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Abstract

We present a systematic assessment of polygenic risk score (PRS) prediction across
more than 1,600 traits using genetic and phenotype data in the UK Biobank. We report
428 sparse PRS models with significant (p < 2.5 x 10-5) incremental predictive
performance when compared against the covariate-only model that considers age, sex,
and the genotype principal components. We report a significant correlation between the
number of genetic variants selected in the sparse PRS model and the incremental
predictive performance in quantitative traits (Spearman’s ⍴ = 0.54, p = 1.4 x 10-15), but
not in binary traits (⍴ = 0.059, p = 0.35). The sparse PRS model trained on European
individuals showed limited transferability when evaluated on individuals from
non-European individuals in the UK Biobank. We provide the PRS model weights on the
Global Biobank Engine (https://biobankengine.stanford.edu/prs).
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Introduction
Polygenic risk score (PRS), an estimate of an individual’s genetic liability to a trait or disease,
has been proposed for disease risk prediction with potential clinical relevance for some
traits[1,2]. Due to training data sample size increase and methods development advances for
variable selection and effect size estimation, PRS predictive performance has improved[3–14].
Rich phenotypic information in large-scale genotyped cohorts provides an opportunity to
systematically assess the predictive performance of PRS across a wide range of traits.

Here, we present significant sparse PRSs across 428 traits in the UK Biobank[15,16]. We
applied the recently developed batch screening iterative lasso (BASIL) algorithm implemented in
the R snpnet package[9], which takes individual-level genotype and phenotype data and
performs variable selection and effect size estimation simultaneously, across more than 1,600
traits (consisting of binary outcomes, including disease outcomes, and quantitative traits,
including biomarkers). We evaluated their predictive performance and their statistical
significance, resulting in 428 significant (p < 2.5 x 10-5) PRS models. We find a significant
correlation between the number of the genetic variants selected in the model and the
incremental predictive performance compared to the covariate-only models across quantitative
traits, but not for the binary traits. We assess the trans-ethnic predictive performance across
individuals from non-British white, African, South Asian, and East Asian ancestry in the UK
Biobank. We make the coefficients of the PRS models publicly available via the PRS map web
application on the Global Biobank Engine[17] (https://biobankengine.stanford.edu/prs).

Results

Significant sparse PRS models across 428 traits
To build sparse PRSs across a wide range of phenotypes, we compiled a total of 1,617 traits in
the UK Biobank and grouped them into trait categories, such as disease outcomes,
anthropometry measures, and cancer phenotypes (Supplementary Table 1, Methods). We
aggregated over one million genetic variants and allelotypes from the directly-genotyped
variants[16], imputed HLA allelotypes[18], and copy number variants[19], and characterized
significant sparse PRSs using the batch screening iterative lasso (BASIL) implemented in the R
snpnet package[9] with age, sex, and genotype principal components (PCs) as covariates
(Methods). We evaluated the predictive performance (r2 for quantitative traits and receiver
operating characteristic area under the curve [ROC-AUC] for binary traits) and their statistical
significance, which resulted in 428 significant (p < 2.5 x 10-5) sparse PRS models (Fig. 1).
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Figure 1. Significant sparse polygenic risk scores (PRSs) across 428 traits in the UK
Biobank. (A) The full list of 1,617 traits with predictive performance is shown as a sortable
table. (B) The predictive performance of PRS models for binary traits is summarized as PRS
score distribution stratified by case/control status (left) and odds ratio stratified by percentile bin
(right). (C) The predictive performance of PRS models for quantitative traits is summarized as a
heatmap comparing the predicted risk score (Z-score) and observed trait value (left) and mean
and standard error of trait values stratified by percentile bin (right). (D) The coefficients of the
selected features are shown as a lake plot. (E) The predictive performance evaluation in training
and test sets consist of individuals of white British ancestry, as well as additional sets consisting
of individuals from non-British white, African, South Asian, and East Asian ancestry groups in
the UK Biobank.

The basic covariates alone are already informative for phenotype prediction. To assess the
incremental utility of PRSs, we quantified the incremental predictive performance by comparing
the predictive performance of the full model that considers both genotypes and covariates and
that of the covariate-only model across the 428 traits with significant sparse PRS. We found
most traits have a modest increase in the effect sizes of the prediction with a few notable
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exceptions, such as celiac disease (ROC-AUC = 0.83 in the full model vs 0.57 in the
covariate-only model, p = 6.0 x 10-163), hair color (red) (ROC-AUC = 0.96 vs. 0.56, p < 1 x 10-300),
never smoker (ROC-AUC = 0.62 vs. 0.58, p < 1 x 10-300), heel bone mineral density (r2 = 0.20
vs. 0.05, p = 5.2 x 10-53), and blood and urine biomarker traits[20] (Fig. 2, Fig. 3).

Figure 2. Incremental predictive performance of the PRS model across the 428 traits with
significant PRSs. The predictive performance (ROC-AUC for 242 binary traits [left] and r2 for
186 quantitative traits [right]) of the full models that consider both the genotype and covariates
are compared against that of the covariate-only models, and their difference (the incremental
predictive performance) are shown as a histogram.

Sparse PRS models offer an interpretation of genomic loci underlying the
polygenic risk
For celiac disease, an autoimmune disorder that affects the small intestine from gluten
consumption, for example, the sparse PRS model consists of 428 variants that contain the
imputed HLA allelotypes and variants near the MHC region in chromosome 6[16,18]. The PRS
model also contains genetic variants in all other autosomes, including a previously implicated
missense variant in the chromosome 12 (rs3184504, log(OR) = 0.15 in multivariate PRS model)
in SH2B3 that encodes SH2B adaptor protein 3 involving in cellular signaling, hematopoiesis,
and cytokine receptors[21] (Fig. 3).
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Figure 3. The sparse PRS model and their predictive performance for celiac disease. (top)
the predictive performance of celiac disease PRS. (left) the celiac disease PRS distribution
(y-axis) in a hold-out test set stratified by the disease case status (x-axis). (right) the odds ratio
of the disease prevalence compared to the individuals with middle (40-60 percentile) PRS score
stratified by PRS percentile bins. The error bars represent standard error (SE). (bottom) the
coefficients of the celiac disease PRS model. The estimated effect size (y-axis) for each genetic
variant (x-axis) is shown. For coding variants and HLA allelotypes with large effect size
estimates, the gene symbols are annotated in the plot.

The size of the PRS model is correlated with the incremental predictive
performance in quantitative traits
The significant PRS models have a wide range of the number of variables selected in the
model, ranging from only one variable for iritis PRS (HLA allelotype, HLA-B*27:05, at the
well-established HLA-B*27 locus[22,23]) to 51,209 variants selected for standing height PRS
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(Fig. 4). We examined whether there is a relationship between the number of active variables in
the significant PRS model and the incremental predictive performance. While the two quantities
are significantly correlated in quantitative traits (Spearman’s ⍴ = 0.54, p = 1.4 x 10-15), it was not
the case for binary traits (⍴ = 0.059, p = 0.35), highlighting the presence of diverse genetic
architecture across disease outcomes.

Figure 4. Comparison of the effect size and the model size of sparse PRS. The number of
the genetic variants included in the model (size of the model, x-axis) and the incremental
predictive performance (effect size of the model, y-axis) are shown for binary traits (left) and
quantitative traits (right). The two quantities are correlated only in quantitative traits (Spearman’s
correlation test p = 0.35 for binary traits and p = 1.4 x 10-15 for quantitative traits). TTE:
time-to-event phenotype.

Sparse PRS models exhibit limited transferability across ancestry groups
While the majority of the participants in the UK Biobank are of European ancestry, the inclusion
of individuals from African and Asian ancestry enables an assessment of the trans-ethnic
performance of the PRS models. In addition to the hold-out test set that we derived from the
white British cohort, we focused on additional sets of individuals from non-British European
(non-British white, n = 24,905), African (n = 6,497), South Asian (n = 7,831), and East Asian (n
= 1,704) ancestry groups and quantified the incremental predictive performance of the PRS
model and its difference against the hold-out test set derived from the white British cohort (Fig.
5). Overall, the incremental predictive performance was comparable for non-British white
individuals, but the model suffers limited transferability for the non-European ancestry groups.
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Figure 5. Trans-ethnic predictive performance assessment in the UK Biobank. The
incremental predictive performance (incremental AUC for binary traits [left] and incremental r2

for quantitative traits [right]) was quantified in individuals in different ancestry groups in the UK
Biobank and was compared against that in the hold-out test set constructed from the individuals
in white British ancestry group. (Top) the difference in the incremental predictive performance
between the target group (x-axis, double-coded with color) and the source white British cohort.
(Bottom) comparison of the incremental predictive performance in the target group (color) and
that in the test set. A simple linear regression fit was shown for each ancestry group.
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Discussion
In this study, we performed a systematic scan of polygenic prediction across more than 1,600
traits and reported 428 significant sparse PRS models. We compared the number of
independent loci included in the model and their incremental predictive performance and found
a significant correlation between the two across quantitative traits but not within binary traits.

Like other PRS approaches that consider datasets from one source population in the PRS
training, our sparse model showed limited transferability across diverse ancestry groups[24,25].
When we assess the incremental predictive performance across ancestry groups by comparing
the full model consisting of the genetic data and basic covariates and the covariate-only model,
we found the binary traits, including disease outcomes, have lower transferability compared to
quantitative traits, including biomarkers, blood measurements, and anthropometric traits.

Given the medical relevance[26,27], we prioritized pathogenic and likely-pathogenic variants
reported in ClinVar[28] as well as predicted protein-truncating and protein-altering variants
(Methods). Still, there is no guarantee that the genetic variants included in the sparse PRS
models are causal variants, and it warrants further follow-up analysis with statistical
fine-mapping and detailed characterization of functional data at each locus.

The increased availability of PRS models across multiple traits[14] exhibits a wide range of
applications, including the improved genetic risk prediction of disease[20,29] and the
identification of causal relationships across complex traits[30]. We provide the results on the
Global Biobank Engine (https://biobankengine.stanford.edu/prs) and envision the resource will
serve as an important basis to understand the polygenic basis of complex traits.
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Methods

Compliance with ethical regulations and informed consent
This research has been conducted using the UK Biobank Resource under Application Number
24983, “Generating effective therapeutic hypotheses from genomic and hospital linkage data”
(http://www.ukbiobank.ac.uk/wp-content/uploads/2017/06/24983-Dr-Manuel-Rivas.pdf). Based
on the information provided in Protocol 44532, the Stanford IRB has determined that the
research does not involve human subjects as defined in 45 CFR 46.102(f) or 21 CFR 50.3(g).
All participants of the UK Biobank provided written informed consent (more information is
available at https://www.ukbiobank.ac.uk/2018/02/gdpr/).

Study population and genetic data
UK Biobank is a population-based cohort study collected from multiple sites across the U.K[15].
We used genotype datasets (release version 2 for the directly genotyped variants and the
imputed HLA allelotype datasets)[16], the CNV dataset[19], and the hg19 human genome
reference for all analyses in the study. To minimize the variabilities due to population structure in
our dataset, we restricted our analyses to unrelated individuals based on the following four
criteria[27,31] reported by the UK Biobank in the file “ukb_sqc_v2.txt”: (1) used to compute
principal components (“used_in_pca_calculation” column); (2) not marked as outliers for
heterozygosity and missing rates (“het_missing_outliers” column); (3) do not show putative sex
chromosome aneuploidy (“putative_sex_chromo- some_aneuploidy” column); and (4) have at
most 10 putative third-degree relatives (“excess_relatives” column). Using a combination of
genotype principal components (PCs) and the self-reported ancestry, we subsequently focused
on people of white British (n = 337,129), non-British white (n = 24,905), African (n = 6,497),
South Asian (n = 7,831), and East Asian (n = 1,704) ancestry as described elsewhere[20]. We
further randomly split the white British cohort into 70% training, 10% validation (to select the
optimal level of sparsity), and 20% test sets[20,32].

Phenotype definitions in the UK Biobank
We analyzed a wide variety of traits in the UK Biobank, including disease outcome[27,33], family
history [27,33], cancer registry data[27], blood and urine biomarkers[20], hematological
measurements, and other binary and quantitative phenotypes[31,32]. Briefly, for binary traits, we
performed manual curation of phenotypic definitions to define the case and control status, and
for quantitative traits, we took the median of non-NA values, as described elsewhere[31]. The
list of 1,617 traits with at least 100 cases (for binary traits) or non-NA measurements (for
quantitative traits) analyzed in this study is listed in Supplementary Table 1.

Construction of sparse PRS models
Using the batch screening iterative lasso (BASIL) algorithm implemented in the R snpnet
package[9], we constructed the sparse PRS models for the 1,617 traits. We included age, sex,
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and top ten genotype PCs computed for the white British subset of individuals in the UK
Biobank[20]. To prioritize coding variants over non-coding variants in linkage, we assigned three
levels of penalty factors (also known as penalty scaling parameter)[34]: 0.5 for pathogenic
variants in ClinVar[28] or protein-truncating variants according to Ensembl Variant Effect
Predictor (VEP)[35]-based variant annotation; 0.75 for likely pathogenic variants in ClinVar or
VEP-predicted protein-altering variants; and 1.0 for all other variants. In the regression model,
we used the Gaussian family and the r2 metric for quantitative traits whereas we used the
binomial family and the AUC-ROC metric for the binary traits as described elsewhere[9]. For
each trait, we fit a series of regression models with a varying degree of sparsity using the
training set and used the predictive performance evaluated in the validation set to select the
optimal level of sparsity. Using the individuals in the combined set of training and validation sets,
we refit the regression model with the selected sparsity as described before[9].

Significance and the trans-ethnic predictive performance of the PRS
models
We evaluated the predictive performance and the significance of each PRS model
independently. Specifically, we computed the score for each individual using both the PRS
model consisting of genetic variants and the covariate-only model consisting of age, sex, and
genotype PCs. For trans-ethnic evaluation of predictive performance, we refit the covariate-only
model for non-British white, African, South Asian, and East Asian groups using age, sex, and
the population-specific genotype PCs[20]. Across those individuals and the hold-out test set
from white British individuals, we fit a regression model, trait ~ age + sex + PCs + PRS, using a
generalized linear model (with gaussian family for quantitative traits and binomial family for
binary traits) and reported the p-value reported for the PRS term. We also computed the r2 or
ROC-AUC value for the full model containing both covariates and PRS and the covariate-only
model and computed the difference as the incremental predictive performance.

Correlation analysis of the number of genetic variants and predictive
performance of PRS models
We applied Spearman’s correlation test implemented in R to assess the rank correlation
between the size (the number of genetic variants included in the model) and the effect size (the
incremental predictive performance) of the PRS model.
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Supplementary Table 1
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