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Significant contribution of metastable particulate
organic matter to natural formation of silver
nanoparticles in soils
Ying-Nan Huang1,2, Ting-Ting Qian1,4, Fei Dang1,2, Yong-Guang Yin3, Min Li1,2 & Dong-Mei Zhou 1,2

Particulate organic matter (POM) is distributed worldwide in high abundance. Although

insoluble, it could serve as a redox mediator for microbial reductive dehalogenation and

mineral transformation. Quantitative information on the role of POM in the natural occur-

rence of silver nanoparticles (AgNPs) is lacking, but is needed to re-evaluate the sources of

AgNPs in soils, which are commonly considered to derive from anthropogenic inputs. Here

we demonstrate that POM reduces silver ions to AgNPs under solar irradiation, by producing

superoxide radicals from phenol-like groups. The contribution of POM to the naturally

occurring AgNPs is estimated to be 11–31%. By providing fresh insight into the sources of

AgNPs in soils, our study facilitates unbiased assessments of the fate and impacts of

anthropogenic AgNPs. Moreover, the reducing role of POM is likely widespread within sur-

face environments and is expected to significantly influence the biogeochemical cycling of Ag

and other contaminants that are reactive towards phenol-like groups.
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S
oil organic matter, a continuum of progressively decom-
posing organic compounds, plays an important role in the
global carbon budget and nutrient retention1,2. Most

organic matter in soils is in particulate, known as humin, rather
than in a dissolved form3. Particulate organic matter (POM) has
been identified as a metastable phase4,5, i.e., insoluble but could
be chemically active in extracellular electron transfer in microbial
reduction of, for example, iron oxide and pentachlorophenol
dechlorination6–8. However, the effects of POM on the geo-
chemical transformation of trace metals are unclear. Considering
that POM is distributed worldwide in high abundance3,5, typically
comprising >50% of soil organic matter in mineral soils and
>70% of that in lithified sediments4, identifying the mechanisms
underlying its reactivity will provide new insight into its role in
the cycling of numerous trace metals within surface
environments.

One of the current major concerns is the unintentional release
of anthropogenic silver nanoparticles (AgNPs), which have
unique properties, leading to specific benefits and impacts9.
Recently a significant fraction of AgNPs has been directly
detected in ionic silver-contaminated soils, where anthropogenic
input (e.g., anthropogenic AgNPs in industrial, medical, and
consumer products) was unlikely10–13. Therefore, this work
aimed to reveal the formation processes and mechanisms of
naturally occurring AgNPs in soils. Although silver ions (Ag+)
can be readily reduced to AgNPs by microorganisms and their
associated extracellular polymeric substances14–16, the mechan-
ism allowing the abiotic reduction of Ag+ is largely unknown.
Studies on the role of organic matter in natural formation of
AgNPs have focused on dissolved organic matter (DOM) in lakes
and rivers17–20, but an extrapolation of the results to POM is
difficult due to the distinct differences in the physical and the
chemical properties of these two media4,5,21. Therefore, DOM
fails to explain the natural formation of AgNPs in soils17,19. The
higher relative abundance of POM than DOM and the redox
ability of POM lead us to hypothesize that POM participates in
reducing Ag+ to AgNPs at the soil surface. A demonstration of
this interaction would be of considerable importance, as it would
enable researchers to re-evaluate the presence and source of
AgNPs in terrestrial environment, and thus to conduct unbiased
assessments of fate and impacts of anthropogenic AgNPs.

In this work, we identify a clear role for POM in the natural
formation of AgNPs, both in the sand matrix and heterogeneous
suspensions. The use of this simplified system has significant
advantages over natural samples, as we are able to investigate
the specific chemical mechanisms, largely without biotic inter-
ferences. The molecular mechanism of POM-mediated AgNP
formation was analyzed using a novel combination of electron
paramagnetic resonance (EPR), solid-state 13C nuclear magnetic
resonance (NMR), and fourier-transform infrared (FTIR) spec-
troscopy. The resulting mechanistic insights into the interactions
between POM and Ag will improve our current understanding of
the geochemistry of trace metals in soils.

Results
Reduction in sand matrix. The natural formation of AgNPs at
soil surface was mimicked with a sand depth of 1 mm (light
penetration in natural soils is 0.2−0.4 mm)22 and exposure of the
samples to natural sunlight irradiation for 10 h outdoors (Fig. 1a).
In the presence of POM, the color of the supernatants was light
brown (Fig. 1b). The formation of AgNPs was confirmed by the
characteristic peak of surface plasmon resonance (SPR) at ~400
nm on ultraviolet (UV)–visible (Vis) spectrometry18 (Fig. 1c). A
notable amount of AgNPs with diameters of 12.8 ± 4.5 nm was
observed in the liquid phase by transmission electron microscopy

(TEM) with energy dispersive X-ray spectrometry (EDS) (Fig. 1d,
e). POM not only facilitated the formation of AgNPs in the
presence of light, it also worked in the dark, as detected by liquid
chromatography inductively coupled plasma mass spectrometry
(LC-ICP-MS) (Fig. 1f). No AgNPs formed in the irradiated
control without POM. These results indicated a significant role of
POM in AgNPs formation at soil surface, despite the limited
penetration of sunlight in the soil.

Reduction in simplified suspension. Experiments were then
performed by incubating 9.3 × 10−3−0.93 mM Ag+ with POM at
9.0−143.2 mg C L−1 under natural sunlight. After 24 h, the sus-
pensions were pale yellow (Supplementary Fig. 1) but only the
suspension containing 0.93 mM Ag+ had an obvious SPR
absorbance at ~400 nm (Supplementary Fig. 2b). Further, the
intensity of SPR at ~400 nm increased with increasing POM
concentrations (Supplementary Fig. 2b).

To further explore the operative conditions favoring
Ag+ reduction, 0.93 mM Ag+ was allowed to react with
143.2 mg C L−1 POM under simulated sunlight over pH
5.6−8.6 at 25 °C (Fig. 2a and Supplementary Fig. 3c). After
24 h, all suspensions were yellow but only those under neutral
and alkaline conditions (7.0−8.6) had obvious SPR absorbance at
~400 nm (Supplementary Fig. 3c). This is attributed to the low
dissolution of AgNPs23 and an increasing trend of radical signal
intensity at higher pHs (as discussed later). Figure 2b shows
typical TEM images of nanoparticles at pH 8.6, where notable
amounts of nanoparticles with average diameters of 8.4 ± 3.7 and
7.7 ± 3.8 nm were observed in liquid and particulate phase after
24 or 96 h incubation; the size was similar to that of samples from
sand matrix (Fig. 1d). EDS confirmed the presence of Ag
(Fig. 2b). On X-ray powder diffraction (XRD) analysis, the strong
diffraction peak occurring at 38.2° in the POM corresponded to
metallic Ag facets of (111) (Fig. 2c). The species of Ag was further
confirmed by X-ray photoelectron spectroscopy (XPS) analysis.
The signals of Ag 3d3/2 and 3d5/2 were located at 373.9 eV and
367.9 eV (Fig. 2d), characteristic of metallic Ag24. AgNPs did not
form in Ag+ solution in the absence of POM (Supplementary
Fig. 3a). Combined, the UV–Vis, TEM-EDS, XRD, and XPS
results provides conclusive evidence of the formation of metallic
AgNPs in the presence of POM under irradiation for 24 h.

The possible role of DOM released from POM in reducing Ag+

to AgNPs was minimal based on the following evidence. Firstly,
very little AgNPs formed when POM was replaced with its
released DOM (Supplementary Fig. 4a, b). Secondly, the EPR
signal of O��

2 was not detected in the released DOM (Supple-
mentary Fig. 4c, as described later). Finally, AgNPs were formed
in a dialysis bag (pore size < 1 nm, Spectrum, USA) containing
POM but not in an incubation consisting of a bulk solution
and released DOM (Supplementary Fig. 5). These observations
suggest that, at least in our experimental system, POM serves as a
natural insoluble agent for the reduction of Ag+ to AgNPs under
irradiation.

Reduction kinetics. In the heterogeneous system, only ~15%
of total AgNPs were distributed in liquid phase and the
concentration was relatively constant after 85 h of incubation
(~0.06 mM, Fig. 3a, and Supplementary Fig. 6a, c). By contrast,
the amount of AgNPs in the particulate phase increased con-
tinuously (Fig. 3b and Supplementary Fig. 6b, d) and accounted
for up to ~85% of the total AgNPs formed (Fig. 3b).

The kinetics of AgNPs formation by POM were best described by
the Finke–Watzky model that involves two pseudoelementary
steps25, by which Ag+ was first reduced to zerovalent atoms (nuclei

formation, Agþ þ e� �!
k1

Ag0) for their aggregation into nuclei
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Ag0n
� �

, followed by autocatalytic surface reduction enabled by the

surface sites from just-formed nuclei of Ag0n (surface autocatalytic

reduction, Ag0n þ Agþ þ e� �!
k2

Ag0nþ1). The autocatalytic reduc-
tion of salt precursor is also involved in the synthesis of other metal
nanocrystals26,27. Therefore, the AgNPs formation could be
expressed as25:

d Ag0n
� �

dt
¼ �

d Agþ½ �

dt
¼ k1 Ag

þ½ � þ k2 Ag
þ½ � Ag0n
� �

ð1Þ

Ag0n
� �

¼ Agþ½ �0� Agþ½ � ð2Þ

where Ag0n
� �

and [Ag+] are the concentrations of AgNPs and Ag+

in the heterogeneous system at time t, respectively; [Ag+]0 is the
concentrations of Ag+ initially. The k1 and k2 are the rate constants
for nuclei formation and surface autocatalytic reduction, respec-
tively. k1 and k2 were derived from curve fitting according the
Finke–Watzky model (Fig. 3d)25–27, and were 2.49 × 10−3 h−1 and
4.47 × 10−2mM−1 h−1, respectively. Thus, the nuclei formation
was rate limiting (k1≪ k2). The reduction rates of nuclei formation
and autocatalysis surface reduction were further modeled as a
function of reaction time (Supplementary Fig. 7). The autocatalytic
reduction rate increased rapidly over time and after ~7 h was higher
than the rate of nuclei formation, suggesting that nuclei formation

surpasses nuclei formation to become the dominant process. The
rate constant k1 for POM (k1= 2.49 × 10−3 h−1) was roughly
similar to that in DOM (1 × 10−3−0.3 h−1)20,28,29, suggesting that
POM could reduce Ag+ at comparable rates to DOM in lakes and
rivers. However, the Finke–Watzky two-step mechanism of AgNPs
formation by POM was not analogous to DOM with one-step
mechanism20,28,29. A mechanistic understanding of the autocata-
lytic surface reduction was not the main focus of this study but
merits further investigation. Note that the oxidation of AgNPs was
not included in this model because oxidation was not favored under
alkaline conditions, based on a reported pseudo-first-order rate
constant of 9.58 × 10−4 h−130.

POM induced superoxide reduction of Ag+. The formation of
AgNPs could be facilitated under irradiation, under highly alka-
line conditions, or in the presence of dissolved O2 (Supplemen-
tary Fig. 3). The stimulated effect of dissolved O2 on AgNPs
formation (Supplementary Fig. 3b) indicates that reactive oxygen
species (ROS) are responsible for the observed reduction31. The
ROS mediating AgNPs formation was identified as superoxide
O��

2 because the addition of superoxide dismutase (superoxide
scavenger)18 in the suspensions abolished AgNPs formation
(Fig. 4a). This result is consistent with the suggested role of
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aquatic derived-DOM in promoting reduction of Ag+ under
illumination18.

EPR spectroscopy coupled with 5,5-dimethyl-1-pyrroline-N-
oxide (DMPO) as a spin-trapping agent confirmed the generation
of superoxide. As illustrated in Fig. 4b, six characteristic peaks of
the DMPO� O��

2 spin adducts32 were observed in the POM
suspension under simulated sunlight irradiation over a pH range
from 7.4 to 8.6. By contrast, the EPR signal of O��

2 was not
detected in the DOM released from POM (Supplementary
Fig. 4c); the O��

2 was thus not directly produced from DOM.
Further, EPR spectra of POM in the absence of DMPO was
corrected (Fig. 5a), and a single peak was observed with g factor
value of 2.0030. The g factor value is characteristics of
semiquinone radicals33,34, and thus suggests that semiquinone
radicals are produced in the POM. It has been well established
that semiquinone radicals produced from quinone-hydroquinone
moieties can mediate the formation of O��

2 via single-electron
transfer process with oxygen35. Therefore, the electron-donating

phenol-like groups of POM (e.g., hydroquinones) are likely
responsible for O��

2 generation. In contrast, no formation of
AgNPs was observed in the reaction between ash and Ag+; intact
and de-ashed POM showed comparable SPR absorbance intensity
of AgNPs (Supplementary Fig. 4d). The radicals are thus not
directly influenced by clays in POM.

13C NMR and FTIR analyses were performed to further
identify the organic moieties in POM that were responsible for
O��

2 production under illumination. The 13C NMR spectrum con-
firmed the existence of phenolic moieties (Fig. 5b and
Supplementary Table 1). Furthermore, on the FTIR spectrum,
the peak of pristine POM occurred at ~3400 cm−1, which was
attributed to the O–H vibration of the carboxylic and alcoholic
groups while the peak at ~1600 cm−1 was assigned to aromatic
C= C or C=O stretching and quinone C=O36,37. The peaks
at ~2917 cm−1 and 1000 cm−1 were assigned to the C–H
stretching motions of aliphatic groups and the C–O stretching
of polysaccharide, respectively (Fig. 5c)36. Collectively, our data
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points toward that phenol-like groups are important redox-active
functional groups in POM, which could be excited under
illumination, thus transferring electrons to dissolved O2 to form
superoxide radicals37,38. Additionally, it is reported that the
presence of particulates could increase the reactivity of super-
oxides39, which may explain why more AgNPs formed in
particulates relative to liquid phase (Fig. 3a, b). The role of
particulates in soil matrix in formation/decaying of superoxide
awaits further investigation.

Discussion
Our hypothesis that POM is redox active is supported by all our
experimental results. POM reduces Ag+ to AgNPs under

irradiation and in the dark, suggesting the photoreduction and
non-photoreduction pathway. EPR, 13C NMR, and FTIR analyses
reveal that phenol-like groups are involved in the redox activity of
POM (Fig. 5). The redox potentials of these groups40,41 and
POM7,36 are documented to range from –0.49 to 0.37 V (versus a
standard hydrogen electrode) and for Ag+ is 0.8 V (versus a
standard hydrogen electrode)42. These result in negative reaction
free energies, ranging from −124.5 to −41.5 kJ mol−1. Reduction
of Ag+ by POM is, thus, thermodynamically favorable. The
photoreduction pathway was predominately mediated by O��

2 , as
evidenced by the EPR signal of O��

2 (Fig. 4b). The non-
photoreduction pathway could be attributed to direct electron
transfer from phenol-like groups within POM to Ag+. However,
there was insufficient amounts of AgNPs in the dark, as reflected
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by little or no change in the SPR absorbance at ~400 nm by
UV–Vis spectrometry (Supplementary Fig. 2a) or diffraction
peaks representative of metallic Ag by XRD (Supplementary
Fig. 2c).

There are two possible mechanisms of natural AgNPs for-
mation at soil surface: abiotic reduction via POM as shown in
this study and biotic reduction (e.g., microbacteria and their
associated extracellular polymer substances)14,43. The relative
importance of these sources to AgNPs formation in soils has
not yet been quantified. Typically, Ag concentrations in soils
ranges from 0.01 to 126.0 mg kg−1 (9.3 × 10−5–1.2 mM)10,44.
Based on an extrapolation of our results to these environmental
relevant concentrations, we estimate that between 1.2 × 10−3

and 53.0 mg AgNPs kg−1 would be formed from
abiotic reduction via POM at equilibrium (based on k1= 2.49 ×
10−3 h−1 and k2= 4.47 × 10−2mM−1 h−1). In contrast, the
biotic reduction rate of AgNPs is 0.056 h−1 (ref. 29), which
should yield from 9.3 × 10−3 to 117.4 mg AgNPs kg−1 (obtained
from pseudo-first-order kinetic)29. Thus, 11–31% of the AgNPs
in the soil surface may originate from POM, as compared to
69–89% of biotic reduction. This may reflect high AgNP con-
centrations in POM-rich soils or sediments. This study clearly
demonstrates that POM can contribute significantly to the
natural formation of AgNPs in soils.

Taken together, our results introduce a new pathway for
AgNPs formation in soils, whereby O��

2 , generated from
phenol-like groups within POM under irradiation, is a key
determinant of Ag+ reduction. Even in the dark, POM is redox
active in AgNPs formation. Consequently, these results high-
light the importance but unrecognized role of POM in naturally
occurring AgNPs in soils. Given POM is associated with iron
oxides, clays and DOM in natural soils and sediments3–5, the
formation of AgNPs could be more complex in nature. This
reductive pathway will ultimately raise the concerns of POM in
the biogeochemistry of contaminants that are reactive towards
phenol-like groups.

Methods
Extraction and characterization of POM. POM was extracted from a peat soil
with 34.1% organic carbon from Changbai Mountain, China (42°9′51″N, 126°44′7″
E). Briefly, the air-dried and sieved soil (0.2 mm) was progressively extracted with
0.1 M Na4P2O7 eight times, 0.1 M NaOH 20 times, and then 0.2 M NaOH ten times
with an extractant/soil ratio of 10:1, followed by centrifugation at 4500 × g for 20
min. The samples were then washed with Milli-Q water, freeze-dried, ground until
they were fine enough to pass through a 100-mesh (0.15 mm) sieve45 and used in
the analyses described below.

The carbon, hydrogen, nitrogen, and oxygen contents of the POM were
determined using a Vario EL III element analyzer (Germany) (Supplementary
Table 1). The ash content was determined by heating the POM sample at 800 °C for
4 h and calculated based on the mass difference (Supplementary Table 1)46.
Subsamples were de-ashed in 1.6 M HCl and 3M HF at extractant/soil ratio of 10:1
for 24 h seven times (designated as de-ashed POM). DOM released from the POM

suspension was monitored over 96 h using a total organic carbon analyzer (Multi
N/C 3100, Analytik, Jena, Germany).

Reduction in sand matrix. The experiment was performed to mimic the possible
natural formation of AgNPs in the presence of POM on the soil surface. Com-
mercial quartz sand with a grain size of 0.3−0.7 mm was thoroughly cleaned with
0.01 M HNO3 and NaOH47. A uniform layer of 1 mm sand was formed in glass
Petri dishes (9 cm in diameter) using 14 g of quartz sand, with or without 0.3 g of
POM, corresponding to POM content in natural soil48. Each experimental group
was spiked with Ag+ (as AgNO3, pH 8.6) at 100 mg kg−1 (dry weight), rewetted
periodically to maintain a water-holding capacity of 20, 50, and 100%, covered with
polyvinyl chloride film, and irradiated for 10 h outdoors under natural sunlight
[6,820–178,900 lux, measured using a digital lux meter (BENETECH GM1010,
China)]. After 10 h, the resulting AgNPs were analyzed. The experiments were also
conducted in the dark.

Reduction in simplified suspension. Silver nitrate (AgNO3) at 9.3 × 10−3−0.93
mM was allowed to react with POM at 9.0−143.2 mg C L−1 at pH 5.6−8.6.
Modeling calculations confirmed that under all pH conditions >99.9% of the Ag
was present as Ag+ (Visual MINTEQ 3.1). The suspensions were rotated at 500
rpm at 25 °C to ensure uniform light exposure and a well-mixed suspension37 in a
photo-chemical reactor equipped with a water-circulating jacket for temperature
control (XPA-7, Nanjing Xujiang Electromechanical Plant, China). The simulated
sunlight was provided by a xenon source lamp (250−1100 nm) without light filters
at 500W/m2. AgNPs production was also evaluated under natural sunlight as well
as in the dark (covered with aluminum foil). A parallel experiment was performed
to study the effect of O2 on Ag+ reduction in which the suspension was purged
with high-purity N2 for at least 30 min before exposure to simulated sunlight. SOD
(150 UmL−1) was added to the suspension to determine the role of O��

2 . All
experiments were conducted with at least duplicate samples.

Characterization of AgNPs. At each time point, the suspensions were immedi-
ately filtered through a 0.45-μm filter and the resulting AgNPs in liquid phase were
tracked by UV–Vis spectrophotometry at 300−800 nm. After rinsing with Milli-Q
water, the POM was freeze-dried for X-ray Powder Diffraction (XRD, Ultima IV,
Rigaku, Japan) and X-ray Photoelectron Spectrometer (XPS, ESCALAB 2500Xi,
Thermo, USA) analyses. Transmission electron microscopy (TEM) with energy
dispersive X-ray spectrometry (EDS) (JEM200CX, Japan) was performed at an
accelerating voltage of 200 kV. NPs size was obtained using Nano Measure System
1.2.0 to analysis TEM images of at least 300 particles. Liquid chromatography
inductively coupled plasma mass spectrometry (LC-ICP-MS) was also applied in
the work to characterize the AgNPs at low concentrations49. Ultrafiltration coupled
with inductively coupled plasma mass spectrometry (ICP-MS, Thermo-iCAP Q,
USA) was used to quantitate Ag+ and AgNPs in liquid and particulate phase. The
Ag+ in the liquid phase was measured by a 3-kDa centrifugal ultrafilter (Amicon
Ultra-15 3 kDa, Millipore)50,51; the resulting AgNPs were then quantified by
subtracting the Ag+ concentration from the total Ag concentration. The AgNPs on
POM were extracted with 3 mL of 2.5 mM tetrasodium pyrophosphate (TSPP)52.
The AgNPs were then quantified as described for the liquid phase. The results are
presented as mean ± s.d. based on the results of n= 3 samples.

FTIR, solid-state 13C NMR, and EPR analyses. To identify the structural com-
ponents in POM responsible for Ag+ reduction, FTIR spectrometry (Nicolet iS10,
Thermo, USA), solid-state 13C NMR (Burker Avance IIIHD 400 WB), and electron
paramagnetic resonance spectrometry (EPR, EMX 10/12, Bruker, Germany) with a
resonance frequency of 9.77 GHz of POM were performed53. The dimethyl sulf-
oxide (DMSO) and 5,5-dimethyl-1-pyrroline-N-oxide (DMPO, J&K Scientific Ltd,
Shanghai, China) at 100 mM was used to trap the O��

2 and generate the EPR signals
(DMPO-O��

2 ) in the POM recorded in EPR spectra. A parallel experiment was also
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conducted using a DOM solution, released from POM, to rule out its potential
effect on O��

2 generation.

Data availability
The authors declare that the data supporting the findings of this study are available

within the paper and its Supplementary Information files.
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