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The possibility of utilizing the rich spin-dependent properties of graphene has attracted 27 

great attention in pursuit of spintronics advances. The promise of high-speed and low-28 

energy consumption devices motivates a search for layered structures that stabilize 29 

chiral spin textures such as topologically protected skyrmions. Here we demonstrate 30 

that chiral spin textures are induced at graphene/ferromagnetic metal interfaces. 31 

Graphene is a weak spin-orbit coupling material and is generally not expected to induce 32 

sufficient Dzyaloshinskii-Moriya interaction to affect magnetic chirality. We 33 

demonstrate that indeed graphene induces a new type of Dzyaloshinskii-Moriya 34 

interaction due to a Rashba effect. First-principles calculations and experiments using 35 

spin-polarized electron microscopy show that this graphene-induced Dzyaloshinskii-36 

Moriya interaction can have similar magnitude as at interfaces with heavy metals. This 37 

work paves a path towards two-dimensional material based spin orbitronics. 38 

The unique properties of graphene including well-defined single atomic layer 39 

thickness, massless linear dispersion of its electronic structure, and long spin diffusion length 40 

have motivated the search for graphene-based phenomena that may enable spintronic 41 

applications 1 , 2 , 3 . Recently, graphene was shown to play key roles in several magnetic 42 

phenomena, including graphene-based tunnel magnetoresistance4 ,5 ,6 , enhancement of the 43 

spin-injection efficiency 7 , 8 , Rashba effect 9 , 10 , quantum spin Hall effect 11  and large 44 

perpendicular magnetic anisotropy (PMA)12,13,14.  45 

At the same time, recent progress in the field of spin orbitronics was stimulated by 46 

discoveries of phenomena permitting highly efficient electrical control of chiral spin textures, 47 

e.g. fast domain wall (DW) dynamics15 ,16 ,17 ,18  and skyrmion motion at ultralow current 48 

densities19,20,21,22. These findings hold promise for applications in memory23,24,25 and logic 49 

devices 26  where the interfacial Dzyaloshinskii-Moriya Interaction (DMI) 27 , 28  has been 50 
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recognized as a key ingredient in creation, stabilization, and manipulation of 51 

skyrmions 29 , 30 , 31 , 32 , 33 , 34  and chiral DWs 35 , 36 . While chiral magnetism induced by the 52 

interfacial DMI has become an important topic, the DMI at interfaces with graphene was not 53 

expected to be significant because, according to the Fert-Levy model37, the DMI scales with 54 

spin-orbit coupling (SOC) in the material contacting the ferromagnetic metal (FM) layer38 55 

and graphene lacks strong SOC. Recent results reported the observation of enhanced PMA at 56 

the graphene/Co interface, even though strong interfacial PMA is also often associated with 57 

strong SOC14,39. This suggests that graphene/FM interfaces are unusual: if graphene enhances 58 

the PMA at interfaces in the absence of strong SOC, then it is interesting to ask if graphene 59 

has similarly strong effects on the DMI helping thereby to promote this and other 2D 60 

materials for spin orbitronics. In the following, this idea is tested by exploring the interfaces 61 

of graphene with cobalt and nickel, where these two FM elements are chosen for the small 62 

lattice mismatch and strong interaction with graphene. 63 

First-principles calculations 64 

The structures of graphene/FM films modelled here are shown in Fig. 1, where a layer 65 

of graphene coats the surfaces of three-monolayer (ML) thick hcp Co(0001) and fcc Ni(111) 66 

films. Arrows schematically indicate clockwise/right-handed and anticlockwise/left-handed 67 

(in parenthesis) spin spiral chirality. The calculated ground state structure is consistent with 68 

previous reports4,14, where one carbon atom of the graphene unit cell is located on top of the 69 

adjacent Co(Ni) atom and another carbon atom is located above the hollow site, with the 70 

graphene/Co(Ni) distance of about 2.12 (2.15) Å.  71 

 We use the chirality dependent total energy difference approach applied previously 72 

for Co/Pt structures33,38,40 to calculate microscopic and micromagnetic DMI constants, d
tot 73 

and D, respectively, as well as the layer-resolved DMI, dk, where k indicates the individual 74 



4 

 

atomic layers within FM films. As one can see from Fig. 2 for the calculated results, the 75 

largest DMI can reach up to 1.14 meV per atom for a graphene coated single atomic layer of 76 

Co, while for 2 and 3 ML of Co films coated by graphene, the amplitude of dtot drops to 0.16 77 

and 0.49 meV, respectively (Fig. 2a). Moreover, dtot of graphene/Co (brown bars in Fig.2a) is 78 

generally stronger than that of graphene/Ni (green bars in Fig. 2a) for all thicknesses 79 

considered. For the micromagnetic DMI, D, we found that its magnitude decreases as a 80 

function of the FM layer thickness for both graphene coated Co and Ni films, due to 81 

interfacial origin of the DMI leading to the inverse proportionality with respect to FM layer 82 

thickness.38   83 

In order to elucidate the origin of such a significant DMI in graphene coated FM, we 84 

then calculated the layer-resolved DMI, dk
, and associated SOC energy difference, ∆ , for 85 

the case of graphene coated 3ML Co films. Fig. 2c shows that the largest layer-resolved 86 

DMI, dk, is located at the interfacial Co layer, labelled as Co1 (blue bar), which is in contact 87 

with graphene, while within the layers further from the interface the DMI decays very fast 88 

(red and black bars), similar to previously reported case at Co/Pt interface38. However, 89 

significant differences between graphene/Co and Co/Pt emerge in terms of where the 90 

corresponding SOC energy source is located. As shown in Fig. 2d, the largest associated 91 

SOC energy difference, ∆ , originates from the same Co1 layer rather than from the non-92 

magnetic side of the interface, where it is almost zero. This is drastically different from the 93 

Co/Pt case where the SOC energy difference is mainly contributed by the adjacent Pt layer. 94 

These findings indicate that the physical mechanism governing the strength of the DMI in 95 

graphene/Co interface is very different from that in Co/Pt, which is captured by the Fert-Levy 96 

model37,38. Instead, in graphene/Co the dominating mechanism is the Rashba-type DMI. 97 

According to the latter41,42,43, the DMI parameter can be roughly expressed as = 2  at 98 
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graphene/Co interfaces, where A is the exchange stiffness and = ℏ  is determined by the 99 

Rashba coefficient, , and effective electron mass, me. The latter in Co was measured to be 100 

about 0.45 m0
44 (with m0 being the rest mass of electron), and the exchange stiffness, A, was 101 

found to be about 9.5 pJ/m for graphene/Co (3ML)/Ru(0001) based on the Curie temperature 102 

of this structure (see details in Method), which is slightly smaller than A=15 pJ/m in thicker 103 

Co films34,45. The Rashba coefficient, , can then be extracted from αR=2E0/k0, where E0 is 104 

the Rashba splitting at the wave vector k0. We calculated the Rashba splitting for 105 

graphene/Co(3ML) slab by switching on SOC and putting the magnetization along <1120> 106 

and <1120>. As one can see in Figs. 2e and f, the corresponding band shifts are a signature of 107 

the Rashba effect even though it deviates slightly from the conventional linear dependence 108 

given by αR (σ x k)⋅z. Different characters of the band splitting at the Γ point can be attributed 109 

to the fact that Co d orbitals are influenced by different potential gradients due to the 110 

polarization between graphene and Co that provides an intrinsic electric field and 111 

considerably enhances the effective value of SOC at the interface. We chose a band close to 112 

the Fermi level at Γ point, as shown in Fig. 2f, to estimate the Rashba-type DMI. The Rashba 113 

splitting, E0, is about 1.28 meV at k0=0.031 Å-1, and the Rashba coefficient,  is thus found 114 

to be about 82.6 meV· Å. This leads to kR=9.8×10-3 Å-1 and therefore d=0.18 meV at 115 

graphene/Co interfaces, which is smaller than the value calculated from first-principles, 116 

d=0.49 meV for graphene coated 3 ML Co films. The reason for the smaller DMI value 117 

extracted from the Rashba effect can be ascribed to the fact that the Rashba-type DMI was 118 

estimated by using only one band close to the Fermi level. As reported in recent studies46, the 119 

magnitude and sign of  is generally band-dependent due to band-specific orbital orderings 120 

of the orbital angular momentum giving rise to the band-dependent orbital chirality. 121 
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Experimental observation of graphene-induced DMI 122 

Experimental tests of the DMI were done using spin-polarized low-energy electron 123 

microscopy (SPLEEM), by directly imaging DWs in perpendicularly magnetized films (see 124 

Methods). The films were prepared in-situ by molecular beam epitaxy under ultrahigh 125 

vacuum conditions so that possible extrinsic influences such as growth front roughness are 126 

minimal and controlled47. The sign of the DMI can be determined by observing the chirality 127 

of DWs32,36,48, while the strength of the DMI vector, d, can be quantified by measuring the 128 

film thickness dependence of a transition from chiral Néel walls (in thin films, where the 129 

interfacial DMI influences DW texture) to achiral Bloch walls (in thicker films, where 130 

dipolar forces outweigh the DMI)36,48. We cannot prepare a free standing graphene/Co 131 

bilayer where the thickness of Co is several ML, instead, high quality graphene/Co samples 132 

were prepared on top of Ru(0001) single-crystal substrates (see Methods).  133 

Figs. 3a,b show compound SPLEEM images highlighting the DW spin structure in 134 

graphene/Co/Ru(0001) films, where black and grey shades indicate that the magnetization is 135 

perpendicular to the film plane with +Mz and –Mz vectors, respectively, while colours 136 

represent the in-plane magnetization vector according to the colour wheel (inset). For Co 137 

thickness of 3.9 ML (Fig. 3a) the in-plane component of the magnetization within DWs 138 

(white arrows) is perpendicular to the DW tangent, and always points from grey domains to 139 

black domains, i.e. from –Mz and +Mz: this indicates that the DWs have a left-handed/anti-140 

clockwise chiral Néel texture36,48. For Co thickness of 8.4 ML (Fig. 3b), the magnetization 141 

vector within DWs is aligned parallel to the DW tangent: this indicates that the DW has a 142 

Bloch-type texture. Moreover, the magnetization vector within these DWs reverses its 143 

direction in a number of places, indicating that these DWs are achiral Bloch-walls49. This 144 

thickness-dependent transition of the DW type and chirality can be tracked in more detail 145 
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using histogram as plotted in Fig. 3c (see Methods). The histogram represents the distribution 146 

of the angle α, defined as the angle between the DW magnetization vector m and the normal 147 

direction of DW, n (Fig. 3c inset). The distribution of the angle α gradually evolves from a 148 

single peak around 0o for Co 3.9 ML to double peaks at ±90° for Co 8.4 ML thicknesses.  149 

The strength of the DMI in this system can be estimated as d=0.11±0.04 meV per 150 

atom (Fig. 3f), by computing the film thickness related dipolar energy difference between 151 

Néel- and Bloch- textured DWs. Note that this analysis is independent of the values of 152 

exchange interaction and magnetic anisotropy in a given system (see Methods). The DMI 153 

parameter d contains contributions from both the graphene/Co interface and the Co/Ru 154 

interface, and the DMI at Co/Ru needs to be tested so that the DMI at graphene/Co can be 155 

deduced. In the Co/Ru(0001) system, a spin reorientation transition from out-of-plane to in-156 

plane occurs from 2ML Co to 3ML Co coverage50. The step-flow growth mode of this system 157 

permits deposition of a Co film of 2.4ML coverage that consists of alternating strips of 2ML 158 

and 3ML thickness, featuring out-of-plane- and in-plane domains with well-defined areas 159 

(Supplementary Fig. S1).  Analogous to Ref. 51, the magnetic structure of this sample is an 160 

inhomogeneous spin spiral. SPLEEM imaging (Fig. 3d) and analysis of histograms of the 161 

domain wall magnetization angle α indicates that the Co/Ru system features right-handed 162 

Néel-type chirality. In detail, the split double peak near α = 180° in the histogram plotted in 163 

Fig. 3e indicates DW spin textures point roughly 45° with respect to the domain boundary, 164 

where the DMI energy is comparable to the dipolar energy difference between Néel- and 165 

Bloch- textured DWs. From this observation the DMI at Co/Ru can be estimated as d =166 −0.05 ± 0.01 meV per atom (see Methods). The DMI is very localized at the interface38,40, 167 

and in both Co/Ru and graphene/Co/Ru samples the Co layer is either pseudomorphic (hcp, 168 

for 1 ML Co thickness) or a moiré structure chiefly composed of alternating fcc and hcp 169 
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regions  (for 2 ML or larger Co thickness, see details in Methods). From the experimental 170 

DMI values of Graphene/Co/Ru and Co/Ru, the DMI of the Graphene/Co interface with 4-171 

6ML Co can be determined to be = 0.16 ± 0.05 meV per atom (Fig. 3f) (see more details 172 

in Methods), which is opposite and about three times as strong as the DMI at the Co/Ru 173 

interface. This is consistent with the calculated DMI of = 0.18  meV for 174 

Graphene/Co[3ML] based on the Rashba model discussed above. 175 

Towards a giant DMI in graphene-based heterostructures 176 

 It was previously proposed that the DMI can be amplified using multilayer 177 

structures34,36,40,52. As summarized in Fig. 2, the sign of the DMI for graphene/Ni with Ni 178 

thickness of 1 and 2 MLs is negative (clockwise/right-handed chirality), while for 179 

graphene/Co the sign is always positive (anticlockwise/left-handed chirality). This suggests 180 

the possibility to obtain large DMI values by building ternary superlattices based on 181 

graphene/Co/Ni heterostructures. We tested this hypothesis with first-principles calculations 182 

by modelling graphene/[Co/Ni/graphene]n structures (Fig. 4). The calculated value of d 183 

increases with respect to the number of repeating units, n, with a slope less than one. Further 184 

calculations indicate that the amplification of the DMI can be further enhanced in Van der 185 

Waals heterostructures where two FM layers are separated by two MLs of graphene, i.e. in 186 

multilayers of the graphene/[Co/Ni/bilayer-graphene/](m-1)/Co/Ni/graphene structure. The 187 

result obtained for m=2 with = 1.13	meV suggests that in multilayers of n repeating units 188 

the DMI approaches a value of m times the DMI of a single graphene/Co/Ni/graphene unit. 189 

Furthermore, calculating the PMA for graphene/[Co/Ni/graphene]n heterostructures shows a 190 

linear increase with the number of repeating units n, that is similar to the behaviour of 191 

graphene/[Co/graphene]n reported before14.  192 

 From the values of the DMI at Co/graphene interfaces obtained in this work, we 193 
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predict that graphene induced DMI should be sufficient to stabilize magnetic chiral spin 194 

textures in ultrathin FM films attached to graphene. For instance, magnetic chiral DWs and 195 

skyrmions have been observed in weak DMI systems (−0.12  meV per atom at Ni/Ir 196 

interface48, or 0.15 meV per atom in Fe/Ni/Cu system36). The proposed [Co/Ni/graphene]n 197 

heterostructure allows simultaneous enhancement of the DMI and PMA, which may be 198 

helpful for stabilizing chiral spin textures such as skyrmions with an extremely small size. 199 

Moreover, graphene/Co(Ni) grown on copper could be interesting since graphene production 200 

on copper is a well-established process53, where the graphene related interface is expected to 201 

dominate the DMI due to the ignorable DMI at Co(Ni)/Cu interface52. 202 

 In summary, we have discovered both from first-principles calculations and from 203 

magnetic imaging experiments that graphene/FM interface generates significant DMI. We 204 

showed that the physical origin of this DMI is the Rashba-effect. The discovery of the DMI 205 

induced by graphene along with its distinctive electronic properties54, enhancement of PMA14, 206 

and its ability to act as an excellent capping layer55, may open up a new area in the field of 207 

spintronics.  208 
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Figure Captions 

 

  

 

Figure 1 Crystal and spin configurations of graphene coated Co and Ni films used for 234 

DMI calculations. a, Top- and side-view of graphene on hcp Co(0001) and b, top- and side-235 

view of graphene on fcc Ni(111) surface. Red, purple and green balls represent carbon, cobalt 236 

and nickel atoms, respectively. Clockwise (anticlockwise) spin configurations are 237 

schematically shown by arrows.  238 
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Figure 2 Anatomy of DMI for graphene/Co and graphene/Ni bilayers. a, Total DMI 239 

coefficient dtot and b, micromagnetic DMI coefficient D, as a function of FM film thickness 240 

for graphene/Co (brown bars) and graphene/Ni (green bars) slabs. c, Layer-resolved DMI 241 

coefficient d
k of the k

th layer for graphene/Co(3ML) slab. d, Atomic layer resolved 242 

localization of the associated spin-orbit energy ∆ . As it is seen, the large DMI coefficient 243 

of the Co1 layer (blue bar in c) is associated with large variations of the SO energy  ∆   in 244 

the Co1 layer (see the corresponding blue bar in d). e and f, Band structures for 245 

graphene/Co(3ML) slab with the magnetization axis along <1120> (black) and <1120> (red) 246 

used to estimate the Rashba splitting. The corresponding DMI is found to be about 0.18 meV. 247 
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248 

Figure 3 Experimental measurement of DMI in graphene/Co by using SPLEEM. a,b, 249 

Compound SPLEEM images of graphene/Co/Ru. Scale bar, 1μm. White arrows indicate the 250 

orientation of in-plane magnetization. c, Co thickness dependent histogram of the angle α 251 

counted pixel-by-pixel at the DW boundary in graphene/Co/Ru(0001) shows the evolution of 252 

the chirality from a left-handed Néel wall (single peak at 0°) to an achiral Bloch wall (double 253 

peaks at ±90°). Inset shows the definition of the angle α, where m is the in-plane direction of 254 

the DW magnetization, and n is the in-plane vector normal to the domain boundary and 255 

always points from grey domains to black domains. d, Compound SPLEEM image of Co/Ru. 256 

Scale bar, 1μm. e, the angle α histogram in Co/Ru indicates right-handed Néel-type rotation. 257 

f, Calculated DMI vector dij strength.  258 
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Figure 4 DMI and PMA for the multilayer of graphene/[Co/Ni/graphene]n as a function 259 

of the junction number n.  Black points pointing to the left scale and blue stars pointing to 260 

the right scale represent the calculated DMI and PMA values, respectively. Both the DMI and 261 

PMA increase approximately linearly as a function of the junction number n. The atoms 262 

represented by different colours are the same as in Figure 1. 263 

  264 
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METHODS 265 

First-principles calculations. The Vienna ab initio simulation package (VASP) was used in 266 

our calculations with electron-core interactions described by the projector augmented wave 267 

method, and the exchange correlation energy calculated within the generalized gradient 268 

approximation of the Perdew-Burke-Ernzerhof (PBE) form56,57. The cutoff energies for the 269 

plane wave basis set used to expand the Kohn-Sham orbitals were chosen to be 520 eV for all 270 

calculations. The Monkhorst-Pack scheme was used for the Γ-centred 4×16×1 k-point mesh. 271 

In order to extract the DMI vectors, the calculations were performed in three steps. First, the 272 

corresponding structures were relaxed until the forces become smaller than 0.001 eV/Å to 273 

determine the most stable interfacial geometries. In our DMI calculations, we coated 1 to 3 274 

monolayers of hcp Co(0001) or fcc Ni(001) films by graphene in a 4 by 1 surface unit cell 275 

with π/2 spin rotations (Fig. 1), we also calculated hcp- or fcc stacked Co films on bare 276 

Ru(0001) in same unit cell. Next, the Kohn-Sham equations were solved with no spin-orbit 277 

interaction taken into account to find out the charge distribution of the system’s ground state. 278 

Finally, spin-orbit coupling was included and the self-consistent total energy of the systems 279 

was determined as a function of the constrained magnetic moments. We employ the same 280 

method used for DMI calculations in frustrated bulk systems and insulating chiral-lattice 281 

magnets58 and adapted to the case of interfaces. As for the Rashba effect, we adopted the 282 

same approach as in Ref. [ 59 ] (see also Supplementary Fig. S.2 and corresponding 283 

discussion). 284 

Sample preparation. We conducted the experiments in the SPLEEM system at National 285 

Center for Electron Microscopy of Lawrence Berkeley National Laboratory. All samples 286 

were prepared under ultra-high vacuum (UHV) conditions, with base pressure better than 287 

4.0x10-11 Torr. Ru(0001) substrates were cleaned by repeated flash annealing at 1470 K in 288 
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3.0x10-8 Torr O2 atmosphere and final annealing at 1430 K under UHV. After such 289 

procedure, we did not observe any trace of contaminants by Auger electron spectroscopy 290 

(AES) and LEEM. Furthermore, high-quality low energy electron diffraction patterns were 291 

obtained, indicating a well-ordered surface. 292 

 Graphene was grown by chemical vapour deposition method55, where we kept the 293 

substrate at 920 K under ethylene atmosphere (10-8 Torr) for around 15 minutes, while 294 

observing the process by LEEM. Preparing graphene at low growth temperature is required 295 

for a good intercalation process, since defects within the graphene layer assist the cobalt 296 

migration. The presence of graphene was confirmed by the moiré pattern in low energy 297 

electron diffraction60  (see Supplementary Fig. S.3). After cooling graphene/Ru(0001)  to 298 

room temperature, an amount of one monolayer Co was deposited by electron beam 299 

evaporation at rates of 0.18 ML per minute, and intercalated by annealing at 620 K for 3 300 

minutes 61 . In order to achieve higher Co thicknesses, we repeated the intercalation of 301 

additional monolayer-doses of Co, exploring layer thicknesses up to 24 ML Co. The Co 302 

growth rate was calibrated by monitoring the LEEM image intensity during the deposition of 303 

Co directly onto bare Ru (0001). For the Co/Ru films, Co layers were deposited on Ru(0001) 304 

by electron beam evaporation at 460 K substrate temperature, promoting step flow growth 305 

mode. The atomic layer thickness of the Co deposit is known directly from monitoring the 306 

step flow growth in-situ in LEEM.  307 

 The growth of magnetic layers was monitored by low-energy electron diffraction 308 

(LEED). All of the samples show sharp diffraction patterns, indicating well-defined 309 

crystallinity and epitaxy (see Supplementary Fig. S.4). The 1st Co layer grows 310 

pseudomorphic on clean Ru, consistent with Ref. 62 . In the presence of graphene, the 311 

pseudomorphic structure of one monolayer Co between graphene and Ru(0001) has been 312 
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reported by scanning tunneling microscopy in Ref. 61 and Ref. 63, where the structure of the 313 

graphene moiré pattern remains identical before and after the intercalation of the first 314 

monolayer Co, proving that the Co monolayer under the graphene is pseudomorphic with the 315 

Ru(0001). For thicker Co coverages, superstructures near the first-order LEED spots (see 316 

example in Supplementary Fig. S.4e) have been attributed to relaxation of the lattice 317 

mismatch between Co and Ru, resulting in an epitaxial relationship that features Co layers 318 

with essentially bulk structure, where lattice mismatch strain is relieved at the Co/Ru 319 

interface in a moiré structure composed of alternating hcp and fcc stacked regions62. 320 

In the graphene/Co/Ru(0001) system increasing the Co film thickness weakens 321 

perpendicular magnetic anisotropy, analogous to the findings reported in Ref. 12. This allows 322 

us to tailor the effective magnetic anisotropy of our samples by approaching the spin 323 

reorientation transition point from out-of-plane to in-plane, where the effective anisotropy 324 

can become extremely small.  Proximity to the spin reorientation transition results in rather 325 

large width of the domain walls64, which is useful for the precise mapping of domain wall 326 

spin textures in the SPLEEM.  327 

 Possible signs of Co diffusion into Ru were monitored by X ray photoelectron 328 

spectroscopy (XPS) in Co/Ru (0001) films grown by the same procedure as described above. 329 

We conducted the XPS experiment at Centro do Desenvolvimento da Tecnologia Nuclear. 330 

The measurements were carried out in an ultrahigh vacuum chamber (base pressure better 331 

than 2.0 × 10-10 mbar) using an Al Kα x-ray source with the output power set at 300 W and a 332 

VG Microtech hemispherical electron energy analyzer CLAM 2/1 VU. Normal emission 333 

scans with 50 eV pass energy were acquired. Following the Co and Ru XPS signal before and 334 

after the annealing procedure, we did not observe any evidence of Co-Ru interdiffusion (see 335 

Supplementary Fig. S.5). 336 
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Real-space imaging. In the SPLEEM system, real-space images were acquired using three 337 

orthogonal electron beam spin-alignments such that magnetic contrast along three orthogonal 338 

directions corresponds to the out-of-plane magnetization direction and two orthogonal in-339 

plane axes65, as shown in Supplementary Fig. S.1a-c. SPLEEM images map magnetization of 340 

the sample in the sense that intensity in each pixel represents the dot product of the spin 341 

polarization vector P of the illumination beam and the magnetization vector M. The lateral 342 

spatial resolution of the SPLEEM at Berkeley lab is ~15 nm, while the measured DW width 343 

in the systems studied here is between 150 nm to 350 nm. The energy of the incident electron 344 

beam was set to 3.6 eV for graphene/Co/Ru and 5 eV for Co/Ru; these values were chosen to 345 

optimize the magnetic contrast. All images were obtained with samples at room temperature. 346 

The images are represented in grey scale, where a black and white contrast correspond to the 347 

magnetization vector pointing into the film plane (+Mz) and out of the plane (-Mz), 348 

respectively, as shown in Supplementary Fig. S.1a, 1b and 1c. To highlight DW spin 349 

structures, the triplets of SPLEEM images representing out-of-plane and orthogonal in-plane 350 

magnetization components are combined into single compound images, as shown in 351 

Supplementary Fig. S.1e. In this projection, colours represent the in-plane magnetization as 352 

indicated by the colour wheel (inset), black and grey values represent the perpendicular 353 

magnetization component, +Mz and -Mz, respectively. 354 

Analysis of chirality. The method to analyse DW chirality from the SPLEEM images is the 355 

same as described by G. Chen, et al.48 First, along all DWs the DW normal direction n is 356 

determined from the out-of-plane magnetization SPLEEM images, where n is defined as a 357 

vector pointing from spin-down (-Mz) to spin-up (+Mz) domains. Then, at all pixels along the 358 

DW centrelines, the in-plane magnetization direction, (m), is measured from the grey values 359 

of the two in-plane SPLEEM images. To improve the signal-noisy ratio, in this step each 360 
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pixel is averaged with its three nearest neighbour pixels. Finally, we compute the angle α, 361 

defined as the angle between m and n (inset of Fig. 3c), and we calculate its distribution 362 

along all DW centrelines, as represented by the histograms. 363 

Estimating the exchange stiffness. The strength of the Rashba-induced DMI at graphene/Co 364 

interfaces depends on the value of the exchange stiffness, which, in very thin films, can be 365 

lower than the Co bulk value of 15 pJ/m.34 The exchange stiffness in graphene/Co/Ru(0001) 366 

samples can be estimated from the Curie temperature, which is obtained by real-time 367 

SPLEEM measurement of the temperature dependent magnetization. The Curie temperature 368 

 depends on the exchange stiffness  as = + 1  where = 2  369 

66,  is the number of nearest neighbor atoms,  is the g-factor, k  is the Boltzmann 370 

constant,  is the total angular momentum quantum number,  is the spin quantum number, 371 

 is the number of atoms in a unit cell, and  is the lattice constant. For 372 

graphene/Co(3ML)/Ru(0001) we find that the Curie temperature is about 861K (see 373 

Supplementary Fig. S.6). In this sample structure = 12 , = 2.09 , k = 1.38	 ×374 	10 	m 	kg	s 	K , = 1/2, = 1/2, = 4, so the result 	 = 861K leads to 375 

the experimental estimate of  as 9.5	pJ/m for 3ML Co. Measuring thicker films we find that 376 

for graphene/Co(4 ML)/Ru the magnetic contrast remains strong up to above 943K, but in 377 

this temperature range the films are not stable. Thus a lower limit of  in graphene/Co(4 378 

ML)/Ru can be estimated as 10.4	pJ/m and an upper limit of the exchange stiffness in films 379 

of any thickness is the value of bulk Co, 15 pJ/m.  380 

Estimating the DMI strength. The orientation of magnetization within the domain wall with 381 

respect to the domain boundary direction in Fig. 3 allows one to estimate the strength of the 382 

interfacial DMI, using methods described in more detail in refs. 36 and 48. Briefly, the free 383 
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energies of Néel and Bloch walls can be written as é = é + é + é + é  384 

and = + + +  respectively, where 	 , ,  and  385 

correspond to exchange energy, magnetic anisotropy energy, dipolar energy and DMI energy 386 

of the walls, respectively. Néel wall is favoured when	 é < ; and since both the 387 

exchange and magnetic anisotropy energy are degenerate for Néel- and Bloch-type walls and 388 

the interfacial DMI energy vanishes for Bloch-type walls49, this inequality can be expressed 389 

as	 é + é < . Likewise, Bloch wall is favoured when	 é + é > . 390 

Thus, from observations of thickness-dependent transitions from Néel to Bloch wall, the 391 

range of é  can be bracketed by computing the dipolar energy contributions. Samples with 392 

thickness below the wall-type transition feature Bloch walls and − é 	< é , 393 

whereas in samples with thickness above the transition walls have Néel structure and  394 

é < − é 	. Using the method for calculating the dipolar energy difference as 395 

described in refs. 36 and 48, the dipolar energy constant D  is ∥ 	48, where μ =396 

4π × 10 H ∙ m , μ = 9.27 × 10 	A ∙ m , 	μ = 1.7μ , 	a∥ = 2.51Å. Using the Matlab 397 

software, we numerically calculate the dipolar energy difference − é  of 398 

graphene/Co/Ru(0001) with various thicknesses. In graphene/Co/Ru(0001) films, 399 

observations of Néel walls for Co=3.9ML, titled walls for Co=4.8ML, and Bloch-like walls 400 

for Co=5.7ML lead to values of − é = −0.38	meV	per	atom , 401 −0.58	meV	per	atom and −0.81	meV	per	atom, respectively. Note that the dipolar energy 402 

cost of Néel walls é  is greater than that of Bloch walls  [36,48], therefore all 403 

numbers calculated above are negative. In the calculation, the width of domain walls is 404 

chosen as 150nm, which is consistent with estimates of both Néel and Bloch walls observed 405 

in the SPLEEM images. For a hexagonal lattice, 	 é = −√3 , 48 where  is the 406 
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magnitude of the DMI vector. Therefore  in graphene/Co/Ru(0001) system can be estimated 407 

as = 0.11 ± 0.04  meV per atom. Similarly,  in Co/Ru system can be estimated as 408 = −0.05 ± 0.01 meV per atom based on 3ML Co/Ru result (Fig. 3e) where roughly 45° 409 

titled magnetization with respect to the domain boundary (see two peaks at 135° and 225° in 410 

Fig. 3e) indicates that the dipolar energy difference between Néel- and Bloch- DWs −411 

é  is comparable to the DMI energy	 é . Here the error bar is given by the uncertainty 412 

of the magnetization profile within in-plane region36. Therefore,  at graphene/Co interface 413 

with Co thickness ranged from 4-6 ML can be estimated as 0.16 ± 0.05 meV per atom, 414 

based on the estimated  values in graphene/Co/Ru(0001) and in Co/Ru(0001).  415 

Data availability. The data that support the findings of this study are available from the 416 

corresponding authors upon reasonable request. 417 
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