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Abstract

Training large neural networks requires distribut-

ing learning across multiple workers, where the

cost of communicating gradients can be a signif-

icant bottleneck. SIGNSGD alleviates this prob-

lem by transmitting just the sign of each minibatch

stochastic gradient. We prove that it can get the

best of both worlds: compressed gradients and

SGD-level convergence rate. The relative `1/`2
geometry of gradients, noise and curvature in-

forms whether SIGNSGD or SGD is theoretically

better suited to a particular problem. On the prac-

tical side we find that the momentum counterpart

of SIGNSGD is able to match the accuracy and

convergence speed of ADAM on deep Imagenet

models. We extend our theory to the distributed

setting, where the parameter server uses majority

vote to aggregate gradient signs from each worker

enabling 1-bit compression of worker-server com-

munication in both directions. Using a theorem

by Gauss (1823) we prove that majority vote can

achieve the same reduction in variance as full

precision distributed SGD. Thus, there is great

promise for sign-based optimisation schemes to

achieve fast communication and fast convergence.

Code to reproduce experiments is to be found at

https://github.com/jxbz/signSGD.

1. Introduction

Deep neural networks have learnt to solve numerous natu-

ral human tasks (LeCun et al., 2015; Schmidhuber, 2015).

Training these large-scale models can take days or even

weeks. The learning process can be accelerated by dis-

tributing training over multiple processors—either GPUs

linked within a single machine, or even multiple machines

linked together. Communication between workers is typi-

cally handled using a parameter-server framework (Li et al.,
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Algorithm 1 SIGNSGD

Input: learning rate �, current point xk

g̃k  stochasticGradient(xk)
xk+1  xk � � sign(g̃k)

Algorithm 2 SIGNUM

Input: learning rate �, momentum constant � 2 (0, 1),
current point xk, current momentum mk

g̃k  stochasticGradient(xk)
mk+1  �mk + (1� �)g̃k
xk+1  xk � � sign(mk+1)

2014), which involves repeatedly communicating the gra-

dients of every parameter in the model. This can still be

time-intensive for large-scale neural networks. The com-

munication cost can be reduced if gradients are compressed

before being transmitted. In this paper, we analyse the the-

ory of robust schemes for gradient compression.

An elegant form of gradient compression is just to take the

sign of each coordinate of the stochastic gradient vector,

which we call SIGNSGD. The algorithm is as simple as

throwing away the exponent and mantissa of a 32-bit float-

ing point number. Sign-based methods have been studied at

least since the days of RPROP (Riedmiller & Braun, 1993).

This algorithm inspired many popular optimisers—like RM-

SPROP (Tieleman & Hinton, 2012) and ADAM (Kingma &

Ba, 2015). But researchers were interested in RPROP and

variants because of their robust and fast convergence, and

not their potential for gradient compression.

Until now there has been no rigorous theoretical explanation

for the empirical success of sign-based stochastic gradient

Algorithm 3 Distributed training by majority vote

Input: learning rate �, current point xk, # workers M
each with an independent gradient estimate g̃m(xk)
on server

pull sign(g̃m) from each worker

push sign
h

PM

m=1
sign(g̃m)

i

to each worker

on each worker

xk+1  xk � � sign
h

PM

m=1
sign(g̃m)

i

https://github.com/jxbz/signSGD
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methods. The sign of the stochastic gradient is a biased

approximation to the true gradient, making it more challeng-

ing to analyse compared to standard SGD. In this paper, we

provide extensive theoretical analysis of sign-based methods

for non-convex optimisation under transparent assumptions.

We show that SIGNSGD is especially efficient in problems

with a particular `1 geometry: when gradients are as dense or

denser than stochasticity and curvature, then SIGNSGD can

converge with a theoretical rate that has similar or even bet-

ter dimension dependence than SGD. We find empirically

that both gradients and noise are dense in deep learning

problems, consistent with the observation that SIGNSGD

converges at a similar rate to SGD in practice.

We then analyse SIGNSGD in the distributed setting where

the parameter server aggregates gradient signs of the work-

ers by a majority vote. Thus we allow worker-server com-

munication to be 1-bit compressed in both directions. We

prove that the theoretical speedup matches that of distributed

SGD, under natural assumptions that are validated by ex-

periments.

We also extend our theoretical framework to the SIGNUM

optimiser—which takes the sign of the momentum. Our

theory suggests that momentum may be useful for control-

ling a tradeoff between bias and variance in the estimate

of the stochastic gradient. On the practical side, we show

that SIGNUM easily scales to large Imagenet models, and

provided the learning rate and weight decay are tuned, all

other hyperparameter settings—such as momentum, weight

initisialiser, learning rate schedules and data augmentation—

may be lifted from an SGD implementation.

2. Related Work

Distributed machine learning: From the information the-

oretic angle, Suresh et al. (2017) study the communication

limits of estimating the mean of a general quantity known

about only through samples collected from M workers. In

contrast, we focus exclusively on communication of gradi-

ents for optimisation, which allows us to exploit the fact

that we do not care about incorrectly communicating small

gradients in our theory. Still our work has connections with

information theory. When the parameter server aggregates

gradients by majority vote, it is effectively performing max-

imum likelihood decoding of a repetition encoding of the

true gradient sign that is supplied by the M workers.

As for existing gradient compression schemes, Seide et al.

(2014) and Strom (2015) demonstrated empirically that 1-bit

quantisation can still give good performance whilst dramati-

cally reducing gradient communication costs in distributed

systems. Alistarh et al. (2017) and Wen et al. (2017) pro-

vide schemes with theoretical guarantees by using random

number generators to ensure that the compressed gradient is

Table 1. The communication cost of different gradient compression

schemes, when training a d-dimensional model with M workers.

ALGORITHM # BITS PER ITERATION

SGD (Robbins & Monro, 1951) 64Md
QSGD (Alistarh et al., 2017) (2 + log(2M + 1))Md
TERNGRAD (Wen et al., 2017) (2 + log(2M + 1))Md
SIGNSGD with majority vote 2Md

still an unbiased approximation to the true gradient. Whilst

unbiasedness allows these schemes to bootstrap SGD the-

ory, it unfortunately comes at the cost of hugely inflated

variance, and this variance explosion1 basically renders the

SGD-style bounds vacuous in the face of the empirical suc-

cess of these algorithms. The situation only gets worse

when the parameter server must aggregate and send back

the received gradients, since merely summing up quantised

updates reduces the quantisation efficiency. We compare the

schemes in Table 1—notice how the existing schemes pick

up log factors in the transmission from parameter-server

back to workers. Our proposed approach is different, in

that we directly employ the sign gradient which is biased.

This avoids the randomisation needed for constructing an

unbiased quantised estimate, avoids the problem of variance

exploding in the theoretical bounds, and even enables 1-bit

compression in both directions between parameter-server

and workers, at no theoretical loss compared to distributed

SGD.

Deep learning: stochastic gradient descent (Robbins &

Monro, 1951) is a simple and extremely effective optimiser

for training neural networks. Still Riedmiller & Braun

(1993) noted the good practical performance of sign-based

methods like RPROP for training deep nets, and since then

variants such as RMSPROP (Tieleman & Hinton, 2012) and

ADAM (Kingma & Ba, 2015) have become increasingly

popular. ADAM updates the weights according to the mean

divided by the root mean square of recent gradients. Let

h.iβ denote an exponential moving average with timescale

�, and g̃ the stochastic gradient. Then

ADAM step ⇠ hg̃iβ1
p

hg̃2iβ2

Therefore taking the time scale of the exponential moving

averages to zero, �1,�2 ! 0, yields SIGNSGD

SIGNSGD step = sign(g̃) =
g̃
p

g̃2
.

To date there has been no convincing theory of the {RPROP,

RMSPROP, ADAM} family of algorithms, known as ‘adap-

tive gradient methods’. Indeed Reddi et al. (2018) point out

1For the version of QSGD with 1-bit compression, the variance

explosion is by a factor of
√
d, where d is the number of weights.

It is common to have d > 108 in modern deep networks.
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problems in the original convergence proof of ADAM, even

in the convex setting. Since SIGNSGD belongs to this same

family of algorithms, we expect that our theoretical analysis

should be relevant for all algorithms in the family. In a

parallel work, Balles & Hennig (2017) explore the connec-

tion between SIGNSGD and ADAM in greater detail, though

their theory is more restricted and lives in the convex world,

and they do not analyse SIGNUM as we do but employ it on

heuristic grounds.

Optimisation: much of classic optimisation theory focuses

on convex problems, where local information in the gradi-

ent tells you global information about the direction to the

minimum. Whilst elegant, this theory is less relevant for

modern problems in deep learning which are non-convex.

In non-convex optimisation, finding the global minimum is

generally intractable. Theorists usually settle for measuring

some restricted notion of success, such as rate of conver-

gence to stationary points (Ghadimi & Lan, 2013; Allen-

Zhu, 2017a) or local minima (Nesterov & Polyak, 2006).

Though Dauphin et al. (2014) suggest saddle points should

abound in neural network error landscapes, practitioners re-

port not finding this a problem in practice (Goodfellow et al.,

2015) and therefore a theory of convergence to stationary

points is useful and informative.

On the algorithmic level, the non-stochastic version of

SIGNSGD can be viewed as the classical steepest descent

algorithm with `∞-norm (see, e.g., Boyd & Vandenberghe,

2004, Section 9.4). The convergence of steepest descent

is well-known (see Karimi et al., 2016, Appendix C, for

an analysis of signed gradient updates under the Polyak-

Łojasiewicz condition). Carlson et al. (2016) study a

stochastic version of the algorithm, but again under an `∞
majorisation. To the best of our knowledge, we are the first

to study the convergence of signed gradient updates under

an (often more natural) `2 majorisation (Assumption 2).

Experimental benchmarks: throughout the paper we will

make use of the CIFAR-10 (Krizhevsky, 2009) and Ima-

genet (Russakovsky et al., 2015) datasets. As for neural

network architectures, we train Resnet-20 (He et al., 2016a)

on CIFAR-10, and Resnet-50 v2 (He et al., 2016b) on Ima-

genet.

3. Convergence Analysis of SIGNSGD

We begin our analysis of sign stochastic gradient descent

in the non-convex setting. The standard assumptions of

the stochastic optimisation literature are nicely summarised

by Allen-Zhu (2017b). We will use more fine-grained as-

sumptions. SIGNSGD can exploit this additional structure,

much as ADAGRAD (Duchi et al., 2011) exploits sparsity.

We emphasise that these fine-grained assumptions do not

lose anything over typical SGD assumptions, since our as-

sumptions can be obtained from SGD assumptions and vice

versa.

Assumption 1 (Lower bound). For all x and some constant

f∗, we have objective value f(x) � f∗.

This assumption is standard and necessary for guaranteed

convergence to a stationary point.

The next two assumptions will naturally encode notions of

heterogeneous curvature and gradient noise.

Assumption 2 (Smooth). Let g(x) denote the gradient of

the objective f(.) evaluated at point x. Then 8x, y we re-

quire that for some non-negative constant ~L := [L1, ..., Ld]

�

�

�
f(y)�

⇥

f(x) + g(x)T (y � x)
⇤

�

�

�  1

2

X

i

Li(yi � xi)
2.

For twice differentiable f , this implies that �diag(~L) �
H � diag(~L). This is related to the slightly weaker

coordinate-wise Lipschitz condition used in the block coor-

dinate descent literature (Richtárik & Takáč, 2014).

Lastly, we assume that we have access to the following

stochastic gradient oracle:

Assumption 3 (Variance bound). Upon receiving query x 2
R

d, the stochastic gradient oracle gives us an independent

unbiased estimate g̃ that has coordinate bounded variance:

E[g̃(x)] = g(x), E
⇥

(g̃(x)i � g(x)i)
2
⇤

 �2
i

for a vector of non-negative constants ~� := [�1, ..,�d].

Bounded variance may be unrealistic in practice, since as

x!1 the variance might well diverge. Still this assump-

tion is useful for understanding key properties of stochastic

optimisation algorithms. In our theorem, we will be work-

ing with a mini-batch of size nk in the kth iteration, and

the corresponding mini-batch stochastic gradient is modeled

as the average of nk calls to the above oracle at xk. This

squashes the variance bound on g̃(x)i to �2
i /nk.

Assumptions 2 and 3 are different from the assumptions

typically used for analysing the convergence properties of

SGD (Nesterov, 2013; Ghadimi & Lan, 2013), but they are

natural to the geometry induced by algorithms with signed

updates such as SIGNSGD and SIGNUM.

Assumption 2 is more fine-grained than the standard assump-

tion, which is recovered by defining `2 Lipschitz constant

L := k~Lk∞ = maxi Li. Then Assumption 2 implies that

�

�

�f(y)�
⇥

f(x) + g(x)T (y � x)
⇤

�

�

�  L

2
kyi � xik22.

which is the standard assumption of Lipschitz smoothness.
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Assumption 3 is more fined-grained than the standard

stochastic gradient oracle assumption used for SGD analy-

sis. But again, the standard variance bound is recovered by

defining �2 := ||~�||22. Then Assumption 3 implies that

Ekg̃(x)� g(x)k2  �2

which is the standard assumption of bounded total variance.

Under these assumptions, we have the following result:

Theorem 1 (Non-convex convergence rate of

SIGNSGD). Run algorithm 1 for K iterations un-

der Assumptions 1 to 3. Set the learning rate and

mini-batch size (independently of step k) as

�k =
1

q

k~Lk1K
, nk = K

Let N be the cumulative number of stochastic gradient

calls up to step K, i.e. N = O(K2). Then we have

E

"

1

K

K−1
X

k=0

kgkk1

#2

 1p
N


q

k~Lk1
✓

f0 � f∗ +
1

2

◆

+ 2k~�k1
�2

The proof is given in Section B of the supplementary ma-

terial. It follows the well known strategy of relating the

norm of the gradient to the expected improvement made in

a single algorithmic step, and comparing this with the total

possible improvement under Assumption 1. A key technical

challenge we overcome is in showing how to directly deal

with a biased approximation to the true gradient. Here we

will provide some intuition about the proof.

To pass the stochasticity through the non-linear sign op-

eration in a controlled fashion, we need to prove the key

statement that at the kth step for the ith gradient component

P[sign(g̃k,i) 6= sign(gk,i)] 
�k,i

|gk,i|

This formalises the intuition that the probability of the sign

of a component of the stochastic gradient being incorrect

should be controlled by the signal-to-noise ratio of that

component. When a component’s gradient is large, the

probability of making a mistake is low, and one expects to

make good progress. When the gradient is small compared

to the noise, the probability of making mistakes can be high,

but due to the large batch size this only happens when we

are already close to a stationary point.

The large batch size in the theorem may seem unusual, but

large batch training actually presents a systems advantage

(Goyal et al., 2017) since it can be parallelised. The number

of gradient calls N is the important quantity to measure

convergence, but large batch training achieves N gradient

calls in only O(
p
N) iterations whereas small batch training

needs O(N) iterations. Fewer iterations also means fewer

rounds of communication in the distributed setting. Conver-

gence guarantees can be extended to the small batch case

under the additional assumption of unimodal symmetric gra-

dient noise using Lemma D.1 in the supplementary, but we

leave this for future work. Experiments in this paper were

indeed conducted in the small batch regime.

Another unusual feature requiring discussion is the `1 geom-

etry of SIGNSGD. The convergence rate strikingly depends

on the `1-norm of the gradient, the stochasticity and the

curvature. To understand this better, let’s define a notion of

density of a high-dimensional vector ~v 2 R
d as follows:

�(~v) :=
k~vk21
dk~vk22

(1)

To see that this is a natural definition of density, notice

that for a fully dense vector, �(~v) = 1 and for a fully

sparse vector, �(~v) = 1/d ⇡ 0. We trivially have that

k~vk21  �(~v)d2k~vk2
∞

so this notion of density provides an

easy way to translate from norms in `1 to both `2 and `∞.

Remember that under our assumptions, SGD-style assump-

tions hold with Lipschitz constant L := k~Lk∞ and total

variance bound �2 := k~�k22. Using our notion of density

we can translate our constants into the language of SGD:

kgkk21 = �(gk)dkgkk22 � �(g)dkgkk22
k~Lk21  �(~L)d2k~Lk2

∞
= �(~L)d2L2

k~�k21 = �(~�)dk~�k22 = �(~�)d�2

where we have assumed �(g) to be a lower bound on the

gradient density over the entire space. Using that (x+y)2 
2(x2 + y2) and changing variables in the bound, we reach

the following result for SIGNSGD

E

"

1

K

K−1
X

k=0

kgkk2

#2

 2p
N

2

4

q

�(~L)

�(g)
L

✓

f0 � f∗ +
1

2

◆2

+ 4
�(~�)

�(g)
�2

3

5

whereas, for comparison, a typical SGD bound (proved in

Supplementary C) is

E

"

1

K

K−1
X

k=0

kgkk22

#

 1p
N

⇥

2L(f0 � f∗) + �2
⇤

.

The bounds are very similar, except for most notably the

appearance of ratios of densities R1 and R2, defined as

R1 :=

q

�(~L)

�(g)
R2 :=

�(~�)

�(g)
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Naı̈vely comparing the bounds suggests breaking into cases:

(I) R1 � 1 and R2 � 1. This means that both the cur-

vature and the stochasticity are much denser than the

typical gradient and the comparison suggests SGD is

better suited than SIGNSGD.

(II) NOT[R1 � 1] and NOT[R2 � 1]. This means that

neither curvature nor stochasticity are much denser

than the gradient, and the comparison suggests that

SIGNSGD may converge as fast or faster than SGD,

and also get the benefits of gradient compression.

(III) neither of the above holds, for example R1 ⌧ 1 and

R2 � 1. Then the comparison is indeterminate about

whether SIGNSGD or SGD is more suitable.

Let’s briefly provide some intuition to understand how it’s

possible that SIGNSGD could outperform SGD. Imagine a

scenario where the gradients are dense but there is a sparse

set of extremely noisy components. Then the dynamics

of SGD will be dominated by this noise, and (unless the

learning rate is reduced a lot) SGD will effectively perform

a random walk along these noisy components, paying less

attention to the gradient signal. SIGNSGD however will

treat all components equally, so it will scale down the sparse

noise and scale up the dense gradients comparatively, and

thus make good progress. See Figure A.1 in the supplemen-

tary for a simple example of this.

Still we must be careful when comparing upper bounds, and

interpreting the dependence on curvature density is more

subtle than noise density. This is because the SGD bound

proved in Supplementary C is slacker under situations of

sparse curvature than dense curvature. That is to say that

SGD, like SIGNSGD, benefits under situations of sparse

curvature but this is not reflected in the SGD bound. The

potentially slack step in SGD’s analysis is in switching from

Li to k~Lk∞. Because of this it is safer to interpret the cur-

vature comparison as telling us a regime where SIGNSGD

is expected to lose out to SGD (rather than vice versa). This

happens when R1 � 1 and gradients are sparser than cur-

vature. Intuitively, in this case SIGNSGD will push many

components in highly curved directions even though these

components had small gradient, and this can be undesirable.

To summarise, our theory suggests that when gradients are

dense, SIGNSGD should be more robust to large stochas-

ticity on a sparse set of coordinates. When gradients are

sparse, SGD should be more robust to dense curvature and

noise. In practice for deep networks, we find that SIGNSGD

converges about as fast as SGD. That would suggest that we

are either in regime (II) or (III) above. But what is the real

situation for the error landscape of deep neural networks?

To measure gradient and noise densities in practice, we

use Welford’s algorithm (Welford, 1962; Knuth, 1997) to

Figure 1. Gradient and noise density during an entire training run

of a Resnet-20 model on the CIFAR-10 dataset. Results are aver-

aged over 3 repeats for each of 3 different training algorithms, and

corresponding error bars are plotted. At the beginning of every

epoch, at that fixed point in parameter space, we do a full pass over

the data to compute the exact mean of the stochastic gradient, g,

and its exact standard deviation vector ~� (square root of diagonal

of covariance matrix). The density measure �(~v) :=
kvk21
dkvk2

2

is 1

for a fully dense vector and ≈ 0 for a fully sparse vector. Notice

that both gradient and noise are dense, and moreover the densi-

ties appear to be coupled during training. Noticable jumps occur

at epoch 80 and 120 when the learning rate is decimated. Our

stochastic gradient oracle (Assumption 3) is fine-grained enough

to encode such dense geometries of noise.

compute the true gradient g and its stochasticity vector ~� at

every epoch of training for a Resnet-20 model on CIFAR-

10. Welford’s algorithm is numerically stable and only

takes a single pass through the data to compute the vectorial

mean and variance. Therefore if we train a network for 160

epochs, we make an additional 160 passes through the data

to evaluate these gradient statistics. Results are plotted in

Figure 1. Notice that the gradient density and noise density

are of the same order throughout training, and this indeed

puts us in regime (II) or (III) as predicted by our theory.

In Figure A.2 of the supplementary, we present preliminary

evidence that this finding generalises, by showing that gradi-

ents are dense across a range of datasets and network archi-

tectures. We have not devised an efficient means to measure

curvature densities, which we leave for future work.

4. Majority Rule: the Power of Democracy in

the Multi-Worker Setting

In the most common form of distributed training, workers

(such as GPUs) each evaluate gradients on their own split of

the data, and send the results up to a parameter-server. The

parameter server aggregates the results and transmits them

back to each worker (Li et al., 2014).

Up until this point in the paper, we have only analysed
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Figure 2. Histograms of the noise in the stochastic gradient, each

plot for a different randomly chosen parameter (not cherry-picked).

Top row: Resnet-20 architecture trained to epoch 50 on CIFAR-10

with a batch size of 128. Bottom row: Resnet-50 architecture

trained to epoch 50 on Imagenet with a batch size of 256. From

left to right: model trained with SGD, SIGNUM, ADAM. All noise

distributions appear to be unimodal and approximately symmetric.

For a batch size of 256 Imagenet images, the central limit theorem

has visibly kicked in and the distributions look Gaussian.

SIGNSGD where the update is of the form

xk+1 = xk � � sign(g̃)

To get the benefits of compression we want the mth worker

to send the sign of the gradient evaluated only on its portion

of the data. This suggests an update of the form

xk+1 = xk � �

M
X

m=1

sign(g̃m) (good)

This scheme is good since what gets sent to the parameter

will be 1-bit compressed. But what gets sent back almost

certainly will not. Could we hope for a scheme where all

communication is 1-bit compressed?

What about the following scheme:

xk+1 = xk � � sign

"

M
X

m=1

sign(g̃m)

#

(best)

This is called majority vote, since each worker is essentially

voting with its belief about the sign of the true gradient.

The parameter server counts the votes, and sends its 1-bit

decision back to every worker.

The machinery of Theorem 1 is enough to establish con-

vergence for the (good) scheme, but majority vote is more

elegant and more communication efficient, therefore we

focus on this scheme from here on.

In Theorem 2 we first establish the general convergence rate

of majority vote, followed by a regime where majority vote

enjoys a variance reduction from k~�k1 to k~�k1/
p
M .

Theorem 2 (Non-convex convergence rate of dis-

tributed SIGNSGD with majority vote). Run algo-

rithm 3 for K iterations under Assumptions 1 to 3.

Set the learning rate and mini-batch size for each

worker (independently of step k) as

�k =
1

q

k~Lk1K
nk = K

Then (a) majority vote with M workers converges at

least as fast as SIGNSGD in Theorem 1.

And (b) further assuming that the noise in each com-

ponent of the stochastic gradient is unimodal and

symmetric about the mean (e.g. Gaussian), majority

vote converges at improved rate:

E

"

1

K

K−1
X

k=0

kgkk1

#2

 1p
N


q

k~Lk1
✓

f0 � f∗ +
1

2

◆

+
2p
M
k~�k1

�2

where N is the cumulative number of stochastic gra-

dient calls per worker up to step K.

The proof is given in the supplementary material, but here

we sketch some details. Consider the signal-to-noise ratio

of a single component of the stochastic gradient, defined as

S := |gi|
σi

. For S < 1 the gradient is small and it doesn’t

matter if we get the sign wrong. For S > 1, we can show

using a one-sided version of Chebyshev’s inequality (Can-

telli, 1928) that the failure probability, q, of that sign bit on

an individual worker satisfies q < 1

2
. This means that the

parameter server is essentially receiving a repetition code

RM and the majority vote decoder is known to drive down

the failure probability of a repetition code exponentially in

the number of repeats (MacKay, 2002).

Remark: Part (a) of the theorem does not describe a

speedup over just using a single machine, and that might

hint that all those extra M � 1 workers are a waste in this

setting. This is not the case. From the proof sketch above,

it should be clear that part (a) is an extremely conservative

statement. In particular, we expect all regions of training

where the signal-to-noise ratio of the stochastic gradient sat-

isfies S > 1 to enjoy a significant speedup due to variance

reduction. It’s just that since we don’t get the speedup when
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S < 1, it’s hard to express this in a compact bound.

To sketch a proof for part (b), note that a sign bit from

each worker is a Bernoulli trial—call its failure probability

q. We can get a tight control of q by a convenient tail

bound owing to Gauss (1823) that holds under conditions of

unimodal symmetry. Then the sum of bits received by the

parameter server is a binomial random variable, and we can

use Cantelli’s inequality to bound its tail. This turns out to be

enough to get tight enough control on the error probability

of the majority vote decoder to prove the theorem.

Remark 1: assuming that the stochastic gradient of each

worker is approximately symmetric and unimodal is very

reasonable. In particular for increasing mini-batch size it

will be an ever-better approximation by the central limit the-

orem. Figure 2 plots histograms of real stochastic gradients

for neural networks. Even at batch-size 256 the stochastic

gradient for an Imagenet model already looks Gaussian.

Remark 2: if you delve into the proof of Theorem 2 and

graph all of the inequalities, you will notice that some of

them are uniformly slack. This suggests that the assump-

tions of symmetry and unimodality can actually be relaxed

to only hold approximately. This raises the possibility of

proving a relaxed form of Gauss’ inequality and using a

third moment bound in the Berry-Esseen theorem to derive

a minimal batch size for which the majority vote scheme is

guaranteed to work by the central limit theorem. We leave

this for future work.

Remark 3: why does this theorem have anything to do with

unimodality or symmetry at all? It’s because there exist

very skewed or bimodal random variables X with mean µ
such that P[sign(X) = sign(µ)] is arbitrarily small. This

can either be seen by applying Cantelli’s inequality which

is known to be tight, or by playing with distributions like

P[X = x] =

(

0.1 if x = 50

0.9 if x = �1

Distributions like these are a problem because it means

that adding more workers will actually drive up the error

probability rather than driving it down. The beauty of the

central limit theorem is that even for such a skewed and

bimodal distribution, the mean of just a few tens of samples

will already start to look Gaussian.

5. Extending the Theory to SIGNUM

Momentum is a popular trick used by neural network practi-

tioners that can, in our experience, speed up the training of

deep neural networks and improve the robustness of algo-

rithms to other hyperparameter settings. Instead of taking

steps according to the gradient, momentum algorithms take

steps according to a running average of recent gradients.

Existing theoretical analyses of momentum often rely on

the absence of gradient stochasticity (e.g. Jin et al. (2017))

or convexity (e.g. Goh (2017)) to show that momentum’s

asymptotic convergence rate can beat gradient descent.

It is easy to incorporate momentum into SIGNSGD, merely

by taking the sign of the momentum We call the resulting al-

gorithm SIGNUM and present the algorithmic step formally

in Algorithm 2. SIGNUM fits into our theoretical framework,

and we prove its convergence rate in Theorem 3.

Theorem 3 (Convergence rate of SIGNUM). In Al-

gorithm 2, set the learning rate, mini-batch size and

momentum parameter respectively as

�k =
�p
k + 1

nk = k + 1 �

Our analysis also requires a warmup period to let

the bias in the momentum settle down. The warmup

should last for C(�) iterations, where C is a con-

stant that depends on the momentum parameter � as

follows:

C(�) = min
C∈Z+

C s.t.
C

2
�C  1

1� �2

1

C + 1

& �C+1  1

2

Note that for � = 0.9, we have C = 54 which is

negligible. For the first C(�) iterations, accumulate

the momentum as normal, but use the sign of the

stochastic gradient to make updates instead of the

sign of the momentum.

Let N be the cumulative number of stochastic gradient

calls up to step K, i.e. N = O(K2). Then for K � C
we have

E

"

1

K � C

K−1
X

k=C

kgkk1

#2

= O

✓

1p
N



fC � f∗
�

+(1 + logN)

 

�k~Lk1
1� �

+ k~�k1
p

1� �

!#2
1

A

where we have used O(.) to hide numerical constants

and the �-dependent constant C.

The proof is the greatest technical challenge of the paper,

and is given in the supplementary material. We focus on

presenting the proof in a modular form, anticipating that

parts may be useful in future theoretical work. It involves a

very general master lemma, Lemma E.1, which can be used

to help prove all the theorems in this paper.
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Figure 3. Imagenet train and test accuracies using the momentum

version of SIGNSGD, called SIGNUM, to train Resnet-50 v2. We

based our implementation on an open source implementation by

github.com/tornadomeet. Initial learning rate and weight

decay were tuned on a separate validation set split off from the

training set and all other hyperparameters were chosen to be those

found favourable for SGD by the community. There is a big jump

at epoch 95 when we switch off data augmentation. SIGNUM gets

test set performance approximately the same as ADAM, better than

SGD with out weight decay, but about 2% worse than SGD with

a well-tuned weight decay.

Remark 1: switching optimisers after a warmup period is

in fact commonly done by practitioners (Akiba et al., 2017).

Remark 2: the theory suggests that momentum can be used

to control a bias-variance tradeoff in the quality of stochas-

tic gradient estimates. Sending � ! 1 kills the variance

term in k~�k1 due to averaging gradients over a longer time

horizon. But averaging in stale gradients induces bias due

to curvature of f(x), and this blows up the �k~Lk1 term.

Remark 3: for generality, we state this theorem with a tun-

able learning rate �. For variety, we give this theorem in

any-time form with a growing batch size and decaying learn-

ing rate. This comes at the cost of log factors appearing.

We benchmark SIGNUM on Imagenet (Figure 3) and CIFAR-

10 (Figure A.3 of supplementary). The full results of a giant

hyperparameter grid search for the CIFAR-10 experiments

are also given in the supplementary. SIGNUM’s performance

rivals ADAM’s in all experiments.

6. Discussion

Gradient compression schemes like TERNGRAD (Wen et al.,

2017) quantise gradients into three levels {0,±1}. This is

desirable when the ternary quantisation is sparse, since it

can allow further compression. Our scheme of majority vote

should easily be compatible with a ternary quantisation—

in both directions of communication. This can be cast as

“majority vote with abstention”. The scheme is as follows:

workers send their vote to the parameter server, unless they

are very unsure about the sign of the true gradient in which

case they send zero. The parameter-server counts the votes,

and if quorum is not reached (i.e. too many workers dis-

agreed or abstained) the parameter-server sends back zero.

This extended algorithm should readily fit into our theory.

In Section 2 we pointed out that SIGNSGD and SIGNUM

are closely related to ADAM. In all our experiments we find

that SIGNUM and ADAM have very similar performance,

although both lose out to SGD by about 2% test accuracy

on Imagenet. Wilson et al. (2017) observed that ADAM

tends to generalise slightly worse than SGD. Though it

is still unclear why this is the case, perhaps it could be

because we don’t know how to properly regularise such

methods. Whilst we found that neither standard weight

decay nor the suggestion of Loshchilov & Hutter (2017)

completely closed our Imagenet test set gap with SGD, it is

possible that some other regularisation scheme might. One

idea, suggested by our theory, is that SIGNSGD could be

squashing down noise levels. There is some evidence (Smith

& Le, 2018) that a certain level of noise can be good for

generalisation, biasing the optimiser towards wider valleys

in the objective function. Perhaps, then, adding Gaussian

noise to the SIGNUM update might help it generalise better.

This can be achieved in a communication efficient manner

in the distributed setting by sharing a random seed with each

worker, and then generating the same noise on each worker.

Finally, in Section 3 we discuss some geometric implica-

tions of our theory, and provide an efficient and robust exper-

imental means of measuring one aspect—the ratio between

noise and gradient density—through the Welford algorithm.

We believe that since this density ratio is easy to measure, it

may be useful to help guide those doing architecture search,

to find network architectures which are amenable to fast

training through gradient compression schemes.

7. Conclusion

We have presented a general framework for studying

sign-based methods in stochastic non-convex optimisa-

tion. We present non-vacuous bounds for gradient com-

pression schemes, and elucidate the special `1 geome-

tries under which these schemes can be expected to suc-

ceed. Our theoretical framework is broad enough to han-

dle signed-momentum schemes—like SIGNUM—and also

multi-worker distributed schemes—like majority vote.

Our work touches upon interesting aspects of the geome-

try of high-dimensional error surfaces, which we wish to

explore in future work. But the next step for us will be to

reach out to members of the distributed systems community

to help benchmark the majority vote algorithm which shows

such great theoretical promise for 1-bit compression in both

directions between parameter-server and workers.

github.com/tornadomeet
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