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Abstract

Background: Cancer genomes are peppered with somatic mutations imprinted by different mutational processes.

The mutational pattern of a cancer genome can be used to identify and understand the etiology of the underlying

mutational processes. A plethora of prior research has focused on examining mutational signatures and mutational

patterns from single base substitutions and their immediate sequencing context. We recently demonstrated that

further classification of small mutational events (including substitutions, insertions, deletions, and doublet

substitutions) can be used to provide a deeper understanding of the mutational processes that have molded a

cancer genome. However, there has been no standard tool that allows fast, accurate, and comprehensive

classification for all types of small mutational events.

Results: Here, we present SigProfilerMatrixGenerator, a computational tool designed for optimized exploration and

visualization of mutational patterns for all types of small mutational events. SigProfilerMatrixGenerator is written in

Python with an R wrapper package provided for users that prefer working in an R environment.

SigProfilerMatrixGenerator produces fourteen distinct matrices by considering transcriptional strand bias of

individual events and by incorporating distinct classifications for single base substitutions, doublet base

substitutions, and small insertions and deletions. While the tool provides a comprehensive classification of

mutations, SigProfilerMatrixGenerator is also faster and more memory efficient than existing tools that generate

only a single matrix.

Conclusions: SigProfilerMatrixGenerator provides a standardized method for classifying small mutational events

that is both efficient and scalable to large datasets. In addition to extending the classification of single base

substitutions, the tool is the first to provide support for classifying doublet base substitutions and small insertions

and deletions. SigProfilerMatrixGenerator is freely available at https://github.com/AlexandrovLab/

SigProfilerMatrixGenerator with an extensive documentation at https://osf.io/s93d5/wiki/home/.
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Background
Analysis of somatic mutational patterns is a powerful

tool for understanding the etiology of human cancers

[1]. The examination of mutational patterns can trace its

origin to seminal studies that evaluated the patterns of

mutations imprinted in the coding regions of TP53 [2],

the most commonly mutated gene in human cancer [3].

These early reports were able to identify characteristic

patterns of single point substitutions imprinted due to

smoking tobacco cigarettes, exposure to ultraviolet light,

consumption of aflatoxin, intake of products containing

aristolochic acid, amongst others [4–7]. The advent of

massively parallel sequencing technologies [8] allowed

cheap and efficient evaluation of the somatic mutations

in a cancer genome. This provided an unprecedented

opportunity to examine somatic mutational patterns by
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sequencing multiple cancer-associated genes, by sequen-

cing all coding regions of the human genome (i.e., usu-

ally referred to as whole-exome sequencing), or even by

interrogating the complete sequence of a cancer genome

(i.e., an approach known as whole-genome sequencing).

Examinations of mutational patterns from whole-gen-

ome and whole-exome sequenced cancers confirmed

prior results derived from evaluating the mutations in

the coding regions of TP53 [9]. For example, the cancer

genome of a lung cancer patient with a long history of

tobacco smoking was peppered with somatic mutations

exhibiting predominately cytosine to adenine single base

substitutions [10]; the same mutational pattern was pre-

viously reported by examining mutations in TP53 in

lung cancers of tobacco smokers [4, 11]. In addition to

confirming prior observations, whole-exome and whole-

genome sequencing data provided a unique opportunity

for identifying all of the mutational processes that have

been active in the lineage of a cancer cell [12]. By utiliz-

ing mathematical modelling and computational analysis,

we previously created the concept of mutational signa-

tures and provided tools for deciphering mutational sig-

natures from massively parallel sequencing data [13]. It

should be noted that a mutational signature is mathem-

atically and conceptually distinct from a mutational pat-

tern of a cancer genome. While a mutational pattern of

a cancer genome can be directly observed from sequen-

cing data, a mutational signature is, in most cases, not

directly observable. Rather, a mutational signature corre-

sponds to a mathematical abstraction (i.e., a probability

mass function) derived through a series of numerical ap-

proximations. From a biological perspective, a muta-

tional signature describes a characteristic set of

mutation types reflecting the activity of endogenous

and/or exogenous mutational processes [12]. By examin-

ing the directly observed mutational patterns of thou-

sands of cancer genomes, we were able to identify 49

single point substitution, 11 doublet base substitution,

and 17 small insertion and deletion signatures [14] in

human cancer and to propose a putative etiology for a

number of these signatures.

Since we presented the very first bioinformatics frame-

work for deciphering mutational signatures in cancer ge-

nomes [13, 15], a number of computational tools have

been developed for the analysis of mutational signatures

(recently reviewed in [16]). All of these tools perform a

matrix factorization or leverage an approach mathemat-

ically equivalent to a matrix factorization. As such, each

of these tools directly or indirectly requires generating a

correct initial input matrix for subsequent analysis of

mutational signatures. In principle, creating an input

matrix can be examined as a transformation of the mu-

tational catalogues of a set of cancer genomes to a

matrix where each sample has a fixed number of

mutation classes (also, known as mutation channels).

The majority of existing tools have focused on analyzing

data using 96 mutation classes corresponding to a single

base substitution and the 5′ and 3′ bases immediately

adjacent to the mutated substitution. While this simple

classification has proven powerful, additional classifica-

tions are required to yield greater understanding of the

operative mutational processes in a set of cancer ge-

nomes [12].

Here, we present SigProfilerMatrixGenerator, a com-

putational package that allows efficient exploration and

visualization of mutational patterns. SigProfilerMatrix-

Generator is written in Python with an R wrapper pack-

age provided for users that prefer working in an R

environment. The tool can read somatic mutational data

in most commonly used data formats such as Variant

Calling Format (VCF) and Mutation Annotation Format

(MAF) and it provides support for analyzing all types of

small mutational events: single bases substitutions,

doublet base substitutions, and small insertions and de-

letions. SigProfilerMatrixGenerator generates fourteen

distinct matrices including ones with extended sequen-

cing context and transcriptional strand bias, while pro-

viding publication ready visualization for the majority of

these matrices. Further, the tool is the first to provide

standard support for the classification of small insertions

and deletions as well as the classification of doublet base

substitutions that were recently used to derive the next

generation of mutational signatures [14]. While SigProfi-

lerMatrixGenerator provides much more functionality

(Table 1), in almost all cases, it is more computationally

efficient than existing approaches. Lastly, SigProfilerMa-

trixGenerator comes with extensive Wiki-page docu-

mentation and can be easily integrated with existing

packages for analysis of mutational signatures.

Implementation

Classification of Single Base substitutions (SBSs)

A single base substitution (SBS) is a mutation in which a

single DNA base-pair is substituted with another single

DNA base-pair. An example of an SBS is a C:G base-pair

mutating to an A:T base-pair; this is usually denoted as

a C:G >A:T. The most basic classification catalogues

SBSs into six distinct categories, including: C:G > A:T, C:

G > G:C, C:G > T:A, T:A > A:T, T:A > C:G, and T:A > G:

C. In practice, this notation has proven to be bulky and,

in most cases, SBSs are referred to by either the purine

or the pyrimidine base of the Watson-Crick base-pair.

Thus, one can denote a C:G >A:T substitution as either

a C >A mutation using the pyrimidine base or as a G >

T mutation using the purine base. While all three nota-

tions are equivalent, prior research on mutational signa-

tures [13, 15, 22] has made the pyrimidine base of the

Watson-Crick base-pair a community standard. As such,
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the most commonly used SBS-6 classification of single

base substitutions can be written as: C > A, C > G, C > T,

T > A, T > C, and T > G. The classification SBS-6 should

not be confused with signature SBS6, a mutational signa-

ture attributed to microsatellite instability [15].

The simplicity of the SBS-6 classification allows cap-

turing the predominant mutational patterns when only a

few somatic mutations are available. As such, this classi-

fication was commonly used in analyzing mutational

patterns derived from sequencing TP53 [4, 11]. The

SBS-6 classification can be further expanded by taking

into account the base-pairs immediately adjacent 5′ and

3′ to the somatic mutation. A commonly used classifica-

tion for analysis of mutational signatures is SBS-96,

where each of the classes in SBS-6 is further elaborated

using one base adjacent at the 5′ of the mutation and

one base adjacent at the 3′ of the mutation. Thus, for a

C > A mutation, there are sixteen possible trinucleotide

(4 types of 5′ base ∗ 4 types of 3′ base): ACA > AAA,

ACC > AAC, ACG > AAG, ACT>AAT, CCA > CAA,

CCC > CAC, CCG > CAG, CCT > CAT, GCA >GAA,

GCC >GAC, GCG >GAG, GCT >GAT, TCA > TAA,

TCC > TAC, TCG > TAG, and TCT > TAT (mutated

based is underlined). Each of the six single base substitu-

tions in SBS-6 has sixteen possible trinucleotides result-

ing in a classification with 96 possible channels (Fig. 1a).

In this notation, the mutated base is underlined and the

pyrimidine base of the Watson-Crick base-pair is used

to refer to each SBS. Please note that using the purine

base of the Watson-Crick base-pair for classifying muta-

tion types will require taking the reverse complement se-

quence of each of the classes of SBS-96. For example,

ACG:TGC > AAG:TTC can be written as ACG > AAG

using the pyrimidine base and as CGT > CTT using the

purine base (i.e., the reverse complement sequence of

the pyrimidine classification). Similarly, an AGC:TCG >

AAC:TTG mutation can be written as AGC > AAC using

the purine base and GCT >GTT using the pyrimidine

base (i.e., the reverse complement sequence of the pur-

ine classification). In principle, somatic mutations are

generally reported based on the reference strand of the

human genome thus requiring converting to either the

purine or the pyrimidine base of the Watson-Crick base-

pair. Prior work on mutational signatures [13, 15, 22]

has established the pyrimidine base as a standard for

analysis of somatic mutational patterns.

The SBS-96 has proven particularly useful for analysis

of data from both whole-exome and whole-genome se-

quencing data [22]. This classification is both simple

enough to allow visual inspection of mutational patterns

and yet sufficiently complicated for separating different

sources of the same type of an SBS. For example, muta-

tional signatures analysis has identified at least 15 dis-

tinct patterns of C > T mutations each of which has been

associated with different mutational processes (e.g., ex-

posure to ultraviolet light [23], activity of the APOBEC

family of deaminases [24], failure of base excision repair

[25], etc.). SBS-96 can be further elaborated by including

additional sequencing context. Simply by including add-

itional 5′ and 3′ adjacent context, one can increase the

resolution. For example, considering two bases 5′ and

two bases 3′ of a mutation results in 256 possible classes

for each SBS (16 types of two 5′ bases ∗ 16 types of two

3′ bases). Each of the six single base substitutions in

SBS-6 has 256 possible pentanucleotides resulting in a

classification with 1536 possible channels. Since we first

introduced SBS-1536 [13], this classification has found

limited use in analysis of mutational patterns. The in-

creased number of mutational channels requires a large

number of somatic mutations, which can be generally

Table 1 Matrix generation and visualization functionality of six commonly used tools. M corresponds to providing functionality to

only generate a mutational matrix; MP corresponds to providing functionality to both generate and plot a mutational matrix. *

indicates that a tool can perform only one of the actions in a single run; for example, Helmsman can either generate a 96 or a 1536

mutational matrix but not both in a single run

Tool SBS ID DBS

6 24 96 384 1536 6144 28 83 415 8628 78 186 1248 2976

SigProfilerMatrixGenerator
Language: Python & R

MP MP MP MP MP M MP MP MP M MP MP M M

Helmsman [17]
Language: Python

M* M*

deconstructSigs [18]
Language: R

MP

mafTools [19]
Language: R

MP MP

SomaticSignatures [20]
Language: R

MP* M*

signeR [21]
Language: R

MP* M*
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Fig. 1 Classifications of single base substitutions, doublet base substitutions, and indels. a Classification of single base substitutions (SBSs). The

complete classification of an SBS includes both bases in the Watson-Crick base-pairing. To simplify this notation, one can use either the purine or

the pyrimidine base. SigProfilerMatrixGenerator uses as a standard the pyrimidine classification. b Classification of doublet base substitutions

(DBSs). The complete classification of a DBS includes bases on both strands. To simplify this notation, in most cases, SigProfilerMatrixGenerator

uses the maximum number of pyrimidines. c Classification of small insertions and deletions. The complete classification includes the length of the

indel and the number of repeated units surrounding the sequence. For deletions at microhomologies, the length of the homology, rather than

the number of repeat units surrounding the indel, is used in the classification
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found only in whole-genome sequenced cancer exhibit-

ing a high mutational burden (usually > 2 mutations per

megabase). Nevertheless, SBS-1536 has been used to fur-

ther elaborate the mutational patterns exhibited by sev-

eral mutagenic processes, for example, the aberrant

activity of DNA polymerase epsilon [14] or the ectopic

action of the APOBEC family of cytidine deaminases

[13, 14].

SigProfilerMatrixGenerator provides matrix generation

support for SBS-6, SBS-96, and SBS-1536 using the com-

monly accepted pyrimidine base of the Watson-Crick

base-pair. Further, the tool allows interrogation of tran-

scriptional strand bias for each of these classifications

and provides a harmonized visualization for all three

matrices.

Classification of Doublet Base substitutions (DBSs)

A doublet base substitution (DBS) is a somatic mutation

in which a set of two adjacent DNA base-pairs is simul-

taneously substituted with another set of two adjacent

DNA base-pairs. An example of a DBS is a set of CT:

GA base-pairs mutating to a set of AA:TT base-pairs,

which is usually denoted as CT:GA > AA:TT (Fig. 1b). It

should be noted that a CT:GA >AA:TT mutation can

be equivalently written as either a CT > AA mutation or

an AG > TT mutation (note that AG > TT is the reverse

complement of CT > AA). Similar to the SBSs, the

complete notation for DBS has proven bulky. As such,

we have previously defined a canonical set of DBSs and

used this set to interrogate both mutational patterns and

mutational signatures [14]. In this canonical set, DBSs

are referred to using the maximum number of pyrimi-

dine nucleotides of the Watson-Crick base-pairs; for ex-

ample, an AA:TT > GT:CA mutation is usually denoted

as TT > AC as this notation contains three pyrimidine

nucleotides rather than the alternative AA>GT notation,

which contains only a single pyrimidine nucleotide.

There are several DBSs with the equivalent number of

pyrimidine nucleotide in each context (e.g., AA:TT > CC:

GG), in such cases, one of these notations was selected.

Further, it should be noted, that some DBSs are palin-

dromic. For example, an AT:TA > CG:GC can be written

only as AT>CG since the reverse complement of 5′-AT-

3′ > 5′-CG-3′ is again 5′-AT-3′ > 5′-CG-3′. Overall, the

basic classification catalogues DBSs into 78 distinct cat-

egories denoted as the DBS-78 matrix (Additional file 1:

Table S1).

While the prevalence of DBSs in a cancer genome is

relatively low, on average a hundred times less than SBSs

[14], we have previously demonstrated that a doublet

base substitution is not two single base substitutions oc-

curring simply by chance next to one another [14].

While such events are possible, across most human can-

cers, they will account for less than 0.1% of all observed

DBSs [14]. Further, certain mutational processes have

been shown to specifically generate high levels of DBSs.

A flagship example is the exposure to ultraviolet light,

which causes large numbers of CC > TT mutations in

cancers of the skin [5]. Other notable examples are DBSs

accumulating due to defects in DNA mismatch repair

[14], exposure to platinum chemotherapeutics [26], to-

bacco smoking [27], and many others [14].

Similar to the classification of SBSs, we can expand

the characterization of DBS mutations by considering

the 5′ and 3′ adjacent contexts. By taking one base on

the 5′ end and one base on the 3′ end of the dinucleo-

tide mutation, we establish the DBS-1248 context. For

example, a CC > TT mutation has 16 possible tetranu-

cleotides: ACCA>ATTA, ACCC>ATTC, ACCG>ATTG,

ACCT>ATTT, CCCA>CTTA, CCCC>CTTC,

CCCG>CTTG, CCCT>CTTT, GCCA>GTTA,

GCCC>GTTC, GCCG>GTTG, GCCT>GTTT,

TCCA>TTTA, TCCC>TTTC, TCCG>TTTG, and

TCCT>TTTT (mutated bases are underlined). With sev-

enty-eight possible DBS mutations having sixteen pos-

sible tetranucleotides each, this context expansion

results in 1248 possible channels denoted as the DBS-

1248 context. While this classification is provided as part

of SigProfilerMatrixGenerator, it has yet to be thor-

oughly leveraged for analysis of mutational patterns. Fur-

ther, it should be noted that for most samples, the low

numbers of DBSs in a single sample will make the DBS-

1248 classification impractical. Nevertheless, we expect

that this classification will be useful for examining

hypermutated and ultra-hypermutated human cancers.

SigProfilerMatrixGenerator generates matrices for

DBS-78 and DBS-1248 by predominately using the max-

imum pyrimidine context of the Watson-Crick base-

pairs. The matrix generator also supports the incorpor-

ation of transcriptional strand bias with an integrated

display of the DBS-78 mutational patterns.

Classification of small insertions and deletions (IDs)

A somatic insertion is an event that has incorporated an

additional set of base-pairs that lengthens a chromosome

at a given location. In contrast, a somatic deletion is an

event that has removed a set of existing base-pairs from

a given location of a chromosome. Collectively, when

these insertions and deletions are short (usually < 100

base-pairs), they are commonly referred as small inser-

tions and deletions (often abbreviated as indels). In some

cases, indels can be complicated events in which the ob-

served result is both a set of deleted base-pairs and a set

of inserted base-pairs. For example, 5′-ATCCG-3′ mu-

tating to 5′-ATAAAG-3′ is a deletion of CC:GG and an

insertion of AAA:TTT. Such events are usually anno-

tated as complex indels.
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Indel classification is not a straightforward task and it

cannot be performed analogously to SBS or DBS classifi-

cations, where the immediate sequencing context flank-

ing each mutation was utilized to subclassify these

mutational events. For example, determining the flank-

ing sequences for deleting (or inserting) a cytosine from

the sequence 5′-ATCCCCCCG-3′ is not possible as one

cannot unambiguously identify which cytosine has been

deleted. We recently developed a novel way to classify

indels and used this classification to perform the first

pan-cancer analysis of indel mutational signatures (Add-

itional file 2: Table S1) [14]. More specifically, indels

(IDs) were classified as single base-pair events or longer

events. A single base-pair event can be further subclassi-

fied as either a C:G or a T:A indel; usually abbreviated

based on the pyrimidine base as a C or a T indel. The

longer indels can also be subclassified based on their

lengths: 2 bp, 3 bp, 4 bp, and 5 + bp. For example, if the

sequence ACA is deleted from 5′-ATTACA[GGCGC-3′

we denote this as a deletion with length 3. Similarly, if a

genomic region mutates from 5′-ATTACAGGCGC-3′

to 5′-ATTACACCTGGGCGC-3′, this will be denoted

as an insertion with length 4 (Fig. 1c).

Indels were further subclassified into ones at repetitive

regions and ones with microhomologies (i.e., partial

overlap of an indel). Note that microhomologies are not

defined for indels with lengths of 1 bp as partial overlaps

are not possible. For indels with lengths of 1 bp, the sub-

classification relied on repetitive regions that are

stretches of the same base-pair referred to as homopoly-

mers. The repeat sizes of insertions were subclassified

based on their sizes of 0 bp, 1 bp, 2 bp, 3 bp, 4 bp, 5 + bp;

while the repeat sizes of deletions were subclassified as

1 bp, 2 bp, 3 bp, 4 bp, 5 bp, 6 + bp (note that one cannot

have a deletion with a repeat size of 0 bp). For example,

if the sequence ACA is deleted from 5′-ATTA

CA[GGCGC-3′, this will be denotated as a deletion with

length 3 at a repeat unit of 2 since there are two adja-

cent copies of ACAACA and only one of these copies

has been deleted. Similarly, if a genomic region mutates

from 5′-ATTACAGGCGC-3′ to 5′-ATTA-

CACCTGGGCGC-3′, this will be denoted as an inser-

tion with length 4 at a repeat unit of 0 since the adjacent

sequences are not repeated.

In addition to classifying indels as ones occurring at

repetitive regions, a classification was performed to iden-

tify the long indels with microhomologies (i.e., partially

overlapping sequences). Since almost no insertions with

microhomologies were identified across more than 20,

000 human cancers [14], this classification was limited

to long deletions at microhomologies. Microhomologies

were classified based on the length of the short identical

sequence of bases adjacent to the variation. For example,

if TAGTC is deleted from the sequence 5′-ACCCA

TAGTAGCGGC-3′, this will be classified as a deletion

of length five occurring at a microhomology site of

length four because of the identical sequence TAGT lo-

cated at the 3′ end of the deletion. Similarly, if TAGTC

is deleted from the sequence 5′- ACCCAGTC

AAGCGGC-3′, this will also be classified as a deletion

of length five occurring at a microhomology site of

length four because of the identical sequence AGTC lo-

cated at the 5′ end of the deletion. The classification

does not distinguish (i.e., subclassify) between 3′ and 5′

microhomologies since these tend to be dependent on

the mutation calling algorithms. For example, 5′-

ACCCA TAGTAGCGGC-3′ is the same event as 5′-

ACCCATAG CGGC-3′ since in both cases a 5 bp se-

quence is deleted from a reference sequence 5′-ACC-

CATAGTCTAGTAGCGGC-3’and the result is 5′-

ACCCATAGCGGC-3′. While somatic mutation callers

may report different indels, our classification will anno-

tate these indels as exactly the same mutational event.

The classification of small insertions and deletions was

developed to reflect previously observed indel muta-

tional processes. More specifically, the large numbers of

small insertions and deletions at repetitive regions were

observed in micro-satellite unstable tumors [28] as well

as the large numbers of deletions were observed in tu-

mors with deficient DNA double-strand break repair by

homologous recombination [29]. Our classification was

previously used to identify 17 indel signatures across the

spectrum of human cancers [14]. SigProfilerMatrixGen-

erator allows generation of multiple mutational matrices

of indels including ID-28 and ID-83. Importantly, the

tool also generates an ID-8628 matrix that extends the

ID-83 classification by providing complete information

about the indel sequence for indels at repetitive regions

with lengths of less than 6 bp. While SigProfilerMatrix-

Generator provides this extensive indel classification,

ID-8628 has yet to be thoroughly utilized for analysis of

indel mutational patterns. Further, it should be noted

that for most samples, the low number of indels in a sin-

gle sample will make the ID-8628 classification impracti-

cal. Nevertheless, we expect that this classification will

be useful for examining cancers with large numbers of

indels and especially ones with deficient DNA repair.

The matrix generator also supports the incorporation of

transcriptional strand bias for ID-83 and the generation

of plots for most of the indel matrices.

Incorporation of transcription Strand Bias (TSB)

The mutational classifications described above provide a

detailed characterization of mutational patterns of single

base substitutions, doublet base substitutions, and small

insertions and deletions. Nevertheless, these classifica-

tions can be further elaborated by incorporating add-

itional features. Strand bias is one commonly used
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feature that we and others have incorporated in prior

analyses [13–15, 22]. While one cannot distinguish the

strand of a mutation, one expects that mutations from

the same type will be equally distributed across the two

DNA strands. For example, given a mutational process

that causes purely C:G > T:A mutations and a long re-

petitive sequence 5′-CGCGCGCGCGCGCGCGCCG-3′

on the reference genome, one would expect to see an

equal number of C > T and G > A mutations. However,

in many cases an asymmetric number of mutations are

observed due to either one of the strands being preferen-

tially repaired or one of the strands having a higher pro-

pensity for being damaged. Common examples of strand

bias are transcription strand bias in which transcription-

couple nucleotide excision repair (TC-NER) fixes DNA

damage on one strand as part of the transcriptional

process [30] and replicational strand bias in which the

DNA replication process may result in preferential mu-

tagenesis of one of the strands [31]. Strand bias can be

measured by orienting mutations based on the reference

strand. In the above-mentioned example, observing ex-

clusively C > A mutations (and no G > A mutations) in

the reference genome sequence 5′-CGCGCGCGCG

CGCGCGCCG-3′ may mean that: (i) the guanine on the

reference strand is protected; (ii) the cytosine on the ref-

erence strand is preferentially damaged; (iii) the guanine

on the non-reference strand is preferentially damaged;

(iv) the cytosine on the non-reference strand is pro-

tected; or (v) a combination of the previous four exam-

ples. In principle, a strand bias reveals additional strand-

specific molecular mechanisms related to DNA damage,

repair, and mutagenesis.

SigProfilerMatrixGenerator provides a standard sup-

port for examining transcriptional strand bias for single

base substitutions, doublet base substitutions, and small

indels. The tool evaluates whether a mutation occurs on

the transcribed or the non-transcribed strand of well-an-

notated protein coding genes of a reference genome.

Mutations found in the transcribed regions of the gen-

ome are further subclassified as: (i) transcribed, (ii) un-

transcribed, (iii) bi-directional, or (iv) unknown. In all

cases, mutations are oriented based on the reference

strand and their pyrimidine context.

To sub-classify mutations based on their transcrip-

tional strand bias, we consider the pyrimidine orienta-

tion with respect to the locations of well-annotated

protein coding genes on a genome. For instance, when

the coding strand (i.e., the strand containing the coding

sequence of a gene; also known as the un-transcribed

strand) matches the reference strand, a T:A > A:T will be

reported as an untranscribed T > A (abbreviated as U:

T > A; Fig. 2). In this case, the template strand (i.e., the

Fig. 2 Classifications of transcriptional strand bias. a RNA polymerase uses the template strand to transcribe DNA into RNA. The strand upon

which the gene is located is referred to as the coding strand. All regions outside of the footprint of a gene are referred to as non-transcribed

regions. b Single point substitutions are oriented based on their pyrimidine base and the strand of the reference genome. When a gene is found

on the reference strand an A:T > T:A substitution in the footprint of the gene is classified as transcribed T > A (example indicated by circle) while a

C:G > G:C substitution in the footprint of the gene is classified as un-transcribed C > G (example indicated by star). Mutations outside of the

footprints of genes are classified as non-transcribed (example indicated by square). Classification of single base substitutions is shown both in

regard to SBS-24 and SBS-384
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strand NOT containing the coding sequence of a gene;

also known as the transcribed strand) will be complemen-

tary to the reference strand and a G:C > C:G mutation will

be reported as a transcribed C >G (abbreviated as T:C >

G; Fig. 2). In rare cases, both strands of a genomic region

code for a gene. Such mutations are annotated as bidirec-

tional based on their pyrimidine context. For example,

both a T:A > C:G and a A:T > G:C mutations in regions of

bidirectional transcription will both be annotated as a bi-

directional T > C (abbreviated as B:T >C). The outlined

notations are applicable when describing mutations that

are located within the transcribed regions of the genome.

When a mutation is located outside of these regions, it

will be classified as non-transcribed. For example, both a

C:G > T:A and a G:C > A:T mutations in non-transcribed

regions will be annotated as a non-transcribed C > T (ab-

breviated as N:C > T).

When considering doublet base substitutions or small

indels in transcribed regions, for certain mutational

events, it is not possible to unambiguously orient these

mutations. More specifically, mutations containing both

pyrimidine and purine bases cannot be unequivocally at-

tributed to a strand. For example, a TA > AT doublet

substitution or a 5′-CATG-3′ deletion cannot be ori-

ented based on the pyrimidine context as both strands

contain purine and pyrimidine bases. In contrast, a GG >

TT doublet substitution or a 5′-CTTCC-3′ deletion can

be oriented as one of the strands is a pure stretch of py-

rimidines. Somatic mutations with ambiguous strand

orientation have been classified in a separate unknown

category (e.g., a TA > AT doublet substitution in a tran-

scribed region is abbreviated as Q:TA >AT). In contrast,

the classification of somatic indels and DBSs with clear

strand orientation has been conducted in a manner simi-

lar to the one outlined for single base substitutions.

Generation of mutational matrices and additional features

Prior to performing analyses, the tool requires installing

a reference genome. By default, the tool supports five

reference genomes and allows manually installing any

additional reference genome. Installing a reference gen-

ome removes the dependency for connecting to an ex-

ternal database, allows for quick and simultaneous

queries to retrieve information for sequence context and

transcriptional strand bias, and increases the overall per-

formance of the tool.

After successful installation, SigProfilerMatrixGenera-

tor can be applied to a set of files containing somatic

mutations from different samples. The tool supports

multiple commonly used input formats and, by default,

transforms the mutational catalogues of these samples to

the above-described mutational matrices and outputs

them as text files in a pre-specified output folder.

In addition to generating and plotting matrices from

mutational catalogues, SigProfilerMatrixGenerator al-

lows examining patterns of somatic mutations only in

selected regions of the genome. The tool can be used to

generate mutational matrices separately for: each indi-

vidual chromosome, for the exome part of the genome,

and for custom regions of the genome specified by a

BED file. SigProfilerMatrixGenerator can also perform

statistical analysis for significance of transcriptional

strand bias for each of the examined samples with the

appropriate corrections for multiple hypothesis testing

using the false discovery rate (FDR) method. Overall, the

tool supports the examination of significantly more mu-

tational matrices than prior tools (Table 1) while still

exhibiting a better performance (Fig. 3).

Computational optimization

In addition to its extensive functionality (Table 1), the

performance of SigProfilerMatrixGenerator has been op-

timized for analysis of large mutational datasets. More

specifically, as part of the installation process, each

chromosome of a given reference genome is pre-proc-

essed in a binary format to decrease subsequent query

times. This pre-processing reduces a genomic base-pair

to a single byte with binary flags that allow immediately

identifying the reference base, its immediate sequence

context, and its transcriptional strand bias. A single bin-

ary file is saved for each reference chromosome on the

hard-drive; note that these binary files have similar sizes

to ones of FASTA files containing the letter sequences

of chromosomes.

When SigProfilerMatrixGenerator is applied to a set of

input files, the tool first reformats all input files into a

single file per chromosome sorted by the chromosomal

positions, e.g., for a human reference genome a total of

25 files are generated: 22 files are generated for the auto-

somes, two files for the sex chromosomes, and one file

for the genome of the mitochondria. Then, the tool pro-

cesses the input data one chromosome at a time. For ex-

ample, for a human reference genome, it first loads the

reference binary file for chromosome one (~ 250 mega-

bytes) and all mutations located on chromosome one

across all samples are assigned to their appropriate bins

in the most extensive classification (e.g., SBS-6144 for

single base substitutions). Note that the binary pre-pro-

cessing of the reference chromosomes makes this a lin-

ear operation with identifying the appropriate category

for each mutation being a simple binary check against a

binary array. After processing all mutations for a par-

ticular chromosome, the tool unloads the chromosomal

data from memory and proceeds to the next chromo-

some. When all chromosomes have been processed, the

most extensive classification is saved and iteratively col-

lapsed to all other classifications of interests. For
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example, for single base substitutions, the SBS-6144 is

first saved on the hard-drive and then collapsed to SBS-

1536 and SBS-384. Then, SBS-1536 and SBS384 are

saved on the hard-drive and collapsed, respectively, to

SBS-96 and SBS-24. Similarly, SBS-96 and SBS-24 are

saved on the hard-drive with SBS-24 being also collapsed

to SBS-6, which is also recorded on the hard-drive.

Overall, the computational improvements in SigProfiler-

MatrixGenerator rely on binary pre-processing of refer-

ence genomes, iterative analysis of individual

chromosomes, and iterative collapsing of output matri-

ces. These computational improvements have allowed

computationally outperforming five other commonly

used tools.

Results
The performance of SigProfilerMatrixGenerator was

benchmarked amongst five commonly used packages:

deconstructSigs [18], mafTools [19], SomaticSignatures

[20], signeR [21], and Helmsman [17]. While some of

these packages can perform various additional tasks

(e.g., extraction/decomposition of mutational signatures),

the benchmarking considered only the generation of

mutational matrices. The performance was evaluated by

measuring the CPU time and maximum memory neces-

sary to generate mutational matrices based on randomly

generated VCF files for 100 samples (one file per sam-

ple) with different total numbers of somatic mutations:

103, 104, 105, 106, and 107. To maintain consistency,

each test was independently performed on a dedicated

computational node with an Intel® Xeon® Gold 6132 Pro-

cessor (19.25M Cache, 2.60 GHz) and 192GB of shared

DDR4–2666 RAM. In all cases, the tools generated iden-

tical SBS-96 matrices.

In addition to generating an SBS-96 matrix, SigProfi-

lerMatrixGenerator also generates another twelve matri-

ces including ones for indels and doublet base

substitutions (Table 1). In contrast, all other tools can

only generate a single mutational matrix exclusively for

single base substitutions (Table 1). While offering add-

itional functionality, SigProfilerMatrixGenerator exhibits

an optimal performance and, in almost all cases, outper-

forms other existing tools (Fig. 3a). For example, for

more than one million mutations, the tool is between

1.5 and 2 times faster compared to the next fastest tool,

deconstructSigs. With the exception of Helmsman, Sig-

ProfilerMatrixGenerator requires less memory than any

of the other tools making it scalable to large numbers of

somatic mutations (Fig. 3b). Helmsman’s low memory

footprint comes at a price of a significantly slower per-

formance for larger datasets (Fig. 3a).

Lastly, we evaluated whether the exhibited perform-

ance is independent of the number of samples by com-

paring the tools using a total of 100,000 somatic

mutations distributed across: 10, 100, and 1000 samples

(Additional file 3: Figure S1). SigProfilerMatrixGenera-

tor, deconstructSigs, Helmsman, and mafTools demon-

strated an independence of sample number with respect

Fig. 3 Performance for matrix generation across six commonly used tools. Each tool was evaluated separately using 100 VCF files, each

corresponding to an individual cancer genome, containing total somatic mutations between 1000 and 10 million. a CPU runtime recorded in

seconds (log-scale) and b maximum memory usage in megabytes (log-scale). *SigneR was unable to generate a matrix for 107 mutations as it

exceeded the available memory of 192 gigabytes. Performance metrics exclude visualization
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to both CPU runtime and maximum memory usage.

The memory usage of SomaticSigs is independent of

sample count, however, the runtime increases linearly

with the number of samples. The runtime of SigneR is

somewhat independent of sample count, however, the

memory increases linearly with the number of samples.

Discussion
SigProfilerMatrixGenerator transforms a set of muta-

tional catalogues from cancer genomes into fourteen

mutational matrices by utilizing computationally and

memory efficient algorithms. Indeed, in almost all cases,

the tool is able to outperform other tools that generate

only a single mutational matrix. SigProfilerMatrixGen-

erator also provides an extensive plotting functionality

that seamlessly integrates with matrix generation to

visualize the majority of output in a single analysis

(Fig. 4). In contrast, most other tools have plotting cap-

abilities solely for displaying an SBS-96 matrix (Table 1).

Currently, SigProfilerMatrixGenerator supports only

classifications of small mutational events (i.e., single base

substitutions, doublet base substitutions, and small in-

sertions and deletions) as we have previously demon-

strated that these classifications generalize across all

types of human cancer [14]. While classifications for

large mutational events (e.g., copy-number changes and

structural rearrangements) have been explored by us

and others [29, 32, 33] such classifications have been re-

stricted to individual cancer types and it is unclear

whether they will generalize in a pan-tissue setting.

Importantly, SigProfilerMatrixGenerator is not a tool

for analysis of mutational signatures. Rather, SigProfiler-

MatrixGenerator allows exploration and visualization of

mutational patterns as well as generation of mutational

matrices that subsequently can be subjected to muta-

tional signatures analysis. While many previously devel-

oped tools provide support for examining the SBS-96

classification of single base substitutions, SigProfilerMa-

trixGenerator is the first tool to provide extended classi-

fication of single base substitutions as well as the first

tool to provide support for classifying doublet base sub-

stitutions and small insertions and deletions.

Conclusions
A breadth of computational tools was developed and ap-

plied to explore mutational patterns and mutational sig-

natures based on the SBS-96 classification of somatic

single base substitutions. While the SBS-96 has yielded

Fig. 4 Portrait of a cancer sample. SigProfilerMatrixGenerator provides a seamless integration to visualize the majority of generated matrices. One

such functionality allows the user to display all mutational plots for a sample in a single portrait. The portrait includes displaying of each of the

following classifications: SBS-6, SBS-24, SBS-96, SBS-384, SBS-1536, DBS-78, DBS-186, ID-28, ID-83, and ID-415. Each of the displayed plots can also

be generated in a separate file. Detailed documentation explaining each of the plots can be found at: https://osf.io/2aj6t/wiki/home/
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significant biological insights, we recently demonstrated

that further classifications of single base substitutions,

doublet base substitutions, and indels provide the means

to better elucidate and understand the mutational pro-

cesses operative in human cancer. SigProfilerMatrixGen-

erator is the first tool to provide an extensive

classification and comprehensive visualization for all

types of small mutational events in human cancer. The

tool is computationally optimized to scale to large data-

sets and will serve as foundation to future analysis of

both mutational patterns and mutational signatures. Sig-

ProfilerMatrixGenerator is freely available at https://

github.com/AlexandrovLab/SigProfilerMatrixGenerator

with an extensive documentation at https://osf.io/s93d5/

wiki/home/.

Availability and requirements
Project name: SigProfilerMatrixGenerator.

Project home page: https://github.com/Alexandrov-

Lab/SigProfilerMatrixGenerator

Operating system(s): Unix, Linux, and Windows.

Programming language: Python 3; R wrapper.

Other requirements: None.

License: BSD 2-Clause “Simplified” License.

Any restrictions to use by non-academics: None.

Additional files

Additional file 1: Table S1. (DBS classification): Double Base

Substitutions are classified into 78 mutational channels. The complete list

of possible DBS is bulky, therefore, previous studies use the maximum

pyrimidine context to collapse the number of possible mutation types.

(XLSX 11 kb)

Additional file 2: Table S1. (ID classification): Small insertions and

deletions are classified into 83 mutational channels. This classification

considers the size of the ID and the repeat size surrounding the event.

Events that are 1bp in length are classified by their pyrimidine base (C or

T) and the number of repeated bases surrounding the event. Indels

longer than 1bp are classified by the length of the event and the

number of surrounding repeated units. (XLSX 16 kb)

Additional file 3: Figure S1. Performance for matrix generation across

six commonly used tools. (DOCX 2606 kb)
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