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Abstract— With the boom of software-as-a-service and social 
networking, web-based single sign-on (SSO) schemes are being 
deployed by more and more commercial websites to safeguard 
many web resources. Despite prior research in formal 
verification, little has been done to analyze the security quality 
of SSO schemes that are commercially deployed in the real 
world. Such an analysis faces unique technical challenges, 
including lack of access to well-documented protocols and code, 
and the complexity brought in by the rich browser elements 
(script, Flash, etc.).  In this paper, we report the first “field 
study” on popular web SSO systems. In every studied case, we 
focused on the actual web traffic going through the browser, 
and used an algorithm to recover important semantic 
information and identify potential exploit opportunities. Such 
opportunities guided us to the discoveries of real flaws. In this 
study, we discovered 8 serious logic flaws in high-profile ID 
providers and relying party websites, such as OpenID 
(including Google ID and PayPal Access), Facebook, JanRain, 
Freelancer, FarmVille, Sears.com, etc. Every flaw allows an 
attacker to sign in as the victim user. We reported our findings 
to affected companies, and received their acknowledgements in 
various ways. All the reported flaws, except those discovered 
very recently, have been fixed. This study shows that the 
overall security quality of SSO deployments seems worrisome. 
We hope that the SSO community conducts a study similar to 
ours, but in a larger scale, to better understand to what extent 
SSO is insecurely deployed and how to respond to the situation. 

Keywords— Single-Sign-On, Authentication, Web Service, 
Secure Protocol, Logic Flaw 

1. INTRODUCTION 
Imagine that you visit Sears.com, a leading shopping 

website, or using Smartsheet.com, a popular project 
management web app, and try to get in your accounts there. 
Here is what you will see (as in Figure 1):  Sears allows you 
to sign in using your Facebook account, and Smartsheet lets 
the login go through Google. This way of authentication is 
known as single sign-on (SSO), which enables a user to log 
in once and gain access to multiple websites without the 
hassle of repeatedly typing her passwords. Web SSO is 
extensively used today for better user experience. According 
to a recent survey, a majority of web users (77%) prefer web 
SSO to be offered by websites [7]. 

 
     

 

Figure 1: Facebook login on Sears and Google login on Smartsheet 
SSO systems such as Kerberos have been there for 

years. However, never before has the approach seen such 

extensive commercial deployments as what happen on 
today’s web, thanks to the increasing popularity of social 
networks, cloud computing and other web applications. 
Today, leading web technology companies such as 
Facebook, Google, Yahoo, Twitter and PayPal all offer SSO 
services. Such services, which we call web SSO, work 
through the interactions among three parties: the user 
represented by a browser, the ID provider (a.k.a, IdP, e.g., 
Facebook) and the relying party (a.k.a, RP, e.g., Sears). Like 
any authentication scheme, a secure web SSO system is 
expected to prevent an unauthorized party from gaining 
access to a user’s account on the RP’s website. Given the 
fact that more and more high-value personal and 
organizational data, computation tasks and even the whole 
business operations within organizations are moving into 
the cloud, authentication flaws can completely expose such 
information assets to the whole world.  

Motivation of this research. Given the critical role of 
SSO today, it becomes imperative to understand how secure 
the deployed SSO mechanisms truly are. Answering this 
question is the objective of our research.  

Actually, SSO has been studied in the protocol 
verification community for a while, which we will discuss 
in the related work section. The main focus of these studies 
was to design formal methods to find protocol flaws. 
However, no prior work includes a broad study on 
commercially deployed web SSO systems, a key to 
understanding to what extent these real systems are subject 
to security breaches. Moreover, even though formal 
verifications are demonstrated to be able to identify 
vulnerabilities in some SSO protocols [2], they cannot be 
directly applied here to answer our question, due to the 
following limitations. First, the way that today’s web SSO 
systems are constructed is largely through integrating web 
APIs, SDKs and sample code offered by the IdPs. During 
this process, a protocol serves merely as a loose guideline, 
which individual RPs often bend for the convenience of 
integrating SSO into their systems. Some IdPs do not even 
bother to come up with a rigorous protocol for their service. 
For example, popular IdPs like Facebook and Google, and 
their RPs either customize published protocols like OpenID 
or have no well-specified protocols at all. Second, the 
security guarantee an SSO scheme can achieve also 
intrinsically depends on the system it is built upon.  
Vulnerabilities that do not show up on the protocol level 
could be brought in by what the system actually allows each 
SSO party to do: an example we discovered is that Adobe 
Flash’s cross-domain capability totally crippled Facebook 
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SSO security (Section 4.2). Finally, formal verification on 
the protocol level cannot find the logic flaws in the way that 
the RP misuses the results of an SSO for its decision-
making. For example, we found that the RPs of Google ID 
SSO often assume that message fields they require Google 
to sign would always be signed, which turns out to be a 
serious misunderstanding (Section 4.1). These problems 
make us believe that a complete answer to our question can 
only be found by analyzing SSO schemes on real websites.    

Challenge in security analysis of real-world SSO. 
Security analysis of commercially deployed SSO systems, 
however, faces a critical challenge: these systems typically 
neither publish detailed specifications for their operations 
nor have their code on the RP and IdP sides accessible to the 
public. What is left to us is nothing more than the web 
traffic that goes through the browser.  On the bright side, 
such information is exactly what the adversary can also see. 
This makes our analysis realistic: whatever we can discover 
and exploit here, there is no reason why a real-world 
attacker cannot do the same.  

Given our limited observation of the interactions 
between commercial IdPs and their RPs (as shown in Figure 
2), we have to focus our analysis on the traffic and 
operations of the browser. Fortunately, the browser actually 
plays a critical role in web SSO. More specifically, an SSO 
system is typically built upon the RP’s integration of the 
web APIs exposed by the IdP. Through these APIs, the RP 
redirects the browser to the IdP to authenticate the user 
when she attempts to log in. Once succeeds, the browser is 
given either a certified token for directly signing into the RP 
(the case of Smartsheet) or a secret token that the RP can 
use to acquire the user’s identity and other information from 
the IdP (the case of Sears). Note that during this process, the 
browser must be bound to the authentication token to prove 
to the RP the user’s identity that the browser represents. 
This requires the critical steps of an SSO, e.g., passing of 
the token, to happen within the browser. The browser-
centric nature of web SSO makes it completely realistic to 
analyze the browser traffic to identify logic flaws.   

 
Figure 2: an SSO triangle and our visibility as an outsider 
 Our study and findings. The web services/websites 

we investigated include high-profile systems that utilize the 
aforementioned IdPs. Our study shows that not only do 
logic flaws pervasively exist in web SSO deployments, but 
they are practically discoverable by the adversary through 
analysis of the SSO steps disclosed from the browser, even 
though source code of these systems is unavailable. The 
web SSO systems we found to be vulnerable include those 
of Facebook, Google ID, PayPal Access, Freelancer, 
JanRain, Sears and FarmVille. All the discovered flaws 
allow unauthorized parties to log into victim user’s 
accounts on the RP, as shown by the videos in [33]. We 

reported our findings to related parties and helped them fix 
those bugs, for which we were acknowledged in various 
ways, e.g., public recognitions, CEO’s thank and monetary 
reward, which we will mention in Section 4.  

Our methodology. When investigating an SSO case, 
our analysis begins with an automated black-box test on the 
HTTP messages, which the browser passes between the RP 
and the IdP for invoking the APIs on either side. We call 
these messages browser relayed messages (BRMs). This 
test identifies the HTTP field that carries the authentication 
token and other fields that directly or indirectly affect either 
the value of the token or the destination it will be sent to 
(e.g., a reply URL). What we are interested in is the subset 
of these fields that the adversary could access under 
different adversary assumptions that we will describe in 
Section 2.2. Once such knowledge has been gathered by the 
automatic test, we move on to understand whether the 
adversary has the capability to forge the token that is 
supposedly authentic or steal the token that is supposedly a 
secret. Oftentimes, this brings us directly to a set of specific 
technical questions that serve as sufficient conditions for an 
exploit to succeed. These questions are answered by doing 
more insightful system testing or by looking for knowledge 
from domain experts. Our experience proves that this 
analysis methodology indeed gives effective guidance in 
finding real-world SSO logic flaws.  

Roadmap. The rest of the paper is organized as follows: 
Section 2 offers the background about web SSO and the 
adversary models we studied; Section 3 a number of basic 
concepts that Section 4 will base on, and our tool to extract 
basic ground truths of an SSO scheme; Section 4 presents 
the main study of this paper; Sections 5 and 6 discuss our 
retrospective thought and related work; Section 7 concludes. 

2. BACKGROUND 
2.1. Web Single Sign-On: a View from the Browser 

SSO is essentially a process for an IdP to convince an 
RP that because this browser has signed onto the IdP as 
Alice, this same browser is now granted the capability to 
sign onto the RP as Alice. The tricky part here is that the 
IdP must bind Alice’s capability to the correct browser that 
truly represents Alice. In all existing SSO systems, such a 
binding is through proof-by-possession: Alice’s browser 
needs to present to the RP a token issued by the IdP to 
demonstrate that it possesses the capability that the IdP 
grants to Alice. Security of an SSO scheme depends on how 
the token is handled, so the browser naturally undertakes 
many critical steps, and thus is the focus of our investigation.  

Browser relayed message (BRM). An SSO process 
can be described as a sequence of browser relayed messages 
exchanged between the RP and the IdP. Typically, an HTTP 
communication can be thought of as a sequence of request-
response pairs, as shown in Figure 3 (upper). Each pair 
consists of an HTTP request Xa, where X is the number of 
requests the browser has made (i.e., 1a, 2a, etc.), and its 
corresponding HTTP response Xb (1b, 2b, etc.) to be sent 

browser 

 IdP RP
Visible to us Blackbox for us

366



 
 

back from the server (either the RP or the IdP). A browser 
relayed message (BRM) refers to a response message Xb 
followed by a request (X+1)a in the next request-response 
pair, as illustrated in the figure. 

 
Figure 3: upper: a browser-relayed message (BRM) consists of a 

response and the next request; lower: a sample SSO process 
Each BRM describes a step of the SSO in which the 

server handler (e.g., a web API) of step X passes data to the 
server handler of step X+1, with the browser state 
piggybacked. The entire SSO process is bootstrapped by 
request 1a sent to the RP. It triggers BRM1, which is, for 
example, for the RP to declare its website identity to the IdP. 
More BRMs may occur as needed afterwards. The last BRM 
(e.g., BRM5 in Figure 3 (lower)) finally convinces the RP 
of the user’s identity that the browser represents. 

A BRM can be, for example, (1) an HTTP 3xx 
redirection response (2) a response including a form for 
automatic submission, or (3) a response with a script or a 
Flash object to make a request. In this paper, we do not 
differentiate these implementations and instead, describe 
each BRM in a format described by the following example: 
 src=a.com  dst=Facebook.com/a/foo.php 

Set-cookies: sessionID=6739485 
Arguments: x=123 & user=john 
Cookies: fbs=a1b2c3 & foo=43da2c2a 

Intuitively, this BRM is interpreted as: “a.com (source 
server) asks the browser to set cookie sessionID = 
6739485 for its domain and to send a request to 
destination URL Facebook.com/a/foo.php; the request 
contains arguments x=123 and user=john provided by 
a.com, as well as cookies fbs=a1b2c3 and 
foo=43da2c2a stored in the browser for the domain 
Facebook.com.” In the above example, each underlined item 
is called an element, which includes the BRM’s source, 
destination, or other name-value pairs of set-cookies, 
arguments and cookies. 
2.2. Threat and Adversary Model  

Threat. Web SSO faces various security and privacy 
threats, as studied in prior research [29][30][31][32], which 
we will describe in the related work section. Our research 
focuses on the type of security flaws that completely defeats 
the purpose of authentication: that is, the unauthorized party 
Bob signs in as the victim user Alice.  

Adversary’s roles. When evaluating the threat from the 
malicious party Bob, we need to understand who he can 
communicate with and what roles he can play in an SSO 
process. It is easy to see that Bob can actually interact with 

all SSO parties: not only can he talk to the RP and the IdP, 
but he can also set up a website, which, once visited by 
Alice, can deposit web content to Alice’s browser. Such 
interactions are described in Figure 4.  

 
Figure 4: possible communications when Bob is involved 
From the figure, we can see that because of Bob’s 

involvement in the communication, there are four possible 
SSO triangles similar to the one shown in Figure 2. These 
SSO triangles are Alice-IdP-Bob, Bob-IdP-RP, Alice-IdP-
RP and Alice-Bob-RP. In our study, we did not consider the 
last one, in which Bob acts as the IdP and can steal Alice’s 
authentication information through phishing, as the focus of 
our research is logic flaws in SSO systems, not social 
engineering. In the remaining three relations described as 
scenarios (A), (B) and (C) respectively in Figure 5, Bob’s 
roles allow him to identify and exploit SSO vulnerabilities. 
Specifically, in (A), Bob is a client in an SSO and attempts 
to convince the RP that his browser represents Alice, 
assuming that he knows Alice’s username through a prior 
communication; in (B), when Alice visits Bob's website, 
Bob acts as an RP to the IdP, in an attempt to get Alice's 
credential for the target RP; in (C), Bob leaves malicious 
web content in Alice’s browser during her visiting of his 
website, which can perform SSO operations through 
sending requests to the IdP and the RP. Of course, these 
three scenarios are just high-level strategies. How to carry 
out the strategies is exactly what we need to figure out from 
the study to be presented next. 

 
Figure 5: three basic types of exploitations by Bob 

3. KEY CONCEPTS IN BRM-GUIDED ANALYSIS  
The main findings of our study will be presented in 

Section 4, but in order to clearly explain the vulnerabilities 
and how we discovered them step-by-step, we need to 
introduce in this section some important basic concepts that 
section 4 will base upon. These concepts are derived from 
features in BRM traces by an automatic tool that we built, 
namely the BRM analyzer.  
3.1. The BRM Analyzer 

Our BRM analyzer was designed to perform a black-
box, differential analysis on BRM traces. The analyzer 
needs to capture/parse BRMs and further modify/replay 
HTTP requests. To this end, we installed Fiddler [15], a 
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web proxy capable of uncompressing/decoding/parsing all 
HTTP messages, on the browser machines used in our 
research. We also utilized Firefox’s debugging tool Firebug 
[16] to modify and replay browser requests. 

Figure 6 shows how the analyzer works. To conduct an 
analysis, we need two test accounts (i.e., user1 and user2, 
with different user names, email addresses, etc.) to collect 
three traces, including two for user1’s logins from two 
different machines and one for user2’s login from one 
machine, which serve as the input to the analyzer. Each 
trace records all the BRMs observed by the browser during 
a login. These traces are processed by the analyzer through 
three steps (Figure 6), which perform comparisons, regular 
expression matching and some dynamic tests. These steps 
aim at identifying and labeling key elements in an SSO and 
other elements related to these elements. Their output 
describes the elements and their relations under the three 
adversarial scenarios in Figure 5.  

 
Figure 6: input, output and the three steps of the BRM analyzer 

In the rest of the section, we elaborate these steps, 
which include syntactic labeling, semantic labeling and 
adversary accessibility labeling, using the following raw 
trace as an example.  
BRM1: src=RP  dst=http://IdP/handler.php 
    Arguments: notifyURL=http://RP/auth.php 
    Cookies: sessionID=43ab56c2 
BRM2: src=IdP dst=http://RP/auth.php 
    Arguments: username=Alice & sig=11a3f69 

Syntactic labeling. The first step of our analysis is to 
determine the syntactic types of individual elements in 
BRMs. Table 1 lists all the types with their examples. The 
lexical grammar we used to recognize these types is 
straightforward, which we do not elaborate here due to the 
space limitation. Our analyzer performs such type 
recognition using a single trace, labeling each element it 
identifies. For example, for the element 
“notifyURL=http://RP/auth.php”, the analyzer attaches a 
label [URL] to it. To ensure the correctness of such labeling, 
our approach automatically compares the types of the same 
element (e.g., notifyURL) across all three traces: once an 
inconsistency is found, it reports to the human analyst for 
reconciliation, though this happened rarely in our study.  

Table 1: types 
Label Example value 
INT (decimal no longer than 4 digits) 123  
WORD Alice 
BLOB (decimal longer than 4 digits, or 
a hexadecimal or alphanumeric number) 

43ab56c2 

URL http://RP/auth.php 
LIST (x, y, z) 

Semantic labeling. After the types of individual 
elements are labeled, our analyzer moves on to identify their 
semantic meanings. Table 2 summarizes the semantic 
attributes defined in our research, which are obtained 
through a series of black-box tests described below. Note 
that we include the descriptions for “UU (user-unique)”, 
“MU (client-machine-unique)”, “SU (session-unique)”, “BG 
(browser-generated)”, “SIG? (signature-like)” and “NC 
(newly-created)” in Table 2, since they are straightforward.  

Table 2: semantic attributes 
UU (user-unique): We compare the three input traces. An 
element is labeled “UU” if it has an identical value in the two 
traces of user1’s logins, and a different value in the trace of 
user2’s login. This element holds a value unique to the user.  
MU (client-machine-unique): An element is labeled “MU” if it 
has an identical value in the two users’ login traces on 
machine1, and a different value in the trace of user1’s login on 
machine2.  
SU (session-unique): An element is labeled “SU” if it has 
different values in all three input traces.  
BG (browser-generated): an element not included in the 
response, but appearing in the request that follows. 
SIG? (signature-like): It is a BLOB element whose name 
contains the substring “sig”. Such an element is likely a 
signature. We need a replay test to confirm it. 
pChain (propagation chain): An element uses this chain to find 
all elements in the trace that have the same value as this 
element.
NC (newly-created): it is an element whose pChain is null, 
indicating that the element does not come from a prior BRM. 
SIG (signature): It indicates an element confirmed as a 
signature. We create a data structure to describe its properties, 
including its signer and whether it covers the entire argument 
list or only selectively.
SEC (secret): it indicates a secret specific to the current session 
and necessary for the success of the authentication.
“!” (must-be): When a src value of a BRM is prefixed with this 
label, it means that the element must have this value in order for 
the authentication to succeed.  

pChain (propagation chain). To identify the elements 
accessible to the adversary under different circumstances, 
we need to understand how the value of an element is 
propagated to other elements across different BRMs. To this 
end, our analyzer attaches to every element a pChain 
attribute that serves to link related elements together. In the 
following we describe how to discover such connections: 
(1) for each element except src and dst (see the example) 
in a BRM, the analyzer compares its value with those of the 
elements on all its predecessors in a reverse chronological 
order; the element’s pChain is set to point to the first (i.e., 
chronologically latest) element on the prior BRMs that 
contains the identical value; (2) we also set pChain of the 
src element on every BRM to point to the dst element of 
its prior BRM.  

SIG label. To identify a signature on a BRM, we first 
look for those labeled as “SIG? (signature-like)” and “NC 
(newly created)”. The presence of these two labels is a 
necessary yet insufficient condition for a signature in most 
web SSO systems, as discovered in our study. To avoid 
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false positives, our analyzer performs a dynamic test on 
such an element to find out whether it indeed carries a 
signature. Specifically, our analyzer first changes the 
element’s value and replays the message: if the message is 
rejected, then the element is labeled as SIG. When this 
happens, the analyzer further adds and removes the elements 
in the message to find out those protected by the signature. 
In all the cases we studied, a signature either covered the 
whole URL, the whole argument list or some elements in 
the argument list. In the last situation, the message also 
contains a LIST element that indicates the names of 
protected elements.  

SEC label. For every newly-created session-unique 
BLOB element (i.e., those with NC, SU and BLOB labels), 
the analyzer also changes a digit of its value and replays the 
message. If the message is rejected, this element is labeled 
SEC to indicate that it is a secret. 

“!” (must-be) label. If a signature or a secret is created 
by a party in a benign scenario, then even in an attack 
scenario, it has to be created by the same party in order for 
the attack to succeed. In other words, no signature or secret 
can be faked by another party. Thus, for every BRM 
containing a newly created element of SIG or SEC, the 
analyzer prefixes the src value of the BRM with a “!”, 
which also propagates to the dst of its prior BRM. 

Ignoring pre-existing cookies. Our analysis only cares 
about the cookies set after a user starts an SSO process, so 
any cookie whose corresponding set-cookie element is not 
on the trace does not need to be analyzed, i.e., if a cookie’s 
pChain does not lead to a set-cookie element, we ignore it. 

Let’s look back at the sample trace. After it has been 
processed by the analyzer, we obtain a trace below. Note 
that the analyzer removes the concrete values of all elements 
except those of src, dst, URL and LIST elements, and 
replaces them with labels of their semantic meanings. The 
dashed arrows depict pChain links in their opposite 
directions, which show propagations. BRM2 has a newly 
created signature element, so its src is labeled as “!IdP”, 
which also causes the dst element in BRM1 to bear a “!”. 
The cookie is ignored as it was set before the SSO starts.  

 
Adversary accessibility labeling. Over the trace 

labeled with individual elements’ semantic meanings, our 
analyzer further evaluates whether the adversary, Bob, can 
read or write elements in the three SSO triangles in the 
scenarios illustrated in Figure 4: Bob-IdP-RP, Alice-IdP-
Bob and (Alice+Bob)-IdP-RP. Here readability and 
writability are denoted by ↑ and ↓ respectively. Table 3 
elaborates the rules we used to label individual elements, to 
indicate how they can be accessed by the adversary.  

Table 3: labeling rules for adversary’s accessibility 
Scenario (A): Bob acts as a browser  
• All elements are readable; 
• An element not covered by a signature is writable; 
• For an element protected by a signature, if it is newly created 

(NC), then it is not writable; otherwise, inherit the writability 
label from its ancestor using pChain.  

Scenario (B): Bob acts as an RP to the IdP in order to get 
Alice's credential for the target RP 
• Replace any occurrence of “RP” in the trace with “Bob”; 
• For any BRM sent to Bob (or the dst element is writable), all 

Argument or Cookie elements in the BRM are readable; 
• For any BRM made by Bob, the dst element, or any Argument or 

Set-cookie element in the BRM is writable, if the element is not 
protected by the IdP’s signature; 

• For an element protected by a signature, if it is newly created 
(NC), then it is not writable; otherwise, inherit the writability 
label from its ancestor using pChain. 

Scenario (C): Bob deposits a page in Alice’s browser
• No element is readable; 
• Cookies and set-cookies are not writable; 
• Because the BRM can be generated by Bob, the dst element or 

any Argument element in a BRM is writable, if the element is 
not protected by a signature; 

• For an element protected by a signature, if it is newly created 
(NC), then it is not writable; otherwise, inherit the writability 
label from its ancestor using pChain. 

Output visualization. After analyzing the input traces, 
the BRM analyzer produces its output in dynamic HTML, 
which allows a human analyst to conveniently retrieve the 
understanding obtained through the automatic analysis using 
a browser. Figure 7 is a screenshot that displays an output 
trace. When the mouse hovers over an element, the element 
and all other elements on its pChain are all highlighted, 
which enables the analyst to examine how the value of the 
element propagates. The mouseover event also brings up a 
tip popup that shows the element’s value. 

 
Figure 7: Visualization of an output trace 

4. STUDYING SSO SCHEMES ON MAJOR WEBSITES 
Like a debugger extracting ground truths about call 

stack, memory and registers, the BRM analyzer described in 
section 3 extracts necessary ground truths about an SSO 
scheme to be studied, e.g., what Bob could read or write, 
especially some key elements (e.g., those labeled with SEC 
or SIG, etc.). With this tool, we now can go onto the field 
study about leading commercial web SSO systems. The 
study covers popular SSO services on the web (e.g., 
Facebook, Google, JanRain and PayPal), and the SSO 
systems of high-profile websites/services (e.g., FarmVille, 
Freelancer, Nasdaq and Sears). The result shows that these 
prominent web SSO systems contain serious logic flaws that 

BRM1: src=RP   dst=https://!IdP/handler.php 
Arguments: notifyURL[URL] 
Cookies: sessionID[BLOB] 

BRM2: src=!IdP dst=https://RP/auth.php 
Arguments: 
username[WORD][UU] & sig[BLOB][SU][NC][SIG]
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make it completely realistic for an unauthorized party to log 
into their customers’ accounts. These flaws are also found to 
be diverse, distributed across the code of RPs and IdPs, and 
at the stages of login and account linking. We elaborate 
these vulnerabilities in the rest of the section.  
4.1. Google ID (and OpenID in general) 

OpenID is a popular open standard for single sign on. It 
was reported that there were over one billion OpenID-
enabled user accounts and 9 million websites using OpenID 
as of December 2009 [22]. Google ID is based on OpenID. 
The number of its relying websites is very significant.  

Analysis result. Our analysis on Google ID started 
with the raw traffic. Not surprisingly, the raw traffic would 
be very time-consuming for human to parse and analyze. 
Using the BRM analyzer, we could automatically obtain the 
semantic information about the trace and the three 
adversarial scenarios in Figure 5. The trace for scenario (A) 
is shown in Figure 8, in which the RP is Smartsheet.com 
and the IdP is Google.com. All elements in the BRMs are 
readable in scenario (A), so the readability label (↑) is 
ignored. The figure only shows the writability label (↓). 
Note that a specific design of OpenID is that many 
enumerable values are expressed in the format of URL. This 
detail is not important to our description below, so we label 
them [WORD] to avoid potential confusion.  

 
Figure 8: GoogleID+Smartsheet trace for scenario (A) 

We found that BRM3 is the message for proving to the 
RP the identity of the user the browser represents. This 

message carries a SIG element openid.sig, indicating 
that the SSO is based on a signed token. The analysis further 
revealed the elements covered by the signature, as marked 
in Figure 8. Among these elements, openid.signed is a 
list that indicates the names for those signed elements. What 
is interesting here is that some of the signed elements were 
labeled by our analyzer as writable by the adversary. A 
closer look at them shows that their values are actually 
propagated from BRM1, which are not under any signature 
protection. Particularly, openid.signed contains the 
list from openid.ext1.required on BRM1, an 
element that describes which elements the RP requires the 
IdP to sign, such as email, firstname and lastname, 
as shown in the popup by the mouse cursor in Figure 8. 
However, since openid.signed (BRM3) can be 
controlled by the adversary through openid.ext1. 
required (BRM1), there is no guarantee that any of the 
elements that the RP requires the IdP to sign will be signed 
by the IdP (i.e., protected by openid.sig) in BRM3.  

Flaw and exploit. It is very common for a website to 
use a user’s email address (e.g., alice@a.com) as his/her 
username, which is probably why the RP requires email to 
be signed. The analysis above shows that an attacker in 
scenario (A) may cause the IdP to exclude the email element 
from the list of elements it signs, which will be sent back to 
the RP through BRM3. Therefore, the question to be asked 
about an actual system is: 

Does the RP check whether the email element in 
BRM3 is protected by the IdP’s signature, even though 
the protection has been explicitly required by BRM1? 

It turns out that this question indeed points to a serious 
logic flaw in Google ID SSO. Specifically, we tested the 
exploit on Smartsheet: when our browser (i.e., Bob’s 
browser) relayed BRM1, it changed openid.ext1. 
required (Figure 8) to (firstname,lastname). As 
a result, BRM3 sent by the IdP did not contain the email 
element (i.e., openid.ext1.value.email). When this 
message was relayed by the browser, we appended to it 
alice@a.com as the email element. We found that 
Smartsheet accepted us as Alice and granted us the full 
control of her account. 

Broader impacts. We further discovered that the 
problem went far beyond Smartsheet. Google confirmed 
that the flaw also existed in open source projects 
OpenID4Java (an SDK that Google authentication had been 
tested against) and Kay Framework. In OpenID4Java, the 
function for an RP to verify BRM3 is verify(). The 
source code showed that it only checked whether the 
signature covered all the elements in the openid.signed 
list, so a “verified” BRM3 does not ensure authenticity of 
the elements that the RP required the IdP to sign. Besides 
smartsheet, we examined other popular websites Yahoo! 
Mail, zoho.com, manymoon.com and diigo.com. They were 
all vulnerable to this attack. 

BRM1:src=RP dst=http://IdP/accounts/o8/ud ↓  
Arguments:  
openid.ns[WORD]↓ & openid.claimed_id[UU] ↓ & 
openid.identity[UU] ↓ & 
openid.return_to[URL]{RP/b/openid} ↓ & 
openid.realm[URL]{RP/b/openid} ↓ &  
openid.assoc_handle[BLOB]  ↓ & 
openid.openid.ns.ext1[WORD]  ↓ &    
openid.ext1.type.email[WORD]  ↓ & 
openid.ext1.type.firstname[WORD]  ↓ &  
openid.ext1.type.lastname[WORD]  ↓ & 
openid.ext1.required[LIST]  ↓ 

BRM2:src=IdP↓  dst=http://!IdP/openid2/auth 
Arguments: st[MU][SEC]  ↓ 

BRM3: src=!IdP  dst=https://RP/b/openid↓ 
Arguments: 
openid.ns[WORD] ↓ & openid.mode[WORD] &  
openid.response_nonce[SEC] & 
openid.return_to[URL] ↓ & 
openid.assoc_handle[BLOB] ↓ &  
openid.identity[UU] & openid.claimed_id[UU]& 
openid.sig[SIG] &  
openid.signed[LIST] ↓ & 
openid.opEndpoint[URL]{IdP/accounts/o8/ud}↓ &
openid.ext1.type.firstname[WORD] ↓ &  
openid.ext1.value.firstname[UU] & 
openid.ext1.type.email[WORD] ↓ & 
openid.ext1.value.email[UU] & 
openid.ext1.type.lastname[WORD] ↓ & 
openid.ext1.value.lastname[UU] 

protected by 
openid.sig 

(email,firstname,lastname)
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Responses from Google and OpenID Foundation. 
We reported our finding to Google, Yahoo and OpenID 
Foundation, and helped Google to fix the issue. Google and 
OpenID Foundation published security advisories about this 
issue, in which they acknowledged us. We provide these 
advisories in [33]. Several news articles reported these 
advisories, including those from eWeek, The Register, 
ZDNet, Information Week, etc [33]. We received a 
monetary reward from Google, who also added our names 
to its official acknowledgement page [18]. 

4.2. Facebook 
Authentication on Facebook often goes through 

Facebook Connect, which is a part of Facebook’s platform. 
We studied this SSO scheme. 

Analysis result. We performed our automatic analysis 
on the traces collected from an SSO through Facebook 
Connect. The result (not involving the adversary) is 
illustrated in Figure 9. Here, the IdP is Facebook, and the 
RP is NYTimes.com. We can see here that BRM3 carries a 
secret token result, which the browser uses to prove to 
the RP the user’s identity. The secret comes from BRM2 as 
an argument for the API call http://!IdP/xd_proxy.php1. This 
secret token enables the RP to acquire Alice’s information 
from Facebook and also grant her browser access to her 
account. Also interesting here is BRM1, in which the RP 
declares to the IdP its identity (e.g., NYTimes) through 
app_id and provides other arguments. Note that though 
the element cb in the figure is also labeled as SEC, it was 
found to be generated by the browser (labeled BG, see Table 
2) and thus not a secret shared between the RP and the IdP.  
BRM1:src=RP dst=http://!IdP/permissions.req 
Arguments: app_id[BLOB] & cb[SEC][BG] &   
   next[URL]{   
      http://!IdP/connect/xd_proxy.php?  
      origin[BLOB]&transport[WORD] 
   } & … & … & … (other 13 elements ) 
BRM2:src=!IdP  dst=http://!IdP/xd_proxy.php 
Arguments: origin[BLOB] & transport[WORD] & 
           result[SEC] & … & … (other 4 elements )
BRM3:src=!IdP  dst=http://RP/login.php  
Arguments: origin[BLOB] & transport[WORD] & 
           result[SEC] & … & … (other 3 elements ) 

Figure 9: the benign Facebook+NYTimes trace 
Our analyzer further evaluated the trace in Figure 9 

under different adversarial scenarios. Figure 10 shows what 
we found under Scenario (B), in which the adversary Bob 
impersonates the RP to Facebook when Alice is visiting his 
website. According to Table 3, all occurrences of “RP” are 
replaced with “Bob”. A potential vulnerability immediately 
shows up here is that all elements in BRM1, including 
app_id, are writable, so Bob could declare that he was 

                                                           
1 The hostname is !IdP, rather than IdP, because our test showed 
that Facebook server whitelists its allowed hostnames. It only 
allows a hostname under facebook.com or a Facebook-affiliated 
domain, such as fbcdn.net, etc.  

NYTimes using the app_id of NYTimes, which is public 
knowledge. As a result, the secret token result in BRM3, 
which Facebook generates specifically for Alice’s access to 
NYTimes and for NYTimes to acquire Alice’s Facebook 
data under her consent, now goes to Bob.  
BRM1:src=Bob dst=http://!IdP/permissions.req  
Arguments: app_id[BLOB] ↓ & cb[SEC][BG] &  
   next[URL]{ 
      http://!IdP/connect/xd_proxy.php↓?  
      origin[BLOB] ↓ & transport[WORD] ↓ 
   } & … & … & … (other 13 elements ) 
BRM2:src=!IdP   dst=http://!IdP/xd_proxy.php↓ 
Arguments: origin[BLOB] ↓ & transport[WORD] ↓ & 
           result[SEC] ↑ & … & … (other 4 elements )
BRM3:src=!IdP↓  dst=http://Bob/login.php  
Arguments: origin[BLOB] ↓ & transport[WORD] ↓ & 
           result[SEC] ↑ & … & … (other 3 elements ) 

Figure 10: the Facebook+NYTimes trace in scenario (B) 
Flaw and exploit. Again, we had to verify whether the 

above identified opportunity was indeed exploitable. This 
time, things turned out to be more complicated than they 
appeared to be. Specifically, we tested the exploit by setting 
all arguments of BRM1 to those on a normal 
Facebook+NYTimes SSO trace. We found that although 
Facebook indeed responded as if it was communicating with 
NYTimes (i.e., all the arguments, including result, were 
carried in BRM2), the browser failed to deliver these 
arguments to http://Bob.com/login.php in BRM3, 
and thus thwarted our exploit. This test clearly indicates that 
Facebook’s web contents protect the secret token result 
within the user’s browser.  

Our manual analysis of the web contents reveals that 
such protection comes from the same-origin policy enforced 
by the browser, which Facebook leverages to ensure that the 
browser only transfers the secret token from Facebook’s 
domain to the domains of authorized parties such as 
NYTimes, but not Bob.com. The browser mechanisms that 
Facebook utilizes for this goal include “postMessage”, 
“Adobe Flash” and “fragment”. A relying website, e.g., 
NYTimes.com or Bob.com, is allowed to choose one of 
them using the transport element in BRM1. Figure 11 
shows how the protection works when Adobe Flash is used.  

    
Figure 11: The complete view of a benign BRM3 

The browser takes four steps to transfer the secret (i.e., 
result element) from Facebook to NYTimes. The cross-
domain communication happens during Steps (2) and (3) 
between two windows, one rendering the content for 
NYTimes and the other for fbcdn.net, which is affiliated 
with Facebook. Each of them hosts a Flash object, denoted 

(1) HTTP 
response from 
Facebook 

(2) Flash A 
to flash B 

(3) Flash B to 
HTML DOM  

http://NYTimes.com  

http://fbcdn.net  

A
B  (4) HTTP 

request to 
NYTimes
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by A and B respectively. Both objects are supposed to be 
downloaded from fbcdn.net during the SSO. This allows 
Flash A to pass the secret to Flash B because they are of the 
same origins (fbcdn.net). Flash B further sends the secret to 
the HTML DOM of its hosting page only if the page’s 
domain is indeed NYTimes. Our exploit mentioned above 
was defeated by this defense mechanism, which seems 
logically secure: Flash’s same-origin policy ensures that the 
secret will be passed only when Flash B is loaded from 
fbcdn.net, which implies that Flash B will only hand over 
the secret to NYTimes, not to other domains.   

Let’s look at our adversarial scenario, in which the 
domain of the hosting page is actually Bob.com, although it 
declares to be NYTimes.com in BRM1. To bypass the 
defense and obtain the secret token in Alice’s browser, Bob 
must find a way to either let Flash A pass the secret token to 
a Flash downloaded from Bob.com website or convince the 
trusted Flash B (from fbcdn.net) to send the token even 
when Flash B’s hosting page is Bob.com, not NYTimes.com. 
In other words, the problem of attacking this SSO can be 
reduced to one of the following questions: 
• Is it possible to let Flash B (from fbcdn.net) deliver 

the secret to the web page from Bob.com? 
• Is Flash A (from fbcdn.net) allowed to communicate 

with a Flash object from Bob.com? 
For the first question, we analyzed the ActionScript of 

Flash B from fbcdn.net and did not find any way to make it 
send the secret to a non-NYTimes page. For the second 
question, we found that the answer is positive, because of a 
unique cross-domain mode of Adobe Flash called 
unpredictable domain communication [23]: by naming a 
Flash object from Bob.com with an underscore prefix, such 
as “_foo”, Flash A can communicate with it despite the fact 
that the Flash comes from a different domain. Note that this 
logic flaw was found thanks to the domain knowledge about 
how Flash communicates, which serves as the last link on 
the chain of our exploit. We made an exploit demo [33] to 
show how this exploit works: once Alice visits Bob.com 
while she has signed onto Facebook, Bob.com uses its Flash 
to acquire the secret token from Flash A, which allows Bob 
to log into NYTimes as Alice and also impersonate 
NYTimes to access Alice’s Facebook data, such as her 
personal information (e.g., birthdate), status updates, etc.  

Our communication with Facebook. Because the 
problem was on Facebook’s side, all RP websites were 
subject to the same exploit that worked on NYTimes. We 
reported the finding to Facebook, and suggested a way to fix 
the issue. After 9 days, Facebook confirmed our finding 
through email, and applied our suggested fix on the same 
day. Facebook acknowledged us on its public webpage for 
security researchers [12] (before Facebook implemented the 
“bug bounty” monetary reward program). The finding was 
also reported in several news stories, including those on 
Computer World, The Register, eWeek, etc [33]. 

4.3. JanRain 
JanRain is a prominent provider of social login and 

social sharing solutions for commercial businesses and 
websites. It claimed to have over 350,000 websites using its 
web SSO services. Its customers include leading websites 
such as sears.com, nasdaq.com, savings.com, etc. Its 
flagship product, Janrain Engage, wraps individual web 
SSO services from leading IdPs, including Google, 
Facebook, Twitter, etc, into a single web SSO service. By 
using the service, its customers adopt these SSO schemes 
altogether and thus avoid integrating them one by one. This 
service is interesting not only because of its popularity but 
also because of the unique role it plays in web SSO: it is a 
wrapper IdP service that relies on the wrapped IdPs for 
authentication. This potentially makes the already 
complicated web SSO systems even more complex.  

Analysis result. Figure 12 shows the trace produced by 
the BRM analyzer when our test server did an SSO using 
Google ID through JanRain. Before we can come to the 
details of this analysis, a few issues need to be explained. 
First, in our adversarial scenarios, IdPs are the parties not 
under Bob’s control, so we simply treat both JanRain and 
Google as a single IdP party for the convenience of the 
analysis. Second, to integrate JanRain’s service, an RP 
needs to register with JanRain a unique application name 
(AppName) for the RP’s web application, e.g., “RP-App”. 
JanRain then creates a subdomain RP-App.rpxnow.com for 
this application (rpxnow.com is a domain owned by 
JanRain). This subdomain will be used by the RP to 
communicate with JanRain a set of settings for the SSO 
process. JanRain server stores these settings and refers to 
them through a handle, denoted as settingsHandle2 in 
our analysis. Also note that in this analysis, we treat 
AppName as an argument, although it is a subdomain. For 
example, http://AppName.rpxnow.com/a.php?foo&bar is 
shown as: 

    src=xxx  dst=http://IdP/a.php  
  Arguments: AppName & foo & bar 

Figure 12 describes 7 BRMs during this complicated 
SSO (login using Google ID through JanRain). When a user 
wants to sign onto an RP, the RP generates BRM1 to inform 
the IdP (i.e., JanRain) about its AppName, together with the 
settings for this SSO. Such settings include: openid_url, 
a URL for activating the Google ID authentication, and 
xdReceiver and token_url, which are the dst 
elements for BRM5 and BRM7 respectively. In the figure, 
BRM2 – BRM4 (enclosed in the dashed bracket) describe 
the traffic of Google ID authentication, as shown previously 
in Figure 8. By the end of BRM4, JanRain gets the user’s 
Google profile data. BRM5 – BRM7 pass a secret token to 
the RP for retrieving the profile data from JanRain. 

                                                           
2  In the actual implementations, this handle is called 
“discovery_token” in JanRain’s wrapping of Yahoo and Google, 
and “_accelerator_session_id” in its wrapping of Facebook. 
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BRM1: src=RP dst=http://!IdP/openid/start  
Arguments: AppName &  
  openid_url{http://IdP/account/o8/ud} &  
  xdReceiver{http://IdP/xdcomm?AppName}& 
  token_url{http://RP/finish-login} & 
  … & …  (other 2 elements ) 
BRM2:src=!IdP dst= http://IdP/account/o8/ud
Arguments: all Google ID’s arguments as shown in BRM1 
in Figure 8, in which openid.return_to is set to http: 
//IdP/openid/finish?AppName&settingsHandle
BRM3: Google ID’s traffic, similar to BRM2 in Figure 8. 
BRM4:src=!IdP dst=http://!IdP/openid/finish
Arguments: AppName & settingsHandle[SEC] & 

AllOpenIDData (a pseudo element that we introduce for 
the sake of presentation simplicity. It represents all data 
returned from Google ID as in BRM3 in Figure 8)

BRM5: src=!IdP   dst=http://IdP/xdcomm 
Arguments: AppName &  redirectUrl {   
   http://IdP/redirect?AppName&loc[SEC]}
BRM6: src=IdP   dst=http://!IdP/redirect 
Arguments: AppName & loc[SEC] 
BRM7: src=!IdP dst= http://RP/finish-login 
Arguments: token[SEC] 

Figure 12: benign traffic of our website integrating JanRain that 
wraps Google ID 

We further analyzed the BRMs under the three 
adversarial scenarios. Figure 13 shows the result for 
Scenario (B), where Bob impersonates the RP to the IdP.  
BRM1: src=Bob dst=http://!IdP/openid/start  
Arguments: AppName↓ & openid_url↓ &  
           xdReceiver ↓  & token_url ↓ & … & … 
BRM2 – BRM4: (details omitted, see Figure 12)
BRM5: src=!IdP   dst=http://IdP/xdcomm↓ 
Arguments: AppName↓ &  redirectUrl {   
   http://IdP/redirect?AppName&loc[SEC]↑}
BRM6: src=IdP   dst=http://!IdP/redirect 
Arguments: AppName↓ & loc[SEC]↑ 
BRM7:src=!IdP  dst=http://Bob/finish-login↓ 
Arguments: token[SEC]↑ 

Figure 13: adversarial scenario (B) 
An opportunity that we can easily identify is BRM1, in 

which Bob could set AppName↓ to that of the target RP 
while pointing token_url↓ to his own domain. This 
would trick JanRain into collecting the user’s profile data 
from Google for the RP and sending the secret 
token[SEC]↑ to Bob, as token_url serves as the dst 
element for BRM7. 

Flaw and exploit. To understand whether this 
opportunity indeed works, we set up a server as a mock 
target RP of the attack. The test revealed that like Facebook, 
JanRain also puts in place some protection measures. 
JanRain requires every registered app to supply a whitelist 
for identifying the app’s associated domains. For example, 
the whitelist for RP-App includes “RP-App.rpxnow.com” 
and “*.RP.com”. The token_url of BRM1 needs to be on 
the whitelist. In our test, the arguments of BRM1 were 
AppName=“RP-App” & token_url=“http:// 

Bob.com/finish-login”, which JanRain found to be 
inconsistent with the whitelist (Bob.com not on the whitelist 
of RP-App) and thus stopped the SSO. Furthermore, we 
found that even if we temporarily added Bob.com to the 
mock RP’s whitelist to let BRM1 succeed (and removed it 
from the whitelist after BRM1), the secret token obtained 
from BRM7 is still useless. This is due to another check 
against the whitelist: when a website uses the token to 
retrieve Alice’s Google ID profile from JanRain, JanRain 
finds something wrong: the token was previously sent to 
Bob.com according to the token_URL; thus Bob.com is 
supposed to be on the RP’s whitelist, but it is not.  

 Given the protection of whitelisting, it is clear that 
token_url in BRM1 must be in a domain on RP-App’s 
whitelist (e.g., http://RP.com/finish-login). The trouble now 
is that dst on BRM7 is exactly token_url. In other 
words, once token_url is set according to the target RP’s 
whitelist, there is no way that Bob can have BRM7 sent to 
him. This forced us to look back at the result of our analysis 
and try another opportunity. Actually, dst in BRM5 is 
propagated from the xdReceiver in BRM1, which Bob 
appears to be able to write. If he could change this element 
(e.g., to http://Bob.com/xdcomm) without being 
caught, he could have JanRain send him BRM5. BRM5 is 
also important, as it contains loc, another piece of secret. 
Stealing loc is as damaging as stealing token. If Bob 
obtains loc, his exploit will succeed, as loc is the only 
secret Bob needs in order to use his own browser to go 
through BRM6 and BRM7, which will get Alice’s session 
into the browser. Therefore, we saw that stealing loc 
through BRM5 was a plausible idea.  

Our test showed both encouraging and challenging 
sides of the idea. On the challenging side, we found that 
JanRain also checked xdReceiver in BRM1 against the 
whitelist and therefore thwarted the exploit at the very 
beginning; on the encouraging side, we confirmed that if we 
could succeed in setting xdReceiver to Bob.com 
/xdcomm, we would indeed get loc, and this loc value 
would indeed enable an end-to-end successful exploit.   

The remaining question is how to set the RP’s 
xdReceiver so that it points to Bob.com/xdcomm. Bob 
must accomplish this without being caught by the whitelist 
check in BRM1. The only option is to let Bob use his own 
AppName (i.e., Bob-App) in BRM1, because Bob can 
arbitrarily whitelist any domain that he wants for Bob-App. 
Essentially, it means Bob is not constrained by the whitelist 
check when BRM1 has argument AppName=“Bob-App”. 
How can this affect the settings (i.e., token_url and 
xdReceiver) for RP-App? Remember that after BRM1, 
the settings are referenced by settingsHandle 
collectively, which can be thought of as a secret session ID. 
The only hurdle for our exploit is how to bind this session 
ID (which is for Bob-App) to our target RP-App. 
Interestingly, we found that this binding is established by 
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BRM2 through its argument openid.return_to 
(Figure 8). This gives us another opportunity.  

Here is our third plan, consisting of two steps: first, 
Bob’s own browser makes the request of BRM1 with 
AppName=“Bob-App” & token_url=“http://RP 
/finish-login” & xdReceiver=”http://Bob 
/xdcomm”. This not only gets him through the whitelist 
(which is defined by himself) but also gives him 
settingsHandle to represent the above two URLs. In 
the second step, Bob impersonates the RP: whenever Alice 
visits Bob’s website, the website generates BRM2, which 
binds RP-App to Bob’s settingsHandle through 
openid.return_to. As a result, Bob will get loc in 
BRM5, allowing his browser to impersonate Alice’s, as 
described before. This plan turned out to work nicely. A 
video demo is in [33].  

Other JanRain SSO schemes. We found that the same 
exploit also worked on JanRain’s wrapping of YahooID 
SSO. However, JanRain’s wrapping of Facebook SSO uses 
a different way to bind AppName and settingsHandle: 
it sets settingsHandle as a cookie under 
AppName.rpxnow.com. To exploit this SSO, we had to 
figure out a way to let Bob-App.rpxnow.com set the 
settingsHandle cookie for RP-App.rpxnow.com. In 
other words, the security of the scheme can be reduced to 
the following question: 

Do browsers allow cross-(sub)domain cookies to be set?  
 Access control for browser cookies, especially between 

subdomains, is a complex issue, which has been studied for 
example in [8]. We learned from existing literature that 
browsers at least share cookies of an HTTP domain with its 
corresponding HTTPS domain. This implies a disappointing 
fact – Facebook-wrapped JanRain SSO cannot secure 
HTTPS websites even when it is over HTTPS. Imagine a 
banking website that runs this SSO scheme over HTTPS in 
order to protect the communication from a network attacker, 
e.g., a malicious router. Whenever the user visits any HTTP 
website, like google.com, the network attacker can insert a 
hidden iframe to access http://RP-App.rpxnow.com, which 
sets the settingsHandle cookie for this subdomain. 
The cookie will be shared with https://RP-App.rpxnow.com 
(the HTTPS domain), making the above exploit succeed. 

Bug reporting and JanRain’s responses. We have 
reported this issue to JanRain, who acted quickly to fix it 
within two days. Later JanRain notified us that due to a 
compatibility issue with their legacy systems, their fix for 
the JanRain-Facebook issue had to be rolled back. The 
developers were working on a new fix. 
4.4. Freelancer.com, Nasdaq.com and NYSenate.gov  

Freelancer.com is the world’s largest online 
outsourcing marketplace [17], which helps match buyers’ 
projects to the services that sellers can offer. The website 
has about 3 million users, 1.3 million projects and earned 
over 100 million dollars. Like many other websites today, it 

allows Facebook sign-on, but in a different fashion: a user 
first needs to register an account, as what happens on a 
website not supporting SSO; then, she can “link” this 
account to her Facebook account, which allows her to log in 
through Facebook afterwards. Therefore, the security of this 
SSO critically depends on the linking process.  

We found other high-profile websites that also enable 
SSO through account linking, such as Nasdaq.com (linkable 
to Facebook accounts) and NYSenate.gov (linkable to 
Twitter accounts). We have confirmed that they all contain 
exploitable vulnerabilities similar to that of Freelancer, 
which we describe below as an example.  

Analysis result. We used our analyzer to study the 
traces collected from a user’s linking operation on 
Freelancer.com under different adversarial scenarios. Figure 
14 describes what we found under Scenario (C), where Bob 
has a malicious web page in Alice’s browser, which can call 
other websites’ APIs. Specifically, BRM1 queries Facebook 
(the IdP) for Alice’s profile data. BRM3 does the linking3. 
In BRM2, Facebook generates a secret result. As 
described in the previous Facebook example, BRM3 takes 
advantage of the browser-side security mechanism to pass 
result to the RP’s page. Then, Freelancer.com (the RP) 
sets the value of result in cookie fbs, and calls 
lnk.php to do the linking. As we can see from the 
analysis, the system needs to ensure that fbs indeed holds 
Alice’s Facebook profile data when lnk.php is called.  
BRM1:src=RP dst=http://!IdP/permissions.req 
Arguments: app_id[BLOB] ↓ & cb[SEC][BG] &   
   next[URL]{   
      http://!IdP/connect/xd_proxy.php↓?  
      origin[BLOB] ↓&transport[WORD] ↓ 
   } & … & … & … (other 14 elements ) 
BRM2:src=!IdP  dst=http://!IdP/xd_proxy.php↓ 
Arguments: origin[BLOB] ↓ & transport[WORD] ↓& 
           result[SEC] & … & … (other 4 elements )
BRM3:src=!IdP dst=http://RP/facebook/lnk.php
Arguments: auto_link[INT] ↓  & goto_url[URL] ↓ 
Cookies: fbs[SEC] 

Figure 14: Traffic for scenario (C) 
  Flaw and exploit. The opportunity we see is that Bob 

can log into Freelancer as Alice if his web page in Alice’s 
browser manages to link her Freelancer account to Bob’s 
Facebook account. To this end, two things must happen: (1) 
the page signs Alice’s browser onto Bob’s Facebook 
account, and then (2) it makes the browser do the linking.  

Linking from Alice’s browser. Let us first assume that 
Step (1) has succeeded, and focus on (2). The trouble here is 
that Bob’s page cannot produce BRM1, due to the presence 
of a browser-generated secret cb. Alternatively, we can try 
to directly invoke BRM3. The only hurdle here is that 
without BRM1–BRM2, cookie fbs would not been 

                                                           
3  This step includes the client-side communication to pass the 
token result from an IdP’s page to an RP’s page (Section 4.2).  
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assigned the profile data of the current Facebook logon user. 
Interestingly, we found that by making the browser visit the 
page http://freelancer.com/users/change-settings.php (no 
argument required), the current Facebook user’s profile is 
queried and set to cookie fbs. The visit is essentially an 
API call to accomplish BRM1–BRM2 with no secret. Bob’s 
page can then make the request of BRM3 for the linking.  

Signing Alice’s browser onto Bob’s Facebook account. 
Now we look at how to make step (1) happen. We analyzed 
the traffic of Bob signing onto Facebook from his own 
browser, which was a POST request to https://www 
.facebook.com/login.php with username and password as its 
arguments. The same request, however, was denied by 
Facebook when it was produced by Bob’s page. A 
comparison between the traces of the two requests revealed 
that the referrer header in the successful one was set by 
Facebook.com, while that of the failed request was within 
Bob’s domain. We had known from various sources that 
referrer-checking is an unreliable means for discriminating 
cross-site requests from same-site ones, because the referrer 
header is sometimes removed at the network layer for 
legitimate privacy reasons [5]. We tested the login request 
again with its referrer removed, Facebook accepted it. Thus, 
an exploit comes down to the answer to the question below:  

How to send a POST request with no referrer header?  
This question turned out to have known answers. Two 

browser experts pointed us to some working examples, as 
well as information resources, such as [26]. We tested one 
of the working examples, shown in Figure 15, and 
confirmed that it works on the latest versions of IE, Chrome 
and Firefox. Using this approach, we were able to sign in as 
Alice on Freelancer.com, thereby confirming the presence 
of the logic flaw in its integration of Facebook’s SSO 
service. As discussed before, the same vulnerability exists 
on Nasdaq.com and NYSenate.gov. The SSO of 
NYSenate.gov is through Twitter.  
a.html    <iframe src="b.html"></iframe> 
b.html 
<iframe name="formFrame"></iframe> 
<script>     formFrame.document.body.innerHTML= '<form 

name="tfm" action= "http://foo.com/bar" method="post" 
target= "_top" > <input type="text" name="arg"/><input 
type="submit"/> </form>'; 

formFrame.document.all.tfm.submit();     </script> 
Figure 15: an implementation of referrer-free posting 

Bug reporting and Freelancer’s response. We reported 
the issue to Freelancer. The company’s CEO Matt Barrie 
thanked us and asked for suggestions about the fix [33]. We 
offered two suggestions, of which Freelancer adopted one.  

4.5. OpenID’s Data Type Confusion 
Our study on OpenID-based systems also uncovers a 

serious logic flaw, which is caused by the confusion 
between the RP and the IdP on the interpretation of BRM 
elements. We believe that the problem is pervasive. It has 
been confirmed on Shopgecko.com, one of the first adopters 

of PayPal Access (PayPal’s new SSO service announced on 
10/13/2011), and Toms.com, a shopping website. The 
findings were made a few days before our paper submission. 

Flaws and exploits. Let’s look at the BRM traffic of 
Smartsheet and GoogleID in Figure 8. Our analysis shows 
that openid.ext1.type.email (type.email for 
short), an element in BRM1 and BRM3, is writable under 
Scenario (A) (where Bob controls the web client). A further 
analysis of the element reveals that it affects the value of 
openid.ext1.value.email (value.email for 
short), a signed element in BRM3. The RP typically treats 
this element as a user’s email address, but Google (the IdP) 
thinks differently. It actually sets the element’s value 
according to type.email. Initially in BRM1, the RP sets 
the value of type.email to http://schema.openid.net 
/contact/email, OpenID’s type for emails. However, Bob 
can change it to other types, such as http://axscheme.org 
/namePerson/first (OpenID’s data type for first names).  
As a result, value.email in BRM3 can hold the user’s 
first name. This enables an exploit if Bob could register with 
Google a first name “alice@a.com”. Remember that 
Smartsheet uses the registered email of a user as her 
authentication token. This type confusion can lead to 
signing Bob onto Alice’s account. We confirmed that 
Smartsheet indeed takes Bob’s first name as an email during 
the exploit. We believe that the misunderstanding about the 
content of value.email is pervasive, given that Google 
developer’s guide only uses value.email as an example 
of requested user attributes in its specification, and never 
mentions how its content is actually determined [19].  

However, this exploit did not get through, because 
Google ID’s user registration page does not treat 
“alice@a.com” as a valid first name. Therefore, a natural 
question produced by our analysis is whether there is a way 
to use “alice@a.com” as the value of any non-email field in 
Bob’s Google ID profile, maybe through direct API calls 
instead of the user registration page. 

Now we show where this exploit does work. 
Shopgecko.com identifies a user by her PayPal ID, which is 
not a secret. The type of the ID is https://www.paypal 
.com/webapps/auth/schema/payerID, which Bob can change 
to http://schema.openid.net/contact/street2, the type of 
“mailing address’ second line”. We successfully registered a 
user whose mailing address’ second line is Alice’s PayPal 
ID. For toms.com, we found the element “email” in fact 
contains a user’s Twitter ID during a Twitter SSO, though it 
indeed carries email addresses in other SSOs, such as 
Google ID. Bob, a Google user, can register his first name 
as “AliceOnTwitter”, which is Alice’s Twitter ID, and sign 
in as Alice through Google.   

Bug reporting. We have reported the end-to-end cases 
to PayPal, Google, OpenID Foundation, Toms.com and 
Magento (developer of Shopgecko). Google will fix it by 
checking the value of type.email. Google also asked us 
to directly bring this issue to the attention of the executive 
director of OpenID Foundation.    
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4.6. Other confirmed and potential flaws in studied cases 
In the prior subsections, we describe serious logic flaws 

we found in several web SSO systems. They are actually 
only a tip of the iceberg: there are some other systems either 
vulnerable to our exploits or on the verge of being cracked. 
Table 4 lists eight more cases we studied.  

Table 4: some other cases that we confirmed or found promising  
 The SSO scheme and the specific system-level question 
1 
 
√ 

SSO: Facebook Legacy Canvas Auth 
Question: does a Facebook app check the signature of BRM3 
that Facebook generates? (The flaw was confirmed on 
FarmVille.com) 

2 
 
√ 

SSO: Facebook Connect 
Question: does an RP of Facebook SSO redirect the user to an 
attacker’s URL despite a failed whitelist checking? (The flaw 
was confirmed on zoho.com.) 

3 
 
√ 

SSO: JanRain’s wrapping of Facebook 
Question: does an RP of JanRain-SSO whitelist *.rpxnow.com, 
not specifically RP-App.rpxnow.com (The flaw was confirmed 
on sears.com) 

4 SSO: Facebook SSO with the RP requesting access_token 
Question: what kind of damage can be done by the leakage of 
access_token alone? (We found that the access_token
that Groupon.com requests can be obtained by the attacker.)  

5 SSO: Facebook Connect 
Question: Can a Javascript in Bob.com read FlashVars of a 
Flash in the RP’s domain, if the Flash allows cross-domain 
access? If so, we found that nike.com would be broken. 

6 SSO: Facebook Connect 
Question: does a RP import Facebook’s xd_proxy.php script for 
its cross-domain communication? 

7 SSO: Facebook Connect 
Question: does an RP have an API for universal redirection, 
such as “http://foo.com/redirect.php?url=http://bob.com”? 

8 SSO: SSO on livingsocial.com, toms.com and diigo.com 
Question: when Bob makes Alice’s browser sign onto an RP as 
Bob, can Bob obtain his own session cookie in the browser? 

Our analysis on these cases all led to potential exploit 
avenues, which come down to a few questions. Three of 
these cases (with √ ) were indeed confirmed and reported. 
More information of these eight cases is described in the full 
version of this paper [33].  

5. RETROSPECTIVE DISCUSSION 
As discussed at the beginning of the paper, our main 

contribution is an extensive security study of commercial 
web SSO systems, which aims at understanding their 
security quality and design pitfalls, even in the absence of 
their source code and detailed specifications. This study was 
made possible by a suite of analysis techniques we built. 
Such techniques just serve as a necessary tool for analyzing 
the SSO systems, and their designs, at the current stage, are 
still simple and preliminary: for example, our BRM analyzer 
does not seem to be very advanced. What is really important 
here is the discovery we made using these techniques, which 
reveals the gravity and pervasiveness of security-critical 
logic flaws within commercial web SSO systems. We hope 
that such a discovery will provoke soul-searching in web 

SSO community, and help build securer SSO systems. Here 
are our preliminary thoughts.    
5.1. Understanding the SSO vulnerabilities 

Commonalities in all our vulnerability investigations. 
All the logic flaws described in the paper, no matter how 
subtle they are, were all discovered through a simple and 
rather mechanical procedure at the high level:  

(1) Understand whether the SSO is based on a secret 
token or an authentic token. Accordingly, there are 
only two types of problems – either a secret token 
sent to Bob or an authentic token forged by Bob.  

(2) Locate the token in BRMs. Understand how it is 
propagated or how it is covered by a signature. 

(3) Apply adversary scenarios to BRMs using Table 3, 
which corresponds to the only three strategies – Bob 
acting as another client, Bob acting as another RP 
and Bob acting as a page in Alice’s client.  

Our success indicates that the developers of today’s 
web SSO systems often fail to fully understand the security 
implications during token exchange, particularly, how to 
ensure that the token is well protected and correctly verified, 
and what the adversary is capable of doing in the process.  

   Variations in the vulnerabilities. The variations are in 
the non-trivial details of individual systems. In this study, 
we spent a great amount of effort demonstrating such 
variations. In Section 4, we describe eight end-to-end 
confirmed cases, which differ significantly from each other 
in technical details (although for each case, we usually 
confirmed the similar vulnerability on several websites), e.g., 
how a signature’s coverage is determined, how the browser 
protects the secrecy of a token, how BRM destinations are 
checked by servers, how accounts are linked together, how a 
website handles an anonymous visit, etc.  This diversity 
comes from the way SSO services are integrated:  each RP 
can integrate the same SSO service differently; the security 
of the integration depends not only on the program logic on 
RP and IdP sites, but also on the underlying web platform. 
Given such complexity, we feel that it can be hard to 
speculate about how a system can go wrong before looking 
at its details. This is why a lot of detailed investigations 
need to be conducted with human analyst’s creativity and 
domain knowledge. We do believe, however, that for known 
vulnerabilities, one can build a tool to automatically identify 
other websites suffering from similar problems, but it is not 
the focus of this paper.     

RP developers’ due diligence. The complexity in 
implementation and system details suggest that it can be 
hard for IdP developers to anticipate all possible RP 
implementations in the world. Because RP developers are 
the people who put together a concrete system, they are 
naturally the final gatekeeper for its security. We suspect 
that most RP developers today may not realize the necessity 
of such a due diligence, but merely consider SSO 
implementation as a task of calling individual APIs on IdPs.   

We believe that an analysis like what we did is helpful, 
so we will soon launch and maintain a service at http://sso-
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analysis.org for developers to use our methodology. 
Developers are obviously in a better position to conduct the 
analysis than us, as they know precisely which data serve as 
the primary user ID, the underlying system features that the 
RP code relies on, and other insider knowledge. 

5.2. Broader lessons on secure service integrations 
Our previous work studied how merchant websites 

integrate third-party cashier services. We discovered many 
logic flaws that allow a malicious shopper (client) to shop 
for free [34]. The issues exposed in this paper, although 
about SSO, are similarly about service integration logic 
flaws. We believe that many lessons can be learned from the 
two studies together and applicable to other service 
integration scenarios in general, such as authorizing through 
OAuth, incorporating social networking functionalities, etc. 

5.2.1. Challenges in secure service integrations 
Service integration is done through an application (e.g., 

an RP or a merchant website) calling APIs of a service 
provider (e.g., an IdP or a cashier service). There are two 
reasons for these APIs to cause security problems: 

Underlying execution platform matters. APIs are 
designed at a certain abstraction level. It is challenging to 
exhaustively examine their semantics on real operational 
systems. This challenge has caused security issues over and 
over again. For example, in the cashier service study, we 
found a problem due to API developers’ neglect of the 
possibility of concurrent HTTP sessions of web servers 
(Section III.B.1 of [34]). In the current SSO work, we 
discovered that developers failed to consider Flash’s 
unpredictable domain mechanism and the feasibility of 
posting a request without referrer. APIs designed without 
thorough understanding of their execution platforms and 
related security implications can be vulnerable. 

Compared to secure implementation of APIs, how to 
call APIs securely can be even more challenging. Consider 
the notorious strcpy, which itself does not contain a buffer-
overrun vulnerability, but can easily introduce one to the 
program that calls it. As an example, many Unix-like 
systems provide a family of uid-setting APIs, such as setuid, 
seteuid and setguid. “Demystifying” them and 
understanding their proper usage were known to be highly 
nontrivial [10]. We believe that the web APIs we studied 
also deserve the same effort to “demystify” the way to use 
them securely. They should be examined with all reasonable 
usage patterns of the calling sites, and with all conceivable 
adversary assumptions. For example, Google should have 
expected reasonable RP websites to use the email element to 
identify a user, and thus realized that Google ID APIs are 
problematic (see Section 4.1). 
5.2.2. What kind of analysis tools are needed 

Our experience in this study seems to be complimentary 
to that of a classic protocol-verification task in several 
aspects. If the verification community wants to extend the 
current methodologies to the actual system level, there are 

some new thrusts that need to be addressed by appropriate 
tools. Below are the main points distilled from our 
experience, which explain these thrusts.  

Understanding a real-world system could be more 
challenging than analyzing its well-specified logic model. 
Verification techniques typically reason about logic models 
that have been extracted from real systems. For every case 
that we studied, we spent more time on understanding how 
each SSO system work than on reasoning at the pure logic 
level. This suggests that when it comes to examining a real 
system, we would love to have a tool to help us understand 
complex system details more than a tool that replaces us in 
logic reasoning. A desired tool should direct the analyst to 
grasp key details of the system, like a debugger, which does 
not find bugs for programmers, but presents key ground 
truths, such as the call stack, etc., to help programmers. Our 
BRM analyzer is designed toward this direction.  

In-depth security analysis of a real system often 
happens under incomplete knowledge and needs to be 
adaptive, iterative and semi-automatic. Given the 
complexity of a real system, techniques that enable a fully 
automatic and also in-depth security analysis are still 
remote. Existing attempts to automate this process often 
require a complete model of the system, which needs to be 
manually constructed, before any automatic analysis can 
happen. However, such a model is hard to build and often 
too complicated to analyze. What we learned from our study 
is that security testing of a real system often needs to be 
performed without complete knowledge of the system, in an 
adaptive and iterative way: the analyst starts with partial 
knowledge of the system, designs new tests to probe it, 
reasons about the test results to improve her understanding 
of the system, and continues to walk through the process 
until a viable path is found. This strategy worked well in our 
study, helping us identify subtle logic flaws and implement 
complicated yet practical exploits, but we had to manage 
this process manually. A tool supporting this adaptive 
process is very needed for offloading analysts’ burden. 

How to effectively convert exploit conditions into 
known problems is a valuable research direction. We found 
that it is relatively easy to understand the security premises 
of the system, e.g., element result should not be 
obtained by Bob, or cookie fbs should not be forged by 
Bob, etc. However, it is more difficult to convert these 
premises into appropriate actionable questions that have 
potentially been studied before, such as “can Adobe Flash 
do cross-domain communication”. A methodology/tool to 
help generate these questions has a great value. 
5.2.3. Potential mitigations to consider 

When a system is complex, developers make mistakes. 
This is especially true for integrations of multiple services 
involving different companies. Miscommunications is a 
common cause of logic flaws.  We believe that good 
mitigations should provide a good control of the system 
complexity and/or minimize website developers’ 
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programming load for integration. For example, the 
following two directions are worth consideration. 

Using dedicated (or simplified) runtimes to replace the 
general-purpose web platform. There are reasons for the 
general-purpose web platform to be prefered, e.g., (1) every 
user knows how to use a browser; (2) web programming 
skill is readily available in the job market. However, from 
security standpoint, such a general platform is difficult to 
examine exhausively. API designers may not be aware of 
certain browser capabilities, which can lead to vulnerable 
implementation and  open the avenue to potential exploits. 

 Admittedly, some serious attempts were made many 
years ago for security schemes not based on the web 
platform. However, they did not get real tractions in the 
market. For example, Secure Electronic Transaction (SET) 
[35] was a payment protocol which many big companies 
contributed to. It was designed at the same time when SSL 
was emerging, so some of SET’s security goals competed 
with SSL. Eventually, the payment schemes widely 
deployed are PayPal, Amazon Payments, Google Checkout, 
etc, which are based on SSL and the general-purpose web 
technology. Another example is the InfoCard Sign-On 
scheme [4], introduced by Microsoft since Windows Vista. 
The client is a dedicated application named “Windows 
CardSpace”. InfoCard was not widely adopted before it was 
retired. The SSO schemes really adopted are those that we 
analyzed in this study. These unsuccessful attempts suggest 
that web-based schemes indeed have a clear advantage for 
deployment. On the other hand, our paper shows that the 
easy deployment comes with the cost of significant security 
uncertainty. Therefore, a possible mitigation might be to 
build a simplified web platform for running security 
schemes. The programming language is still HTML with 
Javascript, but its functionalities are so restricted that the 
system details of the platform can be faithfully modeled.  

Delivering security-critical services as “integrated 
circuits”, not as “individual electronic components”. Today 
the APIs of service providers (e.g., IdP and cashiers) are 
designed at a level which is too low. Integrating these APIs 
into a website is like wiring up many electronic components 
to implement a circuit. There is too much room for mistakes. 
We believe that it is better for the services to be provided as 
“integrated circuits”. A potential argument in favor of 
“individual electronic components” is that they give 
flexibility to website developers. However, we argue that it 
is service providers’ job to understand the level of flexibility 
that developers want, and build “integrated circuits” for 
them, but do not allow developers to abuse the flexibility. 
Website developers’ task should be minimized: they only 
need to choose an integration scenario, include the 
corresponding library from the service provider, and make a 
single library call to do the whole work. 

6. RELATED WORK 
Research related to web SSO security covers many 

topics, including users’ misconceptions about OpenID [31], 
chances for phishing attacks [29], and various privacy 

concerns [30][32]. Our work is focused on the type of SSO 
security flaws that totally defeats the purpose of 
authentication – the attacker signing in as the victim user.  

The protocol analysis community developed 
frameworks and tools to model and examine many security 
protocols. Some classic approaches and tools include 
Millen’s model [27], the NRL Protocol analyzer [25] and 
the BAN logic [9]. There are also specific studies about web 
SSO protocols, such as several protocols based on SAML 
(Security Assertion Markup Language) [28]. Groß’s work 
attempted to formalize the SAML Single Sign-on 
Browser/Artifact Profile [20]. It found three protocol 
weaknesses based on the assumptions of an attacker being 
able to intercepting protocol traffic or spoofing DNS servers. 
Pfitzmann and Waidner discovered a protocol flaw in a 
protocol called Liberty-Enabled Client and Proxy Profile, 
which is also SAML-based. Hansen et al also used a static 
analysis approach to automatically analyze the SAML SSO 
protocol [21]. In 2008, Armando et al formally modeled 
SAML 2.0 Web Browser SSO Profile, and used an LTL 
(Linear Temporal Logic) model checker that the authors 
developed, namely SATMC, to discover an authentication 
flaw [2]. The practical consequence of the flaw was 
significant because the SAML-based SSO for Google Apps 
was an instantiation of the vulnerable protocol, thus Google 
Apps suffered from the vulnerability. Bhargavan et al used 
an automated theorem prover to prove certain security 
properties of InfoCard protocol [4]. Our work is 
complementary to protocol verification techniques in a 
number of aspects: (1) the primary motivation of our work 
is to do a “field study” about real SSO deployments, so our 
analyses starts with real systems, not documented protocols; 
(2) the key output of our analyses include semantics of 
message elements, server-side protections (e.g., 
whitelisting), important system assumptions that an SSO 
scheme relies on (e.g., same-domain communication) and 
how an RP consumes data from the IdP. A protocol verifier 
would need such analysis result as necessary input.  

Research papers about SSO analysis also pointed out 
another type of vulnerabilities, which cause an opposite 
consequence, i.e., the victim user unknowingly signing in as 
the attacker. For example, Akhawe modeled WebAuth SSO 
in Alloy and used a model checker to find a flaw of this type 
[1]; in reference [3], Armando et al extended their previous 
model described in [2] and discovered such a flaw in the 
SAML-based SSO for Google Apps. 

In Section 5.2, we summarized the similarity between 
this SSO study with our earlier study about logic flaws on 
merchants’ integrations of cashier services [34]. The two 
studies, however, differ in two aspects: (1) most logic flaws 
in reference [34] were identified using merchants’ source 
code; (2) reference [34] only considered the situation that 
the client is malicious, which is our scenario (A). Another 
related research direction is black-box security testing for 
web systems. For example, NoTamper [6] is a technique 
that tests if the client-side logic of a web app is duplicated 
on the server side, without access to the server source code. 
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It was not designed to find logic flaws in service 
integrations like SSO schemes. 

 Protocol reverse engineering has been studied for a 
while, e.g, [11]. Different from the prior research that 
focuses on recovering the message format of an unknown 
protocol, our aim is to identify the semantics of the HTTP 
fields in SSO BRMs and their relations. 

7. CONCLUSIONS 
In this paper, we report an extensive security study of 

commercial web SSO systems. The study shows that 
security-critical logic flaws pervasively exist in these 
systems, which can be discovered from browser-relayed 
messages and practically exploited by a party without access 
to source code or other insider knowledge of these systems. 
We elaborate our analysis steps performed on commercial 
systems and how they lead to discoveries. Every discovered 
flaw allows the attacker to sign in as the victim. The 
affected companies all acknowledged the importance of our 
findings, and expressed their gratitude in various ways.  

In addition to those reported, we are discovering and 
confirming new flaws in other web SSO systems. This 
suggests the seriousness of the overall situation. Clearly the 
scale of the problem is beyond what we can cover as a 
single research team, so we wish this paper can be a call for 
a collaborative effort of the SSO community. The service 
that we will launch soon at http://sso-analysis.org enables 
developers and security analysts to conduct investigations 
similar to what we did. Such a collaborative study hopefully 
helps the community better understand security challenges 
in web SSO deployments and identify suitable solutions.  
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