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Significant Impacts of Increasing Aridity
on the Arid Soil Microbiome
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Will van Treuren,d Karen L. Josephson,a Rob Knight,e Jack A. Gilbert,f Jay Quade,g

J. Gregory Caporaso,b Raina M. Maiera

Department of Soil Water and Environmental Science, University of Arizona, Tucson, Arizona, USAa; Pathogen

and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USAb; Graduate Program in

Biophysical Sciences, University of Chicago, Chicago, Illinois, USAc; Department of Microbiology and

Immunology, Stanford University, Stanford, California, USAd; Departments of Pediatrics and Computer Science

and Engineering and Center for Microbiome Innovation, University of California San Diego, San Diego,

California, USAe; Department of Surgery, University of Chicago, Chicago, Illinois, USAf; Department of

Geosciences, University of Arizona, Tucson, Arizona, USAg

ABSTRACT Global deserts occupy one-third of the Earth’s surface and contribute

significantly to organic carbon storage, a process at risk in dryland ecosystems that

are highly vulnerable to climate-driven ecosystem degradation. The forces control-

ling desert ecosystem degradation rates are poorly understood, particularly with re-

spect to the relevance of the arid-soil microbiome. Here we document correlations

between increasing aridity and soil bacterial and archaeal microbiome composition

along arid to hyperarid transects traversing the Atacama Desert, Chile. A meta-

analysis reveals that Atacama soil microbiomes exhibit a gradient in composition,

are distinct from a broad cross-section of nondesert soils, and yet are similar to

three deserts from different continents. Community richness and diversity were sig-

nificantly positively correlated with soil relative humidity (SoilRH). Phylogenetic com-

position was strongly correlated with SoilRH, temperature, and electrical conductiv-

ity. The strongest and most significant correlations between SoilRH and phylum

relative abundance were observed for Acidobacteria, Proteobacteria, Planctomycetes,

Verrucomicrobia, and Euryarchaeota (Spearman’s rank correlation [rs] � �0.81; false-

discovery rate [q] � �0.005), characterized by 10- to 300-fold decreases in the rela-

tive abundance of each taxon. In addition, network analysis revealed a deterioration

in the density of significant associations between taxa along the arid to hyperarid

gradient, a pattern that may compromise the resilience of hyperarid communities

because they lack properties associated with communities that are more integrated.

In summary, results suggest that arid-soil microbiome stability is sensitive to aridity

as demonstrated by decreased community connectivity associated with the transi-

tion from the arid class to the hyperarid class and the significant correlations ob-

served between soilRH and both diversity and the relative abundances of key micro-

bial phyla typically dominant in global soils.

IMPORTANCE We identify key environmental and geochemical factors that shape

the arid soil microbiome along aridity and vegetation gradients spanning over

300 km of the Atacama Desert, Chile. Decreasing average soil relative humidity and

increasing temperature explain significant reductions in the diversity and connectiv-

ity of these desert soil microbial communities and lead to significant reductions in

the abundance of key taxa typically associated with fertile soils. This finding is im-

portant because it suggests that predicted climate change-driven increases in aridity

may compromise the capacity of the arid-soil microbiome to sustain necessary nutri-

ent cycling and carbon sequestration functions as well as vegetative cover in desert

ecosystems, which comprise one-third of the terrestrial biomes on Earth.
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Climate change-driven increases in temperature and aridity threaten the productiv-

ity of arid ecosystems (1–10). Desert regions store 27% of soil organic carbon (SOC)

reserves (3, 11, 12), and their continued degradation and loss of productivity (13) in

response to megadroughts, global warming, and anthropogenic activities have con-

tributed to a current assessment that 24% of land, globally, is degrading (14). Loss of

arid ecosystem productivity and function due to severe land degradation, referred to as

desertification (2, 8–10), is projected to negatively impact the livelihoods of 250 million

people in the developing world (2) and to drive directional shifts toward expansion of

arid land areas (8, 15). Desertification is generally defined as a significant and long-term

reduction in biological productivity (13); however, there is little consensus concerning

the environmental forces that drive this phenomenon (9, 10). Research efforts aimed at

mitigating desertification have focused primarily on shifts in above-ground ecosystem

structure, aridity indices (7, 8, 16), and soil degradation and nutrient status (6, 9, 17).

However, one area that has received little attention is the impact of desertification on

the arid-soil microbiome and on how aridity impacts on the microbiome subsequently

influence desertification processes (1). The arid-soil microbiome is largely uncharacter-

ized (1, 18), and yet microbial ecosystem services (i.e., biogeochemical cycling) are likely

particularly critical in arid regions (1) because of limited macrofaunal and plant biodi-

versity. Warming trends over arid regions are predicted to be twice as great as over

humid regions (8), making these regions highly susceptible to ecosystem degradation

in the face of climate change-associated increases in aridity (3, 7).

Biogeographic analysis of global soil microbial communities has revealed that desert

microbiomes are phylogenetically and functionally distinct from those of other biomes

(19) and contain a lower diversity of functions associated with nutrient cycling. In

addition, abiotic deterministic processes have been shown to shape desert soil micro-

bial assemblages (1, 20). To properly evaluate the impact of climate change on arid land

productivity, we must determine the resistance of these low-diversity microbiomes and

improve our understanding of the potential impacts of increasing aridity. In lieu of

prospective longitudinal monitoring, soil microbiome analyses across gradients of

aridity represent a first step toward addressing this issue. However, the limited studies

that have been performed to date have shown inconsistent results. One analysis of a

steep precipitation gradient from desert to forest soils (100 to 900 mm of rainfall

year�1) showed that a more pronounced vegetation effect on microbial community

composition was observed with increasing aridity (21) but that bacterial and archaeal

diversity have not been constrained overall by precipitation (22). In contrast, a second

survey of global dryland soils covering a similar precipitation range (aridity index � 0.05

to 0.55) found that increasing aridity and the associated indirect effects (i.e., decreased

SOC levels) caused reductions in the abundance and diversity of bacteria and fungi (23).

In this study, we exploited steep aridity gradients present in the Atacama Desert of

northern Chile to identify specific deterministic factors explaining variation in soil

microbial communities in the arid and hyperarid subclasses of dryland ecosystems (0 to

120 mm of mean annual precipitation [MAP]). The specific objective was to evaluate

environmental and geochemical influences on desert soil microbial community struc-

ture and interactions. The environmental parameters evaluated were selected based on

previous studies of desert and global soil microbial communities (1, 18, 19, 22–25).

Microbial and geochemical profiles from soils along two transects (Fig. 1; see also

Table S1 in the supplemental material) were integrated with 3 years of climate data

from on-site data loggers. We hypothesize that in arid ecosystems, regions of higher

aridity correlate with decreased microbial taxonomic richness and significant changes

in phylogenetic composition. Further, we hypothesize that soils with higher average

soil relative humidity support denser, more tightly connected communities and that
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the transition from arid to hyperarid moisture regimes is characterized by a significant

decrease in networks of co-occurring taxa within the soil microbiome.

RESULTS AND DISCUSSION

Soil samples were collected in March 2012 from two parallel west-east elevational

transects traversing the Atacama Desert (250 to 300 km) from the Pacific Ocean near

Antofagasta to the western slopes of the Andes near the Argentinian border (Fig. 1; see

also Table S1 in the supplemental material). The transects begin on the hyperarid

central plateau that extends in an area that is 1,000 to 2,000 m above sea level (masl),

has been devoid of vegetation for millions of years, and receives virtually no precipi-

tation (�5 mm of MAP) (26–28). The transects then extend east to arid regions located

above 3,000 masl on the western slopes of the Andes that support consistent perennial

vegetation with 36 to 115 mm of MAP (29, 30). Twelve sites were located along a

southern transect, referred to as Yungay (YUN; Antofagasta to Paso de Socompa), and

10 sites were included in the northern transect, referred to as Baquedano (BAQ;

Baquedano to Paso Jama). At each site, percent plant cover, geochemical measure-

ments, and soil relative humidity and temperature were recorded as explained in

Materials and Methods. Triplicate soil pits were sampled for characterization of micro-

bial community composition (16S rRNA amplicon sequencing) and soil organic carbon

(SOC; Table S2). SOC levels ranged from 0.17 to 16.45 mg C g dry soil�1, with the

highest values associated with soils of the most vegetated sites (Table S1).

Nitrate and sulfate levels exceed 20 and 500 �mol·g�1 dry soil, respectively, at

shallow levels of many soils in the Atacama (see Fig. S1 in the supplemental material)

and are probably the best indicators of long-term hyperaridity at these sites. Observed

salt abundances take thousands of years to accumulate (31) and generally require mean

annual rainfall levels of �1.0 cm·year�1 (32), fitting the definition of “hyperarid” on the

United Nations Environment Programme (UNEP) aridity index (31). Elevation and rainfall

in the Atacama Desert are closely linked, and abundant soil salt and, hence, hyperarid

conditions are confined to �3,150 masl along the YUN transect and to �2,500 masl

along the moister BAQ transect. In this study, sample sites were classified into three

aridity classes: hyperarid, margin, and arid. The sites classified as hyperarid (on the basis

of nitrate and sulfate profiles) were YUN1005, YUN1242, YUN1609, YUN2029, YUN3153,

BAQ895, BAQ1370, and BAQ1552. High sulfate levels at sites YUN3008 and YUN3184 are

controlled by hydrologic conditions associated with the Salar de Imilac region rather

than long-term aridity; thus, these sites were not classified as hyperarid. In this study,
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FIG 1 Map of site locations for Baquedano (red) and Yungay (yellow) transects.
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sites with vegetation present at the time of sampling in 2012 were classified as arid

(Table S1) and all sites with neither salt accumulation nor vegetation present were

classified as margin. Unsurprisingly, levels of vegetation are closely tied to the presence

of higher rainfall and salt-depleted soils. During the years of this study, live vegetation

was present above ~2,600 masl only at the BAQ transect sites and above ~3,250 masl

only for the YUN transect (Table S1).

Environmental controls of community diversity and phylogenetic composition.

Profiles of bacterial and archaeal communities at each site were generated using the v4

hypervariable region of the 16S rRNA bacterial and archaeal genes following a modi-

fication of the Earth Microbiome Project protocols (33–35) as described in Materials and

Methods. A total of 40 sample pits from 16 sites (of the original 22) generated

high-quality data for downstream analysis (Table S2). Sequence information and miss-

ing data points from the original 22 sites are explained in Materials and Methods.

Microbial community richness (Faith’s phylogenetic diversity [PD]; rs � 0.75; P �

0.0001) and diversity (Shannon index; Spearman’s rank correlation [rs] � 0.64; P �

0.0001) decreased significantly with decreasing average soil relative humidity

(AvgSoilRH; Fig. 2; Table S1). A 7-fold reduction in community PD (richness) and 51%

decrease in Shannon diversity (Table S2) were observed from the arid site with the

greatest diversity (BAQ4166; PD � 169 � 6.9) to the hyperarid site with lowest diversity

(YUN1005; PD � 23.6). In addition, richness was significantly greater in vegetated sites

than in unvegetated sites (t test, P � 0.0001). Maestre et al. (23) also found that

increases in aridity were linearly associated with reductions in bacterial diversity

(Shannon index) for dryland soils; however, the correlation was weak (r2 � 0.157),

suggesting that impacts of increasing aridity on the soil microbiome are amplified in

ecosystems that are more arid.

A beta diversity meta-analysis using unweighted UniFrac-based principal-coordinate

analysis (PCoA; Fig. 3A) was used to compare the composition of the Atacama Desert

microbial communities to those of a cross-biome survey of global soil samples from

Fierer et al. (19). The plots reveal that soil communities from the Atacama represent a

gradient in microbial beta diversity that is clearly distinct from the results seen with

globally distributed nondesert soils that included tropical forests in Peru and Argentina

and boreal and temperate forests, grasslands, and tundra in North America. In contrast,

FIG 2 Correlation between average soil relative humidity and microbial richness (PD) (top panel) and
diversity (Shannon index) (bottom panel); rs � Spearman’s rank correlation, P � 0.0001.
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the Atacama soil communities are similar in composition to those of three diverse

global deserts and fit into the classification of Fierer et al. systematically separating

desert from nondesert soils (19). The Atacama communities with higher relative hu-

midity overlap along PC1 with those from the Chihuahuan and Mohave deserts of the

United States, and the communities from the drier Atacama sites overlap along PC2

with those from the McMurdo Dry Valleys of Antarctica. A nonmetric multidimensional

scaling (NMDS) analysis of the same data showed a similar relationship between desert

and nondesert soil communities (Fig. S2). Previous limited surveys of the Atacama

Desert identified significant differences in the soil bacterial communities of hyperarid

and arid regions (24); however, the continuous gradient in phylogenetic composition

observed in this study has not been previously documented. A comparison of UniFrac

distance matrices with environmental variables identified AvgSoilRH as a strong driver

of both qualitative and quantitative phylogenetic community composition (Fig. 3B)

(unweighted UniFrac Mantel’s r � 0.625; false-discovery rate [FDR {q}] � 0.0001;

weighted UniFrac Mantel’s r � 0.574; q � 0.0001; Table S3). Weighted and unweighted

profiles were highly correlated for both the Atacama and Fierer samples (see Materials

and Methods); thus, unweighted correlations are primarily discussed. Significant but

weaker correlations were also observed for high soil temperature (HighSoilTemp;

Fig. 3C) (Mantel’s r � 0.337; q � 0.0001; Table S3) and soil electrical conductivity (EC;

Fig. 3D) (Mantel’s r � 0.496; q � 0.0001; Table S3). Interestingly, the correlation with pH

as an explanatory variable was weak (Fig. 3E) (UniFrac Mantel’s r � 0.176 and q � 0.010

[unweighted] and r � 0.108 and q � 0.063 [weighted]; Table S3). pH has been shown

to explain variations in phylogenetic microbial community composition for diverse

terrestrial soils (36); however, for these neutral to alkaline desert soils (Table S1), pH was

not a significant factor. This potentially indicates resistance to alkaline pH in popula-

tions of the arid soil microbiome. Finally, the presence of vegetation had a significant

association with microbial community composition (analysis of similarity [ANOSIM] R �

0.617; P � 0.001), although the results corresponding to the percentages of plant cover

were not significant (Mantel’s r � 0.184; q � 0.018).

A BEST analysis (37) was performed to identify the variable (or combination of

explanatory variables) from among the parameters evaluated in our study that best

A. B.

C. D. E.

FIG 3 Unweighted UniFrac PCoA plots. (A) Combined data from the present Atacama Desert study and
from Fierer et al. (19). (B to E) Atacama-only data. (A) Samples colored by their geographic origins. (B to
F) Samples colored by soil properties, where light colors indicate the low end of the specified range and
dark colors indicate the high end of the specified range. These data illustrate statistical results presented
in Table S3, specifically, that average soil relative humidity is a better predictor of sample composition
in the Atacama Desert than high soil temperature, electrical conductivity, or pH.
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explained the variance in phylogenetic composition of the Atacama microbial commu-

nities (Table 1). The combination of AvgSoilRH, HighSoilRH, HighSoilTemp, elevation,

and EC best explained the variability (Spearman’s rs � 0.776) in community composi-

tion. For this study, elevation was synonymous with site location; thus, communities

sampled from the same site were more similar to each other than to those from other

sites. As explained previously, EC or soil salinity is strongly influenced by precipitation

and all sites with high EC values were associated with the hyperarid class or Salars

(Table S1). Due to the significance of EC, a secondary analysis was done to evaluate the

significance of nitrate and sulfate in the hyperarid sites (Fig. S1). Using values from the

depth of 10 to 20 cm from which microbial samples were collected, both unweighted

and weighted UniFrac distances correlated moderately with nitrate (Mantel’s r � 0.459

and q � 0.003 [unweighted] and Mantel’s r � 0.503 and q � 0.0045 [weighted]) and

weakly with sulfate (Mantel’s r � 0.307 and q � 0.014 [unweighted] and Mantel’s r �

0.311 and q � 0.01 [weighted]); however, these correlations were more than an order

of magnitude less significant than those seen with EC (Table S3). Nitrates and sulfates

were consistently present at depth at all hyperarid sites, but their concentrations at the

depth of 10 to 20 cm differed significantly between hyperarid sites (Fig. S1). At shallow

depths, levels of nitrates were high only for YUN1242 and YUN1005 and levels of

sulfates were high only for YUN1005 and YUN3153. Nitrate and sulfate accumulation at

YUN2029 and YUN1609 was found only at or below 30 cm and 20 cm, respectively. In

contrast, AvgSoilRH was low across all hyperarid sites (Table S1) and thus represented

an environmental variable that explained the unique composition of the hyperarid

microbial communities that was more consistent and significant than the presence of

nitrates or gypsum. We are currently conducting studies to evaluate potential influ-

ences of nitrate and sulfate concentration on the phylogenetic composition and activity

of microbial communities at each of the hyperarid sites.

The significant correlation of AvgSoilRH and HighSoilTemp with phylogenetic com-

position within the Atacama Desert soil microbiome is highly relevant because both

factors will continue to be influenced by climate change in arid regions (3, 5, 7). In

summary, the transects presented here provide a gradient of increasing aridity and the

results strongly suggest that climate change-driven increases in aridity may significantly

impact the phylogenetic composition, community richness, and diversity of desert soils.

Increased aridity correlates with network topology shifts. Co-occurrence pat-

terns can be used to identify important interactions among members of a microbiome

(38, 39). We employed network-based analysis to evaluate the impact of soilRH on the

network structure of correlations in the relative abundances (RAs) of taxa. The data from

the general Atacama desert network (Fig. 4A) reveal that operational taxonomic units

(OTUs) (network nodes) primarily associated with higher relative humidity sites (yellow)

TABLE 1 BEST analysis identifying combinations of sample variables best explaining variance in soil microbiome phylogenetic
compositiona

Environmental variable(s) (no. of variables)

Spearman’s

coefficient (rs)

E, EC, AvgSoilRH, HighSoilRH, HighSoilT (5) 0.776
E, EC, AvgSoilRH, HighSoilRH, PercSoilRH100, HighSoilT (6) 0.775
E, EC, HighSoilRH, HighSoilT (4) 0.772
E, EC, AvgSoilRH, HighSoilRH, PercSoilRH100, HighSoilTemp, LowSoilT (7) 0.770
EC, HighSoilRH, AvgSoilT (3) 0.764
E, EC, AvgSoilRH, HighSoilRH, PercSoilRH100, AvgSoilT, HighSoilT, LowSoilT (8) 0.760
E, pH, EC, AvgSoilRH, HighSoilRH, PercSoilRH100, AvgSoilTemp, HighSoilTemp, LowSoilTemp (9) 0.744
E, EC (2) 0.728
E, pH, EC, AvgSoilRH, HighSoilRH, LowSoilRH, PercSoilRH100, AvgSoilT, HighSoilT, LowSoilT (10) 0.726
E, pH, SOC, EC, AvgSoilRH, HighSoilRH, LowSoilRH, PercSoilRH100, AvgSoilT, HighSoilT, LowSoilT (11) 0.712
E, pH, SOC, EC, AvgSoilRH, HighSoilRH, LowSoilRH, PercSoilRH100, AvgSoilT, HighSoilT, LowSoilT, % vegetation cover (12) 0.687
HighSoilRH (1) 0.663

aE, elevation; EC, electrical conductivity; AvgSoilRH, average soil relative humidity; HighSoilRH, high soil relative humidity; HighSoilT, high soil temperature;

PercSoilRH100, percentage of RH values at each site that represented 100% RH; LowSoilT, low soil temperature; AvgSoilT, average soil temperature; LowSoilRH, low

soil relative humidity; SOC, soil organic carbon. All high and low values are averaged over 7 days.
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are involved in networks that are more densely connected than those associated with

lower relative humidity sites (brown). Greater than 99% of the co-occurrences in the

Atacama desert network were positive (correlation thresholds, �0.81), indicating that

correlated microorganisms had similar responses to environmental conditions. The

degree of each OTU (size of node) represents the number of taxa in the community that

co-occur with that OTU, and it is evident that OTUs primarily associated with sites with

higher relative humidity (yellow) have a higher degree (larger circle) on average than

OTUs in sites with lower relative humidity (brown). Spearman’s rank correlation analysis

revealed significant (P � 0.001) and strong positive correlations between AvgSoilRH

and node degree (rs � 0.76), node betweenness (rs � 0.66), edgecount (rs � 0.78), and

size (rs � 0.72) (betweenness values represent the centrality of a node [OTU] with

respect to other members of the community [i.e., quantify the number of times that

node functions as a bridge on the shortest path connecting two associated nodes],

edgecount values represent the number of co-occurrences, and size values quantify the

number of OTUs; thus, communities in regions of higher soilRH contained more OTUs

with correlated relative abundance patterns than communities in progressively drier

areas). It must be noted that network analysis of soil microbial communities is limited

by the fact that soils represent heterogeneous substrates for microbial colonization;

thus, we cannot confirm that co-occurring phylotypes are actually in physical contact

with one another in the environment. However, on the basis of the observed gradients

in network metrics, soils with higher AvgSoilRH appear to support denser, more tightly

connected communities.

To test this observation, subnetworks were generated for each of the three aridity

classes: arid (Fig. 4B), margin (Fig. 4C), and hyperarid (Fig. 4D). The subnetwork

A.
B.

C.

D.

AvgSoil

Relative 

Humidity

FIG 4 Network topology plots of Atacama microbial communities. (A) Full Atacama desert network. (B) Arid subnetwork. (C)
Margin subnetwork. (D) Hyperarid subnetwork. Node colors represent average levels of soil relative humidity of the site or sites
where the OTU is located, and the relative node sizes indicate the degrees of the node OTU. Subnetworks were created
individually.
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topologies reveal a striking breakdown in community cohesion in the transition from

the arid class to the hyperarid class. The arid subnetwork retained an integrated

topology similar to that of the full network; however, OTUs from the margin sites were

located in loosely connected clusters and the hyperarid topology revealed a significant

loss of graph cohesion that we term the “island effect.” Since vertex betweenness and

edge count are metrics sensitive to the network size (number of OTUs), they are not

suitable for comparisons of the different sized subnetworks. Therefore, global network

metrics that are normalized by their size such as average path length and betweenness

centralization were used to quantify this apparent loss of network cohesion in the

subnetworks. Average path length data represent graph-level quantification of the

shortest path lengths between all nodes in a network. Thus, dense, tightly assembled

graphs have lower average path length scores than less-cohesive graphs due to the

close proximity of nodes within the network. Betweenness centralization is a graph-

level measure derived from the betweenness centrality scores of the individual nodes

within the network. The island topology is characterized by a bridge and hub effect

where the bridges are paths connecting islands and the hubs are connector nodes that

connect the bridges between island clusters. The role of hubs as points of connection

gives them high centrality or betweenness scores that are frequently manyfold higher

than those of other nonhub network nodes. As with the average path length, between-

ness centralization scores are higher for the island topoplogy than for more-cohesive

graphs. Evaluation of sites from each aridity class (Table 2) reveals that the median

average path length is shortest for arid communities and longest for the hyperarid

communities. The same pattern was observed for betweenness centralization, where

the median value was highest for the hyperarid communities. Thus, arid soils support

denser, more tightly connected communities than hyperarid soils. This could be

interpreted as suggesting that microbes have greater codependency, with respect to

either dependency on each other or dependency on shared resources, in arid soils than

in hyperarid soils. Whether this codependency is representative of metabolic interac-

tions between taxa remains unknown.

Community connectivity may be impacted by network size (i.e., community rich-

ness), and our arid, margin, and hyperarid soils differed in their size data. We therefore

wanted to test whether the decrease that we observed in community connectivity is

driven by a decrease in diversity rather than in the aridity of the environment. To this

end, we performed a simulation where we artificially modified the arid and margin

community richness to equal the median richness of the hyperarid communities. By

removing the diversity richness effect, we can test if the decrease that we observed in

community connectivity would remain in the simplified networks as a function of the

aridity change in the environment. Also, since some connectivity metrics (betweenness

and edge count) are impacted by network size, the simulated standardization of

network size allowed a fair comparison of all connectivity metrics. The modified arid

and margin communities were created through random sampling of the original

TABLE 2 Network statistics associated with distinct Atacama Desert aridity classes and
modified arid and margin communities randomly sampled to a community richness level
equal to the hyperarid communitya

Network ID Size Degree Betweenness

Edge

count

Avg path

length

Betweenness

centralization

Original Atacama communities
Arid 559 23.98 634.38 7408 3.51 0.04
Margin 357 15.63 476.23 2852 3.69 0.06
Hyperarid 122 11.34 124.92 562 4.36 0.11

Community richness modified
to the hyperarid level

Arid 131 10.4 83.85 698 2.90 0.07
Margin 119 10.8 72.9 680 2.90 0.08

aMedian values are reported for each aridity class. Modified values represent averages of 500 simulations.
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communities. Networks were then created from each modified community (500 repe-

titions), the network statistics were averaged at the sample level, and the median value

per climate type was computed (Table 2). The modified arid and margin communities

then had size and degree values comparable to those corresponding to the original

hyperarid network (Table 2), but the average path length, betweenness centralization,

and betweenness values of the modified arid and margin communities were lower than

those of the original, unmodified hyperarid community (Table 2). In addition, the

median edge count was higher for both arid and margin aridity classes, indicating that

even after adjustment of community size, these communities retained more correlated

co-occurrences between OTUs than the hyperarid communities. This illustrates that

while the degree data remained unchanged within networks of similar sizes, between-

ness, edgecount, average path length, and betweenness centrality data did not. The

arid and margin communities therefore retain higher connectivity than the hyperarid

community, even when their richness is artificially modified to the level of the hyperarid

community.

In conclusion, the data suggest that the decrease in community connectivity is not

simply an artifact of reduced community richness. Rather, increasing aridity correlates

with a decrease in connectivity in the microbial communities of desert soils. The impact

of the topology transition (from cohesive network to island confirmation) on commu-

nity functional potential is unknown. However, greater connectivity within microbial

assemblages may be particularly important for nutrient-poor communities, in which

interconnected groups of taxa have been shown to exchange metabolites to enhance

survival (40).

Analysis of the topology of the hyperarid subnetwork (Fig. 4D) provides an intrigu-

ing tool for probing specific assemblages of novel microbial communities. The hyper-

arid soils are characterized by community profiles dominated by Actinobacteria (67% to

86% relative abundance [RA]), Chloroflexi (4.2% to 9.7% RA), Proteobacteria (2.2% to

15.9% RA), and Gemmatimonadetes (0.5% to 7.9% RA). This distribution is similar to that

observed previously in hyperarid regions of the Atacama (24, 25, 41, 42) as well as in

global deserts, including the McMurdo Dry Valleys of Antarctica and the Tataouine

Desert (18). An intriguing pattern emerged from the analysis of Atacama hyperarid

sites. Communities were heavily dominated by just one or two taxa (22% to 45% RA)

with distributions that varied significantly by geographic location. Combining these

data with the OTU profiles of individual network clusters, we see, for example, a

Chloroflexi strain of class TK10 and order AKYG885 with high (1.2% to 3.5%) abundance

in four of the five hyperarid locations but with lower (�1%) relative abundance in all

but one nonhyperarid site. Within the hyperarid network, this taxon was associated

with just four of the seven hyperarid clusters. Hyperarid regions of the Atacama harbor

an abundance of rare taxa with unknown functional potential (18). The combined use

of the network co-occurrence patterns and location-specific environmental profiles

associated with a specific rare taxon such as this Chloroflexi strain can be used to guide

future enrichment efforts focused on identifying the functional potential of abundant

and novel desert microbes.

Correlations between abundances of key soil taxa and increasing aridity.

Phylogenetic profiles of all samples were analyzed to identify the bacterial and archaeal

taxa most impacted by AvgSoilRH (Fig. 5; Table S4). Surprisingly, Archaea relative

abundance correlated strongly with AvgSoilRH (rs � 0.757) and the domain was

undetectable at the most arid site (Fig. 5). Strong correlations were observed for both

Euryarcheota (rs � 0.818, q � 0.0007) and Crenarchaeota (rs � 0.757, q � 0.005). All

Euryarcheota belonged to the Thermoplasmata class of order E2, and all Crenarchaeota

belonged to the genus “Candidatus Nitrososphaera.”

Thirteen bacterial phyla and candidate phyla were also significantly correlated with

decreasing AvgSoilRH levels (q � �0.05; Table S4). The strongest correlations were ob-

served for Acidobacteria (rs � 0.925), Proteobacteria (rs � 0.857), Plantomycetes (rs � 0.857),

Verrucomicrobia (rs � 0.842), Nitrospirae (rs � 0.764), and Elusimicrobia (rs � 0.702). De-

creases in RA were linear for Acidobacteria (r2 � 0.80), Proteobacteria (r2 � 0.75), and
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Planctomycetes (r2 � 0.76), with the arid communities characterized by 5- to 133-fold

greater RAs of these taxa than the hyperarid locations (Fig. 5). In contrast, Actinobacteria

(rs � �0.95) abundance had a strong negative correlation with AvgSoilRH (Fig. 5;

Table S4). Phyla not correlated with AvgSoilRH included Firmicutes, Bacteroidetes,

Cyanobacteria, GAL15, and Chloroflexi. As a point of reference, multiple cross-biome

surveys have identified Acidobacteria, Proteobacteria, Actinobacteria, Verrucomicrobia,

and Bacteroidetes to be the dominant phyla in soil communities (19, 36, 43). Thus,

increasing aridity in the Atacama region correlates with significant decreases in the RA

of three of the five dominant phyla of soil microbiomes.

Nitrogen is a limiting nutrient in desert ecosystems, and microbially mediated

nitrogen cycling has been shown to be negatively impacted by decreases in microbial

community diversity in soils (44). The impact of decreasing AvgSoilRH on 12 genera

with taxa known to be associated with either N2 fixation or nitrification (Table S5) was

investigated to determine the potential impact of increasing aridity on microbially

mediated ecosystem services. Decreasing AvgSoilRH levels had a significant impact on

the RA of two putative N2 fixers, Bradyrhizobium (0% to 1.2% RA; rs � 0.787, q � 0.002)

and Mesorhizobium (0% to 0.15% RA; rs � 0.707, q � 0.007); one ammonia oxidizer,

Nitrososphaera (0% to 2.6% RA; rs � 0.757, q � 0.006); and one nitrite oxidizer, Nitrospira

(0% to 0.1% RA; rs � 0.805, q � 0.002). Nitrobacter, Nitrosomonas, and Nitrosospira,

common contributors to nitrification, were not detected at any site. Putative broadly

distributed N2 fixers Frankia, Sinorhizobium, Rhizobium, and Azospirillum (45, 46) were

detected in just 2 to 5 of the 16 sites at �0.1% RA. These results suggest that the RAs

of known N-cycling taxa are significantly diminished by increasing aridity in desert soils.

Future research must address whether the RA of known N-cycling taxa correlates with

the soil N-cycling capacity of these soils or whether desert soils harbor a novel diversity

of N-cycling taxa, such as the Pontibacter spp. belonging to Bacteroidetes that were

isolated from the Taklamakan Desert (China) and harbored both the nifH gene and

nitrogenase activity (47).

Conclusions. The Atacama Desert soil microbiome is distinct from microbiomes of

nondesert soils but similar to microbiomes of other global deserts. A broad gradient in

microbial diversity and phylogenetic composition was observed that correlated

strongly with soil RH and temperature rather than with pH, a factor previously identified

as a significant explanatory variable for diversity in global soils (36). Specifically,

increasing aridity correlated with significant decreases in diversity and the RA of key

phyla that are typically dominant in fertile soils, as well as in functional guilds associ-

17.18 20.7 20.9 28.79 44.74 59.69 69.08 73.21 82.1 82.5 87.3 93.6 99.4 99.99 100

Phylum

Acidobacteria 0.04 0.02 0.06 0.54 3.64 1.17 3.21 6.35 7.97 4.34 3.76 5.84 8.18 9.60 8.82

Proteobacteria 3.13 5.14 2.26 15.93 13.41 7.94 12.83 12.33 25.34 20.43 27.94 20.57 26.14 23.06 27.83

Planctomycetes 0.20 0.30 0.09 0.71 1.48 0.87 0.94 2.01 3.19 1.53 1.50 2.58 2.52 3.16 2.52

Verrucomicrobia 0.02 0.00 0.00 0.35 0.51 0.07 0.13 4.43 1.56 0.22 1.99 0.74 4.57 2.63 6.68

Euryarchaeota 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.09 0.05 0.03 0.01 0.05 0.16 0.09 0.07

Crenarchaeota 0.00 0.16 0.30 0.46 1.59 0.46 1.09 1.45 2.64 1.04 0.71 2.08 2.17 1.48 1.86

Nitrospirae 0.05 0.10 0.00 0.12 0.53 0.14 0.17 0.80 0.52 0.16 0.21 0.46 0.70 0.59 0.78

Elusimicrobia 0.00 0.00 0.01 0.00 0.10 0.00 0.00 0.04 0.06 0.08 0.01 0.04 0.07 0.14 0.10

Fibrobacteres 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.01 0.00 0.00 0.09 0.01 0.04

FBP 0.00 0.00 0.00 0.02 0.23 0.00 0.00 0.03 0.02 0.04 0.04 0.10 0.07 0.02 0.06

Gemma�monadetes 0.97 3.64 7.89 0.53 3.77 1.78 4.08 5.60 5.51 5.72 5.43 6.13 5.45 7.92 7.63

Arma�monadetes 0.03 0.00 0.00 0.01 1.65 0.15 0.60 0.60 0.43 1.52 0.94 1.29 0.75 0.78 0.36

Ac�nobacteria 86.20 79.41 80.82 67.24 54.05 75.94 54.22 53.56 39.81 44.14 47.16 42.26 37.65 37.67 31.86

Aridity Class H H H H M H M A A M A A A A A

Average Soil Rela�ve Humidity

Phylum Rela�ve Abundance (%)

FIG 5 Relative abundance (RA) of individual phyla that are strongly correlated (|rs| � �0.6; q � �0.02) with
average soil relative humidity (AvgSoilRH). Phyla are listed by decreasing strength of positive correlation (rs � 0.93
to �0.95; Table S4) with RA listed according to the AvgSoilRH of the transect site. Actinobacteria data are negatively
correlated (rs � �0.95; q � 2.3 � 10�15) with AvgSoilRH. The heat map is normalized within each phylum to the
maximum RA (dark red) for that phylum. Analysis is limited to phyla with site RA � �0.1%. Aridity class labels: H,
hyperarid; M, margin; A, arid (as defined in the text).
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ated with N cycling. In addition, network analysis revealed that arid microbial commu-

nities were characterized by more densely connected networks than those of the

hyperarid communities, whose networks resembled an island topology. The signifi-

cance of the observed association between increasing aridity and decreasing network

connectivity is unknown, but it could have implications for the resilience or ecological

function of the respective microbial communities (38, 40). Co-occurrence patterns in

soils have been associated with groups of microbes sharing similar ecological niches

(38); thus, the hyperarid island topology may indicate a distinct ecological structure for

hyperarid soils in which microbial communities separate into isolated assemblages.

Further characterization of these assemblages may prove to be a valuable resource for

applications ranging from managing desertified regions to guiding the search for

extraterrestrial life on planets such as Mars, where recent evidence of hydrated salts

(similar to some of those in the Atacama region) suggests the ephemeral presence of

surface water (48). In summary, the data suggest that long-term increases in aridity may

compromise the stability and genetic potential of the arid soil microbiome. Future

research will address whether the novel assemblages that characterize increasingly arid

soils harbor an undiscovered biogeochemical-cycling potential important to ecosystem

function. The answer has critical implications for the development of new technologies

designed to restore productivity to desert ecosystems degraded by megadrought and

global warming.

MATERIALS AND METHODS

Transect description and sample collection. Sample sites for the current study were located along

two 250-km to 300-km west-east transects traversing the dry hyperarid central region of the Atacama

Desert, Chile, and terminating on the arid vegetated western slopes of the Andes (Fig. 1). The southern

transect, referred to as Yungay (YUN), extended from site YUN1242 near Varillas along Highway 5 south

of Antofagasta (24.141S, 70.312W), passing the Salar de Imilac and ending at YUN3856 (24.446S,

68.296W) in the Andes at the Paso de Socompa border with Argentina. The northern transect, referred

to as Baquedano (BAQ), began south of Baquedano along Highway 5 at BAQ895 (23.403S, 69.987W) and

continued east, passing south of Calama and San Pedro de Atacama to the BAQ4697 site (22.951S,

67.689W) in the Andes along Highway 27. Both transects crossed the Domeyko mountains (Cordillera

Domeyko). Global Positioning System (GPS) coordinates and elevations for all sites are listed in Ta-

ble S1 in the supplemental material. All sites were sampled from 2 March to 20 March 2012. At each site,

plant cover was determined using a rapid survey method for desert plant communities adapted from the

Braun-Blanquet method by McAuliffe (49). Geochemical, temperature, and relative humidity parameters

for each site were determined from a 50-cm-deep soil pit. Soil samples were collected at 10-cm depth

increments to a depth of 50 cm. All soil samples were analyzed for pH, electrical conductivity (EC), nitrate,

and sulfate. Following sampling, Hobo U23 Pro v2 temperature and relative humidity data loggers were

installed at a depth of 20 cm. The data loggers recorded at 2-h increments from March 2012 to January

2015 (Onset Data Loggers, Bourne, MA) except where noted (Table S1). Two additional pits were dug at

each site located 10 m from the original pit. Soil samples from the original pit were collected for microbial

analysis and from the two additional pits to provide triplicate samples for microbial analysis. Microbial

samples were collected using sterile instruments from the pit sidewall at a depth of 10 to 20 cm. Soil

organic carbon (SOC) analysis was performed on all of the samples collected for microbial analysis.

Samples to be analyzed for microbial community and SOC were stored on ice and transported as

described previously (18). All statistical analyses evaluating the effect of environmental parameters on

the soil microbiome used data from samples of soil collected at a depth of 10 to 20 cm. Site BAQ4697

was bulldozed in our absence and the data logger lost; thus, no environmental data were recovered for

this site.

Soil analysis. Soils were dried and sieved (2 mm pore size) prior to analysis. Soil pH was determined

from a 1:1 soil-to-distilled water (dH2O) slurry after 1 h of shaking followed by 1 h of rest. EC was

determined from the supernatant of a 2:1 dH2O soil suspension following 30 min of shaking. Dry soils

were subjected to ball milling prior to analysis for sulfate, nitrate, and SOC levels. SOC levels were

determined manometrically by high-temperature combustion after pretreatment with 3 N HCl (detection

limit, 20 �g). Soil sulfate and nitrate were extracted in a 1:20 soil-to-dH2O solution with 24 h of shaking

at room temperature. Concentrations of sulfate and nitrate in soil extracts were quantified by ion

chromatography using a Thermo Scientific Dionex model ICS-1000 system (Dionex Corp., Sunnyvale, CA),

column set AG�AS-22, and a sodium carbonate/bicarbonate eluent.

Microbial community analysis. Total genomic DNA was extracted from 0.5-g soil samples using a

FastDNA spin kit for soils (MP Biomedicals, LLC, Solon, OH) with modifications to enhance DNA recovery

from low-biomass samples (50). Template DNA was quantified with a TBS-380 Fluorometer (Turner

Biosystems, Sunnyvale, CA) and Pico green dye (Invitrogen, Carlsbad, CA). Samples with DNA concen-

trations below the level of detection were reextracted using 2� to 4� replicate extractions (1.0 to 2.0 g

soil) that were combined on a FastDNA spin kit binding matrix. Samples still generating no detectable

DNA were eliminated from the study, resulting in the removal of 7 samples as follows: one sample pit
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from each of sites BAQ895, BAQ1370, YUN1005, YUN1609, and YUN3184 and two sample pits from site

BAQ1552. DNA extract concentrations are reported for all other samples (Table S2).

The v4 region of the 16S rRNA gene was amplified from all community DNA extracts using bar-coded

primers 515F/806R, targeting bacteria and archaea, following a modification of Earth Microbiome Project

protocols (33–35). Amplicon sequencing was performed at Argonne National Laboratories using an

Illumina MiSeq system and MiSeq control software version 2.2.0. Sequence reads were analyzed using

QIIME version 1.9.1 UCLUST-based (51) open reference OTU picking workflow with default parameters

unless noted (52). The average number of sequences per sample was 56,323.5 � 41,366.6, with the

minimum number of sequence reads required to retain a sample in the study set at 16,660 (to maximize

the number of samples retained). Samples were excluded due to insufficient sequence reads from the

following sites: BAQ895, BAQ1370. BAQ1552, YUN1005, YUN1242, YUN1609, YUN2029, YUN3008,

YUN3142, and YUN3153. Reads from the 40 remaining samples (Table S2) were clustered into operational

taxonomic units (OTUs) at 97% similarity using UCLUST-based open-reference picking against the

Greengenes 13_8 reference database preclustered to 97% identity (version 13_5) (51, 53, 54). Represen-

tative sequences were then aligned with PyNAST (52), and a phylogenetic tree was constructed with

FastTree (55) for phylogenetic diversity calculations. In summary, microbial data from 40 of the original

66 samples, representing 16 of the original 22 transect sites, were analyzed (Table S2). Sites eliminated

due to insufficient DNA or sequence reads included BAQ895, BAQ1370, BAQ1552, YUN3008, and

YUN3184. Site BAQ4697 was also eliminated due to the loss of environmental data from the Hobo data

logger.

In comparing our Atacama samples with the samples from Fierer et al. (19), we applied the iterative

open-reference OTU picking protocol implemented in QIIME 1.9.1 to pick OTUs for the samples from

Fierer et al. This protocol uses the representative sequences from one set of open-reference OTUs (in this

case, the Atacama open-reference OTUs described above) along with the reference database (in this case,

the Greengenes 13_8 97% OTUs) as the reference database for a subsequent open-reference OTU picking

run. The resulting Fierer OTU table and OTU representative sequences were combined with the Atacama

OTU table and OTU representative sequences for diversity analyses. This combined-data set was used

only for the ordination meta-analyses presented in Fig. 3 and in Fig. S2 in the supplemental material. Our

study and that by Fierer et al. differed in the DNA extraction protocols that were applied. This was

necessary to support extraction of DNA from the low-biomass Atacama samples (we initially attempted

to use the same extraction protocol but achieved insufficient DNA yield). The same amplification

protocol, including PCR primers, was used for both studies, and both studies used Illumina sequencing

instruments. While differences in observed sample composition are expected to arise due to differences

in extraction method (56), these differences have been shown to be generally smaller than the

differences arising from biological effects (57, 58).

Community richness and diversity were quantified using phylogenetic diversity (PD) (59) and

Shannon and Simpson indices within QIIME 1.9.1. Differences in community composition were calculated

using weighted and unweighted UniFrac metrics (60), with communities rarefied to 17,212 sequences

per sample, and PCoA and nonmetric multidimensional scaling (NMDS) were performed with QIIME.

Weighted and unweighted UniFrac distance matrices were strongly correlated (Mantel r � 0.78, P �

0.001), so ordination plots are presented only for unweighted Unifrac data. Statistical significance

corresponding to differences in beta diversity across discrete sample groupings was calculated using

ANOSIM, and correlations between weighted and unweighted UniFrac distance and continuous envi-

ronmental variables were tested using Mantel’s r statistic. BEST analysis was used to find the highest

Spearman’s correlation value for comparisons between community dissimilarities and groups of envi-

ronmental variables (37) by selecting all possible subsets of environmental variables given by the user

and scaling and calculating the Euclidean distances for each subset (37). Spearman’s correlation

coefficients were calculated using R (Core Development Team 2015), and corresponding P values were

adjusted to compensate for the false-discovery rate (FDR [q]).

Network analysis was performed on sample OTUs. Prior to analysis, rare OTUs with abundances of less

than 0.01% of the total number of OTUs were removed, resulting in a final subset of 1,293 OTUs.

Co-occurrence of OTUs was defined based on their Spearman correlations using the WGCNA package

(61). The nodes in each network represent OTUs, and the edges connecting the nodes represent

correlations between OTU pairs. All P values were adjusted for multiple testing using the Benjamini and

Hochberg FDR controlling procedure (62), as implemented in the multtest R package. The direct-

correlation dependencies were distinguished using the network deconvolution method (63). Edges were

pruned to keep only high-correlation coefficients and significant FDR-adjusted P values for correlations.

The cutoff for presenting FDR-adjusted P values was 0.01, and the cutoff of correlation coefficients was

found to be 0.81 for the global network through the random matrix theory (RMT) method (58). Network

statistical properties were calculated at the sample level with the igraph R package and aggregated at

each climate level. Graphical representations for the subnetwork arid, margin, and hyperarid data had

RMT thresholds of 0.82, 0.92, and 0.84, respectively.

Some network statistics are impacted by community richness, and our three climate classes (arid,

margin, and hyperarid) differ in their levels of community richness. We therefore tested our conclusions

for robustness with respect to differences in richness by reducing our higher-richness samples (from the

arid and margin sites) to the richness level of the hyperarid sites and recomputing our network statistics.

The effect of richness reduction was tested by rarefying the initial OTU table 500 times to 300 reads per

sample and removing rare OTUs using the same method as that described before. Networks were created

and statistics were averaged across all 500 repeats using R. These “reduced-richness” arid soil and margin

soil samples had median alpha diversity values (130.5 and 119.3 species observed, respectively) similar
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to the original alpha diversity values determined for hyperarid samples (122 species observed). Median

values for “reduced-richness” network properties for arid and margin samples were calculated using R

(Table 2).

Accession number(s). All sequences have been archived in the Qiita database (http://qiita.microbio

.me) under study identifier (ID) 10360 and in the European Nucleotide Archive of the European

Bioinformatics Institute (EMBL-EBI) under accession number ERP019482.
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TABLE S1, PDF file, 0.2 MB.

TABLE S2, PDF file, 0.1 MB.

TABLE S3, PDF file, 0.2 MB.
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