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Siland a R package for estimating 
the spatial influence of landscape
Florence Carpentier1,2* & Olivier Martin3 

The spatial distributions of populations are both influenced by local variables and by characteristics 
of surrounding landscapes. Understanding how landscape features spatially structure the frequency 
of a trait in a population, the abundance of a species or the species’ richness remains difficult specially 
because the spatial scale effects of the landscape variables are unknown. Various methods have been 
proposed but their results are not easily comparable. Here, we introduce “siland”, a general method 
for analyzing the effect of landscape features. Based on a sequential procedure of maximum likelihood 
estimation, it simultaneously estimates the spatial scales and intensities of landscape variable effects. 
It does not require any information about the scale of effect. It integrates two landscape effects 
models: one is based on focal sample site (Bsiland, b for buffer) and one is distance weighted using 
Spatial Influence Function (Fsiland, f for function). We implemented “siland” in the adaptable and 
user-friendly R eponym package. It performs landscape analysis on georeferenced point observations 
(described in a Geographic Information System shapefile format) and allows for effects tests, effects 
maps and models comparison. We illustrated its use on a real dataset by the study of a crop pest 
(codling moth densities).

Numerous studies demonstrate that the distribution of species richness and abundance depend on both local 
and landscape  variables1–3. However, studying the relationships between landscape and species distributions 
remains challenging because the shape and the scale of landscape e�ects are  unknown4 and can be missed 
if assessed at an incorrect  scale5. �e studied data usually contains georeferenced observations at point sites, 
named response variables herea�er, and the description of several landscape spatial variables, named landscape 
variables herea�er. �eir studies are o�en referred to as focal patch  studies6. To identify the scale of landscape 
variable e�ects, the common approach consists of the following: (i) a priori de�ning a set of scales; (ii) creating 
summary variables by computing measures of the landscape variables within discs or rings of radii equal to 
each scale centered on the observation sites (named bu�ers herea�er); and (iii) applying a regression model to 
the response variable with the summary variables as the explanatory variables, for example, a linear model or a 
random forest  algorithm7. For each landscape variable, the scale of e�ect is then considered to be the size of the 
bu�er best explaining the response variable.

�e main disadvantage of this method is that the number of explanatory variables arti�cially increases with 
the number of spatial scales considered. One then faces a complex statistical dilemma, which is dealing with 
numerous explanatory variables that by their construction are highly correlated. Consequently, the potential 
scales chosen are o�en too few and their ranges are too  limited8. Finally, the e�ect of a landscape variable is 
modelled as uniform within the bu�er and as null outside  it9, which is unrealistic and biologically unjusti�ed 
as a continuously decreasing e�ect is  expected10. Several new methods based on distance-weighted e�ects have 
been proposed to model a distance-decreasing  e�ect11–13, but they explore a limited prede�ned set of spatial 
scales for predictors. Other methods quanti�ed the scale of landscape e�ects without an a priori choice of spatial 
 scales9,14. However, none of these methods are yet implemented in a ready-to-use so�ware.  Huais15 proposed 
a very convenient R function “multi�t” to select scales but with some limitation (it is not distance weighted, 
requires the choice of a set of scales), while calling for further developments of such a method to generalise this 
type of automated analysis. At present the analysis of landscape e�ects on population parameters (e.g. abundance 
or occurrence) therefore remains complex and the results obtained with the methods mentioned above are not 
easily comparable.

Here we present a general method for landscape e�ect analysis. We implemented this method in “siland”, a 
package for the R statistical computing environment. Based on a sequential maximum likelihood estimation 
procedure, our method improves current methods by providing the joint estimation of the e�ects of landscape 
variables as well as the spatial scales of these e�ects and by allowing comparisons between two spatial e�ects 
models. In the �rst model, Bsiland method herea�er (B for bu�er), the e�ect of a landscape variable is modeled 
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as in classic methods based on focal sample site, i.e. considered as constant over a disc centered on the observa-
tion point. But contrarily to the previous method, it does not require a �rst de�nition of tested radii since the 
optimal bu�er radii are estimated. In the second model the e�ect of landscape is based on a weighted distance, 
as in the framework proposed by  Chandler9. �e decrease in weight with distance is modeled by a Spatial In�u-
ence Function (SIF). �e parameter of the SIF de�ned the scale of e�ect of a landscape variable. In this second 
method, named Fsiland (F for function), the parameters of the SIFs are estimated for each landscape variable.

�e main functions of siland allow the user (i) to estimate the intensity of local and landscape e�ects and the 
scale parameter of each landscape variable, (ii) to test these e�ects and (iii) to plot landscape e�ects on maps. 
We exempli�ed the method and the package use by analysing the landscape e�ects of conventional and organic 
orchards on the density of codling moth larvae per apple tree.

Results
Package description. �e siland package is written entirely in the scienti�c computing language  R16. It is 
available on CRAN (https:// cran.r- proje ct. org/ packa ge= siland). �e analyses presented here were performed 
using the package siland 2.0.4.

Case study. We illustrated the abilities of siland on an example previously described and analyzed in  Ricci17: 
the study of codling moth densities, an insect pest specialized on apple orchards in the Basse Durance Val-
ley in southeastern France (see Fig. 1). �e datasets can be extracted from the package using the commands 
data(dataCmoth) and data(landCmoth). �e complete analysis script and outputs are available in 
Supplementary Information �le 1 (SI 1). dataCmoth is a data frame with two columns named X and Y con-
taining the observation locations, a column Cmoth, containing the response variable of the study (the mean 
number of codling moths in the orchards), and a column trait, describing a local variable (the number of 
insecticide treatments applied in the orchard). landCmoth is a sf object (from package  sf18) describing the 
landscape variables: conventional tree orchards (conv), organic tree orchards (org) where conv is equal to 1 if 
the land use is associated to orchard with conventional practice and 0 otherwise, and so is it for org.

Main functions. �e main functions are described in Table  1, while a full description of package func-
tions is available at https:// cran.r- proje ct. org/ web/ packa ges/ siland/ siland. pdf. �e package siland requires two 
objects containing data. �e �rst object is a data frame composed by two columns named X and Y contain-
ing the observation locations, a third column representing the response variable and eventually other col-
umns representing local variables. �e second object is a sf object describing landscape variables. It can be 
obtained directly from shape �les of landscape map by using the function st_read() of the package sf  (see 
vignette(“siland") for more details). 

Model estimation is performed using the function Bsiland() for Bsiland method and the function Fsi-
land() for Fsiland method. �e arguments of the both functions are similar: formula of the model, land 
the sf object describing landscape variables and data, the observation data frame. �e syntax of the formula 
“y ~ model” is similar to  lm() function of the stat package. In the model term of the formula, the explanatory 
variables are added using the symbol “+”. �e explanatory variables described in the data frame data are con-
sidered as local in the model, those described in the sf object land are considered as landscape variables. Local 
e�ects can be modelled as �xed or random (using the syntax (1|x), see vignette(“siland”) for more 
details). Interaction terms can be considered using the usual symbols “*” or “:”. Notice that only interactions 
between local x local and local x landscape variables are considered. Various types of response variables can 
be considered using the argument family which describes the assumed distribution of the response variable 
and can take the values "gaussian", "poisson" and “binomial” for data of continuous, counting or 
presence-absence types, respectively (and their associated link functions identity, log and logit respectively). 

Using the argument border, the spatial e�ect of landscape variable can be considered from the observation 
locations (border = F) or from the border of the polygon where observations are located (border = T) (see 
Fig. 2). For Fsiland(), the additional argument sif indicates the family of SIF chosen ”exponential” 
(by default), “gaussian” or “uniform”. 

�e object returned by the functions Bsiland() and Fsiland() displays the parameters estimation and 
a test of the global landscape e�ect. �e function summary() applied on the result object provides signi�cance 
tests of the intensity of the e�ect of explanatory variables (local or landscape).

�e two methods are based on likelihood maximization. �e functions Bsiland.lik() and Fsiland.
lik() aim to point out some optimization problems. �ey provide representations of the minus loglikelihood 
in function of bu�er radius or mean distance of the SIF, respectively (see SI Fig. 1). Values of minus loglikeli-
hood lower than the estimated one indicate that the estimation procedure did not perform correctly. In such 
cases, the estimation needs to be reiterated using di�erent initial values of e�ects scales (with argument init 
of functions Fsiland() and Bsiland()). 

Graphics outputs. �e package siland proposes various functions for graphic representation of estimated 
landscape e�ects. �e function “plotFsiland.land” displays landscape e�ect map for the estimations of 
the Fsiland method (Fig. 3). �e in�uence of each landscape variable is plotted over all the study area. �e global 
in�uence of the landscape, i.e. the sum of the e�ects of all landscape variables can also be plotted. �e function 
plotBsiland.land() displays landscape e�ect map for the estimation of the Bsiland method (Fig. 2). For 
each landscape variable, the estimated area of e�ect (bu�er of estimated radius) is plotted around each observa-
tion locations. �e color of the area represents the estimated intensity of the e�ect i.e. the e�ect value multiplied 
by the proportion of the landscape variable in the area of e�ect.

https://cran.r-project.org/package=siland
https://cran.r-project.org/web/packages/siland/siland.pdf
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Figure 1.  Map of the observations in the study site and the estimated spatial in�uence functions (SIFs). 
�e �gure A is obtained with plotFsiland(resF,landCmoth,data = dataCmoth). Black points 
represent locations of response variable observations. Yellow and blue squares are the pixels where conventional 
and organic orchards respectively are present. At the right margin, the light and dark discs represent area of 
medium in�uence and signi�cant in�uence, respectively. Blue and yellow discs represent conventional and the 
organic orchards, respectively. �e �gure B is obtained with plotFsiland.sif(resF). �e blue and 
orange lines represent the estimated SIF for the organic and conventional orchards, respectively. �e vertical 
lines represent the SIF mean.

Table 1.  Main functions of siland package. Detailed information about these functions are given in https:// 
cran.r- proje ct. org/ web/ packa ges/ siland/ siland. pdf.

Functions for bu�er approach Functions for approach with SIF Description

Bsiland Fsiland
Estimation of model parameters for local and landscape variables 
and for scale of landscape e�ects

Bsiland.lik Fsiland.lik
Graphical representation of pro�led likelihood function of scales of 
e�ect of landscape variables

plotBsiland.land plotFsiland.land Graphical representation of landscape e�ects

plotFsiland.sif Graphical representation of the spatial in�uence functions

summary
Summary gives estimates and values for tests (similar to summary.
lm and summary.glm)

AIC AIC value of the estimated model

BIC BIC value of the estimated model

residuals Vector of residual values for the estimated model

�tted Fitted values of the estimated model

https://cran.r-project.org/web/packages/siland/siland.pdf
https://cran.r-project.org/web/packages/siland/siland.pdf
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Interpreting spatial in�uence functions (SIF). �e SIF function describes how the in�uence of a pixel/cell of 
a landscape variable is spatially distributed. We assume that the in�uence is maximal at the pixel location and 
decreases with the distance. �e greater the estimated mean distance of the SIF, the greater the scale of e�ect 
of the landscape variable. �e estimated SIF can be displayed using the function plotFsiland.sif() (see 
Fig. 1). �e function Fsiland.quantile() allows to quantify the area of medium in�uence and signi�cant 
in�uence of a landscape variable, that we de�ned as the disc containing 50% and 95% of the in�uence of the 

Figure 2.  Maps of the predicted e�ect estimated by the Bsiland method obtained with the function 
plotBsiland.land(). �e bu�er model was estimated using the command:  resB2 =   Bsi lan d(C 
m oth ~ t rait +  conv + or g ,la nd  = l an d Cmo th, dat a =  d ata Cmo th,border = border ).  � 
e colored area represents  th e b u�er around  ea ch  observation location estimated for the organic orchards 
e�ect. At the bottom margin, the bar color gives the e�ect intensity. Bu�ers are modeled in graphic A, from 
the observation locations (border = FALSE) and in graphic B from the border of the orchard of each 
observation(border = TRUE). 

Figure 3.  Maps of the predicted e�ect estimated by the Fsiland method obtained with the 
function plotFsiland.land(). �e SIF model was estimated using the command: 
resF = Fsiland(Cmoth ~ trait + conv + org, land = landCmoth,data = dataCmoth). �e three 
maps A, B and C were obtained with the command plotFsiland.land(resF, land = landCmoth, 
data = dataCmoth, var = var), var equal to 1,2 and 0 respectively. �e black points represent 
locations of response variable observations. In graphics A and B, the gray points are the pixels where 
conventional and organic orchards are present, respectively. �e response surface represents the cumulative 
e�ect of the conventional orchards in graphic A, the organic orchards in graphic B and the global landscape in 
graphic C. At the bottom margin, the bar color gives the e�ect intensity. In the �gure A, conventional orchards 
had negative e�ects at large scale. In �gure B, organic orchards had positive e�ects positive e�ects at small scale. 
In �gure C, global landscape had an overall negative e�ect except on spotty areas.
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SIF (neglecting 50% and 5% of its broader e�ect) respectively.  �ey can be compared to the landscape variables 
distribution in the study area using function plotFsiland() (see Fig. 1). Note that a Fsiland model with an 
uniform SIF is similar to Bsiland model. However, in siland package the Bsiland() function calculates the 
exact percentage of the landscape variable in bu�ers, when Fsiland() is based on an approximation, i.e.  the 
rasterization of the landscape. As a consequence, the estimation with Fsiland is o�en faster than with Bsiland but 
may be erroneous if the de�nition of the raster is not precise enough.   

Conclusion
Estimating scales of e�ect of landscape variables currently remains a great challenge, and consequently so does 
the estimation of landscape e�ect. So far no common methodology has emerged. With the siland package, we 
propose a tool that we believe is useful for all landscape ecologists who wish to investigate this type of question. 
Here, we have illustrated how with only few siland functions and limited knowledge of R, it is possible to conduct 
a reproducible and detailed study of multi-scale landscape e�ect including estimations but also tests and graphs 
illustrating the results obtained. �e “siland” package is very adaptable, it integrates two methods and can handle 
various types of data (continuous, binary, discrete..). Applications of siland in a multiyear or multisite framework 
are already available for the bu�ers method and  presented in the vignette(“siland”).  However future 
developments are still needed to handle the increasing complexity of questions and data (numerous sites, years 
and dynamic data). 

Models and methods
We consider a response variable measured at n di�erent sites denoted Yi (i stands for a site), L local variables 
which can be continuous or discrete and are denoted as xi

l (l stands for a local variable and i for a site) and K 
landscape variables denoted as zr

k (k stands for a landscape variable and r for a polygon in the landscape). In the 
Bsiland method, the e�ect of landscape variables is modelled using bu�ers with pki,δk , the percentage of the land-
scape variable k in a bu�er of radius δk and centered on site i. Since the Bsiland model is based on the generalized 
linear models framework, the expected value of the response variable Yi is modelled as follows:

where µ is the intercept, αl and βk are the e�ects of local and landscape variables, respectively.
�e Fsiland method is based on Spatial In�uence Functions (SIFs) in a similar framework to Chandler & 

Hepinstall-Cymerman 9. To simplify computations, the entire study area is not considered as continuous but 
rasterized, i.e. pixelated on a regular grid, named R. �e value of each landscape variable k at a pixel r is described 
in zr

k. For instance, if the landscape variable k is a presence/absence variable, zr
k is equal to one or zero. �e 

expected value of the response variable Yi is then modelled as follows:

where fδk(.)  is the SIF associated with the landscape variable k and di,r  is the distance between the center of pixel 
r and the observation at site i. �e SIF is a density function decreasing with the distance. �e scale of e�ect of a 
landscape variable k is calibrated through the parameter δk, the mean distance of fδk. Two families of SIF are cur-
rently implemented in the siland package, exponential and Gaussian families de�ned as fδ(d) = 2/(πδ2)exp(-2d/δ) 
and fδ(d) = 1/(2δ)2exp(-π(d/2δ)2),  respectively19. �e e�ect of a landscape variable k is modelled by two param-
eters: an intensity parameter, βk describing its strength and its direction and a scale parameter, δk, describing how 
this e�ect declines with distance. Each pixel potentially has an e�ect on the response variable at any observation 
site. No set of scales of e�ects is initially determined. In Eq. 2, the sum on the regular grid R is an approximation 
of the integration on the continuous study area. �e choice of the grid de�nition is a tradeo� between comput-
ing precision and computing time. �e smallest the mesh size of the grid is, the better are the precision but the 
longer the computing time is (and the larger the required memory size is). �e parameters estimation may be 
very sensitive to this mesh size. To obtain a reliable estimation, we recommend to ensure, a�er the estimation 
procedure, that mesh size is at least three times smaller than the smallest estimated SIF (see Supplementary Fig. 
S2 online for details). If not, it is recommended to proceed with a new estimation with a smaller mesh (by using 
the wd argument of the Fsiland function, set at 30 by default).

All parameters, µ, {α1,…, αK}, {β1,…, βK}  but also {δ1,…, δK} are simultaneously estimated by likelihood 
maximization for both Bsiland and Fsiland methods. We have developed a sequential algorithm. At the initiali-
zation stage, values are arbitrarily de�ned for the {δ1,..,δK} scales parameters. In step A, the µ, {α1,.., αK}, {β1,.., βK} 
parameters are estimated using the classical maximization procedures implemented in the lm and glm functions 
knowing the �xed values of the scale parameters. In step B, the scale parameters are estimated by likelihood 
maximization knowing the parameters estimated in step A. �e values of the scale parameters are then �xed at 
the new estimated values. Steps A and B are thus repeated until the relative increase in likelihood decreased below 
a threshold or the maximum number of repetitions is reached. Tests performed (obtained using the summary 
function) are similar to those given by summary.lm or summary.glm function (see R Core  Team16 for 
details, this implies that tests are given conditionally to the estimated scale parameters.).
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