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Vegetation Indices (VIs) obtained from remote sensing based canopies are quite simple and e	ective algorithms for quantitative and
qualitative evaluations of vegetation cover, vigor, and growth dynamics, among other applications. �ese indices have been widely
implemented within RS applications using di	erent airborne and satellite platforms with recent advances using Unmanned Aerial
Vehicles (UAV). Up to date, there is no uni
ed mathematical expression that de
nes all VIs due to the complexity of di	erent light
spectra combinations, instrumentation, platforms, and resolutions used. �erefore, customized algorithms have been developed
and tested against a variety of applications according to speci
c mathematical expressions that combine visible light radiation,
mainly green spectra region, from vegetation, and nonvisible spectra to obtain proxy quanti
cations of the vegetation surface. In
the real-world applications, optimization VIs are usually tailored to the speci
c application requirements coupled with appropriate
validation tools and methodologies in the ground. �e present study introduces the spectral characteristics of vegetation and
summarizes the development of VIs and the advantages and disadvantages from di	erent indices developed. �is paper reviews
more than 100VIs, discussing their speci
c applicability and representativeness according to the vegetation of interest, environment,
and implementation precision. Predictably, research, and development ofVIs, which are based onhyperspectral andUAVplatforms,
would have a wide applicability in di	erent areas.

1. Introduction

Remote sensed information of growth, vigor, and their
dynamics from terrestrial vegetation can provide extremely
useful insights for applications in environmental monitoring,
biodiversity conservation, agriculture, forestry, urban green
infrastructures, and other related 
elds. Speci
cally, these
types of information applied to agriculture provide not only
an objective basis (depending on resolution) for the macro-
and micromanagement of agricultural production but also in
many occasions the necessary information for yield estima-
tion of crops [1]. �ese latter applications have been devel-
oped to be a well-known discipline category, precision agri-
culture, which could be tracked back to three decades ago [1].
However, the applicability of remote sensing and its di	erent
VIs extracted from these techniques usually relies heavily on
the instruments and platforms to determine which solution
is best to get a particular issue.

1.1. Remote Sensing Platform Considerations. In terms of
platforms, the advantages of satellite based remote sensing
include high spatial resolution, which makes possible the
extraction of long time data series of consistent and compa-
rable data, which can be cost e	ective [2]. Furthermore, some
satellite platforms have free access to visible andmultispectral
data, such as Landsat 7-8. However, there are two main prob-
lems with these platforms for precision agriculture applica-

tions, which are related to the per pixel resolution (30m2 per
pixel for Landsat and 500m2 forMODIS) and the orbit period
(16 d for Landsat and 26 d for SPOT). More recently, pixel
resolution has been increased by newer satellites, such as
WorldView-2 and -3 (DigitalGlobe, Longmont, CO, USA).
WorldView-2 was the 
rst commercial high resolution satel-
lite to provide eight spectral sensors in the visible to near
infrared range. Along with the four typical multispectral
bands: blue (450–510 nm), green (510–580 nm), red (630–
690 nm), and near infrared (NIR) (770–895 nm), each sensor

Hindawi
Journal of Sensors
Volume 2017, Article ID 1353691, 17 pages
https://doi.org/10.1155/2017/1353691

https://doi.org/10.1155/2017/1353691


2 Journal of Sensors

is narrowly focused on a particular range of the electromag-
netic spectrum that is sensitive to a particular feature from
the ground or a property of the atmosphere. However, images
from this platform can be cost prohibitive for long time data
series studies.

�e second problem with satellite based remote sensing
is the revisitation time, which is 16 days in average, which
makes the agricultural applications di�cult, speci
cally those
related to water and nutrient management. Moreover, passive
sensors cannot penetrate clouds; therefore, there is no usable
data capture for overcast days.

To solve these two main problems, airborne and more
recently UAV platforms can be used. �e former can also be
cost prohibitive due to the requirement of expensive aircra�s
and pilots. �e latter has become almost of ubiquitous use in
the last 
ve years with a	ordable aircra�s and camera pay-
loads ranging from visible, near and thermal infrared, and 3D
LIDAR, which has been referred to as Unmanned Aerial
System (UAS). Among UAS platforms, there are mainly 
xed
wing andmultirotor options available.�ere is a compromise
using these UAS platforms in relation to payload weight
versus �ying time. In general, longer �ying time achieved
by 
xed wing systems demands lighter weight payloads. For
example, small high de
nition visible cameras weighting less
than 300 grams as payload of a 
xed wing UAS allow it to
�y for around two hours using currently available battery-
power [3]. On the contrary, battery-powered multirotor UAS
with higher payload capacity have reduced �y time that at the
moment is around 15- to 25-minute duration. Using these
UAS, higher spatial and temporal data resolution can be
achieved, which makes possible precision agriculture appli-
cations to the submeter resolution per pixel. �is allows
research and practical applications applied to growth and
vigor dynamic assessment, plant water status sensing for
irrigation scheduling applications, and evapotranspiration
modelling, among others [4–9].

1.2. Remote Sensing and Vegetation Indices. Remote sensing
of vegetation is mainly performed by obtaining the electro-
magnetic wave re�ectance information from canopies using
passive sensors. It is well known that the re�ectance of light
spectra from plants changes with plant type, water content
within tissues, and other intrinsic factors [10].�e re�ectance
from vegetation to the electromagnetic spectrum (spectral
re�ectance or emission characteristics of vegetation) is deter-
mined by chemical and morphological characteristics of the
surface of organs or leaves [3]. �e main applications for
remote sensing of vegetation are based on the following light
spectra: (i) the ultraviolet region (UV), which goes from
10 to 380 nm; (ii) the visible spectra, which are composed
of the blue (450–495 nm), green (495−570 nm), and red
(620–750 nm) wavelength regions; and (iii) the near and mid
infrared band (850–1700 nm) [11, 12]. �e emissivity rate of
the surface of leaves (equivalent to the absorptivity in the
thermal waveband) of a fully grown green plant without any
biotic or abiotic stress is generally in the range of 0.96–0.99
and ismore o�en between 0.97 and 0.98 [13]. On the contrary,
for dry plants, the emissivity rate generally has a larger range
going from 0.88 to 0.94 [13]. Vegetation emissivity in the near

andmid infrared regions has beenwidely studiedwithin plant
canopies. Indices extracted from this light spectra range can
be attributed to a range of characteristics beyond growth and
vigor quanti
cation of plants related to water content, pig-
ments, sugar and carbohydrate content, protein content, and
aromatics, among others [2, 14]. Di	erent applications are
dependent on the re�ectivity peaks or overtones for speci
c
compounds within the visible and near/mid infrared regions
of light spectra [14, 15]. Plant re�ectivity in the thermal infra-
red spectral range (8–14 �m) follows the blackbody radiation
law [16], which allows interpreting plant emission as directly
related to plant temperature. Hence, indices obtained from
this spectra range can be used as a proxy to assess stomata
dynamics that regulates transpiration rate of plants. �ere-
fore, the later indices can be used as indicator of plant water
status [17–19] and abiotic/biotic stress levels [20, 21].

�e latter considerations demonstrate that the quantita-
tive interpretation of remote sensing information from vege-
tation is a complex task. Many studies have limited this inter-
pretation by extracting vegetation information using individ-
ual light spectra bands or a group of single bands for data
analysis. �us, researchers o�en combine the data from near
infrared (0.7–1.1m) and red (0.6–0.7m) bands in di	erent
ways according to their speci
c objectives [2]. �ese types
of combinations present many disadvantages (e.g., lack of
sensitivity) by using single or limited group of bands to detect,
for example, vegetation biomass. �ese limitations are par-
ticularly evident when trying to apply these types of VI on
heterogeneous canopies, such as horticultural tree planta-
tions. Amixed combination of soils, weeds, cover crops in the
interrow, and the plants of interest makes the discrimination
regions of interest and extraction of simple VI very di�cult,
speci
cally, when the vegetation of interest has di	erent
VIs due to spatial variability, or VIs corresponding to other
vegetation (weeds and cover crop), which can be similar to
those of interest. �e later will complicate imaging denoising
and 
ltering processes. Several image analysis techniques and
algorithms have been developed to go around these issues,
which will be described later. Even though there are many
considerations as described before, the construction of simple
VI algorithm could many times render simple and e	ective
tools to measure vegetation status on the surface of the Earth
[6].

2. Vegetation Indices and Validation Process

With the use of high resolution spectral instrumentation, the
number of bands obtained by remote sensing is increasing,
and the bandwidth is getting narrower [7]. One of the most
used and implemented indices calculated from multispectral
information as normalized ratio between the red and near
infrared bands is theNormalizedDi	erenceVegetation Index
(NDVI) [22]. A direct use of NDVI is to characterize canopy
growth or vigor; hence, many studies have compared it with
the Leaf Area Index (LAI) [23], where LAI is de
ned as the
area of single sided leaves per area of soil [24].

Vegetation information from remote sensed images is
mainly interpreted by di	erences and changes of the green
leaves from plants and canopy spectral characteristics. �e
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most common validation process is through direct or indirect
correlations between VIs obtained and the vegetation charac-
teristics of interest measured in situ, such as vegetation cover,
LAI, biomass, growth, and vigor assessment. More estab-
lished methods are used to assess VIs using direct and geo-
referencedmethods bymonitoring sentinel plants to be com-
pared with VIs obtained from the same plants for calibration
purposes.

�e later process is known as allometric measurements
and requires destructivemethods to scan speci
c area of total
leaves per plant or tree in the case of LAI [25]. Indirect vali-
dationmethods are based on proximal instrumentation using
the same or similar spectral instrumentation to assess georef-
erenced sentinel plants at the same angle as the aerial plat-
forms. �e latter method is useful to compare VIs obtained
from satellite that are sensitive to atmospheric e	ects and
serve as amean to obtain correction factors.More recent indi-
rect methods based on cover photography to estimate canopy
cover, LAI, porosity, and clumping index have used auto-
mated analysis methods.

For this purpose, upward looking cover photogrammetry
at zero zenith angle is taken with visible cameras to obtain
canopy architecture parameters calculated using computer
vision algorithms. An automated image acquisition and cal-
culation method was proposed by Fuentes et al. 2008 applied
to Eucalyptus trees [26] and it has been successfully applied
for other crops such as grapevines compared to allometric
measurements and to validate NDVI calculated from satellite
information (WorldView-2) [27], apple trees with increased
accuracy by using a variable light extinction coe�cient (�)
[28], and cherry trees improving the method by extracting
nonleaf material such as branches for tall trees [29, 30]. In
late 2015, a computer application (App) for smartphones and
tablet PCs called VitiCanopy was released for free use to
assess canopy architecture parameters using the cover pho-
tography automated algorithms, which can be applied to any
other tree crop by changing to a speci
c � value [31, 32]. Other
Apps using RGB photogrammetry to assess LAI have been
later developed such as PoketLAI [33–35].

2.1. Basic Vegetation Indices. Jordan [36] proposed in 1969
one of the 
rst VIs named Ratio Vegetation Index (RVI),
which is based on the principle that leaves absorb relatively
more red than infrared light; RVI can be expressed mathe-
matically as

RVI = �
NIR

, (1)

where NIR is the near infrared band re�ectance and � is
red band re�ectance. According to the spectral characteristics
of vegetation, bushy plants have low re�ectance on the red
band and have shown a high correlation with LAI, Leaf Dry
Biomass Matter (LDBM), and chlorophyll content of leaves
[37]. �e RVI is widely used for green biomass estimations
and monitoring, speci
cally, at high density vegetation cov-
erage, since this index is very sensitive to vegetation and has a
good correlation with plant biomass. However, when the veg-
etation cover is sparse (less than 50% cover), RVI is sensitive

to atmospheric e	ects, and their representation of biomass is
weak.

�e Di	erence Vegetation Index (DVI) was proposed
later [38] and can be expressed as

DVI = NIR − �. (2)

�e DVI is very sensitive to changes in soil background; it
can be applied to monitoring the vegetation ecological envi-
ronment. �us, DVI is also called Environmental Vegetation
Index (EVI).

�e Perpendicular Vegetation Index (PVI) [38] is a
simulation of theGreenVegetation Index (GVI) in�, NIR 2D
data. In the NIR−� coordinate system, the spectral response
from soil is presented as a slash (soil brighten line).�e latter
e	ect can be explained as the soil presents a high spectral
response in the NIR and � bands. �e distance between the
point of re�ectivity (�, NIR) and the soil line has been de
ned
as the Perpendicular VI, which can be expressed as follows:

PVI = √(�soil − �veg)2� − (�soil − �veg)2NIR
, (3)

where �soil is the soil re�ectance; �veg is the vegetation
re�ectivity; PVI characterizes the vegetation biomass in �red
the soil background; the greater the distance, the greater the
biomass.

PVI can also be quantitatively expressed as

PVI = (DNNIR − 
) cos � − DN� ∗ sin �, (4)

where DNNIR and DN� are the radiation re�ected luminance
values from the NIR and �, respectively; 
 is the intercept
of the soil baseline and the vertical axis of NIR re�ectivity;
and � is the angle between the horizontal axis of � re�ectivity
and soil baseline. PVI 
lters out in this way the e	ects of
soil background in an e�cient manner; PVI also has less
sensitivity to atmospheric e	ects and it is mainly used for
the inversion of surface vegetation parameter (grass yield,
chlorophyll content), the calculation of LAI, and vegetation
identi
cation and classi
cation [39, 40]. However, PVI is
sensitive to soil brightness and re�ectivity, especially in the
case of low vegetation coverage and needs to be adjusted for
this e	ect [41].

As mentioned before, the Normalized Di	erence Vege-
tation Index (NDVI) is the most widely used as VI; it was
proposed by Rouse Jr. et al. [42], which can be expressed as

NDVI = (�NIR − ��)�NIR

+ ��. (5)

Since the index is calculated through a normalization proce-
dure, the range of NDVI values is between 0 and 1, having a
sensitive response to green vegetation even for low vegetation
covered areas. �is index is o�en used in research related to
regional and global vegetation assessments and was shown to
be related not only to canopy structure and LAI but also to
canopy photosynthesis [43, 44]. However, NDVI is sensitive
to the e	ects of soil brightness, soil color, atmosphere, cloud
and cloud shadow, and leaf canopy shadow and requires
remote sensing calibration.
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2.2. Vegetation Indices considering Atmospheric E�ects. Given
the limitations of NDVI under atmospheric e	ects, Kaufman
and Tanré [40] proposed the Atmospherically Resistant Veg-
etation Index (ARVI). �is index is based on the knowledge
that the atmosphere a	ects signi
cantly � compared to the
NIR. �us, Kaufman and Tanré modi
ed the radiation value
of � by the di	erence between the blue (�) and �. �erefore,
ARVI can e	ectively reduce the dependence of this VI to
atmospheric e	ects, which can be expressed as

ARVI = (NIR − ��)(NIR + ��) ,
�∗�� = �∗� − � (�∗� − �∗� ) ,

(6)

where �� is the di	erence between � and �, is the re�ectivity
related to the molecular scattering and gaseous absorption
for ozone corrections, and represents the air conditioning
parameters.

�e ARVI is commonly used to eliminate the e	ects of
atmospheric aerosols. �e aerosols and ozone e	ects in the
atmosphere still need to be eliminated by the 5S atmospheric
transport model [45]. However, to implement the 5S atmo-
spheric transmission model, actual atmospheric parameters
must be considered, which are di�cult to obtain. If the ARVI
index is not calculated using the 5S model, this index is not
expected to perform much better than NDVI considering
atmospheric e	ects or large dust particles in the atmosphere.
�us, Zhang et al. [46] proposed a new atmospheric e	ect
resistant vegetation index, namely, IAVI, that can eliminate
atmospheric interference without the use of the 5S model.

IAVI = {�nir − [�� − � (�� − ��)]}{�nir + [�� − � (�� − ��)]} , (7)

where the range of � values is between 0.65 and 1.12; a
signi
cant value of � is close to 1 for ARVI. A�er testing, the
error caused in IAVI by the atmosphere e	ect is between 0.4%
and 3.7%, which is less than those found when using NDVI
in the same conditions (14–31%).

2.3. Adjusted-Soil Vegetation Index. �e distinction of veg-
etation from the soil background was originally proposed
by Richardson and Wiegand [47] by analyzing the soil line,
which can be considered as a linear relationship on the 2D
plane of the soil spectral re�ectance values between the NIR
and �. �erefore, it can be considered as a comprehensive
description of a large number of soil spectral information
from a number of environments [48]. Many VIs that take
into account the e	ect of soil background have been based
on this principle. In addition to PVI ((3)-(4)), the Soil Line
Atmospheric Resistance Index (SLRA) was developed based
on the improvement of the soil line principle. �e SLRA was
then combined with the Transformed Soil-Adjusted Vegeta-
tion Index (TSAVI) to develop the Type Soil Atmospheric
Impedance Vegetation Index (TSARVI) [49], which will be
discussed later.

As shown before, NDVI (5) is very sensitive to back-
ground factors, such as the brightness and shade of the veg-
etation canopies and soil background brightness. Researches

have shown thatwhen the backgroundbrightness is increased,
NDVI also increases systematically. Given the e	ect of soil
background,� radiation increases signi
cantly when the veg-
etation cover is sparse; conversely NIR radiation is reduced
to make the relationship between vegetation and soil more
sensible. Many VIs have been developed to adjust to the soil
e	ect.

SinceNDVI and PVI have some de
ciencies in describing
the spectral behavior of vegetation and soil background,
Huete [50] established the Soil-Adjusted Vegetation Index
(SAVI), which can be expressed as follows:

SAVI = (�� − ��) (1 + �)(�� + �� + �) . (8)

�e above model of a soil vegetation system was estab-
lished to improve the sensitivity ofNDVI to soil backgrounds,
where � is the soil conditioning index, which improves the
sensitivity of NDVI to soil background.�e range of � is from
0 to 1. In practical applications, the values of � are determined
according to the speci
c environmental conditions.When the
degree of vegetation coverage is high, � is close to 1, showing
that the soil background has no e	ect on the extraction of
vegetation information.�is kind of ideal conditions is rarely
found in natural environments and can be applicable only in
the case of a large canopy density and coverage [40].�e value
of � is around 0.5 undermost common environmental condi-
tions.When� is close to 0, the value of SAVI is equal toNDVI.
However, � factor should vary inversely with the amount of
vegetation present to obtain the optimal adjustment for the
soil e	ect. �us, a modi
ed SAVI (MSAVI) replaces � factor
in the SAVI equation (8) with a variable � function. In this
way, MSAVI [51] reduces the in�uence of bare soil on SAVI,
which can be expressed as follows:

MSAVI = 0.5 ∗ {2�800 + 1
− SQRT [(2�800 + 1)2 − 8 (�800 − �670)]} .

(9)

�e SAVI is much less sensitive than the RVI (1) to
changes in the background caused by soil color or surface
soil moisture content. �ree new versions of SAVI (SAVI2,
SAVI3, and SAVI4) were developed based on the theoretical
considerations of the e	ects of wet and dry soils [41]. SAVI2,
SAVI3, and SAVI4 reduce the e	ect of background soil
brightness, by taking into account the e	ect of the variation
of the solar incidence angle and changes in the soil physical
structure.

Based on the implementation of the MSAVI, Richardson
and Wiegand (1977) proposed a Modi
ed Secondary Soil-
Adjusted Vegetation Index (MSAVI2) [47], which can be
expressed as

MSAVI2
= 0.5
∗ [(2NIR + 1) − √(2NIR + 1)2 − 8 (NIR − �)] .

(10)



Journal of Sensors 5

MSAVI2 does not rely on the soil line principle and has a
simpler algorithm; it is mainly used in the analysis of plant
growth, deserti
cation research, grassland yield estimation,
LAI assessment, analysis of soil organic matter, drought
monitoring, and the analysis of soil erosion [39].

Baret et al. studied the sensitivity of 
veVIs (NDVI, SAVI,
Transformed Soil-Adjusted Vegetation Index (TSAVI), Mod-
i
ed Soil-Adjusted Vegetation Index (MSAVI), and Global
Environment Monitoring Index (GEMI)) to the soil back-
ground.�ey simulated the performance of the VIs for di	er-
ent soil textures, moisture levels, and roughness by using the
Scattering from Arbitrarily Inclined Leaves (SAIL) model.
�ey determined an optimum value of SAIL = 0.16 to reduce
the e	ects of soil background and then proposed an Opti-
mized Soil-Adjusted Vegetation Index (OSAVI) [48] that can
be expressed as follows:

OSAVI = (NIR − �)(NIR + � + �) , (11)

where SAIL is 0.16 and OSAVI does not depend on the soil
line and can eliminate the in�uence of the soil background
e	ectively. However, the applications of OSAVI are not
extensive; it ismainly used for the calculation of aboveground
biomass, leaf nitrogen content, and chlorophyll content,
among others [52].

2.4. Tasseled Cap Transformation of Greenness Vegetation
Index (GVI, YVI, and SBI). Kauth and �omas studied the
spectral pattern of the vegetation growth process and called it
the “spike cap” pattern, including the soil background re�ec-
tivity and brightness line.�eTasseled Cap Transformation is
a conversion of the original bands of an image into a new set
of bands with de
ned interpretations that are useful for vege-
tationmapping. ATasseled CapTransformation is performed
by taking “linear combinations” of the original image bands,
which is similar in concept to the multivariate data analysis
technique called principal components analysis (PCA) [53].

�e Tasseled Cap can convert Landsat MSS, Landsat TM,
and Landsat 7 ETMdata. For LandsatMSS data, furthermore,
the Tasseled Cap performs orthogonal transformation on the
original data, which converts it into a 4D space. �is con-
version includes the Soil Brightness Index (SBI) (14), degree
of Green Vegetation Index (GVI) (12), and the degree of
Yellow Vegetation Index (YVI) (13). It also includes Nonsuch
Index (NSI) mainly for noise reduction. �e NSI is closely
related to atmospheric e	ects. For the Landsat 5 TM data,
the Tasseled Cap results consist of three factors: brightness,
greenness, and a third component related to soil. Among
them, the brightness and the greenness are equivalent to SBI
and GVI in the MSS Tasseled Cap. �e third component is
related to soil characteristics and humidity. For Landsat 7
ETM data, the Tasseled Cap Transformation generates six
bands, namely, brightness, greenness, humidity, the fourth
component (noise), a 
�h component, and a sixth compo-
nent.

GVI = −0.290MSS4 − 0.562MSS5 + 0.600MSS6

+ 0.491MSS7, (12)

YVI = −0.829MSS4 − 0.522MSS5 + 0.039MSS6

+ 0.149MSS7, (13)

SBI = +0.433MSS4 − 0.632MSS5 + 0.586MSS6

+ 0.264MSS7. (14)

�e GVI, YVI, and SBI ignore the interaction and e	ects of
the atmosphere, soil, and vegetation. SBI andGVI can be used
to evaluate the behavior of vegetation and bare soil [54]. �e
GVI has a strong correlation with di	erent vegetation covers.
�us, GVI increases the processing of atmospheric e	ects.
Jackson et al. (1980) proposed the Adjust Soil Brightness
Index (ASBI) and Adjust Green Degree Vegetation Index
(AGVI) [55], which can be expressed as follows:

ASBI = 2.0YVI,
AGVI = GVI − (1 + 0.018GVI)YVI − NSI2 . (15)

Misra and Wheeler (1977) performed PCA of Landsat
images and computed the multiple factors of these indexes.
�is analysis was the basis of the development of the Misra
Soil Brightness Index (MSBI), Misra Green Degree Vege-
tation Index (MGVI), and Misra Yellow Degree Vegetation
Index (MYVI) [56], which can be expressed as follows:

MSBI = 0.406MSS4 + 0.60MSS5 + 0.645MSS6

+ 0.243MSS7,
MGVI = −0.386MSS4 − 0.53MSS5 + 0.535MSS6

+ 0.532MSS7,
MYVI = 0.723MSS4 − 0.597MSS5 + 0.206MSS6

− 0.278MSS7.

(16)

Since NDVI has been found to be a	ected only by soil
brightness, it presents a negative correlation between NDVI
and soil brightness. A positive correlation is found when only
atmospheric e	ects a	ect NDVI. Under natural conditions,
the soil and atmosphere in�uence NDVI in a complex
manner, which interacts with the vegetation cover in�uence.
�erefore, atmosphere and vegetation have a collective e	ect
on NDVI based on the soil characteristics and exposure. Liu
and Huete comprehensively analyzed multiple soil types and
atmospheric enhanced VIs. �ey developed the Atmosphere
Antivegetation Index (ARVI) and Soil-Adjusted Vegetation
Index (SAVI) for a comprehensive analysis of vegetation in
these conditions.�ey found that, as a result of the interaction
between the soil and the atmosphere, reducing one of them
may increase the other. �ey introduced a feedback mecha-
nism by building a parameter to simultaneously correct soil
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and atmospheric e	ects.�is parameter is the EnhancedVeg-
etation Index (EVI) [57] that can be expressed as follows:

EVI = (TM4 − TM3) (1 + �)
TM4 − �1TM3 + �2TM + �,

EVI = 2.5 ∗ �∗� − �∗��∗� + �1�∗� − �2�∗� + �,
(17)

which includes the values of NIR, R, and B, which are
corrected by the atmosphere; L represents soil adjustment
parameters, and its value is equal to 1; and parameters corre-
spond to constant values equivalent to 6 and 7.5, respectively.

2.5. Vegetation Indices Based on UAS Remote Sensing in the
Visible Spectra Region. UAS remote sensing is a low altitude
remote sensing technology (50–100m), which is less a	ected
by atmospheric factors during the data acquisition process.
It has the advantages of a	ordability, simple operation, fast
imaging speed, and high spatial and temporal resolutions,
which is unparalleled compared with traditional [58] remote
sensing technologies based on satellites. At present, the UAS
remote sensing technology plays a crucial role in the 
eld of
aerial remote sensingwith increased interest in applying these
platforms on di	erent studies of vegetation assessment [59].
�epractical applications ofUAS aremainly related to images
acquisition in the visible bands (RGB) due to easy access of
ubiquitous high resolution cameras at low price and weight.
However, due to rapid advances in technology, multispectral
and infrared thermal cameras are becoming increasingly
cheaper and miniaturized.

As previously shown through di	erent VIs, most of them
are based on the mixture of visible light bands and NIR to
generate algorithms and those based only on the visible light
spectra are not common. However, weightless high de
nition
cameras are appearing in the market that includes the NIR
band, which will enhance the practical applicability of UAS
in the near future. �ese types of re�ectance are commonly
measured using visible, multispectral, and hyperspectral
cameras [5]. According to Gago et al. (2015), NDVI is one
of the most employed indices for UAS applications and is
de
ned speci
cally as

NDVI = (�800 − �680)(�800 + �680) , (18)

where �800 is the re�ectance at 800 nm and �680 at 680 nm.
Due to the high NIR re�ectance of chlorophyll, this index is
used to detect plants greenness [60]. Some studies described
the use of UAS with multispectral cameras and high resolu-
tionmultispectral satellites to estimate LAI (Leaf Area Index)
through NDVI [27, 61].

�e optimized index transformed chlorophyll absorp-
tion in re�ectance Transformed Chlorophyll Absorption in
Re�ectance Index/Optimized Soil-AdjustedVegetation Index
(TCARI/OSAVI) was proposed as more sensitive VI to chlo-
rophyll content. In this way, avoiding other factors that could
a	ect the re�ectance values such as canopy re�ectance and
soil re�ectance among others [5]. Another index evaluated

by Zarco-Tejada et al. (2013) was the PRInorm, which is an
improvement of the Photochemical Re�ectance Index (PRI).
�is index considers xanthophyll changes related to water
stress but also generates a normalization considering chloro-
phyll content and canopy leaf area reduction which is mainly
a	ected by water stress [62]. However, by obtaining a quick
and e	ective method to extract vegetation information based
on UAS visible images, it will enhance and popularize the
scope of application of UAS immediately [63]. In this sense,
Wang et al. (2015) comprehensively considered the spectral
characteristics of healthy green vegetation and the spectral
characteristics of typical features of UAS imagery [63]. �ey
use green (�) band instead of the NIR band to calculate
NDVI, (�red + �blue) compared to � for NDVI, and the �
band multiplied by 2 for (�red + �blue). �us, a Visible-Band
Di	erence Vegetation Index (VDVI) is created based on the
three bands of visible light, which can be expressed as follows:

VDVI = (2 ∗ �green − �red − �blue)
(2 ∗ �green + �red + �blue) . (19)

�e values of VDVI are within [−1, 1] and the accuracy of
the vegetation extraction based on VDVI is higher than other
visible light band-based VIs and � band. Furthermore, the
accuracy of VDVI has been reported to be over 90% [63].

2.6. Vegetation Indices Related to Vegetation Status. �e
NDVI, as shown previously, enhances the contrast of the
re�ectivity of the NIR and � channels (5). �erefore, it is
a nonlinear extension of NIR and � ratios, resulting in the
enhancement of the lower part of these values (higher values
are suppressed). Hence, NDVI reaches saturation in this way
more easily.�us, Gitelson [64] proposed theWide Dynamic
Range Vegetation Index (WDRVI), which can be expressed
as follows:

WDRVI = (��nir − �red)(��nir + �red) . (20)

WDRVI enhances the dynamic range of NDVI by applying
a weighting parameter to the NIR re�ectance. If � equals 1,
WDRVI is equivalent to NDVI. If � is equal to the ratio(�red/�NIR), WDRVI is zero. A�er validation procedures, a
coe�cient value of 0.20 for appears to be generally e	ective
for the WDRVI calculations. According to Gitelson (2004)
[64], WDRVI o	ers a simple way to enhance the dynamic
range for high biomass environments (LAI > 2). However,
when biomass is low (LAI < 1), NDVI is still the best choice
for the plant classi
cation.

According to the spectral re�ectance of plant leaves
(between 550 nm and 700 nm) it can be considered constant
even if the chlorophyll content of leaves is variable. Based
on this relationship, Kim et al. (1994) measured the level of
absorption at 670 nmand linked the re�ection peak at 700 nm
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and 550 nm; the Chlorophyll Absorption Ratio Index (CARI)
was then developed [65] and can be expressed as

CAR ∗ (�700�670) ,
CAR = """"(# ∗ 670 + �670 + 
)""""(#2 + 1)0.5 ,

# = (�700 − �500)150 ,

 = �550 − (# ∗ 550) .

(21)

Later, Daughtry et al. improved the CARI by proposing a
modi
ed CARI (MCARI) [66], which can be expressed as

MCARI

= 1.5 ∗ [2.5 (�800 − �670) − 1.3 (�800 − �550)]
√(2�800 + 1)2 − (6�800 − 5�670) − 0.5

. (22)

�e MCARI is more sensitive to leaf chlorophyll concentra-
tions. Daughtry et al. (2000) found that LAI, chlorophyll, and
the chlorophyll-LAI interaction accounted for 60, 27, and 13%
of the MCARI variation. Even though the MCARI formula
is not related to the NIR bands, good predictions were still
found.

In agriculture, crop growth is directly linked to water
supply and plant water status. When the soil water supply
is insu�cient, plants will be under water stress, which leads
to reduced crop yield and even crop failures under extreme
drought conditions. So it is very important to evaluate the
crop water status in a timely and accurate manner, which
has direct implications on crop growth, yield, and quality of
produce [67]. In recent years, the development of infrared
thermal remote sensing technology made it possible to mea-
sure canopy temperature changes and dynamics from crop
populations. �ese changes are related to the transpiration
rate of plants and stomatal conductance. Hence, crop leaf and
canopy temperature have been used for the determination of
crop water status [68]. In order to make the canopy temper-
ature measurements consistent, Idso et al. (1981) established
the Crop Water Stress Index (CWSI) to monitor crop water
status [69].

CWSI = ($canopy − $nws)
($dry − $nws) , (23)

where $canopy is the temperature of fully sunlit canopy leaves

(∘C), $nws is the temperature of fully sunlit canopy leaves (∘C)
when the crop is non-water-stressed (well-watered); $dry is

the temperature of fully sunlit canopy leaves (∘C) when the
crop is severely water stressed due to low soil water availabil-
ity. $nws and $dry are the lower and upper baselines used to
normalize CWSI for the e	ects of environmental conditions
(air temperature, relative humidity, solar radiation, and wind

speed) on $canopy. �e CWSI has two models, an empirical
model and a theoretical model; however, the theoretical
model involves too many parameters, and these parameters
are not easy to obtain. �erefore, the theoretical model is
only used for research purposes [70–72].�e empiricalmodel
can be obtained only by using crop canopy temperature, air
temperature, and air saturation di	erence, so the empirical
model has been further studied and used in many crop
applications [73].

Besides the use of infrared thermal radiation to detect
plant water stress detection, the visible part of the spectrum
has also been useful for early water stress detection. �is
involves using indices focused on bands at speci
c wave-
lengths where photosynthetic pigments are a	ected by water
stress conditions such as chlorophyll. �e Photochemical
Re�ectance Index (PRI) has been used as a stress index of
stress based on this principle, with initial developments to
be applied to disease symptoms detection, which can be
expressed as

PRI = (�531 − �570)(�531 − �570) . (24)

It has been shown that the Light Use E�ciency (LUE) is a
key variable to estimate Net Primary Productivity (NPP) [74,
75].When obtaining reliable accuracy in LUEmeasurements,
it is possible to study the distribution of energy and global
climate change. �e PRI is a normalized di	erence VI of
re�ectivity at 531 nm and 570 nm and the re�ectance of these
two bands is a	ected by the xanthophyll cycle and is closely
related to LUE of leaves. �erefore, PRI provides a good
estimation of leaf LUE.

2.7. Summary of Vegetation Indices. A summary of the main
VIs discussed in this paper can be found in Table 1 with their
respective citations.

3. Conclusions

Simple VIs combining visible and NIR bands have signif-
icantly improved the sensitivity of the detection of green
vegetation. Di	erent environments have their own variable
and complex characteristics, which needs to be accounted
when using di	erent VIs. �erefore, each VI has its speci
c
expression of green vegetation, its own suitability for speci
c
uses, and some limiting factors. �erefore, for practical
applications, the choice of a speci
c VI needs to bemade with
caution by comprehensively considering and analyzing the
advantages and limitations of existing VIs and then combine
them to be applied in a speci
c environment. In this way, the
usage of VIs can be tailored to speci
c applications, instru-
mentation used, and platforms. With the development of
hyperspectral and multispectral remote sensing technology,
newVIs can be developed, which will broaden research areas.
It is envisioned that these new developments will be readily
applied and adopted by UAS platforms and will become one
of the most important research areas in aerospace remote
sensing in the near future.
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Table 1: Summary of vegetation index expression.

Index De
nition Reference

AGVI GVI − (1 + 0.018GVI) ∗ YVI − NSI2 [76]

ARI ( 1�550 ) − (
1�700 ) [76]

ARI2 �800 [( 1�550 ) − (
1�700 )] [76]

ARVI
(NIR − ��)(NIR + ��) [40]

ASBI 0.2YVI [77]

ATSAVI
[# (NIR − #Red − 
)][#NIR + Red − #
 + � (1 + #2)] [78]

AVI 2.0MSS7 −MSS5 [79]

AVI tan−1 {[(-3 − -2)-2 ] (NIR − �)−1} + tan−1 {[(-2 − -1)-2 ] (� − �)−1} [80]

BGI1
�400�550 [81]

BGI2
�450�550 [81]

BRI1
�400�690 [60]

BRI2
�450�690 [60]

CAI 0.5 (�2000 + �2200) − �2100 [82]

CARI CAR ∗ (�700�670 ) [65]

CCCI
(NDRE −NDREmin)(NDREmax −NDREmin) [83]

CRCWD 1 − ��min
[84]

CRI500
(1/�515)(1/�550) [85]

CRI700
(1/�515)(1/�700) [85]

CWSI
(($	 − $
) − ($	 − $
)��)(($	 − $
)�� − ($	 − $
)��) [69]

DI1 �800 − �550 [86]

DVI ∫1
1
(A�A)A- [87]

DVI 2.4MSS7 −MSS5 [38]

EVI
[(TM4 − TM3) (1 + �)](TM4 − �1TM3 + �2TM + �) [88]

EXG 2 ∗ �green − �red − �blue [89, 90]

GARI
{NIR − [Green − � (Blue − Red)]}
{NIR + [Green − � (Blue − Red)]} [24]

GDVI NIR − Green [23]
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Table 1: Continued.

Index De
nition Reference

GEMI

C(1 − 0.25C) − (� − 0.125)(1 − �)
C = [2(NIR2 − �2) + 1.5NIR + 0.5�](NIR + � + 0.5)

[90]

GLI
(2�� − �� − ��)
(2�� + �� + ��) [91]

GM1
�750�550 [92]

GM2
�750�700 [92]

GNDVI
(�NIR − ��)(�NIR + ��) [91]

GRABS GVI − 0.09178SBI + 5.58959 [93]

GRVI
NIR

Green
[23]

Greenness index (�) �554�677 [94]

GVI (−0.283MSS4 − 0.66MSS5 + 0.577MSS6 + 0.388MSS7) [53]

GVSB
GVI

SBI
[95]

LIC3
�400�740 [96]

HJVI
[2 (�nir − �red)](�nir + 6�red − 7.5�blue + 1) [97]

HI
(�534 − �698)(�534 + �698) − 0.5�704 [98]

IAVI
{�nir − [�� − � (�� − ��)]}{�nir + [�� − � (�� − ��)]} [46]

II
TM5
TM7

[99]

IPVI
TM4(TM4 + TM3) [100]

MCARI [(�700 − �670) − 0.2 (�700 − �550)] (�700�670 ) [66]

MCARI
1.5 ∗ [2.5 (�800 − �670) − 1.3 (�800 − �550)]
√(2�800 + 1)2 − (6�800 − 5�670) − 0.5 [101]

MGVI (−0.386MSS4 − 0.53MSS5 + 0.535MSS6 + 0.532MSS7) [102]

MNLI
[(NIR2 − Red) (1 + �)]
(NIR2 + Red + �) [103]

MNSI (0.404MSS4 − 0.039MSS5 − 0.505MSS6 + 0.762MSS7) [102]

MRENDVI
(�750 − �705)(�750 + �705 − 2 ∗ �445) [104, 105]
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Table 1: Continued.

Index De
nition Reference

MRESR
(�750 − �445)(�705 − �445) [104, 105]

MSAVI2 0.5 ∗ [(2NIR + 1) − √(2NIR + 1)2 − 8 (NIR − �)] [106]

MSBI (0.406MSS4 + 0.60MSS5 + 0.645MSS6 + 0.243MSS7) [102]

MSAVI 0.5 ∗ {2�800 + 1 − SQRT [(2�800 + 1)2 − 8 (�800 − �670)]} [51]

MSR
[(�800/�670) − 1][SQRT (�800/�670 + 1)] [106]

MSI
�1599�819 [107]

MTVI 1.2 ∗ [1.2 (�800 − �550) − 2.5 (�670 − �550)] [101]

MTVI2
1.5 ∗ [1.2 (�800 − �550) − 2.5 (�670 − �550)]

√(2 ∗ �800 + 1)2 − (6 ∗ �800 − 5 ∗ √�670) − 0.5 [101]

MYVI (0.723MSS4 − 0.597MSS5 + 0.206MSS6 − 0.278MSS7) [102]

NDGI
(� − �)(� + �) [78]

NDI
(NIR −MIR)(NIR +MIR) [108]

NDI1
(�780 − �710)(�780 − �680) [109]

NDI2
(�850 − �710)(�850 − �680) [109]

NDI3
(�734 − �747)(�715 − �726) [110]

NDNI
[log (1/�1510) − log (1/�1680)][log (1/�1510) + log (1/�1680)] [111]

NDLI
[log (1/�1754) − log (1/�1680)][log (1/�1754) + log (1/�1680)] [111]

NDVI
(�800 − �680)(�800 + �680) [96]

NDVI
(�NIR − ��)(�NIR + ��) [42]

NDWI
(Green − NIR)(Green + NIR) [112]

NGBDI
(� − �)(� + �) [113]

NGRDI
(� − �)(� + �) [114]

NMDI
[�860 − (�1640 − �2130)][�860 + (�1640 − �2130)] [115]

NLI
(NIR2 − Red)
(NIR2 + Red) [116]
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Table 1: Continued.

Index De
nition Reference

OSAVI
(1 + 0.16) (�800 − �670)(�800 + �670 + 0.61) [117]

PRI
(�531 − �570)(�531 + �570) [118]

PSRI
(�680 − �500)�750 [119]

PSNDc
(�800 − �470)(�800 + �470) [120]

PSSRa
�800�680 [120]

PSSRb
�800�635 [120]

PSSRc
�800�470 [120]

PVI √(�soil − �veg)2� − (�soil − �veg)2NIR
[38]

PVI
(NIR − #� − 
)√#2 + 1 [121]

RARS
�746�513 [85]

RDVI
(�800 − �670)[SQRT (�800 + �670)] [121]

RDVI √NDIVI ⋅ DVI [121]

RENDVI
(�750 − �705)(�750 + �705) [122]

RGRI
(∑690�=600 ��)
(∑599�=500 ��) [123]

RI
(� − �)(� + �) [124]

RVI
�

NIR
[125]

SAVI
(�NIR − ��)(�NIR + �� + �) + (1 + �) [50]

SIPI
(�800 − �445)(�800 + �680) [126]

SBI (−0.283MSS4 − 0.66MSS5 + 0.577MSS6 + 0.388MSS7) [53]

SBL MSS7 − 2.4MSS5 [38]

SDr ∑
�
�� (-�) [127]

SGI
NIR

Red
[128]

SR
�800�670 [36]

SR2
�800�550 [86]
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Table 1: Continued.

Index De
nition Reference

SR3
�700�670 [129]

SR4
�740�720 [110]

SR5
�675(�700�650) [130]

SR6
�672(�550�708) [126]

SR7
�860(�550�708) [131]

TCARI 3 ∗ [(�700 − �670) − 0.2 ∗ (�700 − �550) (�700�670 )] [126]

TDVI √0.5 + [ (NIR − Red)(NIR + Red) ] [132]

TSARVI
[#�� (NIR − #���� − 
��)][�� + #��NIR − #����� + � (1 + #��2)] [49]

TSAVI
[# (NIR − #� − �)][� + #NIR − #
] [133]

TVI √NDVI + 0.5� [134]

VARI (� − �) (� + � − �) [135]

VCI
(NDVI� −NDVImin)(NDVImax −NDVImin) [136]

VDVI
(2 ∗ �green − �red − �blue)
(2 ∗ �green + �red + �blue) [63]

VHI # ∗ VCI + (1 − #) ∗ TCI [136]

VREI1
�740�720 [110]

VREI2
(�734 − �747)(�715 + �726) [110]

YVI (−0.283MSS4 − 0.66MSS5 + 0.577MSS6 + 0.388MSS7) [53]

WBI
�970�900 [115]

WDRVI
(��nir − �red)(��nir + �red) [64]

WV-VI
(NIR2 − Red)(NIR2 + Red) [137]

ZM
�750�710 [81]

1DZ -DGVI

�∑
1

"""""�� (-�)""""" Δ-� [138]

2DZ -DGVI

�∑
1

"""""��� (-�)""""" Δ-� [138]
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