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Abstract. Fully coupled global climate models (GCMs) gen-

erate a vast amount of high-dimensional forecast data of the

global climate; therefore, interpreting and understanding the

predictive performance is a critical issue in applying GCM

forecasts. Spatial plotting is a powerful tool to identify where

forecasts perform well and where forecasts are not satisfac-

tory. Here we build upon the spatial plotting of anomaly cor-

relation between forecast ensemble mean and observations

to derive significant spatial patterns to illustrate the predic-

tive performance. For the anomaly correlation derived from

the 10 sets of forecasts archived in the North America Multi-

Model Ensemble (NMME) experiment, the global and lo-

cal Moran’s I are calculated to associate anomaly correla-

tions at neighbouring grid cells with one another. The global

Moran’s I associates anomaly correlation at the global scale

and indicates that anomaly correlation at one grid cell re-

lates significantly and positively to anomaly correlation at

surrounding grid cells. The local Moran’s I links anomaly

correlation at one grid cell with its spatial lag and reveals

clusters of grid cells with high, neutral, and low anomaly cor-

relation. Overall, the forecasts produced by GCMs of similar

settings and at the same climate centre exhibit similar clus-

tering of anomaly correlation. In the meantime, the forecasts

in NMME show complementary performances. About 80 %

of grid cells across the globe fall into the cluster of high

anomaly correlation under at least 1 of the 10 sets of fore-

casts. While anomaly correlation exhibits substantial spatial

variability, the clustering approach serves as a filter of noise

to identify spatial patterns and yields insights into the predic-

tive performance of GCM seasonal forecasts of global pre-

cipitation.

1 Introduction

Global climate models (GCMs) have been steadily improved

over the past decades and are being employed by major cli-

mate centres around the world to generate operational long-

range forecasts (Doblas-Reyes et al., 2013; Saha et al., 2014;

Bauer et al., 2015; Hudson et al., 2017; Kushnir et al., 2019),

providing physically based forecasts in comparison to con-

ventional statistical forecasts (Mason and Goddard, 2001;

Wu et al., 2009; Schepen et al., 2012). In particular, the fully

coupled GCMs assimilate world-wide observational infor-

mation to predict the global hydrological cycle (Merryfield et

al., 2013; Saha et al., 2014; Jia et al., 2015). Equipped with

physical and dynamical laws, GCMs can potentially make

forecasts of longer lead time and higher skill than statistical

models (Kirtman et al., 2014; Becker et al., 2014; Chen et al.,

2017). In terms of computation, global climate forecasting is

as complex as the simulation of the human brain and of the

evolution of the early universe (Bauer et al., 2015). Advances

in super-computing facilitate the forecasting and make GCM

forecasts readily available for hydrological, environmental,

and agricultural modelling (Sheffield et al., 2014; Vecchi et

al., 2014; Bellprat et al., 2019; Pappenberger et al., 2019;

Zhao et al., 2019a).
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GCMs generate a vast amount of high-dimensional fore-

cast data, including retrospective forecasts of past climate

and real-time forecasts (Kirtman et al., 2014; Saha et al.,

2014; Jia et al., 2015). Due to the complexity of atmospheric

processes and model physics, the predictive performance of

GCM forecasts is not uniform, but varies considerably across

the globe (Yuan et al., 2013; Tian et al., 2017; Zhao et al.,

2018). Therefore, interpreting and understanding the predic-

tive performance is a critical issue in the applications of

GCM forecasts (Doblas-Reyes et al., 2013; Saha et al., 2014;

Jia et al., 2015; Hudson et al., 2017; Wang et al., 2019a).

There are various metrics to verify the attributes of forecasts

(Murphy, 1993). For example, bias in percentage indicates

the extent to which the forecasts are persistently higher, or

lower, than the corresponding observations; probability inte-

gral transform (PIT) evaluates the reliability of the spread of

ensemble forecasts in capturing the distribution of observa-

tions; and the continuous ranked probability score (CRPS)

is a probability-weighted measure of the errors of ensem-

ble members in relation to the observations (Murphy, 1993;

Hersbach, 2000; Gneiting et al., 2007; Tian et al., 2018;

Wang et al., 2019b). The anomaly correlation that indicates

how well large (small) values of forecasts correspond to large

(small) values of observations is one of the most popular met-

rics (e.g. Yuan et al., 2011; Saha et al., 2014; Crochemore

et al., 2016; Hudson et al., 2017; Zhao et al., 2017a). Com-

pared to PIT that requires a diagnostic plot and CRPS that

relies on numerical integration, anomaly correlation is con-

ceptually simple, easy to implement, and also robust to miss-

ing and censored values (Yuan et al., 2011; Luo et al., 2013;

Slater et al., 2017).

Spatial plotting with latitude and longitude has been ex-

tensively used to handle the dimensionality for the verifica-

tion of GCM forecasts (Kirtman et al., 2014; Hudson et al.,

2017; Slater et al., 2017). The fact that forecasts are com-

monly generated by GCMs as grid-based data makes spatial

plotting a particular tool of choice for verification (Merry-

field et al., 2013; Saha et al., 2014; Jia et al., 2015). As to

anomaly correlation, spatial plotting overcomes tedious eye-

ball search by grid cell and is effective in locating where there

is a good correspondence between forecasts and observations

and where the correspondence is not satisfactory (Luo et al.,

2013; Saha et al., 2014; Crochemore et al., 2016; Zhao et al.,

2018, 2019b). Similarly, spatial plotting applies to other ver-

ification metrics, such as bias and CRPS, and facilitates the

examination of forecast attributes (Hersbach, 2000; Gneiting

et al., 2007; Kirtman et al., 2014).

The extensive use of spatial plotting underlines the im-

portance of testing the significance of spatial patterns. In

spatial statistics, one of the fundamental issues is “are the

spatial patterns displayed by the spatial plots significant in

some sense and therefore worth interpreting?” (Cliff and

Ord, 1981; Anselin, 1995; Getis, 2007). However, the test

of significance is commonly missing in the spatial plotting

of GCM forecasts. In other words, verification metrics, such

as anomaly correlation, are calculated for each grid cell and

then shown as they are. To some extent, the interpretation

of predictive performance depends on the colour schemes,

which are selected subjectively to represent the scale of veri-

fication metrics. There is the first law of geography – “every-

thing is related to everything else, but near things are more

related than distant things” (Tobler, 1970). As to spatial plot-

ting, the indication is that when verifying forecasts at one

grid cell, attention also needs to be paid to forecasts at sur-

rounding grid cells. For anomaly correlation, a grid cell with

high correlation between forecasts and observations can be

surrounded by grid cells with similarly high correlation or

by grid cells with low correlation. In the former case, the

grid cell is located in a region where the GCM forecasts tend

to perform well. But in the latter case, the high correlation

can be a suspicious outlier. Moreover, previous studies ob-

served grid cells with negative anomaly correlation; i.e. large

(small) values of forecasts correspond to small (high) values

of observations (Zhao et al., 2017b, 2018, 2019b). In such a

case, forecasts are cautiously wrong. Therefore, it is critical

to characterize the different cases in spatial plotting and test

whether the spatial patterns are significant and worth further

attention.

In this paper, we are motivated to introduce spatial statis-

tics (e.g. Di Luzio et al., 2008; Lu and Wong, 2008;

Woldemeskel et al., 2013) to investigate the spatial plotting

of anomaly correlation at the global scale. As will be shown

later in this paper, the technique of spatial clustering facili-

tates the identification of significant patterns of high, neutral,

and low anomaly correlation and provides an objective ap-

proach to interpreting the predictive performance of GCM

forecasts. For the purpose of inter-comparison, the examina-

tion of significant patterns in spatial plotting has been con-

ducted for 10 sets of GCM seasonal precipitation forecasts

in the North American Multi-Model Ensemble (NMME) ex-

periment (Kirtman et al., 2014; Ma et al., 2016; Zhang et al.,

2017). In the remainder of the paper, the dataset of GCM

seasonal forecasts is illustrated in Sect. 2; the spatial cluster-

ing using global and local Moran’s I is detailed in Sect. 3;

the results of anomaly correlation at the global scale and its

clustering are shown in Sect. 4; the discussion and conclu-

sions are respectively presented in Sects. 5 and 6.

2 Data description

The NMME builds on existing GCMs in North America to

provide quality-controlled forecast data to the community of

climate research and applications. More than 10 sets of GCM

precipitation forecasts have been spatially regridded and tem-

porally aggregated to form a consistent dataset (Kirtman et

al., 2014). Each set of forecasts overall has five dimensions.

They are (1) start time s, when the forecasts are initialized;

(2) lead time l, whose unit is month for the forecasts; (3) en-

semble member n, which is meant to represent forecast un-
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certainty; (4) latitude y; and (5) longitude x. Taking the pre-

cipitation forecasts of the Climate Forecast System version 2

(CFSv2, Saha et al., 2014) in NMME as an example, s is

the beginning of each month, and its value represents the

number of months since January 1960; l is 0, 1, . . . , 9; i.e.

the forecasts are for month 0 head (current month), month 1

ahead, . . . , and month 9 ahead; n is numbered from 1 to 24,

i.e. 24 ensemble members; y is from − 90 to 90, while x is

from 0 to 359; i.e. the spatial resolution is 1◦ by 1◦ (approx-

imately 100 km). In the meantime, NMME provides precip-

itation observations corresponding to the forecasts. Specifi-

cally, the Climate Prediction Center (CPC)’s merged analy-

sis of precipitation (CMAP; Xie and Arkin, 1997; Xie et al.,

2007), which is monthly, has been regridded to 1◦ resolution

to verify GCM forecasts (Kirtman et al., 2014; Chen et al.,

2017; Zhao et al., 2018).

Ten sets of precipitation forecasts, as well as CMAP ob-

servations, in the NMME are downloaded from the Inter-

national Research Institute at Columbia University (https:

//iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/, last

access: 2 January 2020). Their retrospective forecasts are

complete in the period from 1982 to 2010 (Merryfield et

al., 2013; Saha et al., 2014; Jia et al., 2015). In the mean-

time, their real-time forecasts are updated periodically in a

slightly different setting; for example, CFSv2 forecasts have

been generated since January 2011 using initial conditions of

the last 30 d, with four runs from each day (https://www.cpc.

ncep.noaa.gov/products/CFSv2/CFSv2_body.html, last ac-

cess: 2 January 2020). Basic information on the forecasts is

provided in Table 1. In the analysis, the attention is paid to

the retrospective forecasts:

FGCM =
[

fs,l,n,y,x

]

GCM
. (1)

In Eq. (1), f represents forecast values that are specified

by the five dimensions; F , which is the set of forecasts, is

marked by the GCM that generates the forecasts. It is noted

that, in NMME, FGCM are raw forecasts generated by GCMs

and are not bias-corrected or downscaled.

The observed precipitation corresponding to the forecasts

is denoted as

O =
[

ot,y,x

]

(t = s + l). (2)

As shown in Eq. (2), the observation in total has three dimen-

sions: time t , whose value is the addition of lead time l to start

time s in the alignment of observations with forecasts; lati-

tude y; and longitude x. It is pointed out that while F differs

by GCM, O is the same across the 10 sets of forecasts.

The start time s in Eqs. (1) and (2) comprises year k,

i.e. 1982, 1983, . . . , 2010, and month m, i.e. January, Febru-

ary, . . . , and December. The predictive performance of GCM

forecasts exhibits seasonality (Zhao et al., 2017a, b, 2018).

Accordingly, in the analysis, forecasts are selected by fix-

ing m while varying k, e.g. pooling forecasts initialized in

June 1982, June 1983, . . . , June 2010. The anomaly correla-

tion is calculated by relating forecasts to the corresponding

observations:

r =

∑

k

(

rfk − rf
)

(rok − ro)

√

∑

k

(

rfk − rf
)2

√

∑

k

(rok − ro)2
. (3)

The above formulation deals with k and omits other dimen-

sions, including m, l, y, and x, for the sake of simplicity. In

Eq. (3), rfk (rok) is the rank of year k’s forecast ensemble

mean (observation) in the 29 years’ ensemble mean (obser-

vations); and rf (ro) is the mean value of rfk (rok). In general,

the anomaly correlation characterizes how well large (small)

values of the ensemble mean correspond to large (small)

values of observations. Good (poor) correspondence makes

r tend towards 1 (−1).

With Eq. (3), the set of anomaly correlation between FGCM

and O is evaluated:

RGCM =
[

rm,l,y,x

]

GCM
, (4)

in which r and R are respectively the correlation coefficients

and the set of correlation. R, which differs by GCM, has four

dimensions: (1) month m, which substitutes start time s in

Eq. (1); (2) lead time l; (3) latitude y; and (4) longitude x.

Comparing Eq. (4) to Eq. (1), the dimension n of the ensem-

ble member is eliminated since the forecast ensemble mean

is taken in the calculation of anomaly correlation (Eq. 3).

For selected GCM forecasts in month m and at lead time l,

the anomaly correlation between ensemble mean and obser-

vation forms a two-dimensional array by latitude and lon-

gitude. Here, spatial plotting applies to the presentation of

anomaly correlation at the global scale. Following Eq. (4),

the set of anomaly correlation is denoted as

RGCM,m,l =
[

ry,x

]

. (5)

In Eq. (5), y and x specify the location of grid cells. Denoting

a grid cell as i, the subscripts of latitude y and longitude x

are merged into i for the purpose of simplicity:

RGCM,m,l = [ri] , (6)

in which ri represents the anomaly correlation at grid cell i,

of which the latitude is yi and the longitude is xi .

3 Methods

The spatial plotting employs certain pre-selected colour

schemes to represent the value of anomaly correlation and

show the grid cell-wise anomaly correlation as it is (e.g. Yuan

et al., 2011; Kirtman et al., 2014; Ma et al., 2016). Spa-

tial patterns that represent clusters of grid cells with high

anomaly correlation have been observed and highlighted in
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Table 1. Basic information on the 10 sets of GCM forecasts from the NMME experiment.

Climate Centre GCM Number of Lead

ensemble time

members (month)

Canadian Meteorological Center (CMC)

Canadian coupled model version 3
10 0–11

(CanCM3)

Canadian coupled model version 4
10 0–11

(CanCM4)

Center for Ocean-Land-Atmosphere Studies, Community climate system model
6 0–11

Rosenstiel School of Marine and Atmospheric version 3 (CCSM3)

Science (COLA-RSMAS) Community climate system model
10 0–11

version 4 (CCSM4)

Climate model version 2.1 (CM2p1) 10 0–11

Climate model version 2.1
10 0–11

(CM2p1-aer04)

Geophysical Fluid Dynamics Laboratory Climate model version 2.5 with

12 0–11(GFDL) forecast-oriented low ocean resolution

(CM2p5-FLOR-A06)

Climate model version 2.5 with

12 0–11forecast-oriented low ocean resolution

(CM2p5-FLOR-B01)

National Center for Atmospheric Research Community earth system model
10 0–11

(NCAR) version 1 (CESM1)

National Centers for Environmental Prediction Climate forecast system version 2
24 0–9

(NCEP) (CFSv2)

peer studies (e.g. Saha et al., 2014; Jia et al., 2015; Slater et

al., 2017). The spatial clustering associates anomaly correla-

tion at neighbouring grid cells with one another and tests the

significance of the patterns by random permutation (Anselin,

1995: Anselin et al., 2006; Rey and Anselin, 2010). Follow-

ing the standard formulations of spatial statistics, the global

Moran’s I is calculated to examine the association among

anomaly correlation at the global scale:

I =

1
N
∑

i=1

N
∑

j=1,j 6=i

wi,j

N
∑

i=1

N
∑

j=1,j 6=i

wi,j (ri − r)
(

rj − r
)

1
N

N
∑

i=1

(ri − r)2

, (7)

in which N is the number of grid cells indexed by i and j

across the globe; r is the mean value of anomaly correlation;

and wi,j is the spatial weighting coefficient that usually de-

cays with the distance between i and j (Miller, 2004; Hao

et al., 2016; Schmal et al., 2017). On the right-hand side of

Eq. (7), the denominator is the variance of ri across all the

grid cells; and the numerator is the spatially weighted and

averaged covariance between ri and rj . Generally, the value

of the global Moran’s I ranges from −1 to 1. The similarity

(dissimilarity) of ri to the surrounding rj makes I tend to-

ward 1 (−1), while the random distribution of anomaly cor-

relation makes I close to 0.

The spatial weight wi,j plays an important part in the cal-

culation of I (Rey and Anselin, 2010). Following the inverse

distance weighting (IDW) interpolation in the geosciences

(Di Luzio et al., 2008; Lu and Wong, 2008; Woldemeskel et

al., 2013), wi,j is formulated as follows:

wi,j =
1

d(i,j)2
, (8)

in which d(i, j) is the Euclidean distance between grid cells i

and j , i.e. d(i,j) =

√

(xi − xj )2 + (yi − yj )2. In addition,

the cut-off threshold for d(i, j) is set as 10◦ (approximately

1000 km) to reduce the computational burden. That is, wi,j is

set as 0 if d(i, j) exceeds 10.

Adding to the global Moran’s I , the local Moran’s I is

obtained to test whether ri at a certain grid cell i significantly

relates to the surrounding rj at the local scale (Anselin et al.,

2006; Hao et al., 2016; Yuan et al., 2018):

Ii =

(ri − r)

N
∑

j=1,j 6=i

wi,j (rj −r)

N
∑

j=1,j 6=i

wi,j

1
N

N
∑

i=1

(ri − r)2

. (9)

As shown in the above formulation, Ii is positive when ri and

the surrounding rj are similarly high or similarly low. On the
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other hand, Ii is negative when a high (low) value of ri cor-

responds to low (high) values of the neighbouring rj . Also,

Ii can be close to zero when ri or the surrounding rj is close

to the mean value. The significance of Ii is tested by ran-

dom permutations (Rey and Anselin, 2010). For each per-

mutation, the values of rj are randomly rearranged, and then

the local Moran’s I is re-calculated. The permutations ob-

tained a reference distribution for Ii under the null hypothesis

of randomly distributed anomaly correlation (Anselin, 1995;

Anselin et al., 2006; Rey and Anselin, 2010). Given a sig-

nificance level α, the quantiles Iα/2 and I1−α/2 are retrieved

from the reference distribution. Therefore, the two-tailed test

of Ii along with the anomaly correlation ri facilitates spatial

clustering and derives five cases:

casei =























HH
(

Ii > I1−α/2

)

∪ (ri > r)

HL
(

Ii < Iα/2

)

∪ (ri > r)

NS
(

Iα/2 ≤ Ii ≤ I1−α/2

)

LH
(

Ii < Iα/2

)

∪ (ri < r)

LL
(

Ii > I1−α/2

)

∪ (ri < r)

. (10)

As illustrated in Eq. (9), the first case HH, which is short for

high–high, indicates that a high value of ri is surrounded by

high values of rj ; the second case is HL – high–low – a high

value of ri surrounded by low values of rj ; the third case

is NS – not significant – the local association of ri with sur-

rounding rj is not significant; the fourth case is LH – low–

high – a low value of ri surrounded by high values of rj ;

and the fifth case is LL – low–low – a low value of ri sur-

rounded by low values of rj . In this way, the significance of

patterns, which generally represent clusters of grid cells with

high (low) anomaly correlation, is examined for spatial plot-

ting of anomaly correlation. α is set to be 0.05 in this paper.

4 Results

The spatial clustering is performed for the anomaly correla-

tion across the 10 sets of forecasts in NMME. In the anal-

ysis, the attention is mainly paid to June, July, and Au-

gust (JJA), which are generally boreal summer and austral

winter. Specifically, the start time of the forecasts is June,

and the forecasts at the lead times of 0, 1, and 2 months

are aggregated to form the seasonal forecasts. In the mean-

time, forecasts initialized in September of total precipitation

in September, October, and November (SON), forecasts ini-

tialized in December of total precipitation in December, (the

next) January, and (the next February) (DJF), and forecasts

initialized in March of total precipitation in March, April,

and May (MAM) are also investigated, with the results pre-

sented in the Supplement.

4.1 Anomaly correlation in JJA

The anomaly correlation between ensemble mean and ob-

servation is evaluated for the 10 sets of seasonal precipita-

tion forecasts. In Fig. 1, the spatial plots employ a diverging

red–blue colour scheme to represent the value of anomaly

correlation. Red pixels indicate positive correlation, while

blue pixels indicate negative correlation. For each set of fore-

casts, many instances of red pixels can be observed. That

is, forecasts exhibit promising performance, with ensem-

ble mean positively correlated with observation in many in-

stances. Meanwhile, there also exist instances of blue pixels.

In those instances, forecasts are generally not right because

large (small) values of ensemble mean coincide with small

(large) values of observation. While an inter-comparison of

the 10 sets of GCM forecasts in terms of anomaly correlation

is presented in Fig. 1, the anomaly correlation exhibits con-

siderable spatial variability that hinders the analysis across

the different sets of forecasts. As a result, it is none too easy

to identify regions where the forecasts persistently exhibit

promising predictive performance.

The first row of Fig. 1 is for the forecasts generated by two

Canadian GCMs. Although CanCM3 and CanCM4 share the

ocean components and have slightly different atmospheric

components (Merryfield et al., 2013), their anomaly corre-

lation shows differences. For example, in Asia and Africa,

the clusters of red pixels do not seem to overlap, but dif-

fer instead; and in Australia, the anomaly correlation is

high in south-eastern Australia and part of Western Aus-

tralia for CanCM3, while it is high in eastern Australia for

CanCM4. These results are in accordance with a previous

finding that CanCM3 and CanCM4 tend to complement each

other (Merryfield et al., 2013). The second row of Fig. 1

shows the performance of two sets of forecasts by COLA-

RSMAS GCMs. Complementary performance is no longer

seen. Instead, CCSM4 forecasts show higher anomaly corre-

lation and largely outperform CCSM3 forecasts in North and

South America, Africa, and Australia. The outperformance

can be attributed to the developments in ocean, atmospheric,

and land components and the new coupling infrastructure of

CCSM4 (Gent et al., 2011).

The third and fourth rows of Fig. 1 are for the forecasts

produced by four GFDL GCMs. In the third row, CM2p1 and

CM2p1-aer04 forecasts seem to exhibit similar anomaly cor-

relation, which tends to be high in north-eastern South Amer-

ica, western Africa, and south-eastern Australia. In the fourth

row, CM2p5-FLOR-A06 and CM2p5-FLOR-B01 forecasts

show similarly high anomaly correlation in north-eastern and

south-eastern South America, north-eastern Australia, and

part of West Australia. On the other hand, the anomaly cor-

relation differs from the CM2p1/CM2p1-aer04 forecasts to

the CM2p5-FLOR-A06/CM2p5-FLOR-B01 forecasts. Jia et

al. (2015) illustrated that CM2p5-FLOR GCMs have higher-

resolution atmospheric and land components but coarser-

resolution ocean components than CM2p1 GCMs. It is likely

that the changes in the setting of GCMs lead to the differ-

ence in predictive performance. The fifth row of Fig. 1 is

for NCAR-CESM1 and NCEP-CFSv2 forecasts. Compared

to CESM1 forecasts, CFSv2 forecasts tend to exhibit simi-

www.hydrol-earth-syst-sci.net/24/1/2020/ Hydrol. Earth Syst. Sci., 24, 1–16, 2020
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Figure 1. Anomaly correlation between forecast ensemble mean and observation for 10 sets of GCM forecasts of seasonal precipitation. The

forecasts are initialized in June and are for the total precipitation in June, July, and August.

Hydrol. Earth Syst. Sci., 24, 1–16, 2020 www.hydrol-earth-syst-sci.net/24/1/2020/
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lar anomaly correlation in South America and show higher

anomaly correlation in Asia, Africa, and Australia.

4.2 Anomaly correlation and its spatial lag in JJA

In spatial analysis, one critical issue is how an attribute at

one location relates to the attribute at neighbouring loca-

tions (Cliff and Ord, 1981; Anselin, 1995; Getis, 2007). For

anomaly correlation, the subplots of Fig. 1 imply the exis-

tence of some relationships as there are clusters of red pixels

and of blue pixels. As for the clusters, Fig. 2 presents a sta-

tistical test of the relationships using the global Moran’s I .

Specifically, for all the grid cells across the globe, the

anomaly correlation at each grid cell is plotted against the

spatially weighted and averaged anomaly correlation, i.e.

spatial lag (Miller, 2004; Hao et al., 2016; Schmal et al.,

2017), at the surrounding grid cells.

Figure 2 uses a viridis heatmap to indicate the density of

scatter points. It can be observed that the points frequently

fall in the first quadrant under all 10 sets of forecasts. In ac-

cordance with clusters of red pixels in Fig. 1, this result sug-

gests that many grid cells have positive anomaly correlation

and that they tend to be surrounded by grid cells with posi-

tive anomaly correlation. Meanwhile, some points are in the

third quadrant. This is due to the fact that some grid cells

have negative anomaly correlation and are surrounded by

grid cells with negative anomaly correlation. This outcome

corresponds to the existence of clusters of blue grid cells in

Fig. 1. Also, there are a few points in the second and fourth

quadrants. Overall, anomaly correlation at one grid cell posi-

tively relates to anomaly correlation at the neighbouring grid

cells. The global Moran’s I is above 0.500, with the p value

far smaller than 0.01, for all 10 sets of NMME seasonal fore-

casts. Therefore, it is statistically verified that at the global

scale, a grid cell with high (neutral, or low) anomaly correla-

tion tends to be surrounded by grid cells with high (neutral,

or low) anomaly correlation.

4.3 Spatial clustering in JJA

Furthermore, the local Moran’s I classifies the grid cells

across the globe into five cases under each of the 10 sets

of forecasts. In Fig. 3, the five cases are marked by differ-

ent colours. Specifically, case HH is in orange, case HL in

red, case NS in grey, case LH in green, and case LL in blue.

A prominent finding from the subplots of Fig. 3 is that the

three cases of HH, NS, and LL have more instances than the

other two cases of HL and LH. This result agrees with the

spatial clustering of anomaly correlation in Fig. 1 and with

the distribution of scatter points in Fig. 2. Comparing Fig. 3

to Fig. 1, it can be observed that orange regions generally

correspond to clusters of red pixels, which represent posi-

tive anomaly correlation, and that blue regions coincide with

clusters of blue pixels, which show negative anomaly corre-

lation. In the meantime, in-between orange and blue regions

are grey regions. The implication is that regions with high

and low anomaly correlation tend to be separated by regions

with neutral anomaly correlation. While the spatial variabil-

ity of anomaly correlation in Fig. 1 complicates the analysis

of predictive performance, the classification in Fig. 3 facili-

tates effective analysis across the 10 sets of GCM forecasts.

The orange regions that correspond to clusters of grid

cells with high anomaly correlation are of particular inter-

est. Three findings are made from the spatial extent of or-

ange regions. First of all, they tend to be similar under fore-

casts generated by the same climate centre. For example, or-

ange regions exist in a large part of South America for the

10 sets of forecasts. On the other hand, they are not as ex-

tensive in the Amazon Basin under the CMC1-CanCM3 and

CMC2-CanCM4 forecasts, while they tend to cover the Ama-

zon under the COLA-RSMAS-CCSM3 and COLA-RSMAS-

CCSM4 forecasts. The similarity versus difference could be

due to the fact that GCMs developed at the same climate cen-

tre tend to share certain ocean, atmospheric, and land com-

ponents (Gent et al., 2011; Merryfield et al., 2013; Jia et

al., 2015). Secondly, orange regions seem to be affected by

the setting of GCMs. There are four sets of forecasts by the

GFDL. In the western US, orange regions are extensive un-

der the GFDL-CM2p1 and GFDL-CM2p1-aer04 forecasts,

but tend to be limited under the GFDL-CM2p5-FLOR-A06

and GFDL-CM2p5-FLOR-B01 forecasts. This drastic differ-

ence can be due to the setting of FLOR, i.e. forecast-oriented

low ocean resolution (Vecchi et al., 2014; Jia et al., 2015).

Thirdly, there are substantial regional variations, possibly

due to the predictability of seasonal precipitation (Doblas-

Reyes et al., 2013; Becker et al., 2014; Zhang et al., 2017).

For example, orange regions cover large parts of Australia, in

particular south-western and south-eastern Australia. How-

ever, they are not as extensive in Europe, Asia, and Africa.

This is possibly due to the fact that the climate in Australia

is strongly affected by ENSO (Schepen et al., 2012; Wang

et al., 2012; Hudson et al., 2017) and that the 10 GCMs in

NMME tend to capture the effect of ENSO on the total pre-

cipitation in JJA.

The blue regions correspond to clusters of grid cells with

low anomaly correlation. They are generally indicative of lo-

cations where forecasts are not satisfactory. Under the 10 sets

of forecasts, blue regions can be observed in large parts of

Europe, Asia, Africa, Canada, and the eastern US. While or-

ange regions show some relationships with the source and

setting of GCMs, blue regions are more varying. In addition,

they tend to mix with grey regions, which are indicative of

neutral anomaly correlation, and also with red and green re-

gions. Generally, this outcome implies the difficulty of gen-

erating skilful climate forecasts at the global scale as there

are complex land–ocean–atmosphere processes (Bauer et al.,

2015; Kapnick et al., 2018; Kushnir et al., 2019). It is noted

that some red regions that represent case HL are observed to

be located inside blue regions. The implication is that some

grid cells may happen to exhibit high anomaly correlation

www.hydrol-earth-syst-sci.net/24/1/2020/ Hydrol. Earth Syst. Sci., 24, 1–16, 2020
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Figure 2. Scatter plots of anomaly correlation at one grid cell against the corresponding spatial lag, i.e. spatially weighted and averaged

anomaly correlation at surrounding grid cells. The density of points is estimated by the kernel density function and shown by the viridis

heatmap, with yellow (blue) colour indicating high (low) density.

but that their surrounding grid cells are of low anomaly cor-

relation. From the perspective of spatial statistics, the high

correlation is not trustworthy and can be an outlier.

4.4 Frequency of case HH in JJA

While the orange regions of case HH are indicative of

promising predictive performance, grid cells classified as this

case differ across the 10 sets of forecasts. To deal with the

spatial variation of case HH, the frequency that a grid cell

falls into orange regions is counted for Fig. 3. For one grid

cell, the frequency ranges from 0 to 10. That is, across the

10 sets of forecasts, one grid cell has a high anomaly cor-

relation and is surrounded by grid cells with high anomaly

correlation at the minimum for 0 times and at the maximum

for 10 times. Figures 4 and 5 illustrate the spatial and statis-

tical distributions of the frequency respectively.

Hydrol. Earth Syst. Sci., 24, 1–16, 2020 www.hydrol-earth-syst-sci.net/24/1/2020/
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Figure 3. Classification of grid cells across the globe into five cases based on spatial clustering of anomaly correlation. Case HH is marked

in orange, case HL in red, case NS in grey, case LH in green, and case LL in blue. H and L are respectively short for high and low; case HH

(HL, LH, and LL) indicates that a grid cell with high (high, low, and low) anomaly correlation is surrounded by grid cells with high (low,

high, and low) anomaly correlation. NS is short for not significant; case NS means that the anomaly correlation at a grid cell or surrounding

grid cells is neutral.

www.hydrol-earth-syst-sci.net/24/1/2020/ Hydrol. Earth Syst. Sci., 24, 1–16, 2020
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Figure 4. The spatial distribution of the frequency of case HH across the globe for the 10 sets of GCM forecasts of the total precipitation

in JJA.

Figure 5. Percentage (bar plot) and cumulative percentage (line plot) of the frequency of case HH under the 10 sets of GCM forecasts of the

total precipitation in JJA.

Substantial regional variation can be observed for the fre-

quency of case HH from Fig. 4. In North America, the fre-

quency is evidently higher in the western US than in the

eastern US, Canada, and Mexico. Globally, the frequency is

higher in South America than in Europe, Asia, and Africa.

Also, the frequency is high in Australia and South-east Asia.

Mason and Goddard (2001) elaborated on the relationship

between ENSO and global seasonal precipitation anomalies:

for the total precipitation in JJA, El Niño was shown to co-

incide with above-normal precipitation in parts of South and

North America and below-normal precipitation in parts of

Australia and South-east Asia; by contrast, the impact of

El Niño is not prominent for large parts of Europe, Asia, and

Africa. With Mason and Goddard’s finding, it is speculated

that the results in Fig. 4 to some extent reflect the impact of

ENSO at the global scale.

The percentage and cumulative percentage of the fre-

quency of case HH are shown by bar and line plots in Fig. 5

respectively. The frequency of 0 corresponds to a percentage

of nearly 20 %. This outcome means that about 20 % of the

grid cells across the globe do not fall into case HH in any of

the 10 sets of forecasts. Another interpretation of this result is

that about 80 % of the grid cells fall into case HH in at least 1

of the 10 sets of forecasts. This result is in contrast to Fig. 3,

suggesting that orange regions are limited under each of the

10 sets of forecasts. It highlights the spatial complementar-

ity among the multiple sets of GCM forecasts (Doblas-Reyes

et al., 2013; Merryfield et al., 2013; Jia et al., 2015). In the

meantime, the percentages corresponding to the frequencies

of 5, 6, . . . , 10 are all below 5 % and the cumulative percent-

age reaches 80 % at the frequency of 4. This result is due

to the performances of the different sets of forecasts not be-

ing the same. In other words, for certain regions, some sets

of GCM forecasts may be not satisfactory, while some other

sets of GCM forecasts can be promising. Overall, Fig. 5 sug-

gests that GCM forecasts in NMME can complement each

other (Wang et al., 2012; Becker et al., 2014; Kirtman et al.,

2014).

4.5 Frequency of case HH in SON, DJF, and MAM

Besides JJA, spatial clustering has been performed for the

anomaly correlation of GCM seasonal forecasts of total pre-

cipitation in SON, DJF, and MAM. Similarly, it is observed

Hydrol. Earth Syst. Sci., 24, 1–16, 2020 www.hydrol-earth-syst-sci.net/24/1/2020/
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Figure 6. As for Fig. 4 but for SON, DJF, and MAM.

that the anomaly correlation varies across the globe (Figs. S1,

S4, and S7 in the Supplement), correlates with its spatial lag

(Figs. S2, S5, and S8), and exhibits significant spatial pat-

terns (Figs. S3, S6, and S9). In addition to Figs. 4 and 5, the

frequency of case HH is counted for the other three seasons

and shown in Figs. 6 and 7.

ENSO is one of the most important drivers of global

climate (Mason and Goddard, 2001; Saha et al., 2014;

Bauer et al., 2015), and the CPC of NOAA has summa-

rized the correlation between ENSO and global precipi-

tation in different seasons (https://www.cpc.ncep.noaa.gov/

products/precip/CWlink/ENSO/regressions/geplr.shtml, last

access: 1 January 2020). In this paper, the results in Fig. 6

are associated with the global effects of ENSO. In SON,

the CPC shows that ENSO correlates negatively with pre-

cipitation in eastern Australia and South-east Asia and pos-

itively with precipitation in parts of the Middle East and

eastern Africa. From the upper part of Fig. 6, it is observed

that the frequency of case HH is high in these regions. In

DJF, ENSO is shown to correlate positively with precipi-

tation in southern North America and negatively with pre-

cipitation in northern South America. In these two regions,

the frequency of case HH is high (middle part of Fig. 6).

In MAM, ENSO is illustrated to correlate negatively with

precipitation in parts of South-east Asia, eastern Brazil, and

eastern Australia. Therein, the frequency of case HH seems

www.hydrol-earth-syst-sci.net/24/1/2020/ Hydrol. Earth Syst. Sci., 24, 1–16, 2020
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Figure 7. As for Fig. 5 but for SON, DJF, and MAM.

to be high (lower part of Fig. 6). Therefore, as previous stud-

ies found that GCMs in NMME generate skilful forecasts of

ENSO (e.g. Kirtman et al., 2014; Saha et al., 2014; Zhang

et al., 2017), Fig. 6 suggests that the skill, as is indicated by

anomaly correlation, of GCM forecasts in NMME can also

be related to ENSO. In Fig. 7, the percentage and cumulative

percentage of the frequency of case HH are illustrated for

SON, DJF, and MAM. Similarly to Fig. 5, the results show

the complementarity among the 10 sets of forecasts.

Besides ENSO, there are other drivers of global climate.

For example, North Atlantic Oscillation (NAO) and Arctic

Oscillation (AO) extensively affect the climate in Europe,

Asia, and North America (Hurrell et al., 2001; Ambaum et

al., 2002). Several sea surface temperature indices of the At-

lantic and Indian oceans and ENSO jointly impact the cli-

mate in Africa (Rowell, 2013). As can be observed from

Figs. 4 to 7, there is still substantial room for improvement

of seasonal precipitation forecasts for large parts of Europe,

Asia, and Africa. The overall neutrally skilful precipitation

forecasts in these regions can possibly be due to GCM for-

mulations of other climate drivers not being as effective as

the formulations of ENSO. In the meantime, the difficulty

of global climate forecasting due to spatially–temporally

varying teleconnections between regional precipitation and

global climate drivers is noted (Merryfield et al., 2013; Saha

et al., 2014; Jia et al., 2015; Hudson et al., 2017; Kushnir et

al., 2019).

5 Discussion

This paper proposes to use spatial clustering to identify sig-

nificant spatial patterns (Anselin, 1995; Miller, 2004; Schmal

et al., 2017) from spatial plots of anomaly correlation, which

have been widely used to illustrate the predictive perfor-

mance of GCM forecasts. The test of significance is based

on global and local Moran’s I . The global Moran’s I indi-

cates that at the global scale anomaly correlation at one grid

Hydrol. Earth Syst. Sci., 24, 1–16, 2020 www.hydrol-earth-syst-sci.net/24/1/2020/
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cell significantly relates to anomaly correlation at neighbour-

ing grid cells, and the local Moran’s I reveals clusters of grid

cells with high anomaly correlation. Across the 10 sets of

GCM forecasts in NMME, the clusters are observed in dif-

ferent regions across the globe, which suggests that the skill

of forecasts differs from region to region; in the meantime,

the clusters vary by season owing to the seasonality of the

skill of GCM forecasts (Doblas-Reyes et al., 2013; Becker

et al., 2014; Yuan et al., 2015; Hudson et al., 2017; Kushnir

et al., 2019). To test whether the spatial patterns are robust,

the observations of precipitation are also sourced from the

Global Precipitation Climatology Centre (GPCC) (Becker et

al., 2011; Schamm et al., 2014). The anomaly correlation is

re-calculated, and the spatial clustering is re-conducted. The

results of GPCC precipitation, which are shown in Figs. S10

to 25, are overall similar to the results of CMAP precipi-

tation. In particular, as to the two datasets of precipitation

observations, the spatial distributions of case HH resemble

those in JJA (Figs. 4 and S10) and also in SON, DJF, and

MAM (Figs. 6 and S12). This outcome highlights the exis-

tence of significant spatial patterns and confirms that the spa-

tial clustering can serve as an effective tool to yield insights

into the predictive performance of GCM forecasts.

The spatial clustering ties anomaly correlations at neigh-

bouring grid cells to one another and converts the continuous

anomaly correlations into five categorical cases. Similarly to

the technique of a moving average in time-series analysis,

the categorical cases serve as a filter to reduce noise for the

identification of spatial patterns. They handle the spatial vari-

ability of anomaly correlation and facilitate analysis across

the 10 sets of forecasts. It is illustrated that the forecasts

produced by the same climate centre tend to exhibit simi-

lar predictive performance and that changes in the setting of

GCMs lead to changes in the predictive performance. Given

that the global and local Moran’s I are flexible and easy

to compute, they are ready to be extended in future analy-

sis to other datasets of forecasts, such as forecasts generated

by GCMs in Europe and Asia or by regional climate mod-

els (RCMs) (Alfieri et al., 2013; Bellprat et al., 2019; Kushnir

et al., 2019). Also, the forecasts can be verified using global

and regional datasets of precipitation (Funk et al., 2015; Zhao

et al., 2017a, b). A more extensive investigation would con-

tribute to better understanding of the predictive performance

and illustrate the advantages of different sets of forecasts.

Of particular interest is to explore which forecasts achieve

promising predictive performance in large parts of Europe,

Asia, and Africa. In the meantime, it is meaningful to ac-

count for the dynamics of global climate and investigate the

model physics that leads to the improved performance.

The spatial clustering is a popular approach to geograph-

ical, ecological, and environmental modelling (e.g. Anselin,

1995; Anselin et al., 2006; Miller, 2004; Hao et al., 2016;

Schmal et al., 2017). Meanwhile, its use appears to be un-

popular in the forecasting field. A possible cause is that the

objective of forecasting is usually location-specific. In other

words, forecasts are produced for a certain site/watershed

and then verified using the corresponding observations, of

which the process does not involve other sites/watersheds.

In this paper, the analysis of GCM forecasts in NMME re-

veals that forecasts at neighbouring locations positively re-

late to one another. The indication is that the skill at one lo-

cation can to some extent be inferred from adjacent locations.

This result facilitates a new perspective for the verification of

GCM forecasts. If a grid cell with high anomaly correlation

is surrounded by grid cells with high anomaly correlation,

then the promising predictive performance at that grid cell

can be confirmed. On the other hand, if the surrounding grid

cells have low, or even negative, anomaly correlation, then

the high anomaly correlation is identified as a suspicious out-

lier. Under that circumstance, further examination of the pre-

dictive performance is required to avoid undue optimism.

6 Conclusions

Fully coupled GCMs perform physically based forecasting

of the global climate and generate a vast amount of spatial–

temporal forecast data. The predictive performance is of both

societal and scientific importance in the applications of these

GCM forecasts. Focusing on the anomaly correlation be-

tween forecast ensemble mean and observation, we have con-

ducted in-depth spatial analysis for 10 sets of GCM forecasts

in NMME and identified significant patterns from the spa-

tial plotting of anomaly correlation. In the analysis of spatial

clustering, grid cells across the globe are classified into five

categories – HH, HL, NS, LH, and LL – depending on the

anomaly correlation at that grid cell and the surrounding grid

cells. The regions of grid cells with high, neutral, and low

anomaly correlation are effectively identified. Further, effec-

tive inter-comparison across multiple sets of GCM forecasts

is facilitated. While the analysis is concentrated on the spa-

tial plotting of anomaly correlation, the framework readily

applies to other metrics of GCM forecasts, such as bias, relia-

bility, and skill. Moreover, the framework can be extended to

GCM forecasts of other climate variables, for example tem-

perature and wind speed, serving as a tool to explore GCM

forecasts and interpret the predictive performance.

Data availability. Both the forecasts and the observations

can be downloaded from the International Research Institute

for Climate and Society, Earth Institute, Columbia University

(https://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/,

https://doi.org/10.1175/bams-d-12-00050.1, Kirtman et al., 2014).
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