

Signing Me onto Your Accounts through Facebook and Google: a Traffic-Guided
Security Study of Commercially Deployed Single-Sign-On Web Services

Rui Wang
Indiana University Bloomington

Bloomington, IN, USA
wang63@indiana.edu

Shuo Chen
Microsoft Research

Redmond, WA, USA
shuochen@microsoft.com

XiaoFeng Wang
Indiana University Bloomington

Bloomington, IN, USA
xw7@indiana.edu

Abstract— With the boom of software-as-a-service and social
networking, web-based single sign-on (SSO) schemes are being
deployed by more and more commercial websites to safeguard
many web resources. Despite prior research in formal
verification, little has been done to analyze the security quality
of SSO schemes that are commercially deployed in the real
world. Such an analysis faces unique technical challenges,
including lack of access to well-documented protocols and code,
and the complexity brought in by the rich browser elements
(script, Flash, etc.). In this paper, we report the first “field
study” on popular web SSO systems. In every studied case, we
focused on the actual web traffic going through the browser,
and used an algorithm to recover important semantic
information and identify potential exploit opportunities. Such
opportunities guided us to the discoveries of real flaws. In this
study, we discovered 8 serious logic flaws in high-profile ID
providers and relying party websites, such as OpenID
(including Google ID and PayPal Access), Facebook, JanRain,
Freelancer, FarmVille, Sears.com, etc. Every flaw allows an
attacker to sign in as the victim user. We reported our findings
to affected companies, and received their acknowledgements in
various ways. All the reported flaws, except those discovered
very recently, have been fixed. This study shows that the
overall security quality of SSO deployments seems worrisome.
We hope that the SSO community conducts a study similar to
ours, but in a larger scale, to better understand to what extent
SSO is insecurely deployed and how to respond to the situation.

Keywords— Single-Sign-On, Authentication, Web Service,
Secure Protocol, Logic Flaw

1. INTRODUCTION
Imagine that you visit Sears.com, a leading shopping

website, or using Smartsheet.com, a popular project
management web app, and try to get in your accounts there.
Here is what you will see (as in Figure 1): Sears allows you
to sign in using your Facebook account, and Smartsheet lets
the login go through Google. This way of authentication is
known as single sign-on (SSO), which enables a user to log
in once and gain access to multiple websites without the
hassle of repeatedly typing her passwords. Web SSO is
extensively used today for better user experience. According
to a recent survey, a majority of web users (77%) prefer web
SSO to be offered by websites [7].

Figure 1: Facebook login on Sears and Google login on Smartsheet
SSO systems such as Kerberos have been there for

years. However, never before has the approach seen such

extensive commercial deployments as what happen on
today’s web, thanks to the increasing popularity of social
networks, cloud computing and other web applications.
Today, leading web technology companies such as
Facebook, Google, Yahoo, Twitter and PayPal all offer SSO
services. Such services, which we call web SSO, work
through the interactions among three parties: the user
represented by a browser, the ID provider (a.k.a, IdP, e.g.,
Facebook) and the relying party (a.k.a, RP, e.g., Sears). Like
any authentication scheme, a secure web SSO system is
expected to prevent an unauthorized party from gaining
access to a user’s account on the RP’s website. Given the
fact that more and more high-value personal and
organizational data, computation tasks and even the whole
business operations within organizations are moving into
the cloud, authentication flaws can completely expose such
information assets to the whole world.

Motivation of this research. Given the critical role of
SSO today, it becomes imperative to understand how secure
the deployed SSO mechanisms truly are. Answering this
question is the objective of our research.

Actually, SSO has been studied in the protocol
verification community for a while, which we will discuss
in the related work section. The main focus of these studies
was to design formal methods to find protocol flaws.
However, no prior work includes a broad study on
commercially deployed web SSO systems, a key to
understanding to what extent these real systems are subject
to security breaches. Moreover, even though formal
verifications are demonstrated to be able to identify
vulnerabilities in some SSO protocols [2], they cannot be
directly applied here to answer our question, due to the
following limitations. First, the way that today’s web SSO
systems are constructed is largely through integrating web
APIs, SDKs and sample code offered by the IdPs. During
this process, a protocol serves merely as a loose guideline,
which individual RPs often bend for the convenience of
integrating SSO into their systems. Some IdPs do not even
bother to come up with a rigorous protocol for their service.
For example, popular IdPs like Facebook and Google, and
their RPs either customize published protocols like OpenID
or have no well-specified protocols at all. Second, the
security guarantee an SSO scheme can achieve also
intrinsically depends on the system it is built upon.
Vulnerabilities that do not show up on the protocol level
could be brought in by what the system actually allows each
SSO party to do: an example we discovered is that Adobe
Flash’s cross-domain capability totally crippled Facebook

2012 IEEE Symposium on Security and Privacy

© 2012, Rui Wang. Under license to IEEE.
DOI 10.1109/SP.2012.30

365

SSO security (Section 4.2). Finally, formal verification on
the protocol level cannot find the logic flaws in the way that
the RP misuses the results of an SSO for its decision-
making. For example, we found that the RPs of Google ID
SSO often assume that message fields they require Google
to sign would always be signed, which turns out to be a
serious misunderstanding (Section 4.1). These problems
make us believe that a complete answer to our question can
only be found by analyzing SSO schemes on real websites.

Challenge in security analysis of real-world SSO.
Security analysis of commercially deployed SSO systems,
however, faces a critical challenge: these systems typically
neither publish detailed specifications for their operations
nor have their code on the RP and IdP sides accessible to the
public. What is left to us is nothing more than the web
traffic that goes through the browser. On the bright side,
such information is exactly what the adversary can also see.
This makes our analysis realistic: whatever we can discover
and exploit here, there is no reason why a real-world
attacker cannot do the same.

Given our limited observation of the interactions
between commercial IdPs and their RPs (as shown in Figure
2), we have to focus our analysis on the traffic and
operations of the browser. Fortunately, the browser actually
plays a critical role in web SSO. More specifically, an SSO
system is typically built upon the RP’s integration of the
web APIs exposed by the IdP. Through these APIs, the RP
redirects the browser to the IdP to authenticate the user
when she attempts to log in. Once succeeds, the browser is
given either a certified token for directly signing into the RP
(the case of Smartsheet) or a secret token that the RP can
use to acquire the user’s identity and other information from
the IdP (the case of Sears). Note that during this process, the
browser must be bound to the authentication token to prove
to the RP the user’s identity that the browser represents.
This requires the critical steps of an SSO, e.g., passing of
the token, to happen within the browser. The browser-
centric nature of web SSO makes it completely realistic to
analyze the browser traffic to identify logic flaws.

Figure 2: an SSO triangle and our visibility as an outsider
 Our study and findings. The web services/websites

we investigated include high-profile systems that utilize the
aforementioned IdPs. Our study shows that not only do
logic flaws pervasively exist in web SSO deployments, but
they are practically discoverable by the adversary through
analysis of the SSO steps disclosed from the browser, even
though source code of these systems is unavailable. The
web SSO systems we found to be vulnerable include those
of Facebook, Google ID, PayPal Access, Freelancer,
JanRain, Sears and FarmVille. All the discovered flaws
allow unauthorized parties to log into victim user’s
accounts on the RP, as shown by the videos in [33]. We

reported our findings to related parties and helped them fix
those bugs, for which we were acknowledged in various
ways, e.g., public recognitions, CEO’s thank and monetary
reward, which we will mention in Section 4.

Our methodology. When investigating an SSO case,
our analysis begins with an automated black-box test on the
HTTP messages, which the browser passes between the RP
and the IdP for invoking the APIs on either side. We call
these messages browser relayed messages (BRMs). This
test identifies the HTTP field that carries the authentication
token and other fields that directly or indirectly affect either
the value of the token or the destination it will be sent to
(e.g., a reply URL). What we are interested in is the subset
of these fields that the adversary could access under
different adversary assumptions that we will describe in
Section 2.2. Once such knowledge has been gathered by the
automatic test, we move on to understand whether the
adversary has the capability to forge the token that is
supposedly authentic or steal the token that is supposedly a
secret. Oftentimes, this brings us directly to a set of specific
technical questions that serve as sufficient conditions for an
exploit to succeed. These questions are answered by doing
more insightful system testing or by looking for knowledge
from domain experts. Our experience proves that this
analysis methodology indeed gives effective guidance in
finding real-world SSO logic flaws.

Roadmap. The rest of the paper is organized as follows:
Section 2 offers the background about web SSO and the
adversary models we studied; Section 3 a number of basic
concepts that Section 4 will base on, and our tool to extract
basic ground truths of an SSO scheme; Section 4 presents
the main study of this paper; Sections 5 and 6 discuss our
retrospective thought and related work; Section 7 concludes.

2. BACKGROUND
2.1. Web Single Sign-On: a View from the Browser

SSO is essentially a process for an IdP to convince an
RP that because this browser has signed onto the IdP as
Alice, this same browser is now granted the capability to
sign onto the RP as Alice. The tricky part here is that the
IdP must bind Alice’s capability to the correct browser that
truly represents Alice. In all existing SSO systems, such a
binding is through proof-by-possession: Alice’s browser
needs to present to the RP a token issued by the IdP to
demonstrate that it possesses the capability that the IdP
grants to Alice. Security of an SSO scheme depends on how
the token is handled, so the browser naturally undertakes
many critical steps, and thus is the focus of our investigation.

Browser relayed message (BRM). An SSO process
can be described as a sequence of browser relayed messages
exchanged between the RP and the IdP. Typically, an HTTP
communication can be thought of as a sequence of request-
response pairs, as shown in Figure 3 (upper). Each pair
consists of an HTTP request Xa, where X is the number of
requests the browser has made (i.e., 1a, 2a, etc.), and its
corresponding HTTP response Xb (1b, 2b, etc.) to be sent

browser

 IdP RP
Visible to us Blackbox for us

366

back from the server (either the RP or the IdP). A browser
relayed message (BRM) refers to a response message Xb
followed by a request (X+1)a in the next request-response
pair, as illustrated in the figure.

Figure 3: upper: a browser-relayed message (BRM) consists of a

response and the next request; lower: a sample SSO process
Each BRM describes a step of the SSO in which the

server handler (e.g., a web API) of step X passes data to the
server handler of step X+1, with the browser state
piggybacked. The entire SSO process is bootstrapped by
request 1a sent to the RP. It triggers BRM1, which is, for
example, for the RP to declare its website identity to the IdP.
More BRMs may occur as needed afterwards. The last BRM
(e.g., BRM5 in Figure 3 (lower)) finally convinces the RP
of the user’s identity that the browser represents.

A BRM can be, for example, (1) an HTTP 3xx
redirection response (2) a response including a form for
automatic submission, or (3) a response with a script or a
Flash object to make a request. In this paper, we do not
differentiate these implementations and instead, describe
each BRM in a format described by the following example:
 src=a.com dst=Facebook.com/a/foo.php

Set-cookies: sessionID=6739485
Arguments: x=123 & user=john
Cookies: fbs=a1b2c3 & foo=43da2c2a

Intuitively, this BRM is interpreted as: “a.com (source
server) asks the browser to set cookie sessionID =
6739485 for its domain and to send a request to
destination URL Facebook.com/a/foo.php; the request
contains arguments x=123 and user=john provided by
a.com, as well as cookies fbs=a1b2c3 and
foo=43da2c2a stored in the browser for the domain
Facebook.com.” In the above example, each underlined item
is called an element, which includes the BRM’s source,
destination, or other name-value pairs of set-cookies,
arguments and cookies.
2.2. Threat and Adversary Model

Threat. Web SSO faces various security and privacy
threats, as studied in prior research [29][30][31][32], which
we will describe in the related work section. Our research
focuses on the type of security flaws that completely defeats
the purpose of authentication: that is, the unauthorized party
Bob signs in as the victim user Alice.

Adversary’s roles. When evaluating the threat from the
malicious party Bob, we need to understand who he can
communicate with and what roles he can play in an SSO
process. It is easy to see that Bob can actually interact with

all SSO parties: not only can he talk to the RP and the IdP,
but he can also set up a website, which, once visited by
Alice, can deposit web content to Alice’s browser. Such
interactions are described in Figure 4.

Figure 4: possible communications when Bob is involved
From the figure, we can see that because of Bob’s

involvement in the communication, there are four possible
SSO triangles similar to the one shown in Figure 2. These
SSO triangles are Alice-IdP-Bob, Bob-IdP-RP, Alice-IdP-
RP and Alice-Bob-RP. In our study, we did not consider the
last one, in which Bob acts as the IdP and can steal Alice’s
authentication information through phishing, as the focus of
our research is logic flaws in SSO systems, not social
engineering. In the remaining three relations described as
scenarios (A), (B) and (C) respectively in Figure 5, Bob’s
roles allow him to identify and exploit SSO vulnerabilities.
Specifically, in (A), Bob is a client in an SSO and attempts
to convince the RP that his browser represents Alice,
assuming that he knows Alice’s username through a prior
communication; in (B), when Alice visits Bob's website,
Bob acts as an RP to the IdP, in an attempt to get Alice's
credential for the target RP; in (C), Bob leaves malicious
web content in Alice’s browser during her visiting of his
website, which can perform SSO operations through
sending requests to the IdP and the RP. Of course, these
three scenarios are just high-level strategies. How to carry
out the strategies is exactly what we need to figure out from
the study to be presented next.

Figure 5: three basic types of exploitations by Bob

3. KEY CONCEPTS IN BRM-GUIDED ANALYSIS
The main findings of our study will be presented in

Section 4, but in order to clearly explain the vulnerabilities
and how we discovered them step-by-step, we need to
introduce in this section some important basic concepts that
section 4 will base upon. These concepts are derived from
features in BRM traces by an automatic tool that we built,
namely the BRM analyzer.
3.1. The BRM Analyzer

Our BRM analyzer was designed to perform a black-
box, differential analysis on BRM traces. The analyzer
needs to capture/parse BRMs and further modify/replay
HTTP requests. To this end, we installed Fiddler [15], a

Bob

IdP RP

Alice

IdP

Bob
(B) Bob as a relying party (RP)

Alice

IdP

Bob
(C) Bob as a parasite page in Alice’s browser

RP

(A) Bob as a client

 Alice
 (browser)

IdP RP

Bob’s
page

Alice

RP

Alice

IdP RP

Bob (malicious)

IdP RP

1a 1b 2a 2b 3a 3b … 5b 6a

BRM1 BRM2 BRM5

browser

1a

BRM1

BRM2
BRM5

367

web proxy capable of uncompressing/decoding/parsing all
HTTP messages, on the browser machines used in our
research. We also utilized Firefox’s debugging tool Firebug
[16] to modify and replay browser requests.

Figure 6 shows how the analyzer works. To conduct an
analysis, we need two test accounts (i.e., user1 and user2,
with different user names, email addresses, etc.) to collect
three traces, including two for user1’s logins from two
different machines and one for user2’s login from one
machine, which serve as the input to the analyzer. Each
trace records all the BRMs observed by the browser during
a login. These traces are processed by the analyzer through
three steps (Figure 6), which perform comparisons, regular
expression matching and some dynamic tests. These steps
aim at identifying and labeling key elements in an SSO and
other elements related to these elements. Their output
describes the elements and their relations under the three
adversarial scenarios in Figure 5.

Figure 6: input, output and the three steps of the BRM analyzer

In the rest of the section, we elaborate these steps,
which include syntactic labeling, semantic labeling and
adversary accessibility labeling, using the following raw
trace as an example.
BRM1: src=RP dst=http://IdP/handler.php
 Arguments: notifyURL=http://RP/auth.php
 Cookies: sessionID=43ab56c2
BRM2: src=IdP dst=http://RP/auth.php
 Arguments: username=Alice & sig=11a3f69

Syntactic labeling. The first step of our analysis is to
determine the syntactic types of individual elements in
BRMs. Table 1 lists all the types with their examples. The
lexical grammar we used to recognize these types is
straightforward, which we do not elaborate here due to the
space limitation. Our analyzer performs such type
recognition using a single trace, labeling each element it
identifies. For example, for the element
“notifyURL=http://RP/auth.php”, the analyzer attaches a
label [URL] to it. To ensure the correctness of such labeling,
our approach automatically compares the types of the same
element (e.g., notifyURL) across all three traces: once an
inconsistency is found, it reports to the human analyst for
reconciliation, though this happened rarely in our study.

Table 1: types
Label Example value
INT (decimal no longer than 4 digits) 123
WORD Alice
BLOB (decimal longer than 4 digits, or
a hexadecimal or alphanumeric number)

43ab56c2

URL http://RP/auth.php
LIST (x, y, z)

Semantic labeling. After the types of individual
elements are labeled, our analyzer moves on to identify their
semantic meanings. Table 2 summarizes the semantic
attributes defined in our research, which are obtained
through a series of black-box tests described below. Note
that we include the descriptions for “UU (user-unique)”,
“MU (client-machine-unique)”, “SU (session-unique)”, “BG
(browser-generated)”, “SIG? (signature-like)” and “NC
(newly-created)” in Table 2, since they are straightforward.

Table 2: semantic attributes
UU (user-unique): We compare the three input traces. An
element is labeled “UU” if it has an identical value in the two
traces of user1’s logins, and a different value in the trace of
user2’s login. This element holds a value unique to the user.
MU (client-machine-unique): An element is labeled “MU” if it
has an identical value in the two users’ login traces on
machine1, and a different value in the trace of user1’s login on
machine2.
SU (session-unique): An element is labeled “SU” if it has
different values in all three input traces.
BG (browser-generated): an element not included in the
response, but appearing in the request that follows.
SIG? (signature-like): It is a BLOB element whose name
contains the substring “sig”. Such an element is likely a
signature. We need a replay test to confirm it.
pChain (propagation chain): An element uses this chain to find
all elements in the trace that have the same value as this
element.
NC (newly-created): it is an element whose pChain is null,
indicating that the element does not come from a prior BRM.
SIG (signature): It indicates an element confirmed as a
signature. We create a data structure to describe its properties,
including its signer and whether it covers the entire argument
list or only selectively.
SEC (secret): it indicates a secret specific to the current session
and necessary for the success of the authentication.
“!” (must-be): When a src value of a BRM is prefixed with this
label, it means that the element must have this value in order for
the authentication to succeed.

pChain (propagation chain). To identify the elements
accessible to the adversary under different circumstances,
we need to understand how the value of an element is
propagated to other elements across different BRMs. To this
end, our analyzer attaches to every element a pChain
attribute that serves to link related elements together. In the
following we describe how to discover such connections:
(1) for each element except src and dst (see the example)
in a BRM, the analyzer compares its value with those of the
elements on all its predecessors in a reverse chronological
order; the element’s pChain is set to point to the first (i.e.,
chronologically latest) element on the prior BRMs that
contains the identical value; (2) we also set pChain of the
src element on every BRM to point to the dst element of
its prior BRM.

SIG label. To identify a signature on a BRM, we first
look for those labeled as “SIG? (signature-like)” and “NC
(newly created)”. The presence of these two labels is a
necessary yet insufficient condition for a signature in most
web SSO systems, as discovered in our study. To avoid

 Syntactic
 labeling

Semantic
labeling

Adversary
accessibility labeling

Abstract
traces (A)
(B) (C)

Trace of user1’s
login on machine 1
Trace of user1’s
login on machine 2

Trace of user2’s
login on machine 1

368

false positives, our analyzer performs a dynamic test on
such an element to find out whether it indeed carries a
signature. Specifically, our analyzer first changes the
element’s value and replays the message: if the message is
rejected, then the element is labeled as SIG. When this
happens, the analyzer further adds and removes the elements
in the message to find out those protected by the signature.
In all the cases we studied, a signature either covered the
whole URL, the whole argument list or some elements in
the argument list. In the last situation, the message also
contains a LIST element that indicates the names of
protected elements.

SEC label. For every newly-created session-unique
BLOB element (i.e., those with NC, SU and BLOB labels),
the analyzer also changes a digit of its value and replays the
message. If the message is rejected, this element is labeled
SEC to indicate that it is a secret.

“!” (must-be) label. If a signature or a secret is created
by a party in a benign scenario, then even in an attack
scenario, it has to be created by the same party in order for
the attack to succeed. In other words, no signature or secret
can be faked by another party. Thus, for every BRM
containing a newly created element of SIG or SEC, the
analyzer prefixes the src value of the BRM with a “!”,
which also propagates to the dst of its prior BRM.

Ignoring pre-existing cookies. Our analysis only cares
about the cookies set after a user starts an SSO process, so
any cookie whose corresponding set-cookie element is not
on the trace does not need to be analyzed, i.e., if a cookie’s
pChain does not lead to a set-cookie element, we ignore it.

Let’s look back at the sample trace. After it has been
processed by the analyzer, we obtain a trace below. Note
that the analyzer removes the concrete values of all elements
except those of src, dst, URL and LIST elements, and
replaces them with labels of their semantic meanings. The
dashed arrows depict pChain links in their opposite
directions, which show propagations. BRM2 has a newly
created signature element, so its src is labeled as “!IdP”,
which also causes the dst element in BRM1 to bear a “!”.
The cookie is ignored as it was set before the SSO starts.

Adversary accessibility labeling. Over the trace

labeled with individual elements’ semantic meanings, our
analyzer further evaluates whether the adversary, Bob, can
read or write elements in the three SSO triangles in the
scenarios illustrated in Figure 4: Bob-IdP-RP, Alice-IdP-
Bob and (Alice+Bob)-IdP-RP. Here readability and
writability are denoted by ↑ and ↓ respectively. Table 3
elaborates the rules we used to label individual elements, to
indicate how they can be accessed by the adversary.

Table 3: labeling rules for adversary’s accessibility
Scenario (A): Bob acts as a browser
• All elements are readable;
• An element not covered by a signature is writable;
• For an element protected by a signature, if it is newly created

(NC), then it is not writable; otherwise, inherit the writability
label from its ancestor using pChain.

Scenario (B): Bob acts as an RP to the IdP in order to get
Alice's credential for the target RP
• Replace any occurrence of “RP” in the trace with “Bob”;
• For any BRM sent to Bob (or the dst element is writable), all

Argument or Cookie elements in the BRM are readable;
• For any BRM made by Bob, the dst element, or any Argument or

Set-cookie element in the BRM is writable, if the element is not
protected by the IdP’s signature;

• For an element protected by a signature, if it is newly created
(NC), then it is not writable; otherwise, inherit the writability
label from its ancestor using pChain.

Scenario (C): Bob deposits a page in Alice’s browser
• No element is readable;
• Cookies and set-cookies are not writable;
• Because the BRM can be generated by Bob, the dst element or

any Argument element in a BRM is writable, if the element is
not protected by a signature;

• For an element protected by a signature, if it is newly created
(NC), then it is not writable; otherwise, inherit the writability
label from its ancestor using pChain.

Output visualization. After analyzing the input traces,
the BRM analyzer produces its output in dynamic HTML,
which allows a human analyst to conveniently retrieve the
understanding obtained through the automatic analysis using
a browser. Figure 7 is a screenshot that displays an output
trace. When the mouse hovers over an element, the element
and all other elements on its pChain are all highlighted,
which enables the analyst to examine how the value of the
element propagates. The mouseover event also brings up a
tip popup that shows the element’s value.

Figure 7: Visualization of an output trace

4. STUDYING SSO SCHEMES ON MAJOR WEBSITES
Like a debugger extracting ground truths about call

stack, memory and registers, the BRM analyzer described in
section 3 extracts necessary ground truths about an SSO
scheme to be studied, e.g., what Bob could read or write,
especially some key elements (e.g., those labeled with SEC
or SIG, etc.). With this tool, we now can go onto the field
study about leading commercial web SSO systems. The
study covers popular SSO services on the web (e.g.,
Facebook, Google, JanRain and PayPal), and the SSO
systems of high-profile websites/services (e.g., FarmVille,
Freelancer, Nasdaq and Sears). The result shows that these
prominent web SSO systems contain serious logic flaws that

BRM1: src=RP dst=https://!IdP/handler.php
Arguments: notifyURL[URL]
Cookies: sessionID[BLOB]

BRM2: src=!IdP dst=https://RP/auth.php
Arguments:
username[WORD][UU] & sig[BLOB][SU][NC][SIG]

369

make it completely realistic for an unauthorized party to log
into their customers’ accounts. These flaws are also found to
be diverse, distributed across the code of RPs and IdPs, and
at the stages of login and account linking. We elaborate
these vulnerabilities in the rest of the section.
4.1. Google ID (and OpenID in general)

OpenID is a popular open standard for single sign on. It
was reported that there were over one billion OpenID-
enabled user accounts and 9 million websites using OpenID
as of December 2009 [22]. Google ID is based on OpenID.
The number of its relying websites is very significant.

Analysis result. Our analysis on Google ID started
with the raw traffic. Not surprisingly, the raw traffic would
be very time-consuming for human to parse and analyze.
Using the BRM analyzer, we could automatically obtain the
semantic information about the trace and the three
adversarial scenarios in Figure 5. The trace for scenario (A)
is shown in Figure 8, in which the RP is Smartsheet.com
and the IdP is Google.com. All elements in the BRMs are
readable in scenario (A), so the readability label (↑) is
ignored. The figure only shows the writability label (↓).
Note that a specific design of OpenID is that many
enumerable values are expressed in the format of URL. This
detail is not important to our description below, so we label
them [WORD] to avoid potential confusion.

Figure 8: GoogleID+Smartsheet trace for scenario (A)

We found that BRM3 is the message for proving to the
RP the identity of the user the browser represents. This

message carries a SIG element openid.sig, indicating
that the SSO is based on a signed token. The analysis further
revealed the elements covered by the signature, as marked
in Figure 8. Among these elements, openid.signed is a
list that indicates the names for those signed elements. What
is interesting here is that some of the signed elements were
labeled by our analyzer as writable by the adversary. A
closer look at them shows that their values are actually
propagated from BRM1, which are not under any signature
protection. Particularly, openid.signed contains the
list from openid.ext1.required on BRM1, an
element that describes which elements the RP requires the
IdP to sign, such as email, firstname and lastname,
as shown in the popup by the mouse cursor in Figure 8.
However, since openid.signed (BRM3) can be
controlled by the adversary through openid.ext1.
required (BRM1), there is no guarantee that any of the
elements that the RP requires the IdP to sign will be signed
by the IdP (i.e., protected by openid.sig) in BRM3.

Flaw and exploit. It is very common for a website to
use a user’s email address (e.g., alice@a.com) as his/her
username, which is probably why the RP requires email to
be signed. The analysis above shows that an attacker in
scenario (A) may cause the IdP to exclude the email element
from the list of elements it signs, which will be sent back to
the RP through BRM3. Therefore, the question to be asked
about an actual system is:

Does the RP check whether the email element in
BRM3 is protected by the IdP’s signature, even though
the protection has been explicitly required by BRM1?

It turns out that this question indeed points to a serious
logic flaw in Google ID SSO. Specifically, we tested the
exploit on Smartsheet: when our browser (i.e., Bob’s
browser) relayed BRM1, it changed openid.ext1.
required (Figure 8) to (firstname,lastname). As
a result, BRM3 sent by the IdP did not contain the email
element (i.e., openid.ext1.value.email). When this
message was relayed by the browser, we appended to it
alice@a.com as the email element. We found that
Smartsheet accepted us as Alice and granted us the full
control of her account.

Broader impacts. We further discovered that the
problem went far beyond Smartsheet. Google confirmed
that the flaw also existed in open source projects
OpenID4Java (an SDK that Google authentication had been
tested against) and Kay Framework. In OpenID4Java, the
function for an RP to verify BRM3 is verify(). The
source code showed that it only checked whether the
signature covered all the elements in the openid.signed
list, so a “verified” BRM3 does not ensure authenticity of
the elements that the RP required the IdP to sign. Besides
smartsheet, we examined other popular websites Yahoo!
Mail, zoho.com, manymoon.com and diigo.com. They were
all vulnerable to this attack.

BRM1:src=RP dst=http://IdP/accounts/o8/ud ↓
Arguments:
openid.ns[WORD]↓ & openid.claimed_id[UU] ↓ &
openid.identity[UU] ↓ &
openid.return_to[URL]{RP/b/openid} ↓ &
openid.realm[URL]{RP/b/openid} ↓ &
openid.assoc_handle[BLOB] ↓ &
openid.openid.ns.ext1[WORD] ↓ &
openid.ext1.type.email[WORD] ↓ &
openid.ext1.type.firstname[WORD] ↓ &
openid.ext1.type.lastname[WORD] ↓ &
openid.ext1.required[LIST] ↓

BRM2:src=IdP↓ dst=http://!IdP/openid2/auth
Arguments: st[MU][SEC] ↓

BRM3: src=!IdP dst=https://RP/b/openid↓
Arguments:
openid.ns[WORD] ↓ & openid.mode[WORD] &
openid.response_nonce[SEC] &
openid.return_to[URL] ↓ &
openid.assoc_handle[BLOB] ↓ &
openid.identity[UU] & openid.claimed_id[UU]&
openid.sig[SIG] &
openid.signed[LIST] ↓ &
openid.opEndpoint[URL]{IdP/accounts/o8/ud}↓ &
openid.ext1.type.firstname[WORD] ↓ &
openid.ext1.value.firstname[UU] &
openid.ext1.type.email[WORD] ↓ &
openid.ext1.value.email[UU] &
openid.ext1.type.lastname[WORD] ↓ &
openid.ext1.value.lastname[UU]

protected by
openid.sig

(email,firstname,lastname)

370

Responses from Google and OpenID Foundation.
We reported our finding to Google, Yahoo and OpenID
Foundation, and helped Google to fix the issue. Google and
OpenID Foundation published security advisories about this
issue, in which they acknowledged us. We provide these
advisories in [33]. Several news articles reported these
advisories, including those from eWeek, The Register,
ZDNet, Information Week, etc [33]. We received a
monetary reward from Google, who also added our names
to its official acknowledgement page [18].

4.2. Facebook
Authentication on Facebook often goes through

Facebook Connect, which is a part of Facebook’s platform.
We studied this SSO scheme.

Analysis result. We performed our automatic analysis
on the traces collected from an SSO through Facebook
Connect. The result (not involving the adversary) is
illustrated in Figure 9. Here, the IdP is Facebook, and the
RP is NYTimes.com. We can see here that BRM3 carries a
secret token result, which the browser uses to prove to
the RP the user’s identity. The secret comes from BRM2 as
an argument for the API call http://!IdP/xd_proxy.php1. This
secret token enables the RP to acquire Alice’s information
from Facebook and also grant her browser access to her
account. Also interesting here is BRM1, in which the RP
declares to the IdP its identity (e.g., NYTimes) through
app_id and provides other arguments. Note that though
the element cb in the figure is also labeled as SEC, it was
found to be generated by the browser (labeled BG, see Table
2) and thus not a secret shared between the RP and the IdP.
BRM1:src=RP dst=http://!IdP/permissions.req
Arguments: app_id[BLOB] & cb[SEC][BG] &
 next[URL]{
 http://!IdP/connect/xd_proxy.php?
 origin[BLOB]&transport[WORD]
 } & … & … & … (other 13 elements)
BRM2:src=!IdP dst=http://!IdP/xd_proxy.php
Arguments: origin[BLOB] & transport[WORD] &
 result[SEC] & … & … (other 4 elements)
BRM3:src=!IdP dst=http://RP/login.php
Arguments: origin[BLOB] & transport[WORD] &
 result[SEC] & … & … (other 3 elements)

Figure 9: the benign Facebook+NYTimes trace
Our analyzer further evaluated the trace in Figure 9

under different adversarial scenarios. Figure 10 shows what
we found under Scenario (B), in which the adversary Bob
impersonates the RP to Facebook when Alice is visiting his
website. According to Table 3, all occurrences of “RP” are
replaced with “Bob”. A potential vulnerability immediately
shows up here is that all elements in BRM1, including
app_id, are writable, so Bob could declare that he was

1 The hostname is !IdP, rather than IdP, because our test showed
that Facebook server whitelists its allowed hostnames. It only
allows a hostname under facebook.com or a Facebook-affiliated
domain, such as fbcdn.net, etc.

NYTimes using the app_id of NYTimes, which is public
knowledge. As a result, the secret token result in BRM3,
which Facebook generates specifically for Alice’s access to
NYTimes and for NYTimes to acquire Alice’s Facebook
data under her consent, now goes to Bob.
BRM1:src=Bob dst=http://!IdP/permissions.req
Arguments: app_id[BLOB] ↓ & cb[SEC][BG] &
 next[URL]{
 http://!IdP/connect/xd_proxy.php↓?
 origin[BLOB] ↓ & transport[WORD] ↓
 } & … & … & … (other 13 elements)
BRM2:src=!IdP dst=http://!IdP/xd_proxy.php↓
Arguments: origin[BLOB] ↓ & transport[WORD] ↓ &
 result[SEC] ↑ & … & … (other 4 elements)
BRM3:src=!IdP↓ dst=http://Bob/login.php
Arguments: origin[BLOB] ↓ & transport[WORD] ↓ &
 result[SEC] ↑ & … & … (other 3 elements)

Figure 10: the Facebook+NYTimes trace in scenario (B)
Flaw and exploit. Again, we had to verify whether the

above identified opportunity was indeed exploitable. This
time, things turned out to be more complicated than they
appeared to be. Specifically, we tested the exploit by setting
all arguments of BRM1 to those on a normal
Facebook+NYTimes SSO trace. We found that although
Facebook indeed responded as if it was communicating with
NYTimes (i.e., all the arguments, including result, were
carried in BRM2), the browser failed to deliver these
arguments to http://Bob.com/login.php in BRM3,
and thus thwarted our exploit. This test clearly indicates that
Facebook’s web contents protect the secret token result
within the user’s browser.

Our manual analysis of the web contents reveals that
such protection comes from the same-origin policy enforced
by the browser, which Facebook leverages to ensure that the
browser only transfers the secret token from Facebook’s
domain to the domains of authorized parties such as
NYTimes, but not Bob.com. The browser mechanisms that
Facebook utilizes for this goal include “postMessage”,
“Adobe Flash” and “fragment”. A relying website, e.g.,
NYTimes.com or Bob.com, is allowed to choose one of
them using the transport element in BRM1. Figure 11
shows how the protection works when Adobe Flash is used.

Figure 11: The complete view of a benign BRM3

The browser takes four steps to transfer the secret (i.e.,
result element) from Facebook to NYTimes. The cross-
domain communication happens during Steps (2) and (3)
between two windows, one rendering the content for
NYTimes and the other for fbcdn.net, which is affiliated
with Facebook. Each of them hosts a Flash object, denoted

(1) HTTP
response from
Facebook

(2) Flash A
to flash B

(3) Flash B to
HTML DOM

http://NYTimes.com

http://fbcdn.net

A
B (4) HTTP

request to
NYTimes

371

by A and B respectively. Both objects are supposed to be
downloaded from fbcdn.net during the SSO. This allows
Flash A to pass the secret to Flash B because they are of the
same origins (fbcdn.net). Flash B further sends the secret to
the HTML DOM of its hosting page only if the page’s
domain is indeed NYTimes. Our exploit mentioned above
was defeated by this defense mechanism, which seems
logically secure: Flash’s same-origin policy ensures that the
secret will be passed only when Flash B is loaded from
fbcdn.net, which implies that Flash B will only hand over
the secret to NYTimes, not to other domains.

Let’s look at our adversarial scenario, in which the
domain of the hosting page is actually Bob.com, although it
declares to be NYTimes.com in BRM1. To bypass the
defense and obtain the secret token in Alice’s browser, Bob
must find a way to either let Flash A pass the secret token to
a Flash downloaded from Bob.com website or convince the
trusted Flash B (from fbcdn.net) to send the token even
when Flash B’s hosting page is Bob.com, not NYTimes.com.
In other words, the problem of attacking this SSO can be
reduced to one of the following questions:
• Is it possible to let Flash B (from fbcdn.net) deliver

the secret to the web page from Bob.com?
• Is Flash A (from fbcdn.net) allowed to communicate

with a Flash object from Bob.com?
For the first question, we analyzed the ActionScript of

Flash B from fbcdn.net and did not find any way to make it
send the secret to a non-NYTimes page. For the second
question, we found that the answer is positive, because of a
unique cross-domain mode of Adobe Flash called
unpredictable domain communication [23]: by naming a
Flash object from Bob.com with an underscore prefix, such
as “_foo”, Flash A can communicate with it despite the fact
that the Flash comes from a different domain. Note that this
logic flaw was found thanks to the domain knowledge about
how Flash communicates, which serves as the last link on
the chain of our exploit. We made an exploit demo [33] to
show how this exploit works: once Alice visits Bob.com
while she has signed onto Facebook, Bob.com uses its Flash
to acquire the secret token from Flash A, which allows Bob
to log into NYTimes as Alice and also impersonate
NYTimes to access Alice’s Facebook data, such as her
personal information (e.g., birthdate), status updates, etc.

Our communication with Facebook. Because the
problem was on Facebook’s side, all RP websites were
subject to the same exploit that worked on NYTimes. We
reported the finding to Facebook, and suggested a way to fix
the issue. After 9 days, Facebook confirmed our finding
through email, and applied our suggested fix on the same
day. Facebook acknowledged us on its public webpage for
security researchers [12] (before Facebook implemented the
“bug bounty” monetary reward program). The finding was
also reported in several news stories, including those on
Computer World, The Register, eWeek, etc [33].

4.3. JanRain
JanRain is a prominent provider of social login and

social sharing solutions for commercial businesses and
websites. It claimed to have over 350,000 websites using its
web SSO services. Its customers include leading websites
such as sears.com, nasdaq.com, savings.com, etc. Its
flagship product, Janrain Engage, wraps individual web
SSO services from leading IdPs, including Google,
Facebook, Twitter, etc, into a single web SSO service. By
using the service, its customers adopt these SSO schemes
altogether and thus avoid integrating them one by one. This
service is interesting not only because of its popularity but
also because of the unique role it plays in web SSO: it is a
wrapper IdP service that relies on the wrapped IdPs for
authentication. This potentially makes the already
complicated web SSO systems even more complex.

Analysis result. Figure 12 shows the trace produced by
the BRM analyzer when our test server did an SSO using
Google ID through JanRain. Before we can come to the
details of this analysis, a few issues need to be explained.
First, in our adversarial scenarios, IdPs are the parties not
under Bob’s control, so we simply treat both JanRain and
Google as a single IdP party for the convenience of the
analysis. Second, to integrate JanRain’s service, an RP
needs to register with JanRain a unique application name
(AppName) for the RP’s web application, e.g., “RP-App”.
JanRain then creates a subdomain RP-App.rpxnow.com for
this application (rpxnow.com is a domain owned by
JanRain). This subdomain will be used by the RP to
communicate with JanRain a set of settings for the SSO
process. JanRain server stores these settings and refers to
them through a handle, denoted as settingsHandle2 in
our analysis. Also note that in this analysis, we treat
AppName as an argument, although it is a subdomain. For
example, http://AppName.rpxnow.com/a.php?foo&bar is
shown as:

 src=xxx dst=http://IdP/a.php
 Arguments: AppName & foo & bar

Figure 12 describes 7 BRMs during this complicated
SSO (login using Google ID through JanRain). When a user
wants to sign onto an RP, the RP generates BRM1 to inform
the IdP (i.e., JanRain) about its AppName, together with the
settings for this SSO. Such settings include: openid_url,
a URL for activating the Google ID authentication, and
xdReceiver and token_url, which are the dst
elements for BRM5 and BRM7 respectively. In the figure,
BRM2 – BRM4 (enclosed in the dashed bracket) describe
the traffic of Google ID authentication, as shown previously
in Figure 8. By the end of BRM4, JanRain gets the user’s
Google profile data. BRM5 – BRM7 pass a secret token to
the RP for retrieving the profile data from JanRain.

2 In the actual implementations, this handle is called
“discovery_token” in JanRain’s wrapping of Yahoo and Google,
and “_accelerator_session_id” in its wrapping of Facebook.

372

BRM1: src=RP dst=http://!IdP/openid/start
Arguments: AppName &
 openid_url{http://IdP/account/o8/ud} &
 xdReceiver{http://IdP/xdcomm?AppName}&
 token_url{http://RP/finish-login} &
 … & … (other 2 elements)
BRM2:src=!IdP dst= http://IdP/account/o8/ud
Arguments: all Google ID’s arguments as shown in BRM1
in Figure 8, in which openid.return_to is set to http:
//IdP/openid/finish?AppName&settingsHandle
BRM3: Google ID’s traffic, similar to BRM2 in Figure 8.
BRM4:src=!IdP dst=http://!IdP/openid/finish
Arguments: AppName & settingsHandle[SEC] &

AllOpenIDData (a pseudo element that we introduce for
the sake of presentation simplicity. It represents all data
returned from Google ID as in BRM3 in Figure 8)

BRM5: src=!IdP dst=http://IdP/xdcomm
Arguments: AppName & redirectUrl {
 http://IdP/redirect?AppName&loc[SEC]}
BRM6: src=IdP dst=http://!IdP/redirect
Arguments: AppName & loc[SEC]
BRM7: src=!IdP dst= http://RP/finish-login
Arguments: token[SEC]

Figure 12: benign traffic of our website integrating JanRain that
wraps Google ID

We further analyzed the BRMs under the three
adversarial scenarios. Figure 13 shows the result for
Scenario (B), where Bob impersonates the RP to the IdP.
BRM1: src=Bob dst=http://!IdP/openid/start
Arguments: AppName↓ & openid_url↓ &
 xdReceiver ↓ & token_url ↓ & … & …
BRM2 – BRM4: (details omitted, see Figure 12)
BRM5: src=!IdP dst=http://IdP/xdcomm↓
Arguments: AppName↓ & redirectUrl {
 http://IdP/redirect?AppName&loc[SEC]↑}
BRM6: src=IdP dst=http://!IdP/redirect
Arguments: AppName↓ & loc[SEC]↑
BRM7:src=!IdP dst=http://Bob/finish-login↓
Arguments: token[SEC]↑

Figure 13: adversarial scenario (B)
An opportunity that we can easily identify is BRM1, in

which Bob could set AppName↓ to that of the target RP
while pointing token_url↓ to his own domain. This
would trick JanRain into collecting the user’s profile data
from Google for the RP and sending the secret
token[SEC]↑ to Bob, as token_url serves as the dst
element for BRM7.

Flaw and exploit. To understand whether this
opportunity indeed works, we set up a server as a mock
target RP of the attack. The test revealed that like Facebook,
JanRain also puts in place some protection measures.
JanRain requires every registered app to supply a whitelist
for identifying the app’s associated domains. For example,
the whitelist for RP-App includes “RP-App.rpxnow.com”
and “*.RP.com”. The token_url of BRM1 needs to be on
the whitelist. In our test, the arguments of BRM1 were
AppName=“RP-App” & token_url=“http://

Bob.com/finish-login”, which JanRain found to be
inconsistent with the whitelist (Bob.com not on the whitelist
of RP-App) and thus stopped the SSO. Furthermore, we
found that even if we temporarily added Bob.com to the
mock RP’s whitelist to let BRM1 succeed (and removed it
from the whitelist after BRM1), the secret token obtained
from BRM7 is still useless. This is due to another check
against the whitelist: when a website uses the token to
retrieve Alice’s Google ID profile from JanRain, JanRain
finds something wrong: the token was previously sent to
Bob.com according to the token_URL; thus Bob.com is
supposed to be on the RP’s whitelist, but it is not.

 Given the protection of whitelisting, it is clear that
token_url in BRM1 must be in a domain on RP-App’s
whitelist (e.g., http://RP.com/finish-login). The trouble now
is that dst on BRM7 is exactly token_url. In other
words, once token_url is set according to the target RP’s
whitelist, there is no way that Bob can have BRM7 sent to
him. This forced us to look back at the result of our analysis
and try another opportunity. Actually, dst in BRM5 is
propagated from the xdReceiver in BRM1, which Bob
appears to be able to write. If he could change this element
(e.g., to http://Bob.com/xdcomm) without being
caught, he could have JanRain send him BRM5. BRM5 is
also important, as it contains loc, another piece of secret.
Stealing loc is as damaging as stealing token. If Bob
obtains loc, his exploit will succeed, as loc is the only
secret Bob needs in order to use his own browser to go
through BRM6 and BRM7, which will get Alice’s session
into the browser. Therefore, we saw that stealing loc
through BRM5 was a plausible idea.

Our test showed both encouraging and challenging
sides of the idea. On the challenging side, we found that
JanRain also checked xdReceiver in BRM1 against the
whitelist and therefore thwarted the exploit at the very
beginning; on the encouraging side, we confirmed that if we
could succeed in setting xdReceiver to Bob.com
/xdcomm, we would indeed get loc, and this loc value
would indeed enable an end-to-end successful exploit.

The remaining question is how to set the RP’s
xdReceiver so that it points to Bob.com/xdcomm. Bob
must accomplish this without being caught by the whitelist
check in BRM1. The only option is to let Bob use his own
AppName (i.e., Bob-App) in BRM1, because Bob can
arbitrarily whitelist any domain that he wants for Bob-App.
Essentially, it means Bob is not constrained by the whitelist
check when BRM1 has argument AppName=“Bob-App”.
How can this affect the settings (i.e., token_url and
xdReceiver) for RP-App? Remember that after BRM1,
the settings are referenced by settingsHandle
collectively, which can be thought of as a secret session ID.
The only hurdle for our exploit is how to bind this session
ID (which is for Bob-App) to our target RP-App.
Interestingly, we found that this binding is established by

373

BRM2 through its argument openid.return_to
(Figure 8). This gives us another opportunity.

Here is our third plan, consisting of two steps: first,
Bob’s own browser makes the request of BRM1 with
AppName=“Bob-App” & token_url=“http://RP
/finish-login” & xdReceiver=”http://Bob
/xdcomm”. This not only gets him through the whitelist
(which is defined by himself) but also gives him
settingsHandle to represent the above two URLs. In
the second step, Bob impersonates the RP: whenever Alice
visits Bob’s website, the website generates BRM2, which
binds RP-App to Bob’s settingsHandle through
openid.return_to. As a result, Bob will get loc in
BRM5, allowing his browser to impersonate Alice’s, as
described before. This plan turned out to work nicely. A
video demo is in [33].

Other JanRain SSO schemes. We found that the same
exploit also worked on JanRain’s wrapping of YahooID
SSO. However, JanRain’s wrapping of Facebook SSO uses
a different way to bind AppName and settingsHandle:
it sets settingsHandle as a cookie under
AppName.rpxnow.com. To exploit this SSO, we had to
figure out a way to let Bob-App.rpxnow.com set the
settingsHandle cookie for RP-App.rpxnow.com. In
other words, the security of the scheme can be reduced to
the following question:

Do browsers allow cross-(sub)domain cookies to be set?
 Access control for browser cookies, especially between

subdomains, is a complex issue, which has been studied for
example in [8]. We learned from existing literature that
browsers at least share cookies of an HTTP domain with its
corresponding HTTPS domain. This implies a disappointing
fact – Facebook-wrapped JanRain SSO cannot secure
HTTPS websites even when it is over HTTPS. Imagine a
banking website that runs this SSO scheme over HTTPS in
order to protect the communication from a network attacker,
e.g., a malicious router. Whenever the user visits any HTTP
website, like google.com, the network attacker can insert a
hidden iframe to access http://RP-App.rpxnow.com, which
sets the settingsHandle cookie for this subdomain.
The cookie will be shared with https://RP-App.rpxnow.com
(the HTTPS domain), making the above exploit succeed.

Bug reporting and JanRain’s responses. We have
reported this issue to JanRain, who acted quickly to fix it
within two days. Later JanRain notified us that due to a
compatibility issue with their legacy systems, their fix for
the JanRain-Facebook issue had to be rolled back. The
developers were working on a new fix.
4.4. Freelancer.com, Nasdaq.com and NYSenate.gov

Freelancer.com is the world’s largest online
outsourcing marketplace [17], which helps match buyers’
projects to the services that sellers can offer. The website
has about 3 million users, 1.3 million projects and earned
over 100 million dollars. Like many other websites today, it

allows Facebook sign-on, but in a different fashion: a user
first needs to register an account, as what happens on a
website not supporting SSO; then, she can “link” this
account to her Facebook account, which allows her to log in
through Facebook afterwards. Therefore, the security of this
SSO critically depends on the linking process.

We found other high-profile websites that also enable
SSO through account linking, such as Nasdaq.com (linkable
to Facebook accounts) and NYSenate.gov (linkable to
Twitter accounts). We have confirmed that they all contain
exploitable vulnerabilities similar to that of Freelancer,
which we describe below as an example.

Analysis result. We used our analyzer to study the
traces collected from a user’s linking operation on
Freelancer.com under different adversarial scenarios. Figure
14 describes what we found under Scenario (C), where Bob
has a malicious web page in Alice’s browser, which can call
other websites’ APIs. Specifically, BRM1 queries Facebook
(the IdP) for Alice’s profile data. BRM3 does the linking3.
In BRM2, Facebook generates a secret result. As
described in the previous Facebook example, BRM3 takes
advantage of the browser-side security mechanism to pass
result to the RP’s page. Then, Freelancer.com (the RP)
sets the value of result in cookie fbs, and calls
lnk.php to do the linking. As we can see from the
analysis, the system needs to ensure that fbs indeed holds
Alice’s Facebook profile data when lnk.php is called.
BRM1:src=RP dst=http://!IdP/permissions.req
Arguments: app_id[BLOB] ↓ & cb[SEC][BG] &
 next[URL]{
 http://!IdP/connect/xd_proxy.php↓?
 origin[BLOB] ↓&transport[WORD] ↓
 } & … & … & … (other 14 elements)
BRM2:src=!IdP dst=http://!IdP/xd_proxy.php↓
Arguments: origin[BLOB] ↓ & transport[WORD] ↓&
 result[SEC] & … & … (other 4 elements)
BRM3:src=!IdP dst=http://RP/facebook/lnk.php
Arguments: auto_link[INT] ↓ & goto_url[URL] ↓
Cookies: fbs[SEC]

Figure 14: Traffic for scenario (C)
 Flaw and exploit. The opportunity we see is that Bob

can log into Freelancer as Alice if his web page in Alice’s
browser manages to link her Freelancer account to Bob’s
Facebook account. To this end, two things must happen: (1)
the page signs Alice’s browser onto Bob’s Facebook
account, and then (2) it makes the browser do the linking.

Linking from Alice’s browser. Let us first assume that
Step (1) has succeeded, and focus on (2). The trouble here is
that Bob’s page cannot produce BRM1, due to the presence
of a browser-generated secret cb. Alternatively, we can try
to directly invoke BRM3. The only hurdle here is that
without BRM1–BRM2, cookie fbs would not been

3 This step includes the client-side communication to pass the
token result from an IdP’s page to an RP’s page (Section 4.2).

374

assigned the profile data of the current Facebook logon user.
Interestingly, we found that by making the browser visit the
page http://freelancer.com/users/change-settings.php (no
argument required), the current Facebook user’s profile is
queried and set to cookie fbs. The visit is essentially an
API call to accomplish BRM1–BRM2 with no secret. Bob’s
page can then make the request of BRM3 for the linking.

Signing Alice’s browser onto Bob’s Facebook account.
Now we look at how to make step (1) happen. We analyzed
the traffic of Bob signing onto Facebook from his own
browser, which was a POST request to https://www
.facebook.com/login.php with username and password as its
arguments. The same request, however, was denied by
Facebook when it was produced by Bob’s page. A
comparison between the traces of the two requests revealed
that the referrer header in the successful one was set by
Facebook.com, while that of the failed request was within
Bob’s domain. We had known from various sources that
referrer-checking is an unreliable means for discriminating
cross-site requests from same-site ones, because the referrer
header is sometimes removed at the network layer for
legitimate privacy reasons [5]. We tested the login request
again with its referrer removed, Facebook accepted it. Thus,
an exploit comes down to the answer to the question below:

How to send a POST request with no referrer header?
This question turned out to have known answers. Two

browser experts pointed us to some working examples, as
well as information resources, such as [26]. We tested one
of the working examples, shown in Figure 15, and
confirmed that it works on the latest versions of IE, Chrome
and Firefox. Using this approach, we were able to sign in as
Alice on Freelancer.com, thereby confirming the presence
of the logic flaw in its integration of Facebook’s SSO
service. As discussed before, the same vulnerability exists
on Nasdaq.com and NYSenate.gov. The SSO of
NYSenate.gov is through Twitter.
a.html <iframe src="b.html"></iframe>
b.html
<iframe name="formFrame"></iframe>
<script> formFrame.document.body.innerHTML= '<form

name="tfm" action= "http://foo.com/bar" method="post"
target= "_top" > <input type="text" name="arg"/><input
type="submit"/> </form>';

formFrame.document.all.tfm.submit(); </script>
Figure 15: an implementation of referrer-free posting

Bug reporting and Freelancer’s response. We reported
the issue to Freelancer. The company’s CEO Matt Barrie
thanked us and asked for suggestions about the fix [33]. We
offered two suggestions, of which Freelancer adopted one.

4.5. OpenID’s Data Type Confusion
Our study on OpenID-based systems also uncovers a

serious logic flaw, which is caused by the confusion
between the RP and the IdP on the interpretation of BRM
elements. We believe that the problem is pervasive. It has
been confirmed on Shopgecko.com, one of the first adopters

of PayPal Access (PayPal’s new SSO service announced on
10/13/2011), and Toms.com, a shopping website. The
findings were made a few days before our paper submission.

Flaws and exploits. Let’s look at the BRM traffic of
Smartsheet and GoogleID in Figure 8. Our analysis shows
that openid.ext1.type.email (type.email for
short), an element in BRM1 and BRM3, is writable under
Scenario (A) (where Bob controls the web client). A further
analysis of the element reveals that it affects the value of
openid.ext1.value.email (value.email for
short), a signed element in BRM3. The RP typically treats
this element as a user’s email address, but Google (the IdP)
thinks differently. It actually sets the element’s value
according to type.email. Initially in BRM1, the RP sets
the value of type.email to http://schema.openid.net
/contact/email, OpenID’s type for emails. However, Bob
can change it to other types, such as http://axscheme.org
/namePerson/first (OpenID’s data type for first names).
As a result, value.email in BRM3 can hold the user’s
first name. This enables an exploit if Bob could register with
Google a first name “alice@a.com”. Remember that
Smartsheet uses the registered email of a user as her
authentication token. This type confusion can lead to
signing Bob onto Alice’s account. We confirmed that
Smartsheet indeed takes Bob’s first name as an email during
the exploit. We believe that the misunderstanding about the
content of value.email is pervasive, given that Google
developer’s guide only uses value.email as an example
of requested user attributes in its specification, and never
mentions how its content is actually determined [19].

However, this exploit did not get through, because
Google ID’s user registration page does not treat
“alice@a.com” as a valid first name. Therefore, a natural
question produced by our analysis is whether there is a way
to use “alice@a.com” as the value of any non-email field in
Bob’s Google ID profile, maybe through direct API calls
instead of the user registration page.

Now we show where this exploit does work.
Shopgecko.com identifies a user by her PayPal ID, which is
not a secret. The type of the ID is https://www.paypal
.com/webapps/auth/schema/payerID, which Bob can change
to http://schema.openid.net/contact/street2, the type of
“mailing address’ second line”. We successfully registered a
user whose mailing address’ second line is Alice’s PayPal
ID. For toms.com, we found the element “email” in fact
contains a user’s Twitter ID during a Twitter SSO, though it
indeed carries email addresses in other SSOs, such as
Google ID. Bob, a Google user, can register his first name
as “AliceOnTwitter”, which is Alice’s Twitter ID, and sign
in as Alice through Google.

Bug reporting. We have reported the end-to-end cases
to PayPal, Google, OpenID Foundation, Toms.com and
Magento (developer of Shopgecko). Google will fix it by
checking the value of type.email. Google also asked us
to directly bring this issue to the attention of the executive
director of OpenID Foundation.

375

4.6. Other confirmed and potential flaws in studied cases
In the prior subsections, we describe serious logic flaws

we found in several web SSO systems. They are actually
only a tip of the iceberg: there are some other systems either
vulnerable to our exploits or on the verge of being cracked.
Table 4 lists eight more cases we studied.

Table 4: some other cases that we confirmed or found promising
 The SSO scheme and the specific system-level question
1

√

SSO: Facebook Legacy Canvas Auth
Question: does a Facebook app check the signature of BRM3
that Facebook generates? (The flaw was confirmed on
FarmVille.com)

2

√

SSO: Facebook Connect
Question: does an RP of Facebook SSO redirect the user to an
attacker’s URL despite a failed whitelist checking? (The flaw
was confirmed on zoho.com.)

3

√

SSO: JanRain’s wrapping of Facebook
Question: does an RP of JanRain-SSO whitelist *.rpxnow.com,
not specifically RP-App.rpxnow.com (The flaw was confirmed
on sears.com)

4 SSO: Facebook SSO with the RP requesting access_token
Question: what kind of damage can be done by the leakage of
access_token alone? (We found that the access_token
that Groupon.com requests can be obtained by the attacker.)

5 SSO: Facebook Connect
Question: Can a Javascript in Bob.com read FlashVars of a
Flash in the RP’s domain, if the Flash allows cross-domain
access? If so, we found that nike.com would be broken.

6 SSO: Facebook Connect
Question: does a RP import Facebook’s xd_proxy.php script for
its cross-domain communication?

7 SSO: Facebook Connect
Question: does an RP have an API for universal redirection,
such as “http://foo.com/redirect.php?url=http://bob.com”?

8 SSO: SSO on livingsocial.com, toms.com and diigo.com
Question: when Bob makes Alice’s browser sign onto an RP as
Bob, can Bob obtain his own session cookie in the browser?

Our analysis on these cases all led to potential exploit
avenues, which come down to a few questions. Three of
these cases (with √) were indeed confirmed and reported.
More information of these eight cases is described in the full
version of this paper [33].

5. RETROSPECTIVE DISCUSSION
As discussed at the beginning of the paper, our main

contribution is an extensive security study of commercial
web SSO systems, which aims at understanding their
security quality and design pitfalls, even in the absence of
their source code and detailed specifications. This study was
made possible by a suite of analysis techniques we built.
Such techniques just serve as a necessary tool for analyzing
the SSO systems, and their designs, at the current stage, are
still simple and preliminary: for example, our BRM analyzer
does not seem to be very advanced. What is really important
here is the discovery we made using these techniques, which
reveals the gravity and pervasiveness of security-critical
logic flaws within commercial web SSO systems. We hope
that such a discovery will provoke soul-searching in web

SSO community, and help build securer SSO systems. Here
are our preliminary thoughts.
5.1. Understanding the SSO vulnerabilities

Commonalities in all our vulnerability investigations.
All the logic flaws described in the paper, no matter how
subtle they are, were all discovered through a simple and
rather mechanical procedure at the high level:

(1) Understand whether the SSO is based on a secret
token or an authentic token. Accordingly, there are
only two types of problems – either a secret token
sent to Bob or an authentic token forged by Bob.

(2) Locate the token in BRMs. Understand how it is
propagated or how it is covered by a signature.

(3) Apply adversary scenarios to BRMs using Table 3,
which corresponds to the only three strategies – Bob
acting as another client, Bob acting as another RP
and Bob acting as a page in Alice’s client.

Our success indicates that the developers of today’s
web SSO systems often fail to fully understand the security
implications during token exchange, particularly, how to
ensure that the token is well protected and correctly verified,
and what the adversary is capable of doing in the process.

 Variations in the vulnerabilities. The variations are in
the non-trivial details of individual systems. In this study,
we spent a great amount of effort demonstrating such
variations. In Section 4, we describe eight end-to-end
confirmed cases, which differ significantly from each other
in technical details (although for each case, we usually
confirmed the similar vulnerability on several websites), e.g.,
how a signature’s coverage is determined, how the browser
protects the secrecy of a token, how BRM destinations are
checked by servers, how accounts are linked together, how a
website handles an anonymous visit, etc. This diversity
comes from the way SSO services are integrated: each RP
can integrate the same SSO service differently; the security
of the integration depends not only on the program logic on
RP and IdP sites, but also on the underlying web platform.
Given such complexity, we feel that it can be hard to
speculate about how a system can go wrong before looking
at its details. This is why a lot of detailed investigations
need to be conducted with human analyst’s creativity and
domain knowledge. We do believe, however, that for known
vulnerabilities, one can build a tool to automatically identify
other websites suffering from similar problems, but it is not
the focus of this paper.

RP developers’ due diligence. The complexity in
implementation and system details suggest that it can be
hard for IdP developers to anticipate all possible RP
implementations in the world. Because RP developers are
the people who put together a concrete system, they are
naturally the final gatekeeper for its security. We suspect
that most RP developers today may not realize the necessity
of such a due diligence, but merely consider SSO
implementation as a task of calling individual APIs on IdPs.

We believe that an analysis like what we did is helpful,
so we will soon launch and maintain a service at http://sso-

376

analysis.org for developers to use our methodology.
Developers are obviously in a better position to conduct the
analysis than us, as they know precisely which data serve as
the primary user ID, the underlying system features that the
RP code relies on, and other insider knowledge.

5.2. Broader lessons on secure service integrations
Our previous work studied how merchant websites

integrate third-party cashier services. We discovered many
logic flaws that allow a malicious shopper (client) to shop
for free [34]. The issues exposed in this paper, although
about SSO, are similarly about service integration logic
flaws. We believe that many lessons can be learned from the
two studies together and applicable to other service
integration scenarios in general, such as authorizing through
OAuth, incorporating social networking functionalities, etc.

5.2.1. Challenges in secure service integrations
Service integration is done through an application (e.g.,

an RP or a merchant website) calling APIs of a service
provider (e.g., an IdP or a cashier service). There are two
reasons for these APIs to cause security problems:

Underlying execution platform matters. APIs are
designed at a certain abstraction level. It is challenging to
exhaustively examine their semantics on real operational
systems. This challenge has caused security issues over and
over again. For example, in the cashier service study, we
found a problem due to API developers’ neglect of the
possibility of concurrent HTTP sessions of web servers
(Section III.B.1 of [34]). In the current SSO work, we
discovered that developers failed to consider Flash’s
unpredictable domain mechanism and the feasibility of
posting a request without referrer. APIs designed without
thorough understanding of their execution platforms and
related security implications can be vulnerable.

Compared to secure implementation of APIs, how to
call APIs securely can be even more challenging. Consider
the notorious strcpy, which itself does not contain a buffer-
overrun vulnerability, but can easily introduce one to the
program that calls it. As an example, many Unix-like
systems provide a family of uid-setting APIs, such as setuid,
seteuid and setguid. “Demystifying” them and
understanding their proper usage were known to be highly
nontrivial [10]. We believe that the web APIs we studied
also deserve the same effort to “demystify” the way to use
them securely. They should be examined with all reasonable
usage patterns of the calling sites, and with all conceivable
adversary assumptions. For example, Google should have
expected reasonable RP websites to use the email element to
identify a user, and thus realized that Google ID APIs are
problematic (see Section 4.1).
5.2.2. What kind of analysis tools are needed

Our experience in this study seems to be complimentary
to that of a classic protocol-verification task in several
aspects. If the verification community wants to extend the
current methodologies to the actual system level, there are

some new thrusts that need to be addressed by appropriate
tools. Below are the main points distilled from our
experience, which explain these thrusts.

Understanding a real-world system could be more
challenging than analyzing its well-specified logic model.
Verification techniques typically reason about logic models
that have been extracted from real systems. For every case
that we studied, we spent more time on understanding how
each SSO system work than on reasoning at the pure logic
level. This suggests that when it comes to examining a real
system, we would love to have a tool to help us understand
complex system details more than a tool that replaces us in
logic reasoning. A desired tool should direct the analyst to
grasp key details of the system, like a debugger, which does
not find bugs for programmers, but presents key ground
truths, such as the call stack, etc., to help programmers. Our
BRM analyzer is designed toward this direction.

In-depth security analysis of a real system often
happens under incomplete knowledge and needs to be
adaptive, iterative and semi-automatic. Given the
complexity of a real system, techniques that enable a fully
automatic and also in-depth security analysis are still
remote. Existing attempts to automate this process often
require a complete model of the system, which needs to be
manually constructed, before any automatic analysis can
happen. However, such a model is hard to build and often
too complicated to analyze. What we learned from our study
is that security testing of a real system often needs to be
performed without complete knowledge of the system, in an
adaptive and iterative way: the analyst starts with partial
knowledge of the system, designs new tests to probe it,
reasons about the test results to improve her understanding
of the system, and continues to walk through the process
until a viable path is found. This strategy worked well in our
study, helping us identify subtle logic flaws and implement
complicated yet practical exploits, but we had to manage
this process manually. A tool supporting this adaptive
process is very needed for offloading analysts’ burden.

How to effectively convert exploit conditions into
known problems is a valuable research direction. We found
that it is relatively easy to understand the security premises
of the system, e.g., element result should not be
obtained by Bob, or cookie fbs should not be forged by
Bob, etc. However, it is more difficult to convert these
premises into appropriate actionable questions that have
potentially been studied before, such as “can Adobe Flash
do cross-domain communication”. A methodology/tool to
help generate these questions has a great value.
5.2.3. Potential mitigations to consider

When a system is complex, developers make mistakes.
This is especially true for integrations of multiple services
involving different companies. Miscommunications is a
common cause of logic flaws. We believe that good
mitigations should provide a good control of the system
complexity and/or minimize website developers’

377

programming load for integration. For example, the
following two directions are worth consideration.

Using dedicated (or simplified) runtimes to replace the
general-purpose web platform. There are reasons for the
general-purpose web platform to be prefered, e.g., (1) every
user knows how to use a browser; (2) web programming
skill is readily available in the job market. However, from
security standpoint, such a general platform is difficult to
examine exhausively. API designers may not be aware of
certain browser capabilities, which can lead to vulnerable
implementation and open the avenue to potential exploits.

 Admittedly, some serious attempts were made many
years ago for security schemes not based on the web
platform. However, they did not get real tractions in the
market. For example, Secure Electronic Transaction (SET)
[35] was a payment protocol which many big companies
contributed to. It was designed at the same time when SSL
was emerging, so some of SET’s security goals competed
with SSL. Eventually, the payment schemes widely
deployed are PayPal, Amazon Payments, Google Checkout,
etc, which are based on SSL and the general-purpose web
technology. Another example is the InfoCard Sign-On
scheme [4], introduced by Microsoft since Windows Vista.
The client is a dedicated application named “Windows
CardSpace”. InfoCard was not widely adopted before it was
retired. The SSO schemes really adopted are those that we
analyzed in this study. These unsuccessful attempts suggest
that web-based schemes indeed have a clear advantage for
deployment. On the other hand, our paper shows that the
easy deployment comes with the cost of significant security
uncertainty. Therefore, a possible mitigation might be to
build a simplified web platform for running security
schemes. The programming language is still HTML with
Javascript, but its functionalities are so restricted that the
system details of the platform can be faithfully modeled.

Delivering security-critical services as “integrated
circuits”, not as “individual electronic components”. Today
the APIs of service providers (e.g., IdP and cashiers) are
designed at a level which is too low. Integrating these APIs
into a website is like wiring up many electronic components
to implement a circuit. There is too much room for mistakes.
We believe that it is better for the services to be provided as
“integrated circuits”. A potential argument in favor of
“individual electronic components” is that they give
flexibility to website developers. However, we argue that it
is service providers’ job to understand the level of flexibility
that developers want, and build “integrated circuits” for
them, but do not allow developers to abuse the flexibility.
Website developers’ task should be minimized: they only
need to choose an integration scenario, include the
corresponding library from the service provider, and make a
single library call to do the whole work.

6. RELATED WORK
Research related to web SSO security covers many

topics, including users’ misconceptions about OpenID [31],
chances for phishing attacks [29], and various privacy

concerns [30][32]. Our work is focused on the type of SSO
security flaws that totally defeats the purpose of
authentication – the attacker signing in as the victim user.

The protocol analysis community developed
frameworks and tools to model and examine many security
protocols. Some classic approaches and tools include
Millen’s model [27], the NRL Protocol analyzer [25] and
the BAN logic [9]. There are also specific studies about web
SSO protocols, such as several protocols based on SAML
(Security Assertion Markup Language) [28]. Groß’s work
attempted to formalize the SAML Single Sign-on
Browser/Artifact Profile [20]. It found three protocol
weaknesses based on the assumptions of an attacker being
able to intercepting protocol traffic or spoofing DNS servers.
Pfitzmann and Waidner discovered a protocol flaw in a
protocol called Liberty-Enabled Client and Proxy Profile,
which is also SAML-based. Hansen et al also used a static
analysis approach to automatically analyze the SAML SSO
protocol [21]. In 2008, Armando et al formally modeled
SAML 2.0 Web Browser SSO Profile, and used an LTL
(Linear Temporal Logic) model checker that the authors
developed, namely SATMC, to discover an authentication
flaw [2]. The practical consequence of the flaw was
significant because the SAML-based SSO for Google Apps
was an instantiation of the vulnerable protocol, thus Google
Apps suffered from the vulnerability. Bhargavan et al used
an automated theorem prover to prove certain security
properties of InfoCard protocol [4]. Our work is
complementary to protocol verification techniques in a
number of aspects: (1) the primary motivation of our work
is to do a “field study” about real SSO deployments, so our
analyses starts with real systems, not documented protocols;
(2) the key output of our analyses include semantics of
message elements, server-side protections (e.g.,
whitelisting), important system assumptions that an SSO
scheme relies on (e.g., same-domain communication) and
how an RP consumes data from the IdP. A protocol verifier
would need such analysis result as necessary input.

Research papers about SSO analysis also pointed out
another type of vulnerabilities, which cause an opposite
consequence, i.e., the victim user unknowingly signing in as
the attacker. For example, Akhawe modeled WebAuth SSO
in Alloy and used a model checker to find a flaw of this type
[1]; in reference [3], Armando et al extended their previous
model described in [2] and discovered such a flaw in the
SAML-based SSO for Google Apps.

In Section 5.2, we summarized the similarity between
this SSO study with our earlier study about logic flaws on
merchants’ integrations of cashier services [34]. The two
studies, however, differ in two aspects: (1) most logic flaws
in reference [34] were identified using merchants’ source
code; (2) reference [34] only considered the situation that
the client is malicious, which is our scenario (A). Another
related research direction is black-box security testing for
web systems. For example, NoTamper [6] is a technique
that tests if the client-side logic of a web app is duplicated
on the server side, without access to the server source code.

378

It was not designed to find logic flaws in service
integrations like SSO schemes.

 Protocol reverse engineering has been studied for a
while, e.g, [11]. Different from the prior research that
focuses on recovering the message format of an unknown
protocol, our aim is to identify the semantics of the HTTP
fields in SSO BRMs and their relations.

7. CONCLUSIONS
In this paper, we report an extensive security study of

commercial web SSO systems. The study shows that
security-critical logic flaws pervasively exist in these
systems, which can be discovered from browser-relayed
messages and practically exploited by a party without access
to source code or other insider knowledge of these systems.
We elaborate our analysis steps performed on commercial
systems and how they lead to discoveries. Every discovered
flaw allows the attacker to sign in as the victim. The
affected companies all acknowledged the importance of our
findings, and expressed their gratitude in various ways.

In addition to those reported, we are discovering and
confirming new flaws in other web SSO systems. This
suggests the seriousness of the overall situation. Clearly the
scale of the problem is beyond what we can cover as a
single research team, so we wish this paper can be a call for
a collaborative effort of the SSO community. The service
that we will launch soon at http://sso-analysis.org enables
developers and security analysts to conduct investigations
similar to what we did. Such a collaborative study hopefully
helps the community better understand security challenges
in web SSO deployments and identify suitable solutions.

ACKNOWLEDGEMENT
We thank our shepherd Alex Halderman for valuable

suggestions on the improvement of the paper. We also thank Zhou
Li for pointing us to the Unpredictable Domain Communication of
Adobe Flash, and Manuel Caballero and David Ross for referrer-
free posting examples. We appreciate the comments from Martín
Abadi, Shaz Qadeer, Nik Swamy and Helen Wang on the early
draft of the paper, and the discussions with Cormac Herley and Yi-
Min Wang. Authors with Indiana University were supported in part
by the NSF Grants CNS-1017782 and CNS-1117106. Rui Wang
was also supported in part by a Microsoft Research internship.

REFERENCES
[1] Devdatta Akhawe, Adam Barth, Peifung Lam, John Mitchell, Dawn

Song. "Towards a Formal Foundation of Web Security," IEEE
Computer Security Foundations Symposium, 2010

[2] Alessandro Armando, Roberto Carbone, Luca Compagna, Jorge
Cuellar, Llanos Abad. "Formal Analysis of SAML 2.0 Web Browser
Single Sign-On: Breaking the SAML-based Single Sign-On for
Google Apps," ACM FMSE, 2008

[3] Alessandro Armando, Roberto Carbone, Luca Compagna, Jorge
Cuellar, G. Pellegrino, A. Sorniotti. "From Multiple Credentials to
Browser-based Single Sign-On: Are We More Secure?" IFIP
Information Security Conference (SEC), 2011

[4] Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon, Nikhil
Swamy. "Verified implementations of the information card federated
identity-management protocol, ACM ASIACCS 2008.

[5] Adam Barth, Collin Jackson, and John C. Mitchell. “Robust Defenses
for Cross-Site Request Forgery,” ACM CCS, 2008

[6] Prithvi Bisht, Timothy Hinrichs, Nazari Skrupsky, Radoslaw
Bobrowicz and V.N. Venkatakrishnan. "NoTamper: Automatically
Detecting Parameter Tampering Vulnerabilities in Web
Applications," ACM CCS 2010

[7] Blue Research. "Consumer Perceptions of Online Registration and
Social Sign-In," http://janrain.com/consumer-research-social-signin

[8] Andrew Bortz, Adam Barth, and Alexei Czeskis. “Origin Cookies:
Session Integrity for Web Applications,” W2SP 2011.

[9] Michael Burrows, Martín Abadi, and Roger Needham. A logic of
authentication. ACM Trans. Computer Systems 8, 1, 18-36. 1990.

[10] Hao Chen, David Wagner and Drew Dean. "Setuid demystified,"
USENIX Security Symposium, San Francisco, CA, August 2002

[11] Weidong Cui, Jayanthkumar Kannan, Helen J. Wang. "Discoverer:
Automatic Protocol Reverse Engineering from Network Traces,"
USENIX Security Symposium 2007

[12] Facebook. "White hats," http://www.facebook.com/whitehat
[13] Facebook. "OAuth Dialog," http://developers.facebook.com/docs

/reference/dialogs/oauth/
[14] Facebook Developers. “Legacy Canvas Auth,”

http://developers.facebook.com/docs/authentication/fb_sig/
[15] Fiddler Web Debugger. http://www.fiddler2.com/fiddler2
[16] Firebug. http://getfirebug.com/
[17] About Freelancer. http://www.freelancer.com/info/about.php
[18] Google. "Security Hall of Fame," http://www.google.com/about/

company/halloffame.html
[19] Google Code. "Federated Login for Google Account Users,"

http://code.google.com/apis/accounts/docs/OpenID.html
[20] Thomas Groß. "Security analysis of the SAML single sign-on

browser/artifact profile," ACSAC 2003
[21] S. M. Hansen, J. Skriver, and H. R. Nielson. "Using static analysis to

validate the SAML single sign-on protocol," Workshop on Issues in
the Theory of Security, 2005

[22] Brian Kissel. "OpenID 2009 Year in Review,"
http://openid.net/2009/12/16/openid-2009-year-in-review/

[23] LocalConnection (in flash.net). http://help.adobe.com/en_US
/FlashPlatform/reference/actionscript/3/flash/net/LocalConnection.ht
ml?filter_flex=4.1&filter_flashplayer=10.1&filter_air=2

[24] Los Angeles Times. "The Sims Social bests FarmVille as the second-
largest Facebook game," http://latimesblogs.latimes.com/
entertainmentnewsbuzz/2011/09/sims-social-surpasses-farmville-as-
second-largest-facebook-game.html

[25] Catherine Meadows. "Language Generation and Verification in the
NRL Protocol Analyzer," Computer Security Foundations 1996.

[26] Microsoft. "INFO: Internet Explorer Does Not Send Referer Header
in Unsecured Situations," http://support.microsoft.com/kb/178066

[27] Jonathan K. Millen. "The Interrogator Model," IEEE Symposium on
Security and Privacy 1995.

[28] OASIS Standard. Assertions and Protocols for the OASIS Security
Assertion Markup Language (SAML) V2.0, 2005.

[29] OpenID Wiki. "OpenID Phishing Brainstorm," http://wiki.
openid.net/w/page/12995216/OpenID_Phishing_Brainstorm

[30] Birgit Pfitzmann and Michael Waidner. "Analysis of Liberty Single-
Sign-on with Enabled Clients," IEEE Internet Computing, 7(6) 2003.

[31] San-Tsai Sun, Eric Pospisil, Eric Pospisil, Ildar Muslukhov, Nuray
Dindar, Kirstie Hawkey, Konstantin Beznosov. "What Makes Users
Refuse Web Single Sign-On? An Empirical Investigation of
OpenID," Symposium On Usable Privacy and Security, 2011

[32] Manuel Uruena and Christian Busquiel. "Analysis of a Privacy
Vulnerability in the OpenID Authentication Protocol," IEEE
Multimedia Communications, Services and Security, 2010.

[33] Rui Wang, Shuo Chen, XiaoFeng Wang. “Signing Me onto Your
Accounts through Facebook and Google: a Traffic-Guided Security
Study of Commercially Deployed Single-Sign-On Web Services”.
http://www.informatics.indiana.edu/xw7/papers/websso.pdf.
Supporting materials: http://research.microsoft.com/~ruiwan/sso/supp

[34] Rui Wang, Shuo Chen, XiaoFeng Wang, and Shaz Qadeer. “How to
Shop for Free Online – Security Analysis of Cashier-as-a-Service
Based Web Stores,” IEEE Symposium on Security and Privacy, 2011

[35] Wikipedia, "Secure Electronic Transaction," http://en.
wikipedia.org/wiki/Secure_Electronic_Transaction

379

