R in P by R1 and R2

10: else
11: if |R1| � |R2| then add R1 to W else add R2 to W end if
12: end if
13: end for
14: end for
15: end while

Algorithm 1. Performs Hopcroft’s reduction on NFA (A,Q, σ,F , δ). W (working set) and P
(partition set) are two sets of set of NFA states. The resulting complexity is O(|Q| log |Q|).

Concatenation (·): for all L1,L2 ∈ P(A∗), L1 · L2 = {xy, x ∈ L1, y ∈ L2}. The neutral

element of the binary operator · is ε. For all L ∈ P(A⋆), L0 = ε (convention), L1 = L,

L2 = L · L and the notation extends recursively to Lk for any k � 3. Ex: {G, GA} · {AT, T} =
{GAT, GT, GAAT}; {G, GA}3 = {GGG, GGGA, GGAG, GGAGA, GAGG, GAGGA, GAGAG, GAGAGA}. For the
sake of simplicity, · is implicitly used when the operator is omitted.. Ex: AL means A · L.

Kleene’s closure (⋆): For all L ∈ P(A⋆), L⋆ = ∑k�0 Lk. Ex: {AT}⋆ =
{ε, AT, ATAT, ATATAT, . . .}.

The precedence rule of these operations is: | (lowest precedence), · (associative operator), ⋆

(highest precedence). Ex: A|C · T⋆ = (A|(C(·T⋆)), TT · A|C⋆ · G = ((TT · A)|((C⋆) · G)).
We call regular expression over A any algebric expression over P(A⋆) defined from singleton
elements and a finite number of regular operations. The resulting language is called a
regular language. Ex: any finite language is a regular language, A⋆ is a regular language,
(A|C|G|T)⋆GGATG is a regular language, {AG, AAGG, AAAGGG, . . .} is not a regular language.

2.3 Non-deterministic finite automaton

A Non-deterministic Finite Automaton (NFA) is defined as a 5-tuple (A,Q, σ,F , δ) where: A is a
finite alphabet, Q is a finite state space, σ ∈ Q is the starting state, F ⊂ Q is the set of final states,
and δ : Q×A → P(Q) is the transition function. An element X1:ℓ ∈ A⋆ is accepted by this NFA
if and only if it exists a path from the starting state to one of the final state that sequentially
use the letters X1:ℓ in the transitions. More formally, it means that it exists a sequence of states
(ie: elements of Q) q0 = σ, q1, q2 . . . , qℓ−1, qℓ ∈ F such as qi ∈ δ(qi−1, Xi) for all 1 � i � ℓ. The
language of a NFA is the set of all elements of A⋆ it accepts.

Theorem 1. For any language L ∈ P(A⋆): L regular ⇐⇒ it exists a NFA whose language is
L.

We admit that the language of a NFA is always regular (see Hopcroft et al., 2001, for the
formal proof) but we will prove the reciprocal with the Glushkov’s construction (Allauzen &

176 Bioinformatics – Trends and Methodologies

www.intechopen.com



Significance Score of Motifs

in Biological Sequences 5

Mohri, 2006). This construction provides a simple way to build the NFA directly from the
regular expression of the language. The idea is to treat the regular expression as any algebraic
expression with a stack of operands (NFAs) and a stack of operators (regular operations).
Since a regular expression is by definition built from singleton elements of A⋆ and the three
regular operations, we only need to give the construction of a NFA corresponding to singleton
elements, and the constructions corresponding to the regular operations.

Singleton: for any X1:ℓ ∈ A⋆ we build the NFA (A,Q, σ,F , δ) with Q = {0, 1, . . . , ℓ}, σ = 0,
F = {ℓ}, and δ(i − 1, Xi) = {i} for all 1 � i � ℓ.

Union: the union (A,Q, σ,F , δ) of two NFAs (A,Q1, σ1,F1, δ1) and (A,Q, σ2,F2, δ2) is given
by: Q = Q1 ∪Q2 \ {σ2}, σ = σ1, F = F1 ∪ F2 and

δ(q, a) =

⎧
⎪⎪⎨
⎪⎪⎩

δ1(σ1, a) ∪ δ1(σ2, a) if q = σ1

δ1(q, a) if q ∈ Q1 \ {σ1}
δ2(q, a) if q ∈ Q2 \ {σ2}

. (3)

Concatenation: the concatenation (A,Q, σ,F , δ) of two NFAs (A,Q1, σ1,F1, δ1) and
(A,Q, σ2,F2, δ2) is given by: Q = Q1 ∪Q2 \ {σ2}, σ = σ1, F = F2 and

δ(q, a) =

⎧
⎪⎪⎨
⎪⎪⎩

δ1(q, a) if q ∈ Q1 \ F1

δ2(σ2, a) if q ∈ F1

δ2(q, a) if q ∈ Q2 \ {σ2}
. (4)

Kleene’s closure: the Kleene’s closure (A,Q, σ,F , δ) of NFA (A,Q1, σ1,F1, δ1) is given by:
Q = Q1, σ = σ1, F = F1 ∪ {σ1} and

δ(q, a) =

{
δ1(q, a) if q ∈ Q1 \ F1

δ1(σ1, a) if q ∈ F1

. (5)

Using Glushkov’s construction, it is then possible to build a NFA whose language correspond
to the regular expression of our choice. However in general, this construction is not optimal
in terms of number of states. Fortunately, the reduction algorithm (Algorithm 1) due to
Hopcroft provides a (partial) solution to this problem. Note that finding a minimal NFA
for a given regular expression is a difficult task in general, but that Hopcroft’s reduction is
a good heuristic (we will see later that in the case of DFA, Hopcroft’s reduction is indeed a
minimization).

2.4 Counting with NFA

NFAs provide with Algorithm 2 an extremely efficient way to look for matching positions
of any motif M (in fact, any regular expression) in a sequence X1:ℓ. The algorithm directly
results from the definition of the language of a NFA.
Let us illustrate this algorithm with a toy example: how to find all matching positions of M =
G(G|C)G in X1:12 = AGCGGTGGGCGA ? We first use Glushkov’s construction and Algorithm 1 to
obtain on Fig. 3 a minimal NFA whose language is (A|C|G|T)⋆G(G|C)G. Then we directly apply
Algorithm 2 starting with S = {0}:

• i = 1, X1 = A, S ← δ({0}, A) = {0};

• i = 2, X2 = G, S ← δ({0}, G) = {0, 1};

177Significance Score of Motifs in Biological Sequences
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6 Will-be-set-by-IN-TECH

Require: (A,Q, σ,F , δ) be a (minimal) NFA whose language is A⋆M
1: S ← {σ}
2: for i = 1 . . . ℓ do
3: S ← ∪q∈S δ(q, Xi)
4: if S ∩ F �= ∅ then
5: report i as a matching position
6: end if
7: end for

Algorithm 2. NFA pattern matching. Returns all matching positions of motif M in X1:ℓ.
Complexity is O(|Q| × ℓ).

 

!"#"$"%

&$'()*( +$"# ,$

Fig. 3. Minimal NFA whose language is (A|C|G|T)⋆G(G|C)G.

• i = 3, X3 = C, S ← δ({0, 1}, C) = {0, 2};

• i = 4, X4 = G, S ← δ({0, 2}, G) = {0, 1, 3}, matching position;

• i = 5, X5 = G, S ← δ({0, 1, 3}, G) = {0, 1, 2};

• i = 6, X6 = T, S ← δ({0, 1, 2}, T) = {0};

• i = 7, X7 = G, S ← δ({0}, G) = {0, 1};

• i = 8, X8 = G, S ← δ({0, 1}, G) = {0, 1, 2};

• i = 9, X9 = G, S ← δ({0, 1, 2}, G) = {0, 1, 2, 3}, matching position;

• i = 10, X10 = C, S ← δ({0, 1, 2, 3}, C) = {0, 2}.

• i = 11, X11 = G, S ← δ({0, 2}, G) = {0, 1, 3}, matching position;

• i = 12, X12 = A, S ← δ({0, 1, 3}, A) = {0}.

We hence return three matching positions: 4, 9 and 11.
One should note in this example that in twice occasions, we need to recompute a previously
computed transition (i = 7 and i = 11). Obviously, this kind of event is likely to appear
very often when working with longer sequences. It is hence a natural idea to store in memory
previously computed transitions. This approach, known as lazy determinization (Green et al.,
2004), speeds up considerably pattern matching (reducing the complexity from O(|Q| × ℓ) to
O(ℓ)) at the expense of a higher memory usage. We will see later that the amount of memory
needed can increase exponentially with the NFA size |Q|; this problem is usually addressed
by allocating a fixed amount of memory to a buffer of computed transitions which is flushed
when full.

3. Significance

Since we now have efficient algorithms to count the number of occurrence of a motif M in a
sequence X1:ℓ, let us deal with the significance of an observation n.

178 Bioinformatics – Trends and Methodologies
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3.1 Reference model

The choice of a reference model is obviously a key point. Since biological sequences like DNA
or proteins are known to have unbalanced letter compositions, it is hence clear that our model

should at least take into account this source of bias. A natural parametric approach 1 is hence
to model X1:ℓ as a i.i.d. sequence with P(Xi = a) = π(a) ∀a ∈ A with all π(a) ∈ [0, 1] and
∑a∈A π(a) = 1. This model is called model M0 with parameter π.
For example, in the complete genome of HIV1 (Genbank AF033819) we observe the following
counts: 3272 A, 1642 C, 2225 G, and 2042 T. The maximum likelihood estimates of a M0 model
based on this observation is then: π̂(A) = 3272/9181 ≃ 35.64%, π̂(C) = 1642/9181 ≃ 17.88%,
π̂(G) = 2225/9181 ≃ 24.23%, and π̂(T) = 2042/9181 ≃ 22.24%.
But if we look now to the frequencies of di-nucleotides on the same HIV1 genome, we observe
considerable bias as well:

AA 1087 AC 524 AG 971 AT 690
CA 754 CC 378 CG 82 CT 427
GA 769 GC 425 GG 625 GT 406
TA 662 TC 315 TG 546 TT 519

For example, we observe 971/3272 = 29.68% of G after a A, but a G occurs after a C only
82/1641 = 16.41% of the time. This phenomenon is directly explained by the fact that the
di-nucleotide CG tend to be easily methylated (see CpG island, Fatemi et al., 2005). Is hence
tempting to take into account the frequencies of di-nucleotides in our reference model, or
tri-nucleotides, or more, which naturally leads to Markov models.
For any d � 0, we denote by Md the (homogeneous) Markov model of order d defined for any

i � d + 1, a ∈ Ad, and b ∈ A by:

P(Xi = b|Xi−d:i−1 = a) = π(a, b) (6)

where π denotes the transition matrix of Md. This model is clearly defined conditionally to
X1:d.
The maximum likelihood estimator π̂ is then given for all a ∈ Ad, and b ∈ A by:

π̂(a, b) =
nab

∑b′∈A nab′
(7)

where nab are the observed counts of word ab in the training dataset.
When working with Markov model and biological sequences, a recurrent question is: what
order d should I choose for my reference model ? This is a classical model selection problem
which can easily be solved using penalized likelihood criteria like BIC or AIC (Liddle, 2007).
For example, using the BIC criterion, one would select d = 1 for the complete genome of
HIV1 (ℓ ≃ 10kb), and d = 5 for the complete genome of E. coli (ℓ ≃ 4.6Mb). However, since
our objective is the significance of motifs counts rather than the modelization of biological
sequence in itself, we suggest a different approach.
First, it is critical to realize than working with a model Md as reference model allows to take
into account the sequence composition bias in (d + 1)-mers. Hence, with d = 1 one takes into
account the composition bias in di-nucleotides, and with d = 5, one takes into account the
composition bias in hexa-nucleotides. The decision could then be based on the information
one wishes to include in the reference model; working on coding sequences, one might wish
to take into account at least the codon bias hence resulting in the choice of d � 2. On the other

1 An alternative non-parametric approach, the shuffling, consists in performing uniformly a random
permutation of the original sequence; this approach is not treated here.
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Require: (A,Q1, σ,F1, δ1) a NFA
1: q0 ← {σ}, L ← 1, Q2 ← {q0}, F2 ← ∅

2: for i = 0 . . . L − 1 do
3: for all a ∈ A do
4: S ← δ1(qi, a)
5: if ∃j, qj = S then
6: δ2(qi, a) = qj

7: else
8: qL ← S , L ← L + 1, Q2 ← Q2 ∪ {qL}
9: if S ∩ F∞ then F2 ← F2 ∪ {qL} end if

10: end if
11: end for
12: end for
Output: return (A,Q2, q0,F2, δ2)

Algorithm 3. Determinization. Build a DFA which recognizes the same language than the
original NFA.

hand, it would obviously be pointless to use a reference model of order d = 7 to study a motif
of length 8 or less.
Another critical point to keep in mind is that motif significance is by nature very sensitive to
the parameters of the reference model. In order to convince us, let us a consider the following
simple example with M = GGATG, a reference model M0 of parameter π, and ℓ = 1, 000, 000. If

π(A) = π(T) = 0.10 and π(C) = π(G) = 0.40 we get E[Nℓ] = ℓ× 0.403 × 0.102 ≃ 640.0. Now

if π(A) = π(T) = 0.08 and π(C) = π(G) = 0.42 then E[Nℓ] = ℓ× 0.423 × 0.082 ≃ 474.2. If we
admit that the standard deviation of Nℓ is roughly equal to σ = 25 (we will see later on how
to perform such computation), an observation of n = 550 could be interpreted as a significant
over-representation with the first parameters, and a significant under-representation with the
second parameters (observation n deviates from the expectation by more than three standard
deviations in both cases). The reason behind this is that parameter values are typically
involved in complex products when evaluating the significance of an observation, and that
such operations usually increase small variations rather than averaging them (like with sums).
This problem have been investigated in Nuel (2006c) where it is shown that unwise choices of
d might lead to many false positive results.

3.2 Monte-Carlo simulations

Since the theoretical distribution of N not easy to obtain, it is tempting to study it from
the empirical point of view by performing simple simulations. The approach is quite
straightforward:

1) generate a random dataset i according to the reference model;

2) count the number of occurrence ni of M in the dataset;

3) repeat 1) and 2) until we have a sample n1, n2, . . . , nr.

Once a reference sample have been obtained, we can derive the empirical p-value of the
observation n using:

P̂(N � n) =
∑

r
i=1 1ni�n

r
or P̂(N � n) =

∑
r
i=1 1ni�n

r
(8)

180 Bioinformatics – Trends and Methodologies
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Fig. 4. Minimal DFA whose language is (A|C|G|T)⋆G(G|C)G.

or, alternatively, one might use this sample to derive empirical expectation, variance, and
z-score:

Ẑ(n) =
n − µ̂

σ
with µ̂ =

1

r

r

∑
i=1

ni and σ̂2 =
1

r

r

∑
i=1

(ni − µ̂)2. (9)

If this approach is quite simple, it suffers several drawbacks: 1) it is slow; 2) sample size must
be large to obtain accurate results. Indeed, if the true p-value is p, then p̂ ∼ B(r, p) where r
is the sample size. The following table gives a 90% upper bound confidence for p̂ for several

value of r in the case where p = 10−5:

r 103 104 105 106 107 108

bound 1.00 × 10−3 1.00 × 10−4 3.00 × 10−5 1.50 × 10−5 1.14 × 10−5 1.04 × 10−5

we clearly see that it requires at least r = 106 samples to obtain the first accurate digit in p̂,

and a prohibitive r = 108 samples for the second digit. Considering that very small p-value

are easily encountered in motif significance (ex: 10−20, 10−50, 10−100), it is clear that empirical
p-value have a limited interest in this context.
Empirical z-score does not suffer the same drawback but makes the implicit assumption that
N has a Gaussian distribution which is highly questionable as we will see later on.
For completeness, let us point out that importance sampling techniques might solve the
estimation problem by sampling N using a tailored dataset distribution (Chan et al., 2010).
However, these sophisticated numerical techniques are slow and requires a good skills to be
implemented.

3.3 Markov chain embedding

The key to perform any motif significance computation if first to embed the original problem
into an order 1 Markov chain taking into account all the combinatoric complexity. This
technique, called Markov chain embedding have been used by many authors in the context
of motif significance Antzoulakos (2001); Boeva et al. (2005); Chang (2005); Fu (1996); Nuel
(2006a), but it is only recently that its connexion to NFA and Deterministic Finite Automata
(DFA) have been pointed out (Crochemore & Stefanov, 2003; Lladser, 2007; Nicodème et al.,
2002; Nuel, 2008a; Nuel & Prum, 2007; Ribeca & Raineri, 2008).
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10 Will-be-set-by-IN-TECH

We start with a NFA whose language is A⋆M from which we build a DFA (A,Q, q0,F , δ)
using the determinization algorithm (Algorithm 3). A DFA differs from an NFA only by the
definition of its transition function: δ : Q × A → P(Q) for a NFA, and δ : Q × A → Q
for a DFA. For example, we can see on Figure 4, a (minimal) DFA whose language is
(A|C|G|T)⋆G(G|C)G. This DFA has more states (6) than the corresponding NFA (4). In fact,
since the state space Q2 of a DFA corresponds to a subset of the parts of the original NFA state

space Q1, we have |Q2| � 2|Q1|. Fortunately, this upper bound is seldom reached in practice.

Theorem 2 (Markov chain embedding for Model M0). Let (A,Q, σ,F , δ) be a (minimal)
DFA whose language is A⋆M. Let X1:ℓ be a random sequence generated by the M0 model
of parameter π. We consider the sequence Z0:ℓ recursively defined by Z0 = σ, and Zi =
δ(Zi−1, Xi) for all 1 � i � ℓ. Then Z0:ℓ is an order 1 Markov chain whose transition matrix T
is defined for all p, q ∈ Q by:

T(p, q) = ∑
a∈A,δ(p,a)=q

π(a) (10)

and having the following property for all 1 � i � ℓ: X1:i ∈ A⋆M ⇐⇒ Zi ∈ F .

For example, if we consider the DNA motif G(G|C)G and the corresponding DFA of Figure 4,
we get the following transition matrix:

T =

⎛
⎜⎜⎜⎜⎜⎝

π(A) + π(C) + π(T) π(G) 0 0 0 0
π(A) + π(T) 0 π(C) π(G) 0 0

π(A) + π(C) + π(T) 0 0 0 π(G) 0
π(A) + π(T) 0 π(C) 0 0 π(G)
π(A) + π(T) 0 π(C) π(G) 0 0
π(A) + π(T) 0 π(C) 0 0 π(G)

⎞
⎟⎟⎟⎟⎟⎠

.

In order to extend Theorem 2 to order Md with d > 0 it is necessary to build DFA
(A,Q, σ,F , δ) be a (minimal) DFA whose language is A⋆M and with the property that for

all q ∈ Q, past(q) = {a ∈ Ad, ∃p ∈ Q, δ(p, a) = q} is either empty or a singleton. A DFA
having this property is called a order d DFA by Lladser (2007), and is called non d-ambiguous
by Nuel (2008a). The construction of such a (minimal) DFA is not very complicated but is a
bit technical. A possible approach suggested by Nuel (2008a) consists in starting from a DFA
without this property and duplicating any "ambiguous" state. Another more straightforward

approach consists in adding the elements of A⋆Ad to the original language with a specific

label for the final states corresponding to each elements of Ad, and to keep these labels during
minimization and determinization algorithms.

Theorem 3 (Markov chain embedding for Model Md). Let (A,Q, σ,F , δ) be a (minimal) order
d DFA whose language is A⋆M. Let X1:ℓ be a random sequence generated by the Md model
of parameter π. We consider the sequence Zd:ℓ recursively defined by Zd = δ(σ, X1:d), and
Zi = δ(Zi−1, Xi) for all 1 � i � ℓ. Then Zd:ℓ is an order 1 Markov chain whose transition
matrix T is defined for all p, q ∈ Q by:

T(p, q) = ∑
a∈A,δ(p,a)=q

π(past(p), a) (11)

and having the following property for all 1 � i � ℓ: X1:i ∈ A⋆M ⇐⇒ Zi ∈ F .

One should note that Zd:ℓ is defined on δ(σ,AdA⋆) which could be slightly smaller than Q.
This subset corresponds to the states of Q having a order d past. If we consider the DFA
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Fig. 5. Minimal order 1 DFA whose language is (A|C|G|T)⋆G(G|C)G. The order 1 past of each
state is indicated in the state itself. Diamond-shaped states correspond to the elements of
δ(0,A1).

of Figure 5, d = 1, and with X1 = A, we see that the Markov chain Zd:ℓ is defined on
{1, 2, 3, 4, 5, 6, 7, 8} by Z1 = 1 and the following transition matrix:

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

π(A, A) π(A, C) π(A, G) π(A, T) 0 0 0 0
π(C, A) π(C, C) π(C, G) π(C, T) 0 0 0 0
π(G, A) 0 0 π(G, T) π(G, C) π(G, G) 0 0
π(T, A) π(T, C) π(T, G) π(T, T) 0 0 0 0
π(C, A) π(C, C) 0 π(C, T) 0 0 π(C, G) 0
π(G, A) 0 0 π(G, T) π(G, C) 0 0 π(G, G)
π(G, A) 0 0 π(G, T) π(G, C) π(G, G) 0 0
π(G, A) 0 0 π(G, T) π(G, C) 0 0 π(G, G)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

From now on, we assume that our motif problem with Md reference model is embedded into
the Markov chain Zd:ℓ whose transition matrix is decomposed into T = P + Q where matrices
P and Q are defined for all p, q by: P(p, q) = T(p, q)1q/∈F , and Q(p, q) = T(p, q)1q∈F .

3.4 Main results

We present here the main results that are then used to derive exact computations and various
approximations of S(n). In all this section, we assume that N is the random number of
occurrences of M in X1:ℓ, a sequence generated by a Md model (X1:d being fixed) with d � 0.
we denote by T = P + Q be the transition (L × L) matrix of the Markov chain embedding of
the corresponding problem. We also introduce two vectors: u a 1× L vector filled with ‘0’ and
having a ‘1’ in the position corresponding to X1:d, and v a L × 1 vector of ‘1’.

Proposition 4 (probability generating function). If we denote by G(y) = E[yN ] the probability
generating function (pgf) of N, then we have:

G(y) = ∑
n�0

P(N = n)yn = u(P + yQ)ℓ−dv. (12)

183Significance Score of Motifs in Biological Sequences

www.intechopen.com



12 Will-be-set-by-IN-TECH

Proof. The first equality derives directly from the definition of G(y). For the second equality

now, it is clear that u(P + Q)ℓ−d gives the marginal distribution of Zℓ. We then connect this
distribution to N by counting the number of times we use the transitions of Q with the dummy

variable y so that u(P + yQ)ℓ−d gives the joint distribution of (Zℓ, N). Finally, we sum up the
contributions of all states using the product with v.

For example, let us consider M = G(G|C)G and X1:12 generated by a M0 model with
parameters π(A) = π(T) = 0.10 and π(C) = π(G) = 0.40. Proposition 4 hence gives:

G(y) =
(

1 0 0 0 0 0
)
×

⎛
⎜⎜⎜⎜⎜⎝

0.6 0.4 0 0 0 0
0.2 0 0.4 0.4 0 0
0.6 0 0 0 0.4y 0
0.2 0 0.4 0 0 0.4y
0.2 0 0.4 0.4 0 0
0.2 0 0.4 0 0 0.4y

⎞
⎟⎟⎟⎟⎟⎠

12

×

⎛
⎜⎜⎜⎜⎜⎝

1
1
1
1
1
1

⎞
⎟⎟⎟⎟⎟⎠

(13)

= 0.33369 + 0.31148y + 0.19357y2 + 0.09681y3 + 0.04140y4 + 0.01569y5

+0.00528y6 + 0.00157y7 + 0.00042y8 + 0.00008y9 + 0.00002y10. (14)

From this result, we have the whole distribution of N: support is {0, 1, . . . , 10}, P(N = 0) =
0.33369, P(N = 1) = 0.31148, . . . , P(N = 10) = 0.00002. We can also easily derive moments
of N from this distribution: E[N] = 1.28, σ[N] = 1.29.

Lemma 5 (derivatives of the pgf). For any k � 0, the order k derivative of the pgf G is given
by:

G(k)(y) = k![zk]u(P + yQ + zQ)ℓ−dv (15)

where the [zk] operator denotes the extraction of the coefficient of zk in the expression.

Proof. The formal proof can be found in Nuel (2010) in a slightly less general case. Here we
prove it only for the first two derivatives in the particular case where ℓ− d = 3. Starting from

G(y) = u(P + yQ)3v we get:

G′(y) = u
(

Q(P + yQ)2 + (P + yQ)Q(P + yQ) + (P + yQ)2Q
)

v (16)

and
G′′(y) = 2u

(
Q2(P + yQ) + Q(P + yQ)Q + (P + yQ)Q2

)
v (17)

which are easily connected to the terms coefficients of z1 and z2 in u(P + yQ + zQ)ℓ−dv.

If we denote for all k � 0 the k-th factorial moment of N by Fk = E[N!/(N − k)!], then, by the

definition of the pgf, it is clear that Fk = G(k)(0), and thanks to Lemma 5 we get:

Fk = k![zk]u(T + zQ)ℓ−dv. (18)

And if we now denote the moment generating function (mgf) of N by M(t) = E[etN ] = G(et),
and the cumulant generating function (cgf) of N by Λ(t) = log E[etN ] = log M(t) = log G(et),

we get directly the k-th moment of N: E[Nk] = M(k)(0); and the k-th cumulant of N: κk =

Λ(k)(0).
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Corollary 6 (characteristics moments). If we denote by µ = κ1 the expectation of N, by σ =
√

κ2

the standard deviation of N, by γ1 = κ3/σ3 the skewness of N, and by γ1 = κ4/σ4 the excess

kurtosis of N, then we get: µ = F1, σ2 = F2 + F1 − F2
1 ,

γ1 =
3F2 − 3F2

1 + F3 − 3F1F2 + 2F3
1 + F1

σ3
, (19)

and

γ2 =
7F2 − 7F2

1 + 6F3 − 18F1F2 + 12F3
1 + F4 − 4F1F3 − 3F2

2 + 12F2
1 F2 − 6F4

1 + F1

σ4
. (20)

Proof. On just need to compute the derivatives Λ(1)(0), Λ(2)(0), Λ(3)(0), and Λ(4)(0).

If we consider again M = G(G|C)G and X1:12 generated by a M0 model with parameters
π(A) = π(T) = 0.10 and π(C) = π(G) = 0.40. Eq. (18) hence gives:

∑
k�0

Fk

k!
=

(
1 0 0 0 0 0

)
×

⎛
⎜⎜⎜⎜⎜⎝

0.6 0.4 0 0 0 0
0.2 0 0.4 0.4 0 0
0.6 0 0 0 0.4 + 0.4y 0
0.2 0 0.4 0 0 0.4 + 0.4y
0.2 0 0.4 0.4 0 0
0.2 0 0.4 0 0 0.4 + 0.4y

⎞
⎟⎟⎟⎟⎟⎠

12

×

⎛
⎜⎜⎜⎜⎜⎝

1
1
1
1
1
1

⎞
⎟⎟⎟⎟⎟⎠

(21)

= 1 + 1.28y + 1.01683y2 + 0.61211y3 + 0.29709y4 + 0.11835y5

+0.03845y6 + 0.00992y7 + 0.00193y8 + 0.00025y9 + 0.00002y10. (22)

From this result, we can get all factorial moments of N: E(1) = F0 = 1, E(N) = F1 = 1.28,
E(N(N − 1)) = F2 = 2.033664, E(N(N − 1)(N − 2)) = F3 = 3.6726374, E(N(N − 1)(N −
2)(N − 3)) = F4 = 7.1302266, . . . , E(N!/(N − 10)!) = F10 = 60.881161. Thanks to Corollary 6
we get the following characteristic moments: µ = 1.28, σ = 1.294320, γ1 = 1.163783, γ2 =
1.492661.

3.5 Exact computations

As we have seen above, Proposition 4 provides a way to obtain the whole distribution of N

by computing G(y) = u(P + yQ)ℓ−dv from which we can easily derive S(n) for any n � 0:

S(n) =

⎧
⎨
⎩

+ log10

(
∑

n
k=0[y

k]G(y)
)

if n � E[N]

− log10

(
∑
+∞
k=n[y

k]G(y)
)

if n > E[N]
.

From the algorithmic point of view, there are basically two approaches to compute S(n) using

Expression (12). The first one, called power, consists in computing (P + yQ)ℓ−d using the
power method and a binary decomposition of ℓ − d. Ex: if ℓ − d = 1097 then ℓ − d =

210 + 26 + 23 + 20. We then just have to recursively compute Dk(y) = (P + yQ)2k
using the

relation Dk+1(y) = Dk(y)× Dk(y) for all k � 0. Since in the computation of S(n) we are only

interested in terms of degree n or less (or n or more), we can easily truncate 2 all polynomials at
degree n thus dramatically reducing the computational costs of polynomial products. We end

2 In the case of over-representation, all contributions of degree n or more are summed into the term of
degree n.
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up with a O(log2 ℓ× n2 × L3) complexity in time where L is the order of the transition matrix

T = P+Q. The corresponding memory complexity is O(log2 ℓ× n× L2). Since the length ℓ of
the dataset appears in a logarithmic scale in these complexity, the power approach is obviously

suitable for large datasets (ex: ℓ = 106 or ℓ = 109). Unfortunately, the cubic complexity
with L (quadratic in memory) prevents the approach to deal with complex motifs with high
L. One should also note that the quadratic complexity in n could really be a problem when
dealing with frequent motifs and/or large datasets. In order to overcome this problem, Ribeca
& Raineri (2008) suggested to use fast Fourier transforms (FFT) to perform all polynomial

product hence replacing n2 by n log2 n in the time complexity. However appealing at first
glance, this approach is not recommended in practice since the FFT products in floating-point
arithmetics induce numerical instabilities that make totally unreliable the smallest coefficients
of the polynomials. And unfortunately, these coefficients are precisely the one needed to study
the tail distribution of N.
Another interesting approach called full recursion, consists in computing vi = (P + yQ)iv for
all 0 � i � ℓ− d recursively using the relation vi+1 = (P+ yQ)vi. There are two main interests
for this approach: 1) we have only products between polynomials of degree 1 and polynomials
of degree n (by dropping terms of degree greater than n like in the power approach); 2) we can
take full advantage of the sparse structure (only L × |A| non-zero terms in the worst case) of
the transition matrix T = P + Q. The resulting complexity is O(ℓ× L × |A| × n) in time, and
O(L× n) in memory. Since these complexities are linear with L, this approach is able to handle
very complex motifs. The drawback is that the approach can be very slow when dealing with
large ℓ and n. It exists a sophisticated version of this recursion called partial recursion (see Nuel

& Dumas, 2010) which allows to replace ℓ× n by log ℓ× n2 in the time complexity. However,
the quadratic complexity in n and numerical instabilities in floating-point arithmetic restrains
its use to small n (ex: n � 10).
For completeness, let us point out another approach to the problem. The idea is that we can
derive from Expression (12) the following expression:

G(y, z) = ∑
n�0

∑
ℓ�d

P(Nℓ = n)ynzℓ = uzd(I − Pz + yzQ)−1v (23)

where I is the identity matrix and Nℓ the number of matching position in X1:ℓ. It is then
possible to obtain P(Nℓ = n) for any ℓ and n using (fast) Taylor expansions of G(y, z). For the
mathematician, this approach is so “natural” that it is often referred as the “golden” approach
to the problem of motif significance (Nicodème et al., 2002). However, this approach suffers
several severe drawbacks that dramatically limits its practical interest: 1) the approach needs
sophisticated computer algebra systems to be implemented (rather than simple floating point

arithmetic for the previous approaches); 2) the explicit computation of (I−Pz+ yzQ)−1 could
be very time (and memory) consuming; 3) even if the explicit computation of the inverse
matrix is avoided (which is highly advisable), the coefficient extraction using state of the
art techniques (like high-order lifting for example) is often slower than the much simpler
alternative developed above (see Nuel & Dumas, 2010, for details).
Considering either the power or the recursion approaches we obtain easy to implement
algorithms allowing to compute the exact value of S(n) in all cases except when dealing with
high complexity motifs (large L) and/or frequent motifs (large n). But even if we stick to
more tractable cases, exact computations could be slow. The question hence is: is it possible
to compute fast and reliable approximations of S(n) ?
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ℓ expectation std. dev. skewness e. kurtosis time (s)

12 1.280000 1.294320 1.163783 1.492661 0.01

120 15.104000 4.585724 0.361328 0.149974 0.02

1200 153.344000 14.648033 0.113920 0.014936 0.03

12000 1535.744000 46.367282 0.036014 0.001492 0.04

120000 15359.744000 146.640798 0.011394 −0.000410 0.05

Table 1. Characteristic moments the number N of occurrences of motif M = G(G|C)G in a
sequence X1:ℓ generated by a M0 model with parameters π(A) = π(T) = 0.10 and
π(C) = π(G) = 0.40. Computation performed using the power approach.

3.6 Near-Gaussian approximations

Since the random count N is basically defined by Eq. (2) as large sum of Bernouilli variables,
the idea of approximating the distribution of N using Gaussian approximation sounds
appealing. Indeed, Gaussian approximations are historically the first ones to have been
suggested for this problem (Cowan, 1991; Kleffe & Borodovski, 1997; Pevzner et al., 1989;
Prum et al., 1995). From the theoretical point of view, Central Limit Theorems (CLT) for
weakly dependent variables ensure that N is asymptotically normal distributed. On Table 1,
we can see the characteristic moments of N for motif M = G(G|C)G and various value of the
sequence lengths ℓ. According to theory, we observe that the skewness and excess kurtosis
both decease toward 0 when ℓ grows (a normal distribution has null skewness and excess
kurtosis). But it is also clear that N is not normally distributed for small values of ℓ. As a
consequence, the quality of a Gaussian approximation for S(n) is expected to be questionable
at finite distance.
In order to overcome this issue, Nuel (2010) suggested to consider near Gaussian
approximations instead of simple Gaussian approximations for this problem. The idea is
simply to perform a higher order asymptotic development that exploits more than the two
first moments of N. This technique is known as the Edgeworth’s expansion. Blinnikov &
Moessner (1998) gives a general (and rather complicated) formula for this expansion. For
practical purpose, we present the result only up to order 3 expansions.

Proposition 7 (Edgeworth’s expansion). If we denote by ϕ(z) = exp(−z2/2)/
√

2π the
probability distribution function (pdf) of a standard Gaussian, then for all n � 0 we have
the following approximation:

P(N = n) ≃ ϕ(z)

σ

(
C0(z) + σC1(z) + σ2C2(z) + σ3C3(z)

)
(24)

with

C0(z) = 1 C1(z) =
S3

6
H3(z) C2(z) =

S4

24
H4(z) +

S2
3

72
H6(z) (25)

C3(z) =
S5

120
H5(z) +

S3S4

144
H7(z) +

S3
3

1296
H9(z) (26)

where µ = E[N], σ =
√

V[N], z = (n − µ)/σ, Sk = κk/σ2k−2 for all k � 1, and where Hk(z)
are the Hermite polynomials defined recursively by H0(z) = 1 and Hk(z) = zHk−1(z) −
H′

k−1(z) for all k � 1.
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Fig. 6. Reliability of NG approximations for M = G(G|C)G on a random sequence X1:ℓ

generated by a M0 model with parameters π(A) = π(T) = 0.10 and π(C) = π(G) = 0.40, and
with ℓ = 1200. The error NGh(n)− S(n) is given on Figure (a); and the relative error
(log-scale) − log10 |NGh(n)− S(n)|/|S(n)| on Figure (b). The horizontal rule indicates the
null error on Figure (a), and the threshold corresponding to two correct digits on Figure (b).

For h ∈ {0, 1, 2, 3} we define the Near Gaussian (NG) approximation of order h of S(n) by:

NGh(n) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

+ log10

⎛
⎝

n

∑
k=0

1

σ
ϕ

(
k − µ

σ

) h

∑
j=0

σjCj

(
k − µ

σ

)⎞
⎠ if n � E[N]

− log10

⎛
⎝

+∞

∑
k=n

1

σ
ϕ

(
k − µ

σ

) h

∑
j=0

σjCj

(
k − µ

σ

)⎞
⎠ if n > E[N]

. (27)

We can see on Figure 6 the reliability of NG approximations. In solid black, the order 0
approximation corresponds to the classical Gaussian approximation. Unsurprisingly, this
central limit approximation is accurate for the center of the distribution (n close to the
expectation µ = 153.3), the reliability quickly deceases when |n − µ| increases.
Central limit theorems (CLT) for N have established long ago that N should be asymptotically
Gaussian distributed. The problem however with CLT theorems is that the quality of
the resulting approximation dramatically decreases at finite distance when considering tail
distribution events. Here we try to overcome the issue by considering Near-Gaussian
approximations that exploits higher moments of N to improve the quality of the
approximations. In order to do this, a critical problem is first to obtain the first k-th moments
of N. Of course we can access these moments by computing the full distribution of N, but
if it is possible to do so, why bothering with approximations. We hence need an method to
compute the moments of N whose complexity should be somehow significantly smaller than
the complete exact computations. With higher order approximation, we can see a dramatic
improvement of reliability of the results, with a noticeable increase of the region where at
least two digits are correct (up to n ∈ [80; 240] for NG3).
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Fig. 7. Reliability of CB and BR approximations for M = G(G|C)G on a random sequence X1:ℓ

generated by a M0 model with parameters π(A) = π(T) = 0.10 and π(C) = π(G) = 0.40, and
with ℓ = 1200. The error CB(n)− S(n) or BR(n)− S(n) is given on Figure (a); and the
relative error (log-scale) − log10 |CB(n)− S(n)|/|S(n)| or − log10 |BR(n)− S(n)|/|S(n)| on
Figure (b). The horizontal rule indicates the null error on Figure (a), and the threshold
corresponding to two correct digits on Figure (b).

From the computational point of view, the order h approximation requires the cumulants of
N up to order h + 2. Using the power approach, the resulting complexity is hence O(log2 ℓ×
h2 × L3) in time and O(log2 ℓ× (h + 2)× L2) in memory. Using the recursion, the complexity
resulting complexity is O(ℓ× L × |A| × h) in time, and O(L × h) in memory. In both cases,
the computational time drops significantly from the exact computations.
Thanks to NG approximations, we hence have a fast and reliable way to compute an
approximation of S(n) when n falls in the center of the distribution (ex: |S(n)| � 3.0), but
NG approximations unfortunately remain totally unreliable for tail distribution events (ex:
|S(n)| > 3.0), which are moreover often precisely the event of interest. Fortunately we have a
solution to this problem.

3.7 Bahadur-Rao

We want here to study specifically the tail distribution of N with events on the form P(N � n)
with large n (or P(N � n) with small n). For all t > 0 let us first notice that we can use the

Markov inequality to write: P(N � n) = P(etN � etn) � E[etN ]/etn = exp(Λ(t)− tn). By
taking the smallest of these bounds for t > 0 we hence get: log P(N � n) � Λ(τ)− τn with
τ defined by Λ′(τ) = n. This upper bound, known as the Chernoff’s Bound (CB), is often
surprisingly sharp for events located in the tail distribution. By dealing symmetrically with
P(N � n) and t < 0 we hence obtain the following approximation for S(n):

CB(n) = δn
τn − Λ(τ)

log(10)
(28)

where δn = −1 if n � E[N], and δn = +1 if n > E[N].
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From the computational point of view, the solution τ of Λ′(τ) = n can be easily determined
numerically using (for example) using the Newton-Raphson sequence (Press et al., 1992).
Starting for a first guess t0 (ex: t0 = 0), one performs ti+1 = ti + (n − Λ′(ti))/Λ′′(ti) for
i � 0 until convergence to τ. The computation of Λ, Λ′, and Λ′′ being possible thanks to
Lemma 5 and the following formulas:

Λ(t) = G(et) Λ′(t) =
etG′(et)

G(et)
Λ′′(t) =

e2tG′′(et)

G(et)
− e2tG′(t)2

G(et)2
+

etG′(et)

G(et)
(29)

with G(et) = [z0]u(P+ etQ+ zQ)ℓ−dv = u(P+ etQ)ℓ−dv, G′(et) = [z1]u(P+ etQ+ zQ)ℓ−dv,

and G′′(et) = 2[z2]u(P + etQ + zQ)ℓ−dv.
Moreover, this bound can be further refined using the Bahadur-Rao Theorem (Bahadur & Rao,
1960) and gives the following approximation for S(n):

BR(n) = CB(n) + δn log 10

(
(1 − e−|τ|)

√
2πΛ′′(τ)

)
. (30)

From the computational point of view, CB(n) and BR(n) can be computed either with the

power approach with complexities O(log2 ℓ × L3) in time and O(log2 ℓ × L3) in memory;
or with the recursion approach with complexities O(ℓ× L × |A|) in time and O(L × |A|) in
memory.
On Figure 7 we can see the reliability of the approximations CB(n) and BR(n). Unsurprisingly,
the farther from the center of the distribution, the better are both approximations. We also
observe that BR(n) is a dramatic improvement over CB(n) since it obtains at least two
correct digits of S(n) for all n but on [120, 200]. At the end of previous section, we have
seen that the order 3 NG approximation achieves the same precision for region [80; 240],
hence, by combining both NG3(n) (for the center of the distribution) and BR(n) (for the tail
distributions), one can achieve at least two correct digits of S(n) on the whole bulk of the
distribution for a modest computational cost.

4. Discussion

Obtaining the distribution of motif count in random sequences is a very challenging problem
that has attracted considerable attention from mathematicians and computer scientists in the
last fifty years. Recently however, a significant advance has been obtained by connecting
the well-known theory of pattern matching and automata to the Markov chain embedding
technique Lladser (2007); Nuel (2008a); Nuel & Prum (2007). Thanks to this finding, it is now
possible to deal with simple (runs of 1 in binary sequences, single words, etc.) or complex
motifs (PROSITE signature, gapped motifs, etc.) using the same general framework.
Using exact approaches, it is possible to obtain efficiently the first moments of any motif count
N, and even the complete distribution of N. As a consequence, the computation of S(n) is
now tractable for a wide range of motif problems including large datasets or complex motifs.
However, the case of complex frequent motifs in large datasets remains an open problem
(Nuel & Dumas, 2010).
As an alternative to exact computations, a wide range of approximations have been
developed (see Lothaire, 2005; Nuel, 2006b; Reignier, 2000, for a review). We can basically
classify these approximations in three categories: 1) Gaussian approximations (Cowan, 1991;
Kleffe & Borodovski, 1997; Nuel, 2010; Pevzner et al., 1989; Prum et al., 1995); 2) Poisson
approximations Erhardsson (2000); Geske et al. (1995); Godbole (1991); Reinert & Schbath
(1999); Roquain & Schbath (2007); 3) large deviations approximations Denise et al. (2001);
Nuel (2004).
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Fig. 8. Relative error in log-scale for various approximations of S(n) (n = 0, . . . , 200) in a
sequence X1:ℓ generated by a M0 model with parameters π(A) = π(T) = 0.10 and
π(C) = π(G) = 0.40.

In this chapter we deliberately left aside the Poisson-based approximations and considered
only two of these approximations: the (Near-) Gaussian approximations with NGh(n), and the
large deviations based approximations with CB(n) and BR(n). The reason why Poisson-based
approximations are not considered here is basically practical, these approximations cannot be
directly derived from the formalism of this manuscript and require the introduction of many
tedious notions like clumps, overlapping words and so on. However, we compare here the
performance of all these approximations (including compound Poisson approximations) in
the case where X1:ℓ generated by a M0 model with parameters π(A) = π(T) = 0.10 and
π(C) = π(G) = 0.40 i.i.d. DNA sequence, and for two motifs: the frequent G(G|C)G, and the
rare A(A|T)A.
We can see on Figure 8 the relative error (in log-scale) for all approximations. For Gaussian
approximations, performances are only good in the very center of the distribution (for n very
close to E(n)) for the frequent motif G(G|C)G, and performances are poor almost everywhere
for the rare motif T(A|T)T. This observation to consistent with the well known claim that
“Gaussian approximations a more suitable for frequent motif” (Lothaire, 2005). It has however
to be pointed out that even in the most favorable case (with highly frequent motif), Gaussian
approximations totally fail to capture the tail distribution of N and hence not suitable for the
highly significant observations we usually encounter in biological sequences (Nuel, 2006b).
If we consider now the near-Gaussian approximation, taking into account more moments
of N dramatically improve the result for both motifs, but the failure to deal with extreme
distribution events remains.
Compound Poisson approximations are known to be extremely sensitive to the relative
abundance of the motif of interest in the sequence, being more accurate for rare motifs
(Lothaire, 2005; Roquain & Schbath, 2007). It is hence not a surprise to see that Poisson
approximations are totally unreliable for the frequent motif G(G|C)G. For the rare motif T(A|T)T
we naturally obtain much better results but like for Gaussian approximations, and even in
this favorable case, reliability decreases in the tail distribution. Considering that Poisson
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approximations are not easily generalizable to motifs defined by regular expressions, that their
computations could be complicated and time consuming, and that their reliability is highly
questionable in some configurations, it seems advisable to avoid their use is most cases.
With large deviations based approximations, we unsurprisingly get a low reliability in the
center of the distribution, but a high reliability in the tail distribution. With Bahadur-Rao
precise approximations, the improvement over the classical Chernoff’s bound is quite
impressive, and the complementarity with Near-Gaussian approximations clearly shows
that a combination of both approaches could be a very efficient way to obtain reliable
approximations of S(n) for all n.
In this chapter we gave all the necessary ingredients to assess the significance score of motif
in a biological sequence using state of the art results, including several unpublished ones:
Lemma 5 which is an extension of the results of Nuel (2010), and the complete “Bahadur-Rao”
Section which provides interesting improvements over previous large deviations work
(Denise et al., 2001; Nuel, 2004).
Let us finally point out that for the sake of compactness, we have left aside some interesting
questions and extensions like: approximate matching Hopcroft et al. (2001), renewal
occurrences (Nuel, 2006b; Roquain & Schbath, 2007), joint distributions (Nuel, 2008b; Stefanov
& Szpankowski, 2007), dataset with many sequences (Nuel et al., 2010), and sensitivity to
parameter estimation (Nuel, 2006c). Even if some results are already available for these
problems, many questions still have to be answered in the exciting and challenging field of
the distribution of motifs in random sequences.
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