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ABSTRACT

Context. Identifying frequencies with low signal-to-noise ratios in time series of stellar photometry and spectroscopy, and measuring
their amplitude ratios and peak widths accurately, are critical goals for asteroseismology. These are also challenges for time series
with gaps or whose data are not sampled at a constant rate, even with modern Discrete Fourier Transform (DFT) software. Also the
False-Alarm Probability introduced by Lomb and Scargle is an approximation which becomes less reliable in time series with longer
data gaps.
Aims. A rigorous statistical treatment of how to determine the significance of a peak in a DFT, called SS, is presented here.
SS is based on an analytical solution of the probability that a DFT peak of a given amplitude does not arise from white noise in
a non-equally spaced data set.
Methods. The underlying Probability Density Function (PDF) of the amplitude spectrum generated by white noise can be derived
explicitly if both frequency and phase are incorporated into the solution. In this paper, I define and evaluate an unbiased statistical
estimator, the “spectral significance”, which depends on frequency, amplitude, and phase in the DFT, and which takes into account
the time-domain sampling.
Results. I also compare this estimator to results from other well established techniques and assess the advantages of SS,
through comparison of its analytical solutions to the results of extensive numerical calculations. According to those tests, SS
obtains as accurate frequency values as a least-squares fit of sinusoids to data, and is less susceptible to aliasing than the Lomb-
Scargle Periodogram, other DFTs, and Phase Dispersion Minimization (PDM). I demonstrate the effectiveness of SSwith a few
examples of ground- and space-based photometric data, illustratring how SS deals with the effects of noise and time-domain
sampling in determining significant frequencies.
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1. Overview

In this Paper I provide a brief introduction to Fourier methods in
astronomical time series analysis (Sect. 2), outline existing sta-
tistical approaches (Sect. 3), and address the major weaknesses
in available techniques (Sect. 4).

While Sects. 2 to 4 contain previously available (textbook)
information, I introduce a new and unbiased reliability criterion
(spectral significance) based on theoretical statistics in Sect. 5.
This section also addresses the correspondence between the
spectral significance and other reliability estimators. Section 6 is
devoted to the comparison of the analytically deduced spectral
significance to the results of numerical simulations. Finally, the
results of comparative tests of spectral significance computation
vs. other period detection methods are presented.

An example for the practical application of the new method
vs. a widely used standard procedure is provided in Sect. 7. It
may be useful for the non-mathematically oriented reader who
is mainly interested in how the technique performs in “real life”.

Further topics (Sect. 8) are the application of statistical
weights, the fact that a time series consists of individual subsets,
and potential problems with colored vs. white noise.

2. Introduction

In Fourier Analysis a continuous function of time over a finite
time interval is expanded into a series of sine waves. These
waves represent a superposition of an oscillation at a fundamen-
tal frequency and a discrete, generally infinite set of overtones.
The fundamental frequency is determined by the reciprocal time
interval width. All other frequencies correspond to integer mul-
tiples of this fundamental. The knowledge of the amplitudes and
phase angles for all frequency components permits one to en-
tirely recover the given function in the time domain.

Practical applications (such as astronomical observations)
generally deal with discrete sets of measurements (time series)
rather than continuous functions of time and, on the other hand,
consider the Fourier Spectrum as a continuous function of fre-
quency rather than a discrete dataset. This leads to the Discrete
Fourier Transform (DFT). It allows one to determine the domi-
nant frequencies of the observed physical process with a higher
frequency resolution than is possible with Fourier Analysis.

Motivated by the desire to understand physical oscillations,
the scientist is interested in a couple of eigenfrequencies and the
exact determination of related amplitudes and phases rather than
the complete signal recovery. In practical applications, these are
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considered to correspond to local maxima (peaks) in the ampli-
tude spectrum. A widely held strategy is to

1. compute an amplitude spectrum for the given dataset;
2. identify the maximum amplitude within the frequency range

of interest;
3. decide whether this amplitude is “significant”;
4. subtract the corresponding sinusoidal signal from the time

series; and
5. use the residuals after subtracting the fit from the time series

for the next iteration.

This procedure is to be understood as a loop, terminated if the
maximum amplitude is not considered significant any more. The
result of these consecutively performed prewhitenings is a list of
frequencies, amplitudes, and phase angles, plus a residual time
series (hopefully) representing the pure observational noise. In
fact, part of this noise is due to measurement errors, but fre-
quently merged with signal components the amplitudes of which
are too weak to be detected. As an example, the number of
photometrically resolved frequencies in the δ Sct star 4 CVn in-
creased from 5 to 34 between 1990 and 1999 (Breger et al. 1990,
1999).

In many cases, the results of the prewhitening are subject
to a multiperiodic least-squares fit (e.g., Sperl 1998; Lenz &
Breger 2005). This represents a fine tuning to adjust frequencies,
amplitudes, and phases to a minimum rms residual, but may lead
to the exclusion of some terms, or inclusion of new terms.

The eigenfrequencies, amplitudes, and phases of stellar os-
cillations provide fundamental information on the distribution of
mass and temperature, the radiative and convective energy trans-
port, or abundances of elements in the stellar atmosphere and
help to determine fundamental parameters such as mass, radius,
effective temperature, rotational velocity, and age of a star.

3. Statistical aspects

In practical applications, a signal is not only of stellar origin but
a superposition of the information received from the star, instru-
mental (pseudo-)periodicities (e.g., invoked by thermal effects),
and transparency variations in the Earth’s atmosphere. To elimi-
nate the third component, observations with instruments aboard
of spacecraft have been used increasingly by the astronomical
community during the past two decades. Unfortunately, stray
light scattered from the illuminated surface of the Earth intro-
duces additional quasi-periodic artifacts that are not easy to han-
dle and hence represent the major constraint to the accuracy of
space-based data acquisition (Reegen et al. 2006).

An unbiased criterion to decide, whether a peak amplitude is
generated by noise or represents an intrinsic variation, is impor-
tant, because the choice of the most significant peak determines
all further iterations in the prewhitening sequence. A falsely
identified signal component usually perturbs all results obtained
subsequently.

In addition, Scargle (1982) points out that Gaussian noise
in the time domain may produce a peak of arbitrary amplitude
in the DFT spectrum. Since there is no natural upper limit to
amplitudes produced by noise, the danger of misinterpretation is
imminent, and the “significance” of an examined peak needs to
be described by a probability distribution.

Of course, the probability that white noise produces a low-
amplitude peak is higher than that for a high-amplitude peak. In
other words, the False-Alarm Probability that the highest peak
in an amplitude spectrum is an artifact due to noise is lower for

higher amplitudes. This definition is reasonable because it relies
on the highest available peak, since one cannot trust any peak,
if even the one with the highest amplitude is unreliable. In this
perspective, the False-Alarm Probability appears to be a good
criterion of whether to believe in the presence of a signal in a
given dataset.

The statistical description of the False-Alarm Probability
relies on a Probability Density Function (PDF), which is the
continuous version of a histogram, as the bins of which become
infinitesimally small. Thus the False-Alarm Probability is an in-
tegral over the PDF. In many statistical applications, probabil-
ity distributions may easily be described by the PDF, but an
analytic expression of the integral does not exist, as e.g. for
the Gaussian distribution. Hitherto many statistical problems are
solved in terms of PDFs rather than of the corresponding cumu-
lative quantities.

The PDF of the amplitude spectrum generated by pure
Gaussian noise at equidistant sampling was deduced by Schuster
(1898; also Scargle 1982). For non-equidistant sampling, the
Lomb-Scargle Periodogram (Lomb 1976) is claimed to pro-
vide a better statistical behavior (Scargle 1982). Koen (1990)
examined the application of the Fisher test (1929) to the
Lomb-Scargle Periodogram to estimate peak significance, and
Schwarzenberg-Czerny (1996) combined Lomb’s solution with
the analysis of variance method (Schwarzenberg-Czerny 1989)
to obtain a powerful period search technique for non-equidistant
data.

A widespread, but purely empirical approach is the con-
sideration of a peak in the amplitude spectrum to be “real”,
if its amplitude signal-to-noise ratio exceeds a given limit.
Breger et al. (1993) suggest a value of 4. Numerical simulations
for 19 300 synthetic time series by Kuschnig et al. (1997) re-
turn an associated False-Alarm Probability of 10−3 for 1000 data
points.

An alternative way of determining periods was intro-
duced by Lafler & Kinman (1965) and statistically examined
by Stellingwerf (1978). The Phase Dispersion Minimization
method is based on the assumption that the correct period would
produce a phase diagram with the lowest intrinsic scatter. This
algorithm is a powerful tool especially for non-sinusoidal peri-
odicities, e.g., if the stellar surface structure is observed pho-
tometrically as the star rotates. In this situation, the advantage
compared to Fourier techniques is the simultaneous treatment of
all overtones that determine the shape of the signal.

In the case of multiperiodic variability, PDM loses accuracy,
since the phase diagram for one frequency is contaminated by
all others, unless they are integer multiples of this frequency.

4. Problems

A closer examination of the fundamental properties of the DFT
leads to the following issues:

1. The peak frequency in the amplitude spectrum of a single
sinusoidal signal is not recovered correctly (Kovacs 1980).
This is a side effect of the restriction to a finite time inter-
val rather than a property of non-equidistant sampling. Also
the Lomb-Scargle Periodogram suffers from systematic peak
frequency displacements (see 6.2).

2. The “entire” spectrum is defined by the Nyquist (Critical)
Frequency as the upper limit for equidistantly sampled data
(Whittaker 1915; Nyquist 1928; Kotelnikov 1933; Shannon
1949; Press et al. 1992). In the case of non-equidistant
sampling, there is no unique definition of such a limit.
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Horne & Baliunas (1986) suggest the average sampling in-
terval width for the calculation of the Nyquist Frequency;
Scargle (1982) and Press et al. (1992) promote the minimum
sampling interval; a variant discussed by Eyer & Bartholdi
(1999) is to pad the entire dataset with zeros to achieve
equidistant, but much denser sampling in the time domain
and to take the resulting sampling interval as a Nyquist
Frequency estimator. The most promising method was in-
troduced by Sperl (1998): each sampling interval of the non-
equidistant series is considered responsible for its own, indi-
vidual Nyquist Frequency. In a subsequent step, a histogram
of all individual Nyquist Frequencies helps to decide where
to define a healthy upper frequency limit.

3. Periodic gaps in the time-domain sampling introduce peri-
odicities in the Fourier Spectrum. In this case, a single si-
nusoidal signal is represented by a peak that is accompanied
by several aliases. In order to overcome the systematic ef-
fects of non-equidistant sampling in the frequency domain,
Ferraz-Mello (1981) examined the possibility of incorporat-
ing the sampling properties into the DFT amplitude spectrum
by introducing appropriate statistical weights. His study led
to the design of harmonic filters, which may help to improve
the selection of peaks. A different approach is the consid-
eration of the entire “comb” of aliases instead of the peak
with the highest amplitude only (Roberts et al. 1987; Foster
1995).

The goals of the present paper are

– to deduce the depedence of the Probability Density Function
of non-equidistantly sampled Gaussian noise on frequency
and phase (Sect. 5);

– to introduce spectral significance as a measure of False-
Alarm Probability (5.5);

– to compare the theoretical solution with the results of numer-
ical simulations (6.1); and

– to quantitatively oppose the accuracy of the peak frequen-
cies using spectral significance (6.2, 6.3) vs. the “simple”
DFT amplitude, the Lomb-Scargle Periodogram, PDM, and
the DFT amplitude plus improvement of resulting peak fre-
quencies by least-squares fitting.

A frequent problem in the context of astronomical observations
is that all measurements do not necessarily have the same vari-
ance. This may be due to different instrumentation for different
subsets of the time series or changing environmental conditions,
such as thermal noise or transparency variations in the Earth’s
atmosphere. Statistical weights are introduced into the spectral
significance in order to take appropriate account of the variable
quality of measurements within a single dataset (8.1).

5. Amplitude PDF for non-equidistant sampling

This section presents the theoretical evaluation of the frequency-
domain PDF for a non-equidistantly sampled time series repre-
senting Gaussian noise.

A very important fact for the statistical analysis is, that in
most practical applications, the mean value of the observable is
shifted to a fixed value (frequently zero) before the DFT is eval-
uated. The statistical description of frequency-domain noise has
to take this fact into account.

In statistical terms, the Fourier Coefficients are regarded as
weighted sums of random variables. Such sums tend towards a
Gaussian distribution as datasets become large enough. Since the
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Fig. 1. Schematic illustration of a time series with periodic gaps rep-
resenting Gaussian noise with a standard deviation equal 1 (top) to vi-
sualize the dependency of the corresponding frequency-domain noise
on frequency and phase, as well as on the characteristics of the time-
domain sampling. In the two examples referred to in the lower panels, a
test signal is displayed (dashed lines) for which the DFT shall be evalu-
ated. If the frequency and phase are combined such that the data points
consistently align around the times when the trigonometric function at-
tains a small value, only a small fraction of the time-domain noise will
be transformed into the frequency domain (mid). For a combination of
frequency and phase grouping the data points around the maxima and
minima of the test signal, the time-domain noise will produce a higher
frequency-domain noise, correspondingly (bottom). The first of these
two cases produces a narrower probability distribution in Fourier Space,
and consequently, a signal with the same amplitude will be considered
more reliable in the first case than in the second.

Fourier Coefficients for each frequency represent the Cartesian
components of the two-dimensional Fourier Space, the result-
ing Gaussian distribution will be two-dimensional (bivariate) as
well. Furthermore, as the Fourier Coefficients are functions of
frequency, the considered Fourier-Space probability distribution
will depend on frequency, correspondingly.

For a time series with gaps1 (Fig. 1), the relevant influence of
the time-domain sampling on the frequency-domain probability
distribution is determined by the phase coverage of the measure-
ments: a combination of frequency and phase for which the inter-
vals containing data are consistently associated to angles where
the corresponding trigonometric function (“test signal”) attains
low numerical values will result in a lower noise level than a
combination allocating the data close to angles where the max-
ima/minima of the test signal are located. The first case will yield
a narrow probability distribution, the second case a broad one.
Consequently, a signal with the same amplitude has be consid-
ered more significant in the first case. These strong phase depen-
dencies are mitigated for frequencies providing a better phase
coverage.

1 The time base represents 10 nights of ground-based photometry of
the star IC 4996 # 89 (Zwintz et al. 2004; Zwintz & Weiss 2006). See 5.6
for further detail.
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Consequently, the amplitude distribution in Fourier Space
will have to be a function of both frequency and phase, which
is achieved by expressing the bivariate Gaussian PDF in polar
rather than Cartesian coordinates.

The probability of a peak generated by noise to reach a given
amplitude level may be evaluated through integration of the
PDF over amplitude, which leads to the Cumulative Distribution
Function (CDF) and False-Alarm Probability, based on which a
more informative quantity, the spectral significance, is defined.

5.1. Zero-mean correction

In astronomical applications, magnitudes are usually averaged
to a pre-defined constant (zero or non-zero, as obtained by some
theoretical concept or calibration) before the amplitude spectrum
is evaluated. The following considerations apply to observables
adjusted to zero mean. If a non-zero constant is chosen instead,
the DFT will change, but the False-Alarm Probabilities will re-
main the same. In this case, one prefers to evaluate a DFT spec-
trum for the time series as it is but use a zero-mean corrected ver-
sion of the dataset for the computation of spectral significances.

Considering a time series xk := x (tk) to be generated by a
Gaussian random process with expected value 0 and population

variance
〈
x2

〉
, the time-domain PDF is

φ (xk) :=
1√

2π
〈
x2

〉 e
−

x2
k

2〈x2〉 . (1)

Given a random process that produces an infinite population of
Gaussian random variables, the mean of a finite sample of ran-
dom variables xk is free to scatter around the population mean.
Gauss’s law of error propagation returns a variance of the sample
mean which is proportional to the inverse number of data points
in the sample,

〈
〈xk〉2

〉
=

〈
x2

〉

K
· (2)

If the finite sample is artificially adjusted to zero average, the
sample mean value is not allowed to scatter any more. Since the
standard error of an individual data point implicitly contains the
standard error of the mean, too, zero-mean correction will dis-
tort the PDF of the random variable. The only exception with
an invariant PDF is the Fourier Analysis, i.e., equidistant time-
domain sampling and a set of discrete frequencies.

An alternative (and promising) method in this context is the
Floating-Mean Periodogram (Cumming et al. 1999), which is
based on a least-squares fit of a sinusoid plus a constant to the
time series, the latter retaining the free scatter of the sample
mean.

5.2. Distribution of Fourier coefficients

Incorporating the effect of zero-mean correction into the sta-
tistical examination, the zero-mean corrected magnitude values

xk − 1
K

∑K−1
k=0 xk have to be used for the calculation of Fourier

Coefficients according to2

aZM (ω) :=
1

K

K−1∑

k=0

xk cosωtk −
1

K2

K−1∑

k=0

xk

K−1∑

l=0

cosωtl, (3)

bZM (ω) :=
1

K

K−1∑

k=0

xk sinωtk −
1

K2

K−1∑

k=0

xk

K−1∑

l=0

sinωtl. (4)

Due to the linearity of the Fourier Transform, the subtraction of
a constant in the time domain refers to a subtraction of a spectral
window in the frequency domain3.

Rearrangement of indices yields

aZM (ω) =
1

K

K−1∑

k=0

xk

⎛⎜⎜⎜⎜⎜⎜⎝cosωtk −
1

K

K−1∑

l=0

cosωtl

⎞⎟⎟⎟⎟⎟⎟⎠ , (5)

bZM (ω) =
1

K

K−1∑

k=0

xk

⎛⎜⎜⎜⎜⎜⎜⎝sinωtk −
1

K

K−1∑

l=0

sinωtl

⎞⎟⎟⎟⎟⎟⎟⎠ . (6)

Given pure Gaussian noise in the time domain with a population

variance
〈
x2

〉
, Eqs. (5), (6) allows one to consider both Fourier

Coefficients as linear combinations of Gaussian variables with
expected values 0 and variances

〈
a2

ZM

〉
(ω) =

〈
x2

〉

K2

K−1∑

k=0

⎛⎜⎜⎜⎜⎜⎜⎝cosωtk −
1

K

K−1∑

l=0

cosωtl

⎞⎟⎟⎟⎟⎟⎟⎠

2

, (7)

〈
b2

ZM

〉
(ω) =

〈
x2

〉

K2

K−1∑

k=0

⎛⎜⎜⎜⎜⎜⎜⎝sinωtk −
1

K

K−1∑

l=0

sinωtl

⎞⎟⎟⎟⎟⎟⎟⎠

2

. (8)

Thanks to the Central Limit Theorem (de Moivre 1718; Stuart
& Ord 1994, p. 310f), the consideration of these coefficients as
Gaussian variables holds to a sufficient degree, even if the time-
domain noise is not Gaussian, because even short datasets in as-
tronomical applications are long enough compared to the fast
convergence of the PDF towards the Gaussian distribution with
an increasing number of random variables.

5.3. Frequency- and phase-dependent PDF

Since the DFT produces a two-dimensional vector (a, b), the
probability distribution in the frequency domain will also be
two-dimensional, so-called bivariate.

The combined probability density of two independent

Gaussian variables α, β with corresponding variances
〈
α2

〉
,
〈
β2

〉

is given by a bivariate Gaussian PDF,

φ (α, β) =
1

2π
√〈
α2

〉 〈
β2

〉 e
− 1

2

(
α2

〈α2〉+
β2

〈β2〉
)

, (9)

if the covariance 〈αβ〉 vanishes.

2 Some applications prefer a different normalization of Eqs. (5), (6).
E.g., in publications dealing with the theoretical aspects of functional
analysis, both Fourier Coefficients and the inverse transform from the

frequency into the time domain are frequently normalized by K−
1
2 in-

stead of K−1. Also in the field of communications engineering, different
normalizations are used. In fact, one is free to distribute the normaliza-
tion factors among these relations arbitrarily, as long as the product of
both factors is K−1.

3 Since the Fourier Analysis of equidistant time series is restricted
to discrete frequencies associated to orthogonal DFTs, nothing will
change for non-zero frequencies in this special case.
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The fact that the Fourier Coefficients aZM, bZM of pure
noise are two linear combinations of the same random vector
in Fourier Space diminishes the degrees of freedom by 1. Hence
they may be considered independent to a sufficient degree, if
the sample size is large enough. Consequently, if 〈aZMbZM〉 = 0,
Eq. (9) describes the bivariate distribution of Fourier Coefficients
related to noise satisfactorily. According to Appendix A, rotating
the Fourier Space coordinates by an angle θ0 given by

tan 2θ0 (ω) =

K
∑K−1

k=0 sin 2ωtk − 2
∑K−1

k=0 cosωtk
∑K−1

k=0 sinωtk

K
∑K−1

k=0 cos 2ωtk −
(∑K−1

k=0 cosωtk
)2
+

(∑K−1
k=0 sinωtk

)2
(10)

transforms the Fourier Coefficients aZM, bZM into coefficients α,
β with zero covariance, as desired.

The DFT of a measured time series xk contains only an am-
plitude A but also a phase angle

θ (ω) =

∑K−1
k=0 xk sinωtk∑K−1
k=0 xk cosωtk

· (11)

This additional information may be taken into account by evalu-
ating the conditional probability density of amplitude for a con-
stant phase angle θ, pre-defined by the DFT of the time series
under consideration at the frequency ω.

The transformation of Eq. (9) from Cartesian into polar coor-
dinates (A, θ) is performed via dα dβ = A dA dθ (Appendix B.1)
with

α =
A

2
cos (θ − θ0) , (12)

β =
A

2
sin (θ − θ0) , (13)

where the fact, that the coordinate system is rotated by a con-
stant angle θ0, does not contribute to the Jacobian of the trans-
formation. The division by 2 is introduced by collecting the con-
tributions of both A (ω) and A (−ω) – which are equal for real
observables – to the total amplitude. The transformed amplitude
PDF becomes

φ (A, θ | ω) =
A

2π
√〈
α2

〉 〈
β2

〉 e
− A2

8

[
cos2(θ−θ0)

〈α2〉 +
sin2(θ−θ0)

〈β2〉
]

. (14)

Of course, φ does not only depend on amplitude A and phase θ,
but also on α0, β0, and θ0, which are determined by the time-
domain sampling and are functions of frequencyω. The bar sym-
bol in φ (A, θ | ω) is introduced to formally separate random vari-
ables to those considered constant.

Changing the normalization condition from∫∫
R2 dA dθ φ (A, θ | ω) = 1 into

∫
R dA φ (A | ω, θ) = 1 yields

φ (A | ω, θ) = A

4R2
e
− A2

8R2 (15)

with

R :=

√ 〈
α2

〉 〈
β2

〉
〈
β2

〉
cos2 (θ − θ0) +

〈
α2

〉
sin2 (θ − θ0)

· (16)

The difference between Eqs. (14) and (15) is that Eq. (14) is a
bivariate PDF of amplitude and phase, whereas in Eq. (15) only
the amplitude A is considered as a random variable, and θ is
constant. This relation returns the probability density of ampli-
tude for a fixed frequency and a fixed phase in Fourier Space.

Accordingly, the PDF is normalized by the condition that its in-
tegral over the entire amplitude range (from 0 to ∞) has to be 1.
Furthermore, amplitudes being defined ≥0 introduce a factor 2
into the argument of the exponential function.

Equation (16) presents R (θ) as an ellipse in polar co-

ordinates. The semi-major and semi-minor axes are
√〈
α2

〉

(Eq. (A.3)) and
√〈
β2

〉
(Eq. (A.4)), respectively, and the orienta-

tion is determined by θ0. This ellipse will be called the rms error
ellipse. Its orientation and dimensions depend on frequency.

Equation (10) has got a set of solutions for θ0 assigned to or-
thogonal directions: if θ0 is a solution, then the complete set of

solutions is θ0 +
z
2
π ∀z ∈ Z. Whether

√〈
α2

〉
returns the semi-

major axis and
√〈
β2

〉
the semi-minor axis of the rms error el-

lipse, or vice versa, depends on the choice of θ0. This paper con-
sistently uses solutions of θ0 that assign α0 to semi-minor axes,
which yields the maximum spectral significance for all phase
angles under consideration.

As shown later (see 5.6), the introduction of the normalized
semi-major and semi-minor axes,

α0 (ω, θ0) :=

√
2K

〈
α2

〉
〈
x2

〉 =
√√√√

2

K2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
K

K−1∑

k=0

cos2 (ωtk − θ0) −
⎡⎢⎢⎢⎢⎢⎢⎣

K−1∑

l=0

cos (ωtl − θ0)

⎤⎥⎥⎥⎥⎥⎥⎦

2
⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (17)

β0 (ω, θ0) :=

√
2K

〈
β2

〉
〈
x2

〉 =
√√√√

2

K2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
K

K−1∑

k=0

sin2 (ωtk − θ0) −
⎡⎢⎢⎢⎢⎢⎢⎣

K−1∑

l=0

sin (ωtl − θ0)

⎤⎥⎥⎥⎥⎥⎥⎦

2
⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (18)

respectively, provides the separation of sampling-dependent
quantities from quantities that only depend on the DFT ampli-
tude. In this context, the term “normalized” means that for ar-
guments ωtk − θ0 uniformly distributed on [0, 2π], the expected
values of both α0 and β0 are 1.

Given the orientation of axes, θ0, and the normalized axes,
α0, β0, of the ellipse, the standard deviation for an arbitrary
phase θ in Fourier Space is the radius of an ellipse in polar coor-
dinates (R, θ) according to

R =

√〈
x2

〉

2K

α2
0
β2

0

β2
0

cos2 (θ − θ0) + α2
0

sin2 (θ − θ0)
· (19)

The three parameters θ0, α0, β0 describe the ellipticity of the
two-dimensional PDF for Gaussian noise in Fourier Space and
thus represent the cornerstones of spectral significance evalu-
ation. All subsequent relations will be given in terms of these
three quantities.

5.4. False-Alarm Probability

The Cumulative Distribution Function (CDF) is obtained by in-
tegrating the PDF (Eq. (15)) according to

Φ (A | ω, θ) =
∫ A

0

dA′φ
(
A′ | ω, θ) , (20)

which yields

Φ (A | ω, θ) = 1 − e
− A2

8R2 . (21)
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Thus the probability for an amplitude to exceed a given limit A
is given by

ΦFA (A | ω, θ) = e
− A2

8R2 , (22)

which is the False-Alarm Probability of an amplitude level at
phase θ (and frequency ω, since θ, θ0, α0, and β0 are frequency-
dependent quantities).

5.5. Spectral significance

The frequency- and phase-dependent False-Alarm Probability
of an amplitude level was introduced as the probability that
random noise in the time domain with the same rms error as
the given time series produces a peak in the DFT amplitude
spectrum which is at least as high as the corresponding am-
plitude level for the time series itself: if a peak is assigned a
False-Alarm Probability of 0.00 001, its risk of being due to
noise is 1:100 000. In this section, the spectral significance4 as a
more informative quantity is introduced (5.5.1). It is the inverse
False-Alarm Probability (in this case, 100 000) scaled logarith-
mically. In the present example, the conversion of a False-Alarm
Probability of 0.00 001 into spectral significance returns 5. In
this context, the spectral significance is presented as a logarith-
mic measure for the number of cases in one out of which the
considered amplitude would be an artifact.

Plotting the spectral significance vs. frequency yields the sig-
nificance spectrum, and the identification and consideration of
the highest peak in this spectrum may lead to a statement on
the significance of the entire spectrum. The argument is similar
to many existing significance estimates (e.g., Scargle 1982): if
the highest peak in the spectrum is below some limit, the entire
spectrum has to be considered insignificant. But instead of using
the (statistically biased) signal-to-noise ratio as a threshold, the
spectral significance is employed. The application of the spec-
tral significance concept to the highest peak out of a sample is
briefly discussed (5.5.2).

The formal correspondence to traditional techniques, namely
signal-to-noise ratio and the Lomb-Scargle Periodogram, is of
special interest and hence provided subsequently (5.5.3, 5.5.4).

5.5.1. Definition

To enhance the compatibility to the popular signal-to-noise ratio
criterion (see 5.5.3), the spectral significance of a DFT amplitude
is defined as

sig (A | ω, θ) := − logΦFA (A | ω, θ) , (23)

or – using Eqs. (19) and (22) –

sig (A | ω, θ) = KA2 log e

4
〈
x2

〉
⎡⎢⎢⎢⎢⎣
cos2 (θ − θ0)

α2
0

+
sin2 (θ − θ0)

β2
0

⎤⎥⎥⎥⎥⎦ , (24)

with the normalized axes, α0 and β0, as defined by
Eqs. (17), (18), and the orientation of the ellipse in Fourier Space
according to Eq. (10). Since the angle θ0 was chosen to refer to
α0 as the semi-minor axis of the rms error ellipse, α0 now cor-
responds to the phase of maximum spectral significance for a
given frequency.

The concept of spectral significance computation relies on
the analytical comparison of the DFT amplitude generated by a

4 to be distinguished from significance in the sense of a confidence
threshold as used in hypothesis testing.

measured time series to noise at the same variance as the time
series under consideration. Unless the population variance

〈
x2

〉

of the noise used for comparison is given by theory and/or other
observations than the ones under consideration, the sample vari-

ance
〈
x2

k

〉
of the observable may be used as an estimator.

The Cartesian representation of Eq. (24),

sig (aZM, bZM | ω) =
K log e〈

x2
〉

⎡⎢⎢⎢⎢⎢⎣
(

aZM cos θ0 + bZM sin θ0

α0

)2

+

(
aZM sin θ0 − bZM cos θ0

β0

)2
⎤⎥⎥⎥⎥⎥⎦ , (25)

is useful for practical applications and will be employed for the
implementation of statistical weights (see 8.1). The subscript
“ZM” indicates zero-mean corrected time series data, in consis-
tency with Eqs. (3), (4).

Thanks to the logarithmic scaling, the spectral significance
appears as a product form (as opposed to an exponential func-
tion), where one factor (the bracket term) contains all informa-
tion on the ellipticity of the underlying PDF in Fourier Space
and is entirely determined by the time-domain sampling. This
term is scaled according to the squared amplitude. The serendip-
itous consequence of this separation is that the evaluation of
the bracket term applies to all datasets with the given sampling.
In a prewhitening cascade, the sampling of the time series will
not change. Consequently, the bracket term remains valid for
the entire sequence and has to be computed only once. In the
prewhitening cascade itself, it is sufficient to rescale the bracket
term by the squared amplitude, which speeds up the computa-
tions considerably.

Thanks to this formal separation, it is possible to pack all the
characteristics of the time-domain sampling into an amplitude-
independent function of frequency and phase. This will lead to
the Sock Diagram (5.6).

A further practical advantage of this separation is the oc-

currence of the population variance
〈
x2

〉
independently of fre-

quency and phase. For small samples, the higher uncertainty of
the estimated population variance may be overcome by using

the sample variance
〈
x2

k

〉
instead of the population variance

〈
x2

〉

and increasing the spectral significance limit for peak acceptance
accordingly.

5.5.2. Spectral significance for a statistically independent
sample

One may desire to evaluate the spectral significance for the high-
est out of a sample of peaks in the significance spectrum – in
analogy to the procedure presented by Scargle (1982). His argu-
ments may be applied to the spectral significance directly.

For a given spectral significance level sig, the probabil-
ity of an amplitude level generated by a noise process to
exceed the spectral significance limit sig is the False-Alarm
Probability ΦFA. It is linked to the spectral significance via
Eq. (23). The complementary probability that such an amplitude
level is below sig is 1 − ΦFA. Given a sample of N such ampli-
tude levels, which are statistically independent, the probability
of none exceeding sig is (1 − ΦFA)N . Again, the complement,
1 − (1 −ΦFA)N , returns the probability for at least one peak out
of the sample to exceed sig. In other words (and using Eq. (23)
to substitute for ΦFA), the False-Alarm Probability for the maxi-
mum of a statistically independent sample of N peaks is

Φ̂FA = 1 −
(
1 − 10−sig

)N
. (26)
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This False-Alarm Probability may be transformed into a spectral
significance (using Eq. (23) again), which yields

ŝig = − log

[
1 −

(
1 − 10−sig

)N
]

(27)

for the spectral significance of the maximum out of a sample
of N statistically independent peaks in the significance spectrum.

Solving Eq. (27) for sig yields

sig = − log

(
1 −

N

√
1 − 10−ŝig

)
, (28)

which allows one to immediately convert a chosen threshold for
maximum spectral significance into “individual” spectral signif-
icance (as given by Eq. (24)). In most practical applications, the
approximation

sig ≈ ŝig + log N (29)

is sufficiently accurate.
For an equidistant time series consisting of K data points, the

number of statistically independent DFT amplitudes is K
2

, if K is

an even number. One may set N := K
2

as a rough estimate also
for the non-equidistant case, which performs quite reliably in
practical applications.

For example, if a maximum spectral significance thresh-
old of 5.46 shall be applied to a time series consisting of
1000 data points, the corresponding “individual” spectral signif-
icance threshold would be 2.76, which is in good agreement with
the numerical results by Kuschnig et al. (1997), who obtained a
significance of ≈3 in this case, examining 19 300 synthetic time
series.

5.5.3. Connection between spectral significance
and signal-to-noise ratio

The correspondence between spectral significance and signal-
to-noise ratio is obtained through substitution of Eq. (24) by the
amplitude signal-to-noise ratio A

〈A〉 according to Eq. (B.11). This

yields

sig (A | ω, θ) =

π log e

2

(
A

〈A〉

)2 ⎡⎢⎢⎢⎢⎣
cos2 (θ − θ0)

α2
0

+
sin2 (θ − θ0)

β2
0

⎤⎥⎥⎥⎥⎦ · (30)

Given uniformly distributed arguments of the trigonometric
functions, the expected values of both α0 and β0 evaluate to 1.
Thus an approximation for the correspondence between ampli-
tude signal-to-noise ratio and spectral significance is obtained by

sig (A) ≈ π log e

4

(
A

〈A〉

)2

· (31)

For example, an amplitude signal-to-noise ratio of 4 – as a sug-
gested significance estimator by Breger et al. (1993) – roughly
corresponds to a spectral significance of

sig (4 〈A〉) ≈ 4π log e ≈ 5.4575. (32)

A numerical simulation for 42 597 time series, each consisting
of 14 400 equidistantly sampled data points representing a single
sinusoidal signal with randomly chosen amplitude, frequency,
and phase, plus Gaussian noise with randomly chosen rms error
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Fig. 2. Spectral significance (sig) associated with an amplitude signal-
to-noise ratio of 4, without (dashed line) and with (solid line)
prewhitening of the considered peak, depending on the number of time
series data points. If the amplitude noise is calculated after prewhiten-
ing, the spectral significance associated with a signal-to-noise ratio
of 4 decreases below the equivalent limit of 5.46 for short datasets.

was performed. The agreement with Eq. (31) for spectral signifi-
cances <200 and a corresponding signal-to-noise ratio of ≈25 is
excellent. At higher spectral significances, the following effect
has to be taken into account:

The spectral significance is related to a peak generated by
noise with the same variance as the observable under considera-
tion, i.e. without prewhitening. Frequently, a signal-to-noise ra-
tio calculation relies on the rms residual, i.e. with the peak under
consideration prewhitened. Since (on average) a sinusoidal sig-

nal with amplitude A contributes A2

2
to the variance in the time

domain, the population variance of residuals in the time domain
evaluates to

〈
r2

〉
≈

〈
x2

〉
− A2

2
· (33)

Using this relation, Eq. (B.11) permits one to calculate an ampli-
tude noise level with the considered peak prewhitened, accord-
ing to

N (A) ≈

√
π

K

(〈
x2

〉 − A2

2

)
, (34)

and writing Eq. (31) in terms of N (A) leads to

sig (A) ≈ log e

2

Kπ

π + 2K
[

A
N(A)

]−2
· (35)

Figure 2 shows the difference in spectral significance for ampli-
tude noise with and without prewhitening as a function of time
series length. This difference increases dramatically as datasets
become shorter. When relying on signal-to-noise ratio estima-
tion, the issue of prewhitening is crucial and in some way philo-
sophical. If the considered peak is believed to be “true” a priori,
then it will have to be prewhitened for the noise calculation. If
it is assumed to be an artifact, noise will have to be calculated
without prewhitening. However, the answer in terms of spectral
significance is unique and clear: since the spectral significance
analytically compares the considered time series with a random-
ized one, i.e. keeping the time-domain rms deviation the same,
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the correspondence to a non-prewhitened signal-to-noise ratio
would be correct – if desired at all. The computation of the spec-
tral significance allows one to completely omit the potentially
ambiguous computation of noise levels by averaging amplitude
over a frequency interval about a considered peak. In general, the
latter are not objective, since the resulting noise level depends on
the choice of the interval width and whether unresolved peaks
are encountered.

5.5.4. Spectral significance and Lomb-Scargle Periodogram

If the influence of the zero-mean correction on the statis-
tical characteristics of the Fourier Coefficients is neglected,
Eqs. (17), (18) simplify to

α0 (ω, θ0) :=

√√√
2

K2

⎡⎢⎢⎢⎢⎢⎢⎣K
K−1∑

k=0

cos2 (ωtk − θ0)

⎤⎥⎥⎥⎥⎥⎥⎦, (36)

β0 (ω, θ0) :=

√√√
2

K2

⎡⎢⎢⎢⎢⎢⎢⎣K
K−1∑

k=0

sin2 (ωtk − θ0)

⎤⎥⎥⎥⎥⎥⎥⎦, (37)

respectively. In this case, the evaluation of θ0 – as performed in
Appendix A – transforms Eq. (10) into

tan 2θ0 (ω) =

∑K−1
k=0 sin 2ωtk∑K−1
k=0 cos 2ωtk

, (38)

and Eq. (24) becomes fully compatible to the definition of
the Lomb-Scargle Periodogram5. In this context, the improve-
ment of the spectral significance compared to the Lomb-Scargle
Periodogram is the correct statistical implementation of the ar-
tificially fixed time series mean. Remembering that the initial
condition that led to the Lomb-Scargle Periodogram was a least-
squares solution (unfortunately without handling the zero-mean
correction appropriately), the significance spectrum will satisfy
the corresponding least-squares condition for the zero-mean cor-
rected data as well. This is in perfect agreement with the results
of simulations, as presented in 6.2.

Since the Fourier-Space effect of the zero-mean correc-
tion tends to vanish for infinitely long time series, one would
expect the difference between the Lomb-Scargle Periodogram
and the spectral significance to become small (or even negligi-
ble) for long datasets. The performance of DFT, Lomb-Scargle
Periodogram, and spectral significance is compared for time se-
ries of different length in 6.4.

On the other hand, the spectral significance for the Floating-
Mean Periodogram (Cumming et al. 1999), the statistic of which
appears not to suffer from zero-mean correction problems, is di-
rectly obtained by using Eq. (24) with α0, β0 and θ0 as given
above (Eqs. (36), (37), (38)).

5.6. The Sock Diagram

In 5.5.1, the spectral significance was introduced as a represen-
tation of the statistical properties of time-domain sampling in
Fourier Space, applied to the amplitude spectrum of a given ob-
servable (Eq. (24)). Selecting a single frequency and phase an-
gle, one finds the spectral significance to be proportional to the

5 Lomb’s (1976) original publication deals with periodogram analy-
sis in terms of power. The expression of the present results in terms of
squared amplitude produces explicit consistency.

squared amplitude. This property makes it easy to determine an
analogy to the spectral window.

For classical DFT-based methods, the spectral window is fre-
quently used to determine the effects of time series sampling in
the frequency domain. It is defined as the DFT amplitude spec-
trum of a constant in the time domain, normalized to an ampli-
tude of 1 at zero frequency. In the case of non-equidistant sam-
pling, peaks in the amplitude window indicate periodicities in
the sampling of the time series corresponding to the frequencies
where these peaks occur. A frequently returned signature in the
spectral window of astronomical single-site measurements is a
set of peaks at integer multiples of 1 d−1. This is the Fourier-
Space representation of periodic data gaps due to daylight and
termed “1 d−1 aliasing”.

Since the spectral significance is a more subtle and sensi-
tive quantity taking into account more information on the time-
domain sampling, it is possible to introduce a more sensitive
analogy to the spectral window, the Sock Diagram6. As with all
formalism in terms of spectral significance, it is frequency- and
phase-resolved.

In analogy to the spectral window, the Sock Diagram rep-
resents the spectral significance variations with frequency and
phase for a constant amplitude, or amplitude signal-to-noise ra-
tio. It provides quantitative information on the influence by the
time-domain sampling on the spectral significance. Furthermore,
it displays the quality of signal-to-noise ratio-based estimation
for all possible frequencies and phases at a glance. Providing
both information on gaps in the sampling and frequency regions
with poor accuracy of the DFT amplitude, the Sock Diagram
shows where DFT-based signal-to-noise ratio estimation fails.

The normalization of the Sock Function,

sock (ω, θ) :=

⎡⎢⎢⎢⎢⎣
cos2 (θ − θ0)

α2
0

+
sin2 (θ − θ0)

β2
0

⎤⎥⎥⎥⎥⎦ , (39)

provides an expected value 1 on the assumption of uniformly
distributed arguments of the trigonometric functions. Thus

sig (A | ω, θ) = KA2 log e

4
〈
x2

〉 sock (ω, θ) , (40)

as obtained from Eq. (24), permits to compute the spectral sig-
nificance associated with an amplitude A based on the Sock
Diagram. In terms of signal-to-noise ratio, Eq. (30) evaluates to

sig (A | ω, θ) = π log e

4

(
A

〈A〉

)2

sock (ω, θ) . (41)

Since the orientation θ0 of the elliptical PDF in Fourier Space
appears only in the form θ − θ0 in all equations related to spec-
tral significance, phase angles in Figs. 3 and 4 consistently refer
to the position of the semi-minor axis of the rms error ellipse
to achieve better visibility: using θ − θ0 instead of θ provides a
constant alignment of the spectral significance maxima in phase
for all frequencies.

Figure 3 displays the Sock Diagram for typical non-
equidistant sampling representing 10 nights yielding 381 data
points of single-site V photometry of star # 89 in the young open
cluster IC 4996 (Zwintz et al. 2004; Zwintz & Weiss 2006).
Regardless of the astrophysical dimension, these observations
have been chosen as the primary test dataset, because they im-
pressively show all the characteristics typical for single-site mea-
surements that make multifrequency analysis a puzzling task.

6 The nomenclature is motivated by the shape of the diagrams, if the
time-domain sampling is close to equidistant (see, e.g., Fig. 4).
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Fig. 3. Sock Diagram (in cylindrical coordinates) for the V measure-
ments of IC 4996 # 89, displaying the relative variations of the spec-
tral significance (radial coordinate) with frequency (height coordinate)
and phase (azimuthal coordinate) for a constant signal-to-noise ratio,
and hence providing an overview of the effect of time-domain sampling
properties in Fourier Space. Better visibility is achieved by additional
color coding, referring to the color bar in the lower panel. The suscepti-
bility of DFT spectra to 1 d−1 aliasing shows up in spectral significance
variations of up to a factor ≈35.

The Sock Diagram uses three-dimensional polar coordi-
nates: for each frequency, the angular coordinate refers to phase,
and the radial component is associated with the spectral sig-
nificance normalized to an expected value of 1 (according to
Eq. (39)). To enhance the visibility, the radial information is
color-coded additionally.

The spectral significance variations close to 0.5, 1, 1.5,
and 2 d−1 clearly indicate frequencies where signal-to-noise ratio
estimation of False-Alarm Probability is potentially misleading.

An example for excellent sampling is shown in Fig. 4, repre-
senting 72 055 MOST7 data points of ζ Oph Fabry Imaging pho-
tometry (Walker et al. 2004, 2005) with a duty cycle of ≈99.9%,
obtained between May 17 and June 14, 2004. The data reduction
is performed according to the procedure described by Reegen
et al. (2006). Even for frequencies close to 14.2 d−1 – corre-
sponding to the orbital period of the satellite (101.4 min; Walker
et al. 2003) – the spectral significance varies with frequency and
phase by only ≈0.1%.

5.7. The marginal distribution of phase angles

An alternative method to the computation of spectral signif-
icance as a function of amplitude and phase simultaneously

7 MOST is a Canadian Space Agency mission, jointly operated by
Dynacon Inc., the University of Toronto Institute of Aerospace Studies,
the University of British Columbia, and with the assistance of the
University of Vienna, Austria.

Fig. 4. Sock Diagram for MOST (“Microvariability and Oscillations of
STars”; Walker et al. 2003) measurements of ζ Oph. Due to practically
equidistant sampling (duty cycle ≈99.9%, the relative variations of the
spectral significance with frequency and phase are ≈10−3, even close
to the orbital period of the satellite (≡14.2 d−1). As illustrated by the
color bar in the lower panel, the color coding scale differs from Fig. 3
considerably.

would be to use the phase information separately in addition
to, e.g., some traditional signal-to-noise ratio-based reliability
estimate. The idea is that for white noise in the time domain,
the Fourier phases are not uniformly distributed and that the ad-
ditional incorporation of the phase information may provide a
more detailed criterion on the reliability of a peak.

The overall distribution of phases at a given frequency is im-
mediately obtained by integrating the bivariate PDF (Eq. (14))
over amplitude, which yields

φ (θ) =
Kα0 β0

β2
0

cos2 (θ − θ0) − α2
0

sin2 (θ − θ0)
, (42)

normalized for phases θ on an interval of width π. This avoids
the ambiguity of solutions for θ0 modulo π, as discussed in 5.3.

The expected value of this probability distribution is θ0 − π2 :
phases associated to a low spectral significance (for given am-
plitude) generally occur more frequently than phases for which
the spectral significance is high. The special case α0 = β0 yields
an upper limit of π

2
√

3
≈ 52◦ for the standard deviation obtained

by Eq. (42).
In statistical terms, the phase distribution provided above is

a marginal distribution of the bivariate PDF given by Eq. (14).
Instead of statistically examining a bivariate distribution, one
may use the two marginal distributions (in the present case, the
amplitude and phase distributions) instead, but encountering a
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Fig. 5. Expected values (solid lines) and rms errors (gray-shaded areas)
of the probability distribution of phase angles in Fourier Space for white
noise on the IC 4996 # 89 sampling.

loss of accuracy, since correlations between the two random vari-
ables remain unresolved. Therefore, from the theoretical point
of view, it is advisable to use the bivariate form rather than the
marginal distributions. An additional problem is that there is
no analytical solution for the integral over phase, which would
transform the bivariate PDF into the marginal distribution of am-
plitudes. One would have to employ classical techniques relying
on the amplitude signal-to-noise ratio instead.

In addition to these theoretical objections to the examination
of marginal distributions, there is a major practical constraint:
Fig. 5 displays the expected values and standard deviations of
Fourier phase for frequencies between 1.3 and 2.7 d−1, given the
sampling of IC 4996 # 89. In the considered frequency range, the
rms scatter of phases is greater than 44◦ for the entire frequency
range under consideration. Compared to the upper limit of 52◦,
this scatter will probably be much too high to reveal additional
information on the reliability of a peak, if the marginal distribu-
tion of phases is considered.

The PDF of phases provided by Eq. (42) are in perfect agree-
ment to the results of numerical simulations.

5.8. Spectral significance-based signal recovery

Practical applications are frequently based on a cascade of con-
secutive prewhitenings. In this case, the frequency at maximum
spectral significance, ω̂, is considered as that of the strongest sig-
nal component, which is understood to be the next candidate for
prewhitening. The next step is to determine the best fit for am-
plitude and phase at ω̂. The least-squares condition for the best
sinusoidal fit at constant frequency ω̂ is obtained by

∂

∂Â

K−1∑

k=0

{
xk − Â

[
cos

(
ω̂tk − θ̂

)
−

〈
cos

(
ω̂tl − θ̂

)〉]}2
= 0 , (43)

∂

∂ θ̂

K−1∑

k=0

{
xk − Â

[
cos

(
ω̂tk − θ̂

)
−

〈
cos

(
ω̂tl − θ̂

)〉]}2
= 0 , (44)

where the term
〈
cos

(
ω̂tl − θ̂

)〉
= 1

K

∑K−1
l=0 cos

(
ω̂tl − θ̂

)
takes into

account that the discrete fit has to be zero-mean corrected, if

applied to zero-mean corrected data xk. The derivatives lead to

K−1∑

k=0

xk cos
(
ω̂tk − θ̂

)
= Â

⎧⎪⎪⎨⎪⎪⎩
K−1∑

k=0

cos2
(
ω̂tk − θ̂

)

− 1

K

[
cos

(
ω̂tk − θ̂

)]2

⎫⎪⎪⎬⎪⎪⎭, (45)

K−1∑

k=0

xk sin
(
ω̂tk − θ̂

)
= Â

⎧⎪⎪⎨⎪⎪⎩
K−1∑

k=0

cos
(
ω̂tk − θ̂

)
sin

(
ω̂tk − θ̂

)

− 1

K

[
cos

(
ω̂tk − θ̂

)] [
sin

(
ω̂tk − θ̂

)] ⎫⎪⎪⎬⎪⎪⎭. (46)

Solving for θ̂ yields

K−1∑

k=0

K−1∑

l=0

K−1∑

m=0

[sin ω̂ (tl − tk) − sin ω̂ (tm − tk)] xk cos
(
ω̂tl − θ̂

)

= 0, (47)

which finally reduces to

tan θ̂ =
P1

∑K−1
k=0 cos ω̂tk − P2

∑K−1
k=0 sin ω̂tk

P1

∑K−1
k=0 sin ω̂tk − P3

∑K−1
k=0 cos ω̂tk

, (48)

using

P1:=K

K−1∑

k=0

cos ω̂tk sin ω̂tk −
⎛⎜⎜⎜⎜⎜⎜⎝

K−1∑

k=0

cos ω̂tk

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
K−1∑

k=0

sin ω̂tk

⎞⎟⎟⎟⎟⎟⎟⎠ , (49)

P2:=K

K−1∑

k=0

cos2 ω̂tk −
⎛⎜⎜⎜⎜⎜⎜⎝

K−1∑

k=0

cos ω̂tk

⎞⎟⎟⎟⎟⎟⎟⎠

2

, (50)

P3:=K

K−1∑

k=0

sin2 ω̂tk −
⎛⎜⎜⎜⎜⎜⎜⎝

K−1∑

k=0

sin ω̂tk

⎞⎟⎟⎟⎟⎟⎟⎠

2

. (51)

Equation (48) provides two solutions for θ̂. To pick the least-
squares related solution is an easy task for a program.

Once frequency ω̂ and phase θ̂ of the signal are evaluated,
Eq. (45) immediately yields the best-fitting amplitude,

Â =

∑K−1
k=0 xk cos

(
ω̂tk − θ̂

)

∑K−1
k=0 cos2

(
ω̂tk − θ̂

)
−

[∑K−1
k=0 cos

(
ω̂tk − θ̂

)]2
· (52)

6. Numerical tests

Two sets of numerical simulations have been performed, the first
one to confirm the agreement between the theoretically evaluated
spectral significance and a straight-forward histogram analysis,
and the second one to quantitatively compare the accuracy of
frequencies returned by the various methods discussed in this
paper.

6.1. Comparison of analytical and numerical solutions

Extensive numerical simulations have been performed in order
to examine the validity of the above theoretical considerations.
The simulations are set up in a way that compares closely to real
life. The algorithm to generate Gaussian noise is based on the
Central Limit Theorem (Stuart & Ord 1994, p. 310f), providing



P. Reegen: SigSpec. I. 1363

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7

f [d
-1

]

4

5

6

7

8

9

10

11

12

13

14

15

16

17

si
g

 [
4
N

(A
)]

Fig. 6. Spectral significance associated with an amplitude signal-to-
noise ratio of 4 for the V measurements of IC 4996 # 89. The blue and
red graphs refer to orthogonal phases in Fourier Space. The expected
spectral significance of ≈5.46 is displayed by the dashed black line. The
vertical dashed-dotted green line indicates the frequency of 1.956 d−1,
which was selected for a numerical simulation to check the validity of
the theoretical approach.

fast convergence of a mean value of uniformly distributed ran-
dom variables towards a Gaussian distribution with increasing
number of variables. All of the following numerical applications
rely on Gaussian noise produced by summing up 10 values from
the random number generator. A comprehensive compilation on
alternative methods to generate Gaussian noise is provided by
Firneis (1970).

An all-in-one simulation for many frequencies, many phases,
and many amplitudes would result in tremendously time-
consuming computations. In order to keep the effort reasonable,
only a single frequency is picked to examine the phase depen-
dency of the spectral significance for different amplitudes.

Figure 6 displays the spectral significance associated with
an amplitude signal-to-noise ratio of 4 – according to Eq. (30)
– for the V data of IC 4996 # 89. The blue and red graphs rep-
resent two orthogonal phases in Fourier Space. The comparison
of numerical and theoretical results is performed for a frequency
of 1.956 d−1, where the deviation of spectral significances from
the expected value 5.46 is ≈5 for selected phase angles. Since it
is desired to examine the presence of spectral significance varia-
tions with phase in numerical results where predicted by theory,
this frequency is a reasonable choice for a test.

The procedure consists of five steps.

1. Zero-mean Gaussian noise with a standard deviation of 1 is
imposed upon the IC 4996 # 89 sampling.

2. The zero-mean correction is performed to avoid scatter in
the mean of the finite time series about the population mean
(see 5.1).

3. The Fourier-Space phase angle for the synthetic time series
at 1.956 d−1 is evaluated.

4. The Fourier-Space noise is evaluated upon the variance of
the time series according to Eq. (B.11).

5. If the Fourier Amplitude exceeds the signal-to-noise ra-
tio under consideration, the resulting histogram is updated
correspondingly.

The number of amplitudes exceeding the preselected limit rela-
tive to the total number of synthetic datasets provides an estima-
tor for the False-Alarm Probability (and consequently spectral
significance) associated with the chosen signal-to-noise ratio.

Figures 7 to 9 display the agreement between theory and
simulations for amplitude signal-to-noise ratios of 1, 2, and 3.

Fig. 7. Phase-dependent spectral significance (radial coordinate, re-
ferred to by the vertical axis) for the V measurements of IC 4996 # 89 at
a constant frequency of 1.956 d−1 as a function of phase, referring to an
amplitude signal-to-noise ratio of 1. The solid line represents the theo-
retical result. A numerical simulation for 1.5 million synthetic datasets
(dots) – counted in phase bins of width 1◦ – illustrates the excellent
agreement. The systematically higher deviation of the numerical results
from the theoretical solutions at higher spectral significances is due to
sample-size effects: phase bins associated with a high theoretical spec-
tral significance are hit less often than others. Hence the total number of
Fourier Amplitudes to be examined differs from phase bin to phase bin.
The dashed line represents the expected spectral significance of ≈0.34
associated with a signal-to-noise ratio of 1 for uniformly distributed ar-
guments of all trigonometric functions.

Fig. 8. Same as Fig. 7, but for an amplitude signal-to-noise ratio of 2.
The dots refer to a numerical simulation for 22 million synthetic
datasets. The expected spectral significance level is ≈1.36 (dashed line).

The corresponding numbers of synthetic datasets computed are
1.5 million, 22 million, and 250 million, correspondingly. In all
three cases, phase bins of width 1◦ were used for the histograms.
For a signal-to-noise ratio of 4, the number of synthetic datasets
required for an acceptable numerical accuracy would exceed the
capabilities of computational performance, especially those of
system random number sequences, by far.

Phases associated with a high spectral significance occur less
frequently than others (see 5.7), whence the scatter of numerical
results is systematically higher at higher spectral significance
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Fig. 9. Same as Fig. 7, but for an amplitude signal-to-noise ratio of
3. The dots refer to a numerical simulation for 250 million synthetic
datasets. The expected spectral significance level is ≈3.07 (dashed line).

levels due to sample-size effects. Taking this into account, the
overall quality of fits is good. In neither of the three plots, a
systematic deviation of the numerical results from the analyti-
cal functions is visible. However, the theoretical prediction for
the overall shape is recovered by the numerical results, indicat-
ing that the ellipticity given by the normalized axes α0 and β0

matches the “reality” of simulation. Also the orientation of the
ellipse (θ0) appears consistent with the synthetic data. Finally,
the consecutive comparison of Figs. 7 to 9 offer convincing ev-
idence of the spectral significance at a constant frequency and
phase angle to be proportional to the squared amplitude, as pre-
dicted by the theoretical solution.

6.2. Accuracy of peak frequencies

One of the major issues in period searches is the accuracy of
the resulting signal frequencies. Classical DFT with or without
improvement of peak frequencies by a subsequent least-squares
fit8, Lomb-Scargle Periodogram, and spectral significance analy-
sis are based on the identification of the highest peak in a chosen
frequency interval.

A quantitative description of the quality of resulting frequen-
cies with and without noise was obtained by means of simula-
tions. For the sampling of the IC 4996 # 89 dataset (V), the fol-
lowing procedure is performed:

1. a synthetic signal of given frequency f0 and amplitude
with random phase (uniformly distributed on [−π, π]) is
generated;

2. Gaussian noise with given standard deviation is added
(optional);

3. zero-mean correction of the resulting dataset is performed;
4. a DFT amplitude spectrum, a Lomb-Scargle Periodogram, a

spectrum of phase dispersion9, and a significance spectrum
are computed for a predefined frequency range;

5. an interpolation routine is performed to find the maximum
(or minimum phase dispersion, respectively) in each of the
four spectra; and

8 DFT suffers from systematic deviations of peak frequencies
(Kovacs 1980).

9 The PDM tested here is based on 300 equidistant phase bins of
constant width π

10
rad.

6. the deviation of the resulting frequency from the correspond-
ing input frequency, ∆ f , is evaluated.

For each frequency, deviations ∆ f were collected to obtain a
frequency-dependent rms error of recovered frequencies, where
only attempts with |∆ f | ≤ 0.5 d−1 were taken into account.
Attempts resulting in |∆ f | > 0.5 d−1 were considered alias.

The example illustrated by Figs. 10, 11 uses the
IC 4996 # 89 data.

Figure 10 shows the comparison of the five methods. For
each frequency, 1000 datasets were examined. The figure dis-
plays the rms deviation (denoted |∆ f |) of resulting frequencies
as a function of the signal frequency f0. The top panel refers to a
clean sinusoidal signal without noise. Towards the bottom panel,
Gaussian noise with increasing standard deviation is added (cor-
responding to signal-to-noise ratios of 40 and 4, respectively,
using Eq. (35)).

For a signal without noise (top panel), the frequency ac-
curacies of the Lomb-Scargle Periodogram exceed that of the
DFT by a factor ≈10, and both profiles show accuracy varia-
tions with frequency. The Lomb-Scargle Periodogram does not
take into account zero-mean correction, as shown in 5.5.4. This
leads to systematic effects not only for short datasets, but also
in frequency regions where the phase coverage becomes poor. In
the absence of noise, frequencies at maximum spectral signifi-
cance are ≈100 000 times more accurate than the DFT results,
which is in the accuracy domain of the least-squares solutions.
Apparently the accuracy of the spectral significance peaks is
only limited by the internal accuracy of the computer for double-
precision floating-point numbers. In addition, the accuracy of
spectral significance is, in this respect, practically independent
of frequency.

Once noise is added to the signal, the peak frequency ac-
curacy of spectral significance becomes much poorer (in consis-
tency with O’Donoghue & Montgomery 1999), but as illustrated
by Fig. 10, the method does not get worse than either alterna-
tive procedure. The improvement of the frequency accuracy by
the spectral significance solution for high signal-to-noise ratio is
valuable, since the exact knowledge of frequency provides exact
prewhitening. Only exact prewhitening guarantees that weaker
frequency components are not contaminated by spurious residu-
als of the higher peaks.

6.3. Aliasing

One potential weakness of the DFT, which usually becomes puz-
zling in the analysis of non-equidistantly sampled time series,
is the susceptibility to aliasing. Whereas measurements over in-
finite time would lead to perfectly delta-shaped signal compo-
nents, the spectral window of “real” data is convolved into this
“ideal” spectrum. For typical single-site observations, 1 d−1 side-
lobes are visible around every signal peak, and in many cases it
is hard to decide which peak out of the “comb” of aliases is the
right one. For multiperiodic signal, aliases of individual com-
ponents may interfere. If this interference leads to an amplifica-
tion, an erroneous component identification is inevitable, when
only relying on the highest amplitude. This applies to the spec-
tral significance as well and reflects a major weakness of the
step-by-step prewhitening technique rather than the calculation
of the spectral significance. Strategies to overcome the aliasing
problem have been examined for many years (e.g. Ferraz-Mello
1981; Roberts et al. 1987; Foster 1995).

Figure 11 displays a comparison of DFT, Lomb-Scargle
Periodogram, PDM, and spectral significance in terms of
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Fig. 10. Frequency accuracy (rms scatter of resulting frequencies about the initial frequency for a single sinusoidal signal with uniformly distributed
phase) vs. signal frequency of five methods: DFT (solid orange line), DFT plus least-squares fitting (solid blue line), Lomb-Scargle Periodogram
(solid green line), PDM (dotted black line), and spectral significance (solid red line). The time-domain sampling represents the V measurements
of IC 4996 # 89. The top panel is the frequency accuracy for a pure signal. Towards the bottom panel, Gaussian noise with increasing standard
deviation is added to the signal in two steps, corresponding to amplitude signal-to-noise ratios of 40 and 4, respectively. Only those attempts where
the distance between resulting frequency and input frequency does not exceed 0.5 d−1 were taken into account, the rest was considered alias (see
6.3). The results are based on a numerical simulation investigating 1000 datasets for every frequency.

fraction of aliases among the 1000 simulated test datasets used
in 6.2. As in Fig. 10, the top panel refers to signal without noise,
and Gaussian noise of increasing standard deviation is added to-
wards the bottom panel. Not surprisingly, the susceptibility of
the DFT to aliasing does not improve, if a least-squares algo-
rithm is appended. The portion of aliases obtained using the
Lomb-Scargle Periodogram is fairly below that of the DFT.
Finally, the figure clearly shows that the spectral significance
analysis is more stable against aliasing than either compared
strategy. Without noise, not a single alias peak occurs among
altogether 300 000 simulated datasets. For a signal-to-noise ra-
tio of 40, the percentage of alias peaks is less than a third of
the corresponding percentage of the alternative methods, even
at 1 d−1. Only for the highest noise level, to which the bottom
panel refers, all results are quite comparable.

Since the spectral significance is not initially intended to
correct for aliasing, its capabilities to avoid potential misiden-
tification of peaks are limited to the extent of spuriously am-
plified peaks by systematic inhomogeneities of the frequency-
domain noise. Simulations and practical experience show that
the systematic errors of spectral noise are an inferior error source
compared to the interference of aliases of different signal com-
ponents. Presently investigations are performed to apply the
spectral significance technique to simultaneous multi-frequency
solving algorithms for an improved treatment of aliases. The re-
sults are planned to be presented in Paper II.

6.4. Sample size effects

A further example is provided to compare the performance of
DFT, Lomb-Scargle Periodogram, and spectral significance for
datasets of equal (or at least comparable) characteristics, but dif-
ferent length.

The “long” dataset represents 34 nights (not consecutive,
but covering 81 d) of single-site photometry of the Delta Scuti
star 44 Tau (Strømgren y, 2981 data points; Antoci et al. 2006)
acquired by the Vienna University Automatic Photoelectric
Telescope (APT; Strassmeier et al. 1997; Granzer et al. 2001).
More details on the data are provided in Sect. 7. The “short”
dataset is a subset of 7 consecutive nights (619 points). For
the subsequent investigations, only the sampling of these two
datasets is used. Peak frequency accuracies are computed ac-
cording to the procedure described in 6.2.

Figure 12 shows the frequency accuracies of the compared
methods for the short dataset in the top panel. The display is ex-
actly according to Fig. 10. The bottom panel contains the iden-
tical analysis of frequency accuracies for the long dataset and
indicates an improved overall precision of the DFT and Lomb-
Scargle Periodogram, if the number of data increases.

However, 1 d−1 aliasing persists also for the long time se-
ries (Fig. 13), which is compatible with the persisting alias peaks
in the spectral window at integer multiples of 1 d−1. Since the
zero-mean correction is represented by the subtraction of a con-
stant from all observables in the entire time series (referring to
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Fig. 11. Relative number of aliases vs. signal frequency of four methods: DFT plus least-squares fitting (dashed blue line), Lomb-Scargle
Periodogram (solid green line), PDM (dotted black line), and spectral significance (solid red line). In this context, a result is considered alias,
if the absolute difference between resulting frequency and signal frequency exceeds 0.5 d−1. The DFT without least-squares fitting is not displayed
here. It produces essentially the same fraction of alias, because the least-squares fit allows a fine tuning of resulting peak frequencies only, which
is negligible considering frequency errors of 0.5 d−1 and more. The time-domain sampling represents the V measurements of IC 4996 # 89. The top
panel is the fraction of alias peaks for a pure signal. Towards the bottom panel, Gaussian noise with increasing standard deviation is added to the
signal in two steps, corresponding to amplitude signal-to-noise ratios of 40 and 4, respectively. In the upper two panels, the DFT graph is offset
vertically by −0.01 and the Lomb-Scargle graph by +0.01 to provide better visibility at and close to zero. The results are based on a numerical
simulation investigating 1000 datasets for every frequency.

Eqs. (3), (4)), it is not surprising that the techniques which ignore
the statistical effects of zero-mean correction retain these spec-
tral window-related weaknesses also in case of a large number
of data points.

The result of spectral significance calculations is not pro-
vided in these graphs: the deviation of frequencies is practi-
cally equal to zero independently of frequency – as for the
IC 4996 # 89 data (top panel in Fig. 10).

7. SigSpec: practical application

The formal concept of spectral significance does not only
provide reliable information on the sampling characteristics in
the time domain, but also allows to include the computations
into a prewhitening sequence. SS realizes the entire
procedure as a high-performance algorithm. Implementations
for various operating systems and CPUs for free down-
load at http://www.astro.univie.ac.at/SigSpec.
The ANSI-C source code is available on request
(reegen@astro.univie.ac.at).

The SS technique was applied to numerous datasets
and has proven its value also in other scientific problems. A
practical example for a situation where SS performs su-
perior to classical DFT-based signal-to-noise ratio estimation
is given in Table 1. Columns 1 and 2 represent 13 identified

eigenfrequencies plus 16 excited linear combinations of the δ Sct
star 44 Tau (Antoci et al. 2006). The corresponding Strømgren
v and y amplitudes as obtained from a multisite campaign in
2001/02 are displayed in Cols. 3 and 4. The underlying light
curves consist of 3890 points in v and 3582 points in y. For the
analysis of the campaign data, the signal-to-noise ratio threshold
for peak acceptance was chosen to be 3.5.

The major part of the data (3280 points in v, 2981 points in y)
was acquired by the Vienna University Automatic Photoelectric
Telescope (APT; Strassmeier et al. 1997; Granzer et al. 2001).
The data represent 34 nights covering a time interval of 81 d. As
a comparative test of the practical performance of SS, the
APT data alone were analysed using a DFT-based prewhitening
sequence relying on a signal-to-noise ratio limit of 4. Except for
the higher threshold, this is exactly the same technique as ap-
plied to the campaign data. In any case, the frequencies found in
the APT subset were cross-identified with the frequencies pub-
lished for the full dataset (Antoci et al. 2006). The result for the
APT data is displayed in Cols. 5 and 6. In v, 20 of the 29 sig-
nal components are found, in y only 15. With each filter, 1 d−1

aliasing is found for 2 frequencies, which are indicated by italc
print.

Columns 7 and 8 refer to the corresponding SS anal-
ysis using a spectral significance limit of 5.46 and reproducing
all frequencies except for one in v and 5 in y. The number of
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Fig. 12. Frequency accuracy (rms scatter of resulting frequencies about
initial frequency for a single sinusoidal signal with uniformly dis-
tributed phase) vs. signal frequency of DFT (orange) and Lomb-Scargle
Periodogram (green). The simulated time series represent pure signal
without noise at uniformly distributed phase angles. The top panel rep-
resents the frequency accuracy for seven consecutive nights of single-
site photometry of 44 Tau (Strømgren y, 619 data points). These data are
a subset of the 81 days long time series presented in the bottom panel
(34 nights, 2981 data points). The plots illustrate the improvement of
the overall frequency accuracy of both methods for the longer dataset.
The corresponding deviations obtained using the spectral significance
are practically zero, similar to the top panel in Fig. 10, and thus not
presented here. Only those attempts where the distance between result-
ing frequency and input frequency does not exceed 0.5 d−1 were taken
into account, the rest was considered alias. The results are based on a
numerical simulation investigating 1000 datasets for every frequency.
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Fig. 13. Same as Fig. 12, but displaying the relative number of aliases
vs. the signal frequency of DFT (solid orange) and Lomb-Scargle
Periodogram (dashed green). In this context, a result is considered alias,
if the absolute difference between resulting frequency and signal fre-
quency exceeds 0.5 d−1. The spectral significance does not produce a
single alias maximum in the simulations, similar to the top panel in
Fig. 11. The corresponding graphs are thus not presented here. The
DFT graph is offset vertically by −0.01 and the Lomb-Scargle graph
by +0.01 to provide better visibility at and close to zero.

aliases is 8 in v and 4 in y, but the majority of aliases in the
SS result occurs for frequencies not resolved by the alter-
native technique at all.

For additional practical examples, the reader is referred to
Reegen (2005).

Table 1. Frequencies detected in multisite data of 44 Tau, according to
Antoci et al. (2006). Av and Ay are the published amplitudes (mmag)
in Strømgren v and y for the 2001/02 multisite data (3890 points in v,
3582 points in y). The corresponding columns indicated by “S/N” con-
tain a cross-identification for the data obtained by the Vienna University
Automatic Photoelectric Telescope (Strassmeier et al. 1997; Granzer
et al. 2001) in the course of this campaign (3280 points in v, 2981 points
in y). An amplitude signal-to-noise ratio >4 was used. The columns in-
dicated by “sig” represent the cross-identification of the Vienna APT
data with the complete campaign dataset using the result of the SS
analysis, based on a spectral significance limit of 5.46. Amplitudes in
italic print refer to 1 d−1 alias peaks. Since the peaks for the APT sub-
set were assigned to corresponding peaks in the total dataset, individual
frequencies are not displayed.

f
[
d−1

]
Total APT, S/N APT, sig

id Av Ay Av Ay Av Ay
f1 6.8980 39.51 27.27 39.41 27.20 39.95 27.14
f2 7.0060 17.20 12.15 18.90 13.21 19.95 13.61
f3 9.1175 21.02 14.57 16.96 11.62 16.34 11.24
f4 11.5196 16.56 11.79 18.28 12.88 17.56 12.90
f5 8.9606 13.73 9.32 13.86 9.80 14.63 9.75
f6 9.5613 18.62 12.92 10.84 7.38 9.94 6.68
f7 7.3034 5.46 3.76 7.23 4.83 7.37 5.06
f8 6.7953 4.83 3.27 3.77 2.79 4.32 3.03
f9 9.5801 3.64 2.25 1.97 1.28 2.23 1.53
f10 6.3390 2.08 1.62 2.34 1.78 2.25 1.86
f11 8.6394 1.71 1.45 2.00 1.56 1.72 1.21
f12 11.2946 1.35 0.92 1.02 – 0.72 –
f13 12.6967 0.24 0.52 – – 0.59 –

2 f1 13.7962 1.58 1.18 1.52 1.38 1.65 1.32
f1 + f2 13.9040 1.45 1.02 1.35 1.02 1.24 0.98
2 f2 14.0120 0.40 0.50 – – 0.80 –
f1 + f5 15.8586 1.16 1.02 1.22 – 1.22 0.80
f1 + f3 16.0155 1.63 1.29 0.93 – 0.69 0.64
f2 + f3 16.1235 0.79 0.85 – – 0.43 0.41
f1 + f6 16.4593 1.25 0.66 – – 0.36 –
f2 + f6 16.5673 0.65 0.32 – – – 0.46
f4 + f8 18.3149 1.11 0.48 – – 0.56 0.55
f1 + f4 18.4177 1.69 1.10 1.67 1.27 1.95 1.45
f2 + f4 18.5256 1.14 0.96 0.96 – 0.98 0.59
f4 + f5 20.4802 1.22 0.94 1.24 1.07 1.24 1.09
f3 + f4 20.6371 0.91 0.81 – – 0.40 –
f4 + f6 21.0809 0.77 0.46 – – 0.58 0.46
2 f4 23.0392 1.12 0.78 1.17 – 1.11 0.78
2 f4 + f1 29.9373 0.57 0.35 – – 0.70 0.50

8. Further topics

8.1. Spectral significance for statistically weighted time
series

Astronomical measurements are generally influenced by instru-
mental and environmental conditions changing with time. Thus
different accuracies for different data points are involved, which
are frequently desired to be taken into account by applying
weights to the observables. If the accuracy is poor, the corre-
sponding weight is low, and high-accuracy data points are as-
signed a high weight, respectively. Furthermore, multisite cam-
paigns employ different telescopes with different instrumental
parameters, which may also require an appropriate weighting.

This section refers to a set of statistical weights, γk, k =
0, ...K − 1, normalized according to

K−1∑

k=0

γk =: K. (53)
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Weighting may be considered as counting an item ξk of, e.g., an
arithmetic mean repeatedly instead of only once. If the number
of counts for an arbitrary ξk is nk, then the arithmetic mean over
all ξk, k = 0, 1, ...,K − 1 is expressed as

〈ξk〉 =
∑K

k=0 nkξk∑K
k=0 nk

· (54)

In this case, Eq. (53) demands the normalized weights to be in-
troduced according to

γk :=
Kξk∑K
k=0 nk

· (55)

These arguments may consistently be followed to obtain the sub-
sequent relations (Eqs. (56) to (62)).

The implementation of statistical weights has to be per-
formed for all elements of the spectral significance relation
(Eq. (24), or (25), respectively).

1. The weighted mean value to be subtracted from every data
point is calculated according to

〈xk〉 =
1

K

K−1∑

k=0

γk xk. (56)

Further considerations assume xk to be already zero-mean
corrected.

2. Also the weighted mean variance of the data,

〈
x2

k

〉
=

1

K

K−1∑

k=0

γk x2
k , (57)

can be used as an estimator for the variance of the corre-
sponding population.

3. The DFT is determined by the weighted Fourier Coefficients

aZM (ωn):=
1

K

K−1∑

k=0

γk xk cosωntk, (58)

bZM (ωn):=
1

K

K−1∑

k=0

γk xk sinωntk. (59)

4. The parameters characterizing the sampling properties may
be generalized according to

α2
0 (ω, θ0) =

2

K2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
K

K−1∑

k=0

γk cos2 (ωtk − θ0) −
⎡⎢⎢⎢⎢⎢⎢⎣

K−1∑

k=0

γk cos (ωtl − θ0)

⎤⎥⎥⎥⎥⎥⎥⎦

2
⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (60)

β2
0 (ω, θ0) =

2

K2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
K

K−1∑

k=0

γk sin2 (ωtk − θ0) −
⎡⎢⎢⎢⎢⎢⎢⎣

K−1∑

k=0

γk sin (ωtl − θ0)

⎤⎥⎥⎥⎥⎥⎥⎦

2
⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (61)

tan 2θ0 (ω) =⎡⎢⎢⎢⎢⎢⎢⎣K
K−1∑

k=0

γk sin 2ωtk − 2

K−1∑

k=0

γk cosωtk

K−1∑

k=0

γk sinωtk

⎤⎥⎥⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎢⎢⎢⎢⎣K
K−1∑

k=0

γk cos 2ωtk −
⎛⎜⎜⎜⎜⎜⎜⎝

K−1∑

k=0

γk cosωtk

⎞⎟⎟⎟⎟⎟⎟⎠

2

+

⎛⎜⎜⎜⎜⎜⎜⎝
K−1∑

k=0

γk sinωtk

⎞⎟⎟⎟⎟⎟⎟⎠

2⎤⎥⎥⎥⎥⎥⎥⎥⎦

−1

. (62)

These parameters provide Eq. (25) to return the weighted signif-
icance spectrum of the dataset.

In the case of γk =: 1 ∀k, these relations consistently reduce
to Eqs. (10), (17), (18) for unweighted analysis, respectively.
Given the above re-definitions, Eq. (24) and the corresponding
considerations – conversion between signal-to-noise ratio and
signficance (5.5.3) and Sock Diagram (5.6) – readily apply to
weighted time series as well.

8.2. Spectral significance for zero-mean corrected subsets

In some cases one may demand to correct the mean magnitude
for individual subsets instead of the entire time series, i.e. if the
data were obtained by different instruments, or if the subtraction
of nightly averages is performed. In this case the influence on the
statistical description of the noise to which an amplitude level is
compared has to reflect the subdivision correspondingly. Given
a subset index, s = 1, 2, ..., S , where S denotes the total number
of subsets, Eqs. (3), (4) have to be re-written according to

aZM (ω) =

1

K

⎡⎢⎢⎢⎢⎢⎢⎣
S∑

s=1

⎛⎜⎜⎜⎜⎜⎜⎝
Ks−1∑

k=0

xsk cosωtsk −
1

Ks

Ks−1∑

k=0

xsk

Ks−1∑

l=0

cosωtsl

⎞⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎦ , (63)

bZM (ω) =

1

K

⎡⎢⎢⎢⎢⎢⎢⎣
S∑

s=1

⎛⎜⎜⎜⎜⎜⎜⎝
Ks−1∑

k=0

xsk sinωtsk −
1

Ks

Ks−1∑

k=0

xsk

Ks−1∑

l=0

sinωtsl

⎞⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎦ . (64)

In this context, each registration time and observable is assigned
two indices, writing xsk. The first index refers to the subset, and
the second index is the identifier of the data point within the
subset. The number of data points within the subset s is denoted
by Ks, and finally K :=

∑S
s=1 Ks for the total number of data

points in the entire time series.

Further calculations follow the procedure described in
Sect. 5 exactly and yield

tan 2θ0 (ω) =

⎡⎢⎢⎢⎢⎢⎢⎣
S∑

s=1

Ks

Ks−1∑

k=0

sin 2ωtsk −
Ks−1∑

k=0

cosωtsk

Ks−1∑

k=0

sinωtsk

⎤⎥⎥⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎢⎢⎢⎢⎣
S∑

s=1

Ks

Ks−1∑

k=0

cos 2ωtsk −
⎛⎜⎜⎜⎜⎜⎜⎝

Ks−1∑

k=0

cosωtsk

⎞⎟⎟⎟⎟⎟⎟⎠

2

+

⎛⎜⎜⎜⎜⎜⎜⎝
Ks−1∑

k=0

sinωtsk

⎞⎟⎟⎟⎟⎟⎟⎠

2⎤⎥⎥⎥⎥⎥⎥⎥⎦

−1

(65)

for the orientation of the rms error ellipse, in analogy to
Eq. (10). Correspondingly, the normalized axes of the ellipse
(Eqs. (17), (18)) evaluate to

α0 (ω, θ0) =

⎛⎜⎜⎜⎜⎜⎜⎝
2

K

S∑

s=1

⎧⎪⎪⎨⎪⎪⎩
Ks−1∑

k=0

cos2 (ωtsk − θ0)

− 1

Ks

⎡⎢⎢⎢⎢⎢⎢⎣
Ks−1∑

l=0

cos (ωtsl − θ0)

⎤⎥⎥⎥⎥⎥⎥⎦

2
⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎞⎟⎟⎟⎟⎟⎟⎟⎠

1
2

, (66)

β0 (ω, θ0) =

⎛⎜⎜⎜⎜⎜⎜⎝
2

K

S∑

s=1

⎧⎪⎪⎨⎪⎪⎩
Ks−1∑

k=0

sin2 (ωtsk − θ0)

− 1

Ks

⎡⎢⎢⎢⎢⎢⎢⎣
Ks−1∑

l=0

sin (ωtsl − θ0)

⎤⎥⎥⎥⎥⎥⎥⎦

2
⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎞⎟⎟⎟⎟⎟⎟⎟⎠

1
2

. (67)
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8.3. Colored noise

SS does not take into account colored noise. Since there
are both instrumental effects (e.g. CCD readout, stability of the
spacecraft position) and stellar variations (e.g. low-amplitude
modes, granulation noise) to be considered and neither of these
two sources may be determined unambiguously, it is presently
impossible to deduce a reliable amplitude noise profile for mea-
surements in many cases.

The heuristic approach to generate a noise spectrum by
means of (weighted) moving averages suffers from the presence
of unresolved peaks, which increases the risk to miss intrinsic
signal. Hence it is advisable to use SS for the detection of
significant sinusoidal signals and to take effects due to colored
noise (however the latter may have been determined) into ac-
count by choosing different spectral significance thresholds for
different frequency regions.

However, there is evident demand for further investigation in
the presence of colored noise. The statistical description of col-
ored noise and its implementation into the evaluation of the spec-
tral significance is the subject of present and ongoing investiga-
tion and will be discussed in a dedicated publication (Paper III).

9. Conclusions

SS exceeds the diagnostic capabilities of Discrete Fourier
Transform, Lomb-Scargle Periodogram, Phase Dispersion
Minimization, and least-squares fits in various respects.

1. SS does not compare one peak amplitude to an-
other. Thus it avoids implications to the statistical inde-
pendence of peaks in the amplitude spectrum at a single
prewhitening stage and the ambiguity in defining a Nyquist
Frequency, which all compared methods suffer from. The
implicit comparison of peaks by selecting the dominant one
for prewhitening may be performed free of the frequency and
phase dependencies of Fourier amplitudes, if the spectral sig-
nificance is used instead (6.1). One remaining issue in this
context is the effect of multiple hypothesis testing on step-
by-step identification and prewhitening. The propagation of
uncertainties from one prewhitening step to another will be
a topic in Paper II examining the DFT on multi-periodic
signals.

2. SS is based on an analytically straight determination of
the amplitude Probability Density Function (5.3). Provided
the noise is white (but not necessarily Gaussian), SS
returns exact results instead of signal-to-noise ratio estimates
(6.1). A more realistic approach is the introduction of col-
ored noise in the sense of serially correlated measurements.
Paper III is planned to discuss the appropriate incorporation
of the serial correlation into the spectral significance compu-
tation.

3. SS is the first technique in astronomical time series
analysis to use both frequency and phase angle in the com-
putation of the False-Alarm Probability (Sect. 5), appropri-
ately encountering the fact that the amplitude noise level is
systematically different for different frequencies and phases
in Fourier Space (6.2). The statistics employed by SS
takes into account all available information provided by the
Discrete Fourier Transform.

4. The performance of SS for a single signal plus noise
is discussed in this paper (6.2, 6.3). For strong signal com-
ponents, the peak frequencies returned by SS are con-
siderably more accurate than the solutions of all compared

methods. For weak signal components, SS still pro-
vides a slightly higher accuracy. Furthermore, there is indi-
cation that the SS frequencies are at least as accurate as
the least-squares fits. The systematic examination of multi-
periodic signals and a comparison to non-linear least-squares
fits will be provided in Paper II.

5. Signal-to-noise ratio estimation provides a valid significance
estimate, but becomes very poor for low frequencies and in
case of periodicities in the time-domain sampling (6.4).

6. Signal-to-noise ratio-based period detection is a matter of
experience and – to some extent – personal taste. SS
provides a solution that is completely free of subjective in-
fluence. Interpretation is no longer a part of the analysis, and
the results remain exactly the same, if two different persons
apply the calculations to the same data.

Tests on synthetic and real data confirm that the SS analy-
sis is superior to signal-to-noise ratio estimates (Sect. 6).

The Sock Diagram (5.6), as a generalized analogy to the
spectral window, provides increased information on the proper-
ties of the time-domain sampling in Fourier Space, since incor-
porating phase-resolution as well. Periodicities in the sampling
of a time series are recovered by the spectral window and provide
a measure of the susceptibility of DFT to aliasing. In addition,
the Sock Diagram indicates frequency and phase regions with
high systematic errors of DFT amplitudes. Both error sources
may cause the classical signal-to-noise ratio estimation to fail.

The incorporation of statistical weights into the spectral sig-
nificance calculation is provided (8.1), as well as the modifica-
tion of the spectral significance computation, if a time series is
assumed to consist of several zero-mean corrected subsets (8.2).
Both features also implemented in the present software version.

The SS software has proved its validity and excel-
lent performance in numerous practical applications, mainly
in connection with the data from the MOST satellite (Walker
et al. 2005; Guenther et al. 2005), but also for the photomet-
ric search for new pre-main sequence Delta Scuti stars in young
open clusters (Zwintz et al. 2004; Zwintz & Weiss 2006). In ad-
dition, SS was successively employed for the photometric
and spectroscopic determination of the rotation periods of se-
lected roAp stars (Sachkov et al. 2004; Ryabchikova et al. 2005).

However, although the statistically unbiased approach used
by SS improves the reliability of results considerably, the
software does not provide an invitation to blind belief. It suc-
cessfully separates the detection of formally significant sinu-
soidal signal components in a time series from their interpre-
tation in a physical context, nothing more. The practical applica-
tion of the program still requires a careful examination of results,
namely the decision whether a formally significant frequency is
related to the observed physical process or an (e.g. instrumental)
artifact.
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Appendix A: Orientation of the rms error ellipse

of Fourier coefficients

Rotating the coordinate system in Fourier Space by a phase an-
gle θ0 transforms aZM, bZM from Eqs. (5), (6) into

α (ω, θ0)=
1

K

K−1∑

k=0

xk

⎡⎢⎢⎢⎢⎢⎢⎣cos (ωtk − θ0)− 1

K

K−1∑

l=0

cos (ωtl − θ0)

⎤⎥⎥⎥⎥⎥⎥⎦ , (A.1)

β (ω, θ0)=
1

K

K−1∑

k=0

xk

⎡⎢⎢⎢⎢⎢⎢⎣sin (ωtk − θ0)− 1

K

K−1∑

l=0

sin (ωtl − θ0)

⎤⎥⎥⎥⎥⎥⎥⎦ . (A.2)

In terms of the population variance
〈
x2

〉
of the time-domain

data xk, the population variances of α and β are

〈
α2

〉
(ω, θ0) =

〈
x2

〉

K3

⎧⎪⎪⎨⎪⎪⎩K

K−1∑

k=0

cos2 (ωtk − θ0)

−
⎡⎢⎢⎢⎢⎢⎢⎣

K−1∑

l=0

cos (ωtl − θ0)

⎤⎥⎥⎥⎥⎥⎥⎦

2 ⎫⎪⎪⎬⎪⎪⎭, (A.3)

〈
β2

〉
(ω, θ0) =

〈
x2

〉

K3

⎧⎪⎪⎨⎪⎪⎩K

K−1∑

k=0

sin2 (ωtk − θ0)

−
⎡⎢⎢⎢⎢⎢⎢⎣

K−1∑

l=0

sin (ωtl − θ0)

⎤⎥⎥⎥⎥⎥⎥⎦

2 ⎫⎪⎪⎬⎪⎪⎭· (A.4)

The covariance

〈αβ〉 = 1

K

K−1∑

k=0

x2
k

⎡⎢⎢⎢⎢⎢⎢⎣cos (ωtk − θ0) − 1

K

K−1∑

l=0

cos (ωtl − θ0)

⎤⎥⎥⎥⎥⎥⎥⎦

×
⎡⎢⎢⎢⎢⎢⎢⎣sin (ωtk − θ0) − 1

K

K−1∑

l=0

sin (ωtl − θ0)

⎤⎥⎥⎥⎥⎥⎥⎦ (A.5)

vanishes for a random population, if

K−1∑

k=0

⎡⎢⎢⎢⎢⎢⎢⎣cos (ωtk − θ0) − 1

K

K−1∑

l=0

cos (ωtl − θ0)

⎤⎥⎥⎥⎥⎥⎥⎦ [sin (ωtk − θ0)

− 1

K

K−1∑

l=0

sin (ωtl − θ0)

⎤⎥⎥⎥⎥⎥⎥⎦ = 0. (A.6)

The constant θ0 may be separated from the sums, which yields

(
cos2 θ0−sin2 θ0

) ⎛⎜⎜⎜⎜⎜⎝K

K∑

k=0

cosωtk sinωtk−
K∑

k=0

cosωtk

K∑

k=0

sinωtk

⎞⎟⎟⎟⎟⎟⎠ =

cos θ0 sin θ0

⎡⎢⎢⎢⎢⎢⎣K
K∑

k=0

(
cos2 ωtk − sin2 ωtk

)

−
⎛⎜⎜⎜⎜⎜⎝

K∑

k=0

a cosωtk

⎞⎟⎟⎟⎟⎟⎠
2

+

⎛⎜⎜⎜⎜⎜⎝
K∑

k=0

sinωtk

⎞⎟⎟⎟⎟⎟⎠
2⎤⎥⎥⎥⎥⎥⎥⎥⎦ , (A.7)

where it is not necessary to distinguish between indices k and l
any more. Equation (A.7) may be expressed in terms of 2 θ0
and 2ωtk, respectively, according to

cos 2 θ0

⎡⎢⎢⎢⎢⎢⎣K
K∑

k=0

sin 2ωtk − 2

K∑

k=0

cosωtk

K∑

k=0

sinωtk

⎤⎥⎥⎥⎥⎥⎦ =

sin 2 θ0

⎡⎢⎢⎢⎢⎢⎢⎢⎣K
K∑

k=0

cos 2ωtk −
⎛⎜⎜⎜⎜⎜⎝

K∑

k=0

cosωtk

⎞⎟⎟⎟⎟⎟⎠
2

+

⎛⎜⎜⎜⎜⎜⎝
K∑

k=0

sinωtk

⎞⎟⎟⎟⎟⎟⎠
2⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (A.8)

This immediately leads to Eq. (10).

Appendix B: PDF transformation

B.1. General PDF transformation

According to, e.g., Stuart & Ord (1994), p. 20ff, the PDF con-
version between a random variable x and a random variable y
connected via y := y (x) is given by

φx (x) = φy (y)

∣∣∣∣∣
dy

dx

∣∣∣∣∣ · (B.1)

For multivariate distributions, the generalization of differentials
yields

φx (x) = φy (y)

∣∣∣∣∣
dy

dx

∣∣∣∣∣ , (B.2)

with the Jacobian

∣∣∣∣∣
dy

dx

∣∣∣∣∣ :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂y1

∂x1

∂y2

∂x1

∂y3

∂x1
. . .

∂y1

∂x2

∂y2

∂x2

∂y3

∂x2
. . .

∂y1

∂x3

∂y2

∂x3

∂y3

∂x3
. . .

...
...
...
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (B.3)

B.2. Example: transformations of PDF and expected value
for the exponential distribution

If y is an exponentially distributed random variable with the PDF

φy (y) =: κ e−κy, (B.4)

Eq. (B.1) for x :=
√
y evaluates to

φx (x) = 2κx e−κx
2

, (B.5)

where both x, y are considered positive semi-definite.
The expected value of y is

〈y〉 =:

∫ ∞

0

dy yφy (y) =
1

κ
, (B.6)

as obtained from Eq. (B.4). Correspondingly, Eq. (B.5) yields

〈x〉 =:

∫ ∞

0

dx xφx (x) =

√
π

2 κ
, (B.7)

so that

〈y〉 = 4

π
〈x〉2 (B.8)

describes the transformation of expected values corresponding
to y = x2.
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For equidistantly sampled noise xk in the time domain, the
power spectrum associated with the Fourier Series is exponen-
tially distributed (Schuster 1898; Scargle 1982) according to

φ
(
A2

)
=

K

2
〈
x2

〉 e
− KA2

2〈x2〉 , (B.9)

where
〈
x2

〉
denotes the population variance of the noise. The pre-

vious considerations apply through the substitution κ =: K

2〈x2〉 ,
normalized to single-sided power spectral density (which intro-
duces the factor 2). According to Eq. (B.6), the noise level in the
spectrum of squared amplitudes evaluates to

〈
A2

〉
=

2
〈
x2

〉

K
· (B.10)

For the expected value of the amplitude (i.e. the amplitude noise
level), Eq. (B.7) yields

〈A〉 =
√
π

K

〈
x2

〉
. (B.11)

Equation B.8 leads to the conversion between the expected val-

ues of amplitude, 〈A〉 and squared amplitude,
〈
A2

〉
, according to

〈
A2

〉
=

4

π
〈A〉2 . (B.12)

This is in agreement with the observational results by Horne &
Baliunas (1986).

An amplitude signal-to-noise ratio of 4 – introduced as an
approximate significance criterion by Breger et al. (1993) – cor-
responds to a power signal-to-noise ratio of 4 π ≈ 12.57.
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