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Abstract. The amount of Linked Data is increasing steadily. Optimized
top-down Linked Data query processing based on complete knowledge
about all sources, bottom-up processing based on run-time discovery of
sources as well as a mixed strategy that combines them have been pro-
posed. A particular problem with Linked Data processing is that the het-
erogeneity of the sources and access options lead to varying input latency,
rendering the application of blocking join operators infeasible. Previous
work partially address this by proposing a non-blocking iterator-based
operator and another one based on symmetric-hash join. Here, we pro-
pose detailed cost models for these two operators to systematically com-
pare them, and to allow for query optimization. Further, we propose a
novel operator called the Symmetric Index Hash Join to address one open
problem of Linked Data query processing: to query not only remote, but
also local Linked Data. We perform experiments on real-world datasets
to compare our approach against the iterator-based baseline, and create
a synthetic dataset to more systematically analyze the impacts of the
individual components captured by the proposed cost models.

1 Introduction

The amount of Linked Data on the Web is large and ever increasing. This de-
velopment is exciting, paving new ways for next generation applications on the
Web. We contribute to this development by investigating the problem of how to
process queries against Linked Data.

Linked Data query processing can be seen as a special case of federated query
processing, i.e., to process queries against data that reside in different data
sources. However, the highly distributed structure and evolving nature of Linked
Data presents unique challenges. In particular, as discussed in [6], the number of
Linked Data sources is large (volume); sources evolve quickly (dynamic); sources
vary in size, there is no standard for source descriptions, and access options vary
(heterogeneity). As source descriptions, Harth et al. [2] proposed a probabilistic
data structure to capture and store locally rich statistics about remote sources,
used to determine relevant sources and to optimize query processing. Hartig et
al. [3] proposed a method for dealing with the dynamic aspect of Linked Data
query processing. As opposed to [2], the strategy employed here does not rely
on complete knowledge about Linked Data available as source descriptions but
is based on run-time source discovery via URI lookups. In previous work [6], we
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proposed a mixed strategy that is able to leverage locally stored source descrip-
tions if they exist, and to discover other sources at run-time.

Partially, our previous work also elaborates on the aspect of join implemen-
tation. In this setting, standard blocking iterator-based join is not optimal due
to possibly very high network latency (as a result of Linked Data heterogene-
ity). Instead of blocking, Hartig et al. [3] proposed a non-blocking iterator-based
join operator (NBIJ) that employs a busy-waiting strategy. Basically, it is a
workaround that temporarily rejects inputs when the other inputs needed for
the join are not available. In previous work [6], we discussed a conceptually
cleaner strategy called push- and stream-based query processing based on the
symmetric hash join (SHJ) [15], where source data is treated as finite streams
that can arrive at any time in any order. In theory, this strategy is better suited
to deal with network latency as it is driven by incoming data (i.e., push- instead
of pull-based) and thus, does not require temporary input rejection. However, a
systematic comparison of these two strategies at the conceptual level as well as
experimental results that can validate possible differences are missing.

Another problem is that so far, joins are performed on remote data, but in
practice, Linked Data (can be imported and) might be available locally, giving
rise to non-blocking operators capable of processing both remote and local data.

Contributions. In this work we focus on join operators:

– We propose a new join operator called Symmetric Index Hash Join (SIHJ)
that is non-blocking, pushed-based, stream-based, and in particular, is able
to process both remote and local linked data.

– We propose a cost model that can be used to analyze this operator given
only remote data, only local data, or a combination of them. Further, we
provide a cost model for the proposed NBIJ [3]. These two cost models can
be used for query optimization, and allow us to compare the mechanisms
underlying these operators in a systematic fashion.

– In an experimental comparison, we evaluate these two approaches on real-
world datasets and a synthetic dataset to more systematically analyze the
impacts of the individual components captured by the proposed cost models.

Outline. In Section 2 we introduce Linked Data query processing and motivate
our approach. Section 3 presents and analyzes the symmetric index hash join
operator. We compare the SIHJ operator to the previously proposed NIHJ in
Section 4. Finally, we present related work in Section 5, before discussing the
evaluation results in Section 6 and the conclusions in Section 7.

2 Preliminaries

Linked Data Query Processing. As usual [3,6], we conceive Linked Data
sources as interlinked sets of RDF triples [5]:

Definition 1. A source d is a set of RDF triples 〈sd, pd, od〉 ∈ T d where sd is
called the subject, pd the predicate and od the object. There is a function ID
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which associates a source d with a unique URI. There is a link between two
sources di and dj if the URI of di appears as the subject or object in at least
one triple of dj, i.e., ∃t ∈ T dj : sd(t) = ID(di) ∨ od(t) = ID(di); or vice versa,
i.e., ∃t ∈ T di : sd(t) = ID(dj) ∨ od(t) = ID(dj) (then di and dj are said to be
interlinked). The union set of interlinked sources di ∈ D constitutes the Linked
Data T D = {t|t ∈ T di, di ∈ D}.
The standard language for querying RDF data is SPARQL [10]. An important
part of SPARQL queries are basic graph patterns (BGP). Work on Linked Data
query processing so far focused on the task of answering BGP queries. In this
work we focus on BGP queries that form a connected graph, i.e., can be answered
without cross products:

Definition 2. A connected basic graph pattern q is a set of triple patterns
〈sq, pq, oq〉 ∈ T q where every sq, pq and oq is either a variable or a constant.
There are some variables appearing in several patterns tq ∈ T q such that together,
the set of patterns T q forms a connected graph.

Since Linked Data triples in T D also form a graph, processing queries in this
context amounts to the task of graph pattern matching. In particular, an answer
(also called a solution mapping or query binding) to a BGP query is given by
μ which maps the variables in query graph pattern T q to RDF terms in T D,
such that applying the mapping by replacing each variable with its bound RDF
term yields a subgraph T D

q of T D. We denote the set of solution mappings for
BGP query as Ω and the set of partial solution mappings or bindings for a single
triple pattern tq ∈ T q as Ωtq .

A BGP query is evaluated by retrieving triples matching the patterns tq ∈ T q,
and by performing a series of joins between the bindings Ωtq created from the
triples retrieved. In particular, this is done for every two triple patterns that
share a variable, forming a join pattern (that variable is referred to as the join
variable).

In the Linked Data context, triple patterns are not evaluated on a single
source, but have to be matched against the union of all sources D. When all
sources in D are known, sources needed for processing a given query can thus
be determined, retrieved by dereferencing their URIs, and triples obtained from
these sources are joined along query join patterns [2]. In contrast to standard
federated query processing triples from Linked Data can only be obtained via
URI lookups, as opposed to retrieving only those matching a given pattern.

Exploration-based Linked Data Query Processing. In this work, we con-
sider the case more general than in [2], following the direction of exploration-
based Linked Data query processing, which does not rely on having complete
knowledge about all Linked Data sources [3,6]. This line of approaches deal with
the case where Linked Data is assumed to be dynamically evolving such that
obtaining results might also require run-time discovery of new sources based on
link traversal. In [3], no knowledge is available at all, and the query is assumed
to contain at least one constant that is a URI. This URI is used for retriev-
ing the first source representing the “entry point” to Linked Data; new sources
are then discovered in a bottom-up fashion beginning from links found in that
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entry point. The approach recently proposed in [6] combines the two previous
approaches [2,3] to discover new sources as well as leveraging known sources.

Here, query processing also relies on performing joins according to a query
plan. The difference is that sources have to be discovered and even in the case
where some knowledge is available, all source data are assumed to be remote and
thus have to be retrieved from the network. Dealing with the network latency
resulting from this requires that join operators do not block, such that when
input is stalled for one part, progress can be made for other parts of the query
plan. Two alternatives have been proposed to deal with this problem: one is
NBIJ and the other is the push-based SHJ. Through a more systematic study of
these operators we will show based on detailed cost models that the push-based
SHJ is less expensive. Further, it also computes all results from retrieved data,
while this completeness guarantee cannot be provided by NBIJ.

Remote and Local Linked Data Query Processing. While all approaches
proposed so far assume remote data, in realistic scenarios, some Linked Data
may be available locally. Conceptually, local data can be seen as yet another
source. Thus, a basic solution to integrate locally stored data is to treat them
just like a remote source and process them in the same way.

However, the availability of local data makes a great difference in practice,
because while remote Linked Data sources have to be retrieved entirely (only URI
lookup is available), local data can be accessed more efficiently using specialized
indexes. Typically, local data are managed using a triple store, which maintains
different indexes to directly retrieve triples that match a given pattern, i.e.,
relevant bindings Ωtq of a local source d can be directly obtained for tq ∈ T Q.

Given such querying capabilities for local data, we will show in this work that
remote and local Linked Data with different access options can be processed
using a single join operator. Instead of loading all local data, this operator re-
trieves only triples matching a given pattern. Further, we observe that there
are non-discriminative triple patterns such as 〈?x, rdf:type , ?y〉, which produce a
large number of triples that do not contribute to the final results. To alleviate
this problem, we take advantage of the available indexes to further instantiate
query triple patterns with data obtained during query processing to load only
triples that are guaranteed to produce join results.

3 Symmetric Index Hash Join

We propose to extend the SHJ operator to obtain the index-based SIHJ operator
that can also take advantage of local data and indexes. This operation is similar
to the index nested-loop join operator, where tuples (i.e., bindings) of one input
are used to access indexes available for the other input. As opposed to that, it
is a non-blocking operator based on SHJ, and is a hybrid one in that it employs
both push- and pull-based mechanisms.

Query Processing based on SIHJ. Typically, a tree-shaped query plan is
employed to determine the order of execution. Using the standard SHJ operator,
the execution is pull-based in that starting from the root operator, higher-level
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operators in the plan invoke (the next method of) lower-level operators to obtain
their inputs. Instead of pulling from the root, the push-based SHJ [6] allows
inputs to be pushed to higher level operators (by invoking their push methods).
The push-based SHJ maintains two hash tables, one for each input. Incoming
tuples on either input are first inserted into their respective hash table and then
used to probe the other hash table to find valid join combinations, which finally
are pushed to subsequent operators. Thereby, results can be produced as soon
as input tuples arrive. Without local data, SIHJ is essentially a push-based SHJ.
Otherwise, it combines pull and push, i.e., while processing tuples that have
been pushed to either one of its inputs, it also supports pulling local data from
the index available for one of its inputs using data of the other input.

Fig. 1. Query plan with SIHJ operators and access modules (AM)

For a query with three triple patterns, Fig. 1 shows a left-deep query plan
consisting of SIHJ operators and access modules for loading data. In a left-
deep plan, the left input of all join operators is connected to the output of a
join operator lower in the query plan, while the right input is connected to
data sources, which in our case, might comprise both remote and local data.
The exception is the lowest join operator, whose left input is not connected to
another join operator but to data sources. Data arriving from remote sources
are retrieved by a dedicated retrieval thread [6] and their data is pushed directly
into the corresponding operators, whereas the access modules pull data from
local indexes on request and then push them into the join operators.

Algorithm. In particular, we designate the left input of SIHJ as the “driving”
input. All bindings that arrive on the left are used to perform lookups on local
data to load only bindings into the right input that produce join results. This is
achieved by instantiating the triple pattern on the right input with bindings for
the join variable obtained from the left input:

Definition 3. Let tqi , t
q
j be two triple patterns of T q, v the join variable shared

by tqi and tqj and Ωtq
i

be the set of bindings for tqi . The results of the join of tqi and
tqj on v is then calculated as Ωtq

i
�v Ωtq

j
, where Ωtq

j
=

⋃
u∈Ωt

q
i
(v){b|b ∈ Ωtq

j (v,u)},
where tqj(v, u) is an instantiated triple pattern obtained by substituting constant
u for variable v.

For local data we use separate access modules [11] that encapsulate access to
local indexes. The load method for the AM is specified in Alg. 1. For every
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SIHJ operator, one access module is created and connected to its right input.
The access module accepts requests from the join operator in for loading the
bindings Ωtq from triples matching a triple pattern tq using the index I (line 1).
All access to local storage is executed asynchronously by the access module so
that operations in other parts of the query plan can still progress. Bindings
loaded by an access module are pushed into its join operator (line 2).

Algorithm 1. AM: load(in, tq)

Input: Operator in, which requests data inputs for pattern tq

Ωtq = I .lookup(tq); // lookup in local index1

foreach b ∈ Ωtq do in.push(this,b); // push bindings to join operator2

Algorithm 2. SHJ: push(in, b)

Input: Operator in from which input binding b was pushed
Data: Hash tables Hi and Hj ; current operator this; subsequent operator out;

join variable v; tq
i is the left and tq

j the right triple pattern

if in is left input then1

if b(v) /∈ Hi then AM .load(this,tq
j (v, b(v)))2

Hi[b(v)]← Hi[b(v)] ∪ b3

J ← Hj [b(v)]4

else5

Hj [b(v)]← Hj [b(v)] ∪ b6

J ← Hi[b(v)]7

forall j ∈ J do out.push(this,merge(j,b))8

This use of local data via the access module is shown in Alg. 2. In particular,
loading from the index results in a new triple that is pushed to the SIHJ operator
(right input, line 4). All inputs of the “driving” left input are also pushed into
this operator. When a binding b arrives on the left input, the corresponding
hash table Hi is first probed to determine if it already contains the binding b(v)
for the join variable v captured by b (line 2). If this is not the case, i.e., this
binding has not been processed before, a request to load triples from the local
index using the instantiated triple pattern tqj(v, u) is sent to the access module
(line 2). Then, b is inserted into the corresponding hash table Hi and Hj of the
right input is probed to obtain valid join combinations (line 3 - 4), which are
then pushed to operator out (line 8). Bindings arriving on the right input (i.e.,
from remote sources or those pushed from the AM) are processed in a similar
manner, except that no requests are sent to the access module (line 6 - 7), which
is not necessary as all bindings are stored in hash table Hj and are therefore
available when a matching input arrives on the left input.

Note that bindings on the right or left input may be both local or remote
data. Both remote and local data may be pushed into the left input. Remote
data may also be pushed into the right input, and through explicit pulling using
the AM (line 4), this input might also contain local data.



SIHJoin: Querying Remote and Local Linked Data 145

Fig. 2. Processing of the SIHJ operator for data coming from the left input

Fig. 2 illustrates the operation of a SIHJ operator. An input containing bind-
ings for two variables ?x, ?y is received and then inserted into the left hash table.
Then a request for 〈p6, name, ?n〉 is sent to the access module. After loading the
data from the local index, the binding for ?y, ?n is inserted into the right hash
table. In combination with the binding in the left hash table a join result is
finally created and pushed to the subsequent operator.

Cost Model. We use a unit-time-basis cost model that captures the operator
cost in terms of the tuples that are accessed and the cost of the physical opera-
tions needed [4]. All costs are defined in an abstract manner, independent from
the concrete implementation and data structures being used.

The cost of a SIHJ with two inputs A and B is the sum of three components:
the cost for joining tuples arriving on the left and the right input and the cost
of the access module: CA�B = CA�B + CA�B + CAM

The operation carried out for tuples on the left input are: insertion into hash
table for A, probing of hash table for B, creating join results and finally, sending
a request to the access module. Accordingly, the cost CA�B is defined as follows:

CA�B = |A|(Ih + Ph + ϕ · |B| · J · |A|
|A| + |B| + R)

with: weight factors Ih, Ph for hash table insert and probe; join selectivityϕ;
weight factor J for creating result tuples; weight factor R for request to
access module; the fraction |A|

|A|+|B| of inputs arriving on the left input
The term Ih + Ph represents the cost of inserting an incoming tuple and then

probing the other hash table. Given a join selectivity ϕ, the number of results
for A � B is ϕ|A||B|. Multiplied by the weight factor for creating results, this
yields the term J · ϕ · |A||B|. Further, it is multiplied with |A|

|A|+|B| to consider
join cost only for tuples that actually arrive in A. For each tuple in A, a request
is sent to the access module, whose cost is captured by R.

The cost CA�B for the other input is defined in a similar fashion, except that
no requests to the access module are needed:

CA�B = |B|(Ih + Ph + J · |A| · ϕ · |B|
|A| + |B| )

The cost CAM for the access module is defined as CAM = |A| · Pl + |Bl| · Ll,
where the input B is split into tuples from remote sources Br and local tuples
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loaded from disk Bl (i.e., B = Br ∪ Bl and Br ∩ Bl = ∅).The cost for probing
the local index, which has to be done for all tuples arriving in A, is represented
by |A| · Pl. When matching tuples are found, they have to be loaded from disk,
the cost of which is given by |Bl| · Ll.

Using the Cost Model for Query Optimization. The cost model developed
in the previous section abstracts from concrete implementations and hardware by
using weight factors. To use the cost model for query optimization these weight
factors have to be known. The weight factors can be determined by running the
operator on known input and then measuring the CPU time of the operations
represented by the individual weight factors. Note that the weight factors are
dependent on the characteristics of the data being used, in particular on the
input size (both remote and local) and join selectivity. For example, the higher
the join selectivity, the higher the relative weight of join result creation. Thus
– as always the case of query optimization in practice – weight factors shall be
derived from the underlying data.

In particular, measurements shall be taken for different combinations of input
size and join selectivity. These measurements shall aim at covering a large space
of possible combinations. At query compile-time, the weight factors precomputed
for the combination that best fit the input size and join selectivity estimated for
the given query are used to estimate join operator cost.

Batching. When an access module receives a request for loading data matching
an instantiated triple pattern from local storage, all matching triples will have
the same binding for the join variable because it has been used to instantiate
the triple pattern in the first place. Sending each binding one by one to the join
operator will incur an unnecessary overhead because they all will be inserted into
the same hash bucket; and subsequently, the same hash bucket has to be probed
several times when using these bindings. It is therefore beneficial to process data
loaded from local indexes in batches, where the hash tables of the join operator
are accessed only once for a batch of bindings.

4 Comparison to Non-blocking Iterator

In [3], NBIJ was proposed to deal with high network latency in the Linked
Data context and the resulting issue of blocking. We now study this operator,
extending previous work [3] with a completeness analysis and cost model.

Query Processing based on NBIJ. NBIJ is based on a traditional pull-
based mechanism, i.e., each operator in the query plan has a next method that
is called by operators higher in the query plan tree. It is also used in left-deep
plans, where all inputs consist only of data from remote sources.

During query processing an in-memory list G of data sources is maintained.
Each downloaded source is indexed and then added separately to G. When the
next method receives a result from a lower operator on the left input, first the
following requirement is checked:

Requirement 1. Let tqi , t
q
j be two triple patterns of T q, v the join variable

shared by tqi and tqj and b ∈ Ωtq
i
(v) a binding received on the left input.
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Then b can only be further processed if the following condition holds: ∀u ∈
{s(tqj(v, b(v))), p(tqj (v, b(v))), o(tqj (v, b(v)))} : if u is an URI then ID(u) ∈ G.

This requirement ensures that all sources identified by URIs in the instantiated
triple pattern have been retrieved and added to the list of in-memory sources.
If the requirement is not fulfilled, the sources are marked for asynchronous re-
trieval, the binding is rejected by calling the reject method of the lower join
operator, and the operator calls next again to retrieve further inputs. Other-
wise, all sources in G are successively queried for the instantiated triple pattern
tqj(v, b(v)) using in-memory indexes to construct join results.

When the reject method of a NBIJ operator is called, the rejected binding
is added to a separate list maintained by the operator. On subsequent calls to
its next method, the operator randomly decides between returning a previously
rejected binding from the list or a new one. The rejection mechanism ensures
that query processing can proceed even when sources for a particular pattern
are not yet available.

Completeness. A disadvantage of NBIJ is that the obtained results are not
necessarily complete w.r.t. downloaded data, i.e., it is not guaranteed that all
possible results that can be derived from downloaded data are actually computed
[3]. While Requirement 1 does ensure that all sources mentioned in an instanti-
ated triple pattern are retrieved before processing the pattern, it is possible that
data matching that pattern is contained in other sources retrieved later dur-
ing query processing. This is possible because Linked Data sources can contain
arbitrary data and therefore not all data matching a particular triple pattern
is necessarily contained in the sources mentioned in the pattern. As the NBIJ
works in a pull-based fashion (and not push-based), this data will be disregarded
if it is never requested again.

In contrast, a query plan based on SIHJ operators is guaranteed to produce
all results. Requirement 1 is not necessary, because the operation of the SIHJ
operator is completely symmetrical and push-based, i.e., incoming data can ar-
rive on both inputs and in any order and its operation is driven by the incoming
data instead of the final results. When an input tuple arrives on either of its
input, the SIHJ operator is able to produce all join results of that tuple with
all previously seen inputs, because these are kept track of in the hash table of
the SIHJ operator. This ensures that it does not matter at which point during
query processing a particular input for a triple pattern arrives, the final result
is always complete with respect to the data in the sources that were retrieved.

Cost Model. Since the randomness of the rejection mechanism cannot be ac-
curately captured in a cost model, we simply assume that all incoming bindings
on the left input are first rejected and then processed on the second try. The
cost for the NBIJ operator can then be calculated as follows:

CA�NBIJB = |A|(PG + T + |G| · L) + ϕ|A||B| · J

with: weight factor PG for checking Req. 1; number of sources |G|; weight L for
probing in-memory graph; weight T for tracking rejected bindings
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The term PG gives the cost for checking whether the corresponding sources for
a binding have been retrieved. The cost for rejecting a binding is T . Both these
operations are performed for all bindings of the left input. For each bindinge from
A all available graphs (in the worst case all sources) are consecutively probed
for join combinations, yielding the term |A||G| · L.

We now compare the cost models of the SIHJ and NBIJ operators. As the
NBIJ operator only operates on remote data, we disregard the costs of SIHJ for
requests sent to the access module. The cost of SIHJ is then:

CA�SIHJ B = |A|(Ih + Ph) + |B|(Ih + Ph) + ϕ|A||B| · J
Assuming that both operators operate on the same inputs (i.e., we disregard the
completeness issue discussed earlier), the results produced by both operators
are the same and therefore the cost ϕ|A||B| · J for creating results is the same.
The SIHJ might incur higher overhead for maintenance of its hash tables as all
incoming tuples require insertion into and probing of a hash table. Compared
to this, NBIJ incurs cost for checking the requirement, rejecting bindings and
maintaining rejected bindings. However, NBIJ further incurs cost for probing all
in-memory sources |A||G| ·L, which depends on the number of available sources.
That means that the more sources are retrieved during processing, the higher
the cost of the operator, whereas the SIHJ operator incurs no such cost and is
independent from the number of retrieved sources.

5 Related Work

Previous work on Linked Data query processing [3,2,6] was discussed throughout
the paper. Here, we discuss related database research.

Join Operators. In the database community a lot of research has been done on
join operators that can produce results as soon as inputs become available with-
out blocking and are therefore suited to high latency environments and stream
processing. The symmetric hash join [15] was the first of a new generation of such
operators. To deal with the high memory requirements of the SHJ, the XJoin
operator [13] flush tuples to disk if memory becomes scarce (during the arriving
phase). During a reactive phase, when inputs are blocked, XJoin uses previously
flushed tuples to produce further join results. During the final cleanup phase af-
ter all inputs have been consumed, the XJoin operator joins the remaining tuples
that were missed during the previous phases. An important observation is that
the output rate is heavily influenced by which tuples are flushed to disk, as some
tuples might produce more results than others. This lead to the introduction
and subsequent improvement of a flushing policy [9,12,1].

The SIHJ operator proposed in this work is also based on the symmetric hash
join. The memory consumption of the SIHJ could be addressed using concepts
proposed for the XJoin; but this topic was not the focus of this work. Similar to
XJoin, SIHJ does access locally stored data, but the purpose is different: SIHJ
treats local data as an additional data source whereas XJoin and the mentioned
work based on it use the disk as a cache and focus on the problem of how to use
it for tuple storage when memory becomes scarce.
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Adaptive Query Processing. Access Modules [11] were proposed to be used
in conjunction with an Eddy to provide different data access methods (scan,
index) and switch between them at run-time. Probe tuples are sent from the
Eddy to the access module to request a particular subset of the data. The access
module then pushes the data into the Eddy, marking the end with a special
tuple. In our work we adopt the notion of an Access Module to provide access
to local indexes in an asynchronous fashion.

Stream Databases. Fjords [8] support push- and pull-based operators and
combine push-based stream processing with pull-based processing. Fjords pro-
vide a bounded queue between operators that buffers tuples between two opera-
tors so that push- and pull-based operators can be used in the same query plan.
Because the queues are bounded, tuples may have to be discarded. The SIHJ
operator also uses push- and pull- based processing, but in a single operator.

In all, some concepts underlying SIHJ overlap with ideas from related database
work. However, there is no single operator that can be used for remote and local
data where the latter is not considered as cache but an additional independent
source – especially in the Linked Data setting. SIHJ fills this gap and presents
a means to incorporate local data into Linked Data query processing.

6 Evaluation

The evaluation consists of two parts: first, we use real-world datasets to com-
pare SIHJ with NBIJ; second, we create several synthetic datasets with different
characteristics to study the performance based on the proposed cost models. We
present a summary and refer to the technical report [7] for more details.

6.1 Overall Performance

Setting. In this part, we first show the benefits of stream-based query processing
in comparison to non-blocking iterators. We compare an SHJ-based implementa-
tion (SQ) with the implementation of the NBIJ-based query processing (NBI )
in SQUIN1. Both systems do not use local data and run without query opti-
mization, and thus are comparable. Second, we compare three implementations
of stream-based query processing over local and remote data to study the push-
and pull-based mechanism. One is the baseline, which is a configuration of SIHJ
that does not pull from the local data indexes but simply pushes all relevant data
into the query plan (SQ-L), i.e., this corresponds to the basic solution described
in Section 2. This is compared with the configuration using indexes as proposed
in this work, where SQ-I ran without and SQ-IB ran with batching.

All experiments were run on a server with two Intel Xeon 2.8GHz Dual-
Core CPUs and 8GB of main memory. SQUIN is a Java implementation of
NBIJ, whereas the SQ systems are implemented in Scala. Both systems employ
multithreading and were configured to use five threads to retrieve sources.

Dataset. The data consists of several popular Linked Data datasets, among them
DBpedia, Geonames, New York Times, Semantic Web Dog Food and several life
1 http://www.squin.org

http://www.squin.org
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science datasets. In total, the data consists of ca. 166 million triples. For the
experiments with approaches using local data, the dataset was split into remote
and local data, where the randomly chosen local data accounted for 10% of
the total dataset. Remote data were deployed on a CumulusRDF2 Linked Data
server on the local network so that data can be accessed using URI lookup,
whereas local data were indexed using our triple store [14].

Queries. We created 10 BGP queries that cover different complexities
w.r.t. query size and the number of sources retrieved during query processing.
For example, Q1 retrieves the names of authors of demo papers at ISWC 2008:

SELECT * WHERE { ?p sw:isPartOf <http://data.semanticweb.org
/conference/iswc/2008/poster_demo_proceedings> .

?p swrc:author ?a . ?a rdfs:label ?n . }

Results. Fig. 3a shows query times of the SQ and NBI systems for all ten
queries. The SIHJ-based system was faster for all queries, in some cases up to an
order of magnitude. On average, queries took 9699.18ms for SQ and 41704.27ms
for NBI, corresponding to an improvement of 77%.

Query times for SQ-I, SQ-IB and SQ-L are presented in Fig 3b. In all cases,
SQ-I and SQ-IB outperformed SQ-L and also here, improvements were up to an
order of magnitude in some cases. Note that for Q8, SQ-L ran out of memory
because the amount of local data to be loaded was too large. On average, query
times were 9366.39ms for SQ-IB, 9396.18ms for SQ-I and 28448.7.98ms for SQ-
L. This yielded an improvement of 67% of SQ-IB over SQ-L, clearly showing
that using locally available indexes is beneficial. It reduced the amount of data
that is loaded from disk, especially for queries with less selective triple patterns.
The improvement achieved through batching could also be observed, and will be
examined in more detail in the next section.
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Fig. 3. Overall query times for a) SQ and NBI and b) SQ-IB, SQ-I and SQ-L

6.2 Join Operator Performance in Detail

Setting. Previously, the operators were incorporated into plans for processing
entire BGP queries. Here, we focus on join processing using SIHJ and NBIJ.
Synthetic datasets that have known characteristics are used to examine the
performance of these operators in detail. We evaluated three SIHJ-approaches:
2 http://code.google.com/p/cumulusrdf/

http://code.google.com/p/cumulusrdf/
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SQ-IB, SQ-I and SQ. For the NBIJ operator, we used our own implementation
in order to instrument the code with detailed measurement points.

Datasets. The synthetic datasets for these experiments consist of separate sets
of triples for the left and right input. The right input is split into local and
remote parts, where the remote part is distributed among a number of sources.
Here, we want to focus on the weight factors of the cost models and therefore
keep “remote” data in memory and push it into the operator, instead of per-
forming network access, which might lead to inconsistencies in the performance
measurements. The data were generated with the following parameters: the size
of the left and right input is given by a, b, respectively; ρ is the fraction of the
right input that is local data; ϕ is the join selectivity; the number of sources for
the remote part of the right input is s (the source sizes follow a normal distribu-
tion). We create several sets of datasets, where one of the parameters is changed
while the others are fixed in order to examine the influence of each parameter.

Results. We examine the parameters’ effect on the weights of the cost model:

Join Selectivity. Fig. 4a shows the influence of join selectivity on the different
weight factors of the SIHJ cost model in terms of their relative fraction of total
time measured for SQ. For joins with high selectivity (ϕ = 0.0005), i.e., only a
small number of input tuples match other tuples to form join results, loading
of local data took the largest part of total processing time. For low selectivity
joins (ϕ = 0.5), the creation of result tuples dominated query processing. Using
the cost model, this can be explained by the observation that join selectivity
has impact only on the term J ·ϕ|A||B|, meaning that only the weight of result
creation increases with lower join selectivities.

Number of Sources. Fig. 4b shows processing times for various number of
sources |G| for SQ and NBI. Overall, times for SQ were largely the same for
all source counts, whereas the times for NBI increased with larger a number of
sources. The times for NBI were split into times for checking the requirement
(cr), loading data from the in-memory graphs (load) and creating result tuples
(join). Clearly, results show that both cr and load times were dependent on |G|.
This is accounted for by the cost model, i.e., the term |A|(PG + |G| ·L) indicates
that cost depends on PG and |G|. Join times were the same because the number
of results does not change with |G|.

Input Size. Fig. 4c presents the effect of input size (on the right input) on
processing times of SQ-I and SQ-IB. We can see that for larger inputs, the
relative time spent on loading local data decreased and the relative weights of
hash table insertion and increased. This is probably due to the larger hash tables
that were required for larger input sizes, introducing more overhead for rehashing
when the hash tables need to be expanded.

Local Data Fraction. We examined processing times for various local data
sizes. The overall number of inputs on the right input was the same, only the
ratio between remote and local data changed. A value of ρ = 0.1 means 10%
of the data is local data. Fig. 4d shows processing times for SQ-I and SQ-IB.
With higher local data fractions, the impact of loading on total processing times
is more pronounced. Whereas for a local fraction of 0.1 loading accounted for
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about 22% of total time, at 0.8 it accounted for over 60%. This is because with
more local data, more effort was spent on using the local indexes to find triples
that produce join results. Thus, less effort was needed for join, probe as well as
insert. Note that as remote data were actually in-memory data, access to local
data was slower than for “remote” data. Thus, loading here essentially means
loading local data. In the standard setting, network access is usually slower than
disk access. This means that loading would have an even larger impact.

This experiment also shows the benefits of batching, which are more pro-
nounced for larger amounts of local data, as reflected by the smaller amounts of
time spent on inserting and probing hash tables.
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Fig. 4. a) Join selectivity (b = 10000, ρ = 0.2, s = 200), b) Number of sources (b =
500000, ϕ = 0.0002, ρ = 0.2), c) Input size (ϕ = 0.2, ρ = 0.2, s = 200), d) Local part
(b = 500000, ϕ = 0.0002, s = 200) (a = 10000 for all)

7 Conclusion

We propose a new operator, the Symmetric Index Hash Join (SIHJ) for pro-
cessing queries over local and remote Linked Data in a stream-based and
non-blocking fashion. We provide cost models for SIHJ and the Non-Blocking
Iterator (NBIJ) previously proposed for dealing with remote Linked Data. A
detailed comparison shows that while SIHJ might have larger overhead for ac-
cessing its hash tables, its cost does not depend on the number of data sources
processed. The number of sources however has a large impact on the performance
of NBIJ. Further, as opposed to NBIJ, SIHJ guarantees complete results w.r.t.
the data retrieved during query processing. We performed an evaluation of both
operators on a real-world dataset and several synthetic datasets. We show that
stream-based query processing using push-based SHJ performs on average 77%
better than NBIJ-based query processing w.r.t. to overall query execution time.
The experiments show that using available indexes to access local data is bene-
ficial, resulting in an average improvement of 67% compared to a baseline that
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simply loads all data matching query triple patterns. Detailed analyses using the
synthetic datasets further shed light on the weights of the proposed cost models.
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