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Abstract

Reactive local algorithms are distributed algorithms which suit the needs of battery-
powered, large-scale wireless ad hoc and sensor networks particularly well. By avoiding
both unnecessary wireless transmissions and proactive maintenance of neighborhood
tables (i.e., beaconing), such algorithms minimize communication load and overhead, and
scale well with increasing network size. This way, resources such as bandwidth and energy
are saved, and the probability of message collisions is reduced, which leads to an increase
in the packet reception ratio and a decrease of latencies.

Currently, the two main application areas of this algorithm type are geographic routing
and topology control, in particular the construction of a node’s adjacency in a connected,
planar representation of the network graph. Geographic routing enables wireless multi-hop
communication in the absence of any network infrastructure, based on geographic node
positions. The construction of planar topologies is a requirement for efficient, local
solutions for a variety of algorithmic problems.

This thesis contributes to reactive algorithm research in two ways, on an abstract level,
as well as by the introduction of novel algorithms :

For the very first time, reactive algorithms are considered as a whole and as an
individual research area. A comprehensive survey of the literature is given which lists
and classifies known algorithms, techniques, and application domains. Moreover, the
mathematical concept of O- and Ω-reactive local topology control is introduced. This
concept unambiguously distinguishes reactive from conventional, beacon-based, topology
control algorithms, serves as a taxonomy for existing and prospective algorithms of this
kind, and facilitates in-depth investigations of the principal power of the reactive approach,
beyond analysis of concrete algorithms.

Novel reactive local topology control and geographic routing algorithms are introduced
under both the unit disk and quasi unit disk graph model. These algorithms compute
a node’s local view on connected, planar, constant stretch Euclidean and topological
spanners of the underlying network graph and route messages reactively on these spanners
while guaranteeing the messages’ delivery. All previously known algorithms are either
not reactive, or do not provide constant Euclidean and topological stretch properties. A
particularly important partial result of this work is that the partial Delaunay triangulation
(PDT) is a constant stretch Euclidean spanner for the unit disk graph.

To conclude, this thesis provides a basis for structured and substantial research in
this field and shows the reactive approach to be a powerful tool for algorithm design in
wireless ad hoc and sensor networking.
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Zusammenfassung

Reaktiv lokale Algorithmen sind verteilte Algorithmen, die den Anforderungen großer,
batteriebetriebener, Drahtloser Ad Hoc und Sensornetzwerke im besonderen Maße gerecht
werden. Durch Vermeidung überflüssiger Nachrichtenübertragungen sowie Verzicht auf
proaktive Ermittlung von Nachbarschaftstabellen (d.h. beaconing) minimieren solche
Algorithmen den Kommunikationsaufwand und skalieren gut bei wachsender Netzgröße.
Auf diese Weise werden Ressourcen wie Bandbreite und Energie geschont, es kommt
seltener zu Nachrichtenkollisionen und dadurch zu einer Erhöhung der Paketempfangsrate,
sowie einer Reduktion der Latenzen. Derzeit wird diese Algorithmenklasse hauptsächlich
für Geografisches Routing, sowie zur Topologiekontrolle, insbesondere zur Ermittlung
der Adjazenzliste eines Knotens in zusammenhängenden, kantenschnittfreien (planaren)
Repräsentationen des Netzgraphen, eingesetzt. Ersteres ermöglicht drahtlose multi-hop
Kommunikation auf Grundlage von geografischen Knotenpositionen ohne Zuhilfenahme
zusätzlicher Netzwerkinfrastruktur, wohingegen Letzteres eine hinreichende Grundlage
für effiziente, lokale Lösungen einer Reihe algorithmischer Problemstellungen ist.

Die vorliegende Dissertation liefert neue Erkenntnisse zum Forschungsgebiet der reak-
tiven Algorithmen, zum Einen auf einer abstrakten Ebene und zum Anderen durch die
Einführung neuer Algorithmen.

Erstens betrachtet diese Arbeit reaktive Algorithmen erstmalig im Ganzen und als
eigenständiges Forschungsfeld. Es wird eine umfangreiche Literaturstudie zu dieser The-
matik präsentiert, welche die aus der Literatur bekannten Algorithmen, Techniken und
Anwendungsfelder systematisch auflistet, klassifiziert und einordnet. Weiterhin wird das
mathematische Konzept der O- und Ω-reaktiv lokalen Topologiekontrolle eingeführt. Dieses
Konzept ermöglicht erstmals die eindeutige Unterscheidung reaktiver von konventionel-
len, beacon-basierten, verteilten Topologiekontrollalgorithmen. Darüber hinaus dient es
als Klassifikationsschema für existierende, sowie zukünftige Algorithmen dieser Art. Zu
guter Letzt ermöglicht dieses Konzept grundlegende Aussagen über die Mächtigkeit des
reaktiven Prinzips, welche über Entwurf und Analyse von Algorithmen hinaus reichen.

Zweitens werden in dieser Arbeit neue reaktiv lokale Algorithmen zur Topologiekontrolle
und Geografischem Routing eingeführt, wobei drahtlose Netze durch Unit Disk bzw. Quasi
Unit Disk Graphen modelliert werden. Diese Algorithmen berechnen für einen gegebenen
Knoten die lokale Sicht auf zusammenhängende, planare, Euklidische bzw. Topologische
Spanner mit konstanter Spannrate bzgl. des Netzgraphen und routen Nachrichten reaktiv
entlang der Kanten dieser Spanner, wobei die Nachrichtenauslieferung garantiert wird.
Alle bisher bekannten Verfahren sind entweder nicht reaktiv oder gewährleisten keine
konstanten Euklidischen oder Topologischen Spannraten. Ein wesentliches Teilergebnis
dieser Arbeit ist der Nachweis, dass die partielle Delaunay Triangulierung (PDT) ein
Euklidischer Spanner mit konstanter Spannrate für Unit Disk Graphen ist.

Die in dieser Dissertation gewonnenen Erkenntnisse bilden die Basis für grundlegende
und strukturierte Forschung auf diesem Gebiet und zeigen, dass das reaktive Prinzip ein
wichtiges Werkzeug des Algorithmenentwurfs für Drahtlose Ad Hoc und Sensornetzwerke
ist.
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Glossary of Notations

This is a summary of the most frequently used notations.
Let u, v, w ∈ R2 be three distinct and non-collinear points, V ⊂ R2 a distinct and finite

point set, and g, f two functions defined on some subset of the real numbers.

Elementary Geometric Concepts

x(u), y(u) x- and y-component of u
‖uv‖ Euclidean distance between u and v
ℓ(u, v) Straight line passing through u and v
uv Closed line segment betwen u and v
D(u, v) Closed disk corresponding to the circle whose diameter is uv
CR(u) Circle centered at u with radius R
Do

R(u) Open disk centered at u with radius R
C(u, v, w) Unique circle defined by u, v, and w
Do(u, v, w) Open disk defined by circle C(u, v, w)
duvw Diameter of circle C(u, v, w)
△(u, v, w) Triangle defined by u, v, and w
∡uvw Internal angle at v of triangle △(u, v, w)
B(u, v) Perpendicular bisector of line segment uv
H(u, v) Closed half-plane defined by B(u, v) and containing u
Hw(u, v) Open half-plane defined by ℓ(u, v) and containing w

Geometric Graphs and Computational Geometry

UDG(V ) Unit disk graph over set V (see Definition 2.1)
QUDG(V ) Quasi unit disk graph over set V (see Definition 2.2)
VD(V ) Voronoi diagram of V (see Definition 2.16)
VRV (u) Voronoi region of u ∈ V w.r.t. VD(V ) (see Definition 2.16)
Del(V ) Delaunay triangulation over V (see Definition 2.17)
RNG(V ) Relative neighborhood graph over V (see Definition 2.19)
GG(V ) Gabriel graph over V (see Definition 2.20)
PDT(V ) Partial Delaunay triangulation over V (see Definition 3.1)
NG

k (u) Set of nodes reachable from node u via k hops in graph G including u itself
(superscript G is ommitted if it is clear from context)

Asymptotic Growth of Functions [1]

O(g(n)) = {f(n) : ∃ c > 0, n0 > 0 s.t. 0 ≤ f(n) ≤ c · g(n), ∀n ≥ n0}
Ω(g(n)) = {f(n) : ∃ c > 0, n0 > 0 s.t. 0 ≤ c · g(n) ≤ f(n), ∀n ≥ n0}
Θ(g(n)) = {f(n) : ∃ c1, c2 > 0, n0 > 0 s.t. 0 ≤ c1 · g(n) ≤ f(n) ≤ c2 · g(n), ∀n ≥ n0}

xiii





Chapter 1

Introduction

Wireless ad hoc networks are decentralized networks that do not require any fixed network
infrastructure. Network nodes communicate directly using wireless transceivers. Due to
restricted hardware and energy resources, the network nodes’ communication ranges are
limited. Communication between distant nodes is achieved via multi-hop routing, where
each node simultaneously acts as a router as well as an end system. Wireless ad hoc
networks are intended for deployment in areas where it is impossible or undesirable to set
up wireless networking infrastructures as required, e.g., by cellular or wireless local area
networks.

Wireless sensor networks are ad hoc networks, where the network nodes are small and
low-cost computers, equipped with additional sensing capabilities. Such networks are
designed for fast and easy access to physical world data and phenomena and have a wide
range of applications such as environmental monitoring (see [2–5] for more examples).

Bandwidth and energy are scarce resources in such networks [6]. The wireless trans-
mission of a message is a particularly costly operation regarding both of these resources.
Completing tasks with as few message transmissions as possible is rewarding: it saves
resources and alleviates typical wireless networking problems such as message collisions
and interference. To put it in a nutshell: Silence is golden in wireless ad hoc and sensor
networks [7, 8]. However, the inherent purpose of such networks is—of course—the com-
munication of data. Therefore, this principle must be understood as replacing unnecessary
transmissions and communication overhead by silence.

This is the rationale of reactive (aka beaconless) algorithms. They consistently avoid
unnecessary message transmissions and communication overhead: Unless there is an event
to handle, the network nodes keep silent and do not even determine their immediate
network neighborhoods. In the case of an event, using “blind” local broadcasts and
contention mechanisms, exactly those nodes are requested to actively participate by
sending of messages, which are actually necessary to handle this event. All other nodes
remain silent. This way, in total fewer messages are transmitted compared to conventional
distributed approaches.

The overall objective of this thesis is the advancement of the reactive approach and
reactive algorithms research as a whole, as well as the design of novel reactive algorithms
for topology control and geographic routing in wireless ad hoc and sensor networks.

This objective is motivated in detail and further specified in Sections 1.1 & 1.2.
Section 1.3 summarizes the contributions of this thesis. In Sections 1.4 & 1.5, own
publications used in this work are listed and an outline of this thesis is given.
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Chapter 1 Introduction

1.1 Motivation

Scalability and resource efficiency are two major challenges in realizations of wireless ad
hoc and sensor networks [3, 6] and have to be taken into account in algorithm design.

Existing networks already consist of thousands of nodes [9] and perspectively this
number could significantly increase in the future [10]. Therefore, algorithms for such
networks have to scale well with increasing network size in terms of number of nodes.

Resource efficiency is of importance due to the limited resources, in particular regarding
energy and network bandwidth [6]. Common approaches to conserve energy resources
of nodes are, e.g., to operate the nodes’ transceivers at low duty cycle, i.e., to turn off
the transceivers while they are not required [2], and dynamic adaption of transmit power
(see [11] for a survey on energy saving strategies). Bandwidth can be saved by reducing
the overall communication load on the network. This can be achieved by reducing
communication overhead and improving the message efficiency of the algorithms in use.
The latter can be measured, for example, as the total number of message transmissions
required for a specific operation.

Increasing message efficiency of operations, and more generally, reducing the overall
communication load on the network is rewarding: A lesser number of message transmissions
helps to reduce interference in the network, decreases the probability of collisions, and
therefore, aids in increasing the packet reception ratio and to lowering latencies.

At least with respect to message efficiency and scalability, the use of local algorithms is
predestined in wireless ad hoc and sensor networks. A distributed algorithm is said to be
k-local if its execution by a node relies on information about the network topology that can
be gathered from those nodes that are at most k hops apart from it. An algorithm is said
to be local if it is k-local for some constant k. Local algorithms scale well with increasing
network size because topological changes in the network, such as (dis)appearances of
nodes and communication links between them, affect only nodes in the proximity of this
change. They do not have to be communicated across the entire network, which would
impose significant costs regarding the number of message transmissions in the order of
the network’s size.

In local algorithm design it is typically assumed that nodes are provided with complete
k-hop neighborhood information, for some constant k ≥ 1. That is, it is assumed
that nodes know the addresses (geographic positions) and possibly adjacencies of all
nodes that are at most k hops apart from them in the network graph. For a node to
know its entire one-hop neighborhood information presupposes at least that each such
neighbor has announced its existence via transmission of some “HELLO”-message, called
a beacon. The periodic sending of such beacons for maintaining nodes’ neighborhood
information is referred to as beaconing [4]. Given that each node is provided with its
one-hop neighborhood information, it is easy to provide nodes with their complete k-hop
neighborhood information, for k > 1, by letting them successively announce their i-hop
neighborhoods for i = 1..k − 1. However, beaconing and in particular gathering of full
k-hop neighborhood information, for k > 1, by all network nodes is a problematic process.
Transmission, reception, and processing of beacons consumes additional energy. These
transmissions interfere with regular data transmissions and therefore, increase the number

2



1.1 Motivation

of collisions, which causes additional retransmissions. In addition, beaconing introduces
additional control overhead, which reduces the available bandwidth for user data [12].
Lastly, gathering full neighborhood information takes a long time. Especially in highly
dynamic networks, beaconing often fails to provide a node with current and correct
neighborhood information, which is undesirable, because inaccurate neighborhood tables
are the main source of packet loss in uncongested networks [12].

An additional key observation regarding message efficiency of local algorithms is that
maintenance of complete neighborhood information by the nodes is simply superfluous
for solving certain problems. For instance, in the case of local routing, it is absolutely
sufficient if the node currently holding the packet determines the existence of exactly one
suitable next-hop neighbor. Beacons transmitted by less or even unsuitable neighbors can
be saved without losing relevant information for the routing decision, which positively
affects the message efficiency of the routing process.

The above observations have recently led to the research field of reactive algorithms1 [14]
(also referred to as beaconless [16] or contention-based [17] algorithms), which is the primary
object of study of this thesis.

Reactive algorithms are characterized by the following principles. Algorithm execution
can be started by any node instantaneously at any given point in time. In particular, the
execution neither includes nor relies on any proactive component such as beaconing. Hence,
on algorithm start, the executing node is completely unaware of its network neighborhood
or any other topological information except for its local node knowledge such as its address
(typically its geographic position). Reactive algorithms take advantage of the wireless
channel’s property that the transmission of a message from a node to all of its neighbors
does not presuppose any knowledge of them. Therefore, the algorithm execution starts
with a “blind” local broadcast by the executing node, possibly containing parts of its local
node knowledge. Based on this information and their own local knowledge, neighboring
nodes overhearing the transmission either decide to stay passive and not to respond at all,
or to join a timer-based contention. During this contention, nodes that are more eligible
to solve the problem at hand respond earlier than others. Based on overheard earlier
responses, some nodes resign from the contention and also become passive. Ultimately,
only a few eligible neighbors have responded. For this reason, reactive approaches are
advantageous compared to conventional, beacon-based approaches regarding message
efficiency, because in beacon-based approaches neighbors always transmit a message,
regardless of their eligibility.

Adherence to the reactive principle improves message efficiency (by reducing the total
number of message transmissions, as well as by avoidance of control overhead imposed
by beaconing) and helps to reduce the energy consumption of nodes in comparison to
conventional, beacon-based approaches. Apart from theoretical worst-case scenarios, this
has been shown empirically in various simulation studies (see e.g., [18–22], just to name a
few), as well as in actual testbed experiments (see e.g., [23–25]).

1 In literature on algorithmic aspects of ad hoc and sensor networking, an algorithm is often simply said
to be reactive if it can be executed on demand, e.g., in [13]. It is important to note that the term
reactive algorithm as used previously in [14,15] as well as in this thesis is more meaningful and, hence,
should not be confused with the aforementioned meaning.

3



Chapter 1 Introduction

Nevertheless, it is important to note that reactive algorithms are not per se more
energy efficient than conventional distributed algorithms that make use of complete
neighborhood information. At least for small transmit powers, the transmit and receive
modes of a transceiver consume power in the same order of magnitude [3]. Although
reactive algorithms often significantly reduce the number of message transmissions, during
the contention phase the nodes’ transceivers still have to operate in receive mode in order
to facilitate overhearing; hence, considerable amounts of energy are consumed.

However, there are numerous examples [24,26–34] which show that the reactive approach
can be further complemented with the aforementioned energy-saving techniques such
as duty-cycling and dynamic transmit power adaption to further improve the energy
efficiency. On top of that, reactive algorithms distinguish themselves by reducing the
overall communication load on the network, which is by itself a highly desirable goal for
the reasons given above.

The two main application areas of the reactive approach are currently topology control
and geographic routing.

Topology control refers to the transformation of a given network graph into a graph
(target topology) which satisfies certain desirable properties. A topology algorithm is
local if it is a k-local algorithm for some constant k. The task of a reactive topology
control algorithm is to generate a node’s local view on its incident edges in the target
topology on demand and without prior determination of this node’s neighborhood in the
network graph.

There are various aspects and goals of topology control algorithms (see [3, 6] for
summaries). In the context of wireless sensor networks, connectivity and stretch factor
are among the most important characteristics of topology control algorithms, apart from
low computational and communication overhead [3].

First of all, a topology control algorithm should not disconnect a formerly connected
network graph, but should always maintain the graph’s connectivity. Secondly, it should
not stretch pairwise node distances too much. Given a connected graph G = (V,E) and
a connected, spanning subgraph H = (V,E′ ⊂ E) of G, the stretch factor (or spanning
ratio) of H w.r.t. G refers to the maximum factor by which the length of the shortest path
(measured, e.g., in terms of number of hops or Euclidean length) between any two nodes
in G is stretched compared to the shortest path in H . If the stretch factor is bounded by
a constant, H is referred to as a spanner. A spanner is referred to as a topological spanner
if path length is measured in terms of number of hops. If G is a network graph embedded
in the plane and the length of a path is defined by the sum of the Euclidean lengths of its
constituting edges, then a spanner is referred to as a Euclidean spanner.

Many algorithmic challenges in wireless ad hoc and sensor networking can be solved
efficiently by means of local and localized algorithms2, provided that the network graph is
planar. Given an embedding of the network graph in the plane, a graph is said to be planar
if in its straight line drawing, edges intersect only in their endpoints (see Definition 2.9).

2 For a concise distinction between these terms see Section 2.2.
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Given a connected and planar network graph, the following problems can be efficiently
solved using known local(ized) algorithms:

• Guaranteed delivery geographic routing [35–38], multicast [39–42]), geocast [43],
anycast [44], mobicast [45], and broadcast [46, 47]

• Communication void and boundary detection [48]

• Degree-limited localized bluetooth scatternet formation [49, 50]

• Efficient construction of geographic overlays [51]

• Distributed data storage based on geographic hashing [52,53]

• Tracking of mobile objects by nearest sensor nodes [54]

• Localized address autoconfiguration [55]

• Coordination of mobile sensors [56]

The problem is that wireless network graphs are typically not planar. Therefore, to
solve these problems correctly in a local manner, the nodes require local topology control
algorithms for computation of their adjacencies in planar and connected topologies. In
addition, for all of the aforementioned problems and algorithmic solutions, Euclidean or
topological spanners are strongly preferred: (1) All of the routing applications [35–47]
can route a message along a short path, consisting of a few hops or covering a short
Euclidean distance, only if such a path is guaranteed to exist. (2) The principle of node
aggregation, used in [51] for the construction of geographic overlays, approximates shortest
path distances well, only if the planar topology over which it is constructed does so. (3)
In localized address autoconfiguration [55], the use of planar topological spanners leads
to fewer addressing agents. (4) When using planar Euclidean spanners in [54], closer
approximations of the Euclidean distance to the tracked object can be obtained.

In order to reduce the costs (in terms of number of message transmissions and control
overhead) incurred by such topology control operations, it is strongly desirable to design
topology control algorithms that are both local and reactive.

It can be summarized that the reactive local construction of planar Euclidean and
topological spanners has various applications and therefore, research on this subject is
of actual importance. However, the current state of research regarding this problem
statement is deficient. On the one hand, there are local algorithms (surveyed in Chapter 3)
for construction of planar, constant stretch Euclidean and topological spanners, but these
algorithms are not reactive. On the other hand, there are reactive topology control
algorithms (surveyed in Chapter 4) for construction of planar graphs, but these graphs are
not constant stretch Euclidean or topological spanners. Furthermore, there is no coherent
conception of the class of reactive topology control algorithms. This circumstance not only
complicates comparison of known and prospective results, but also hinders the derivation
of fundamental propositions in this research field that go beyond algorithm design and
analysis. These observations are the motivation for the first two research objectives of
this thesis, which are presented shortly.
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Geographic routing is the other central object of investigation in reactive algorithms
research. Generally, geographic routing refers to the step-by-step forwarding process
of a message from a source to a destination, based on geographic node positions. It
presupposes that nodes are provided with their geographic positions and that the source is
provided with a priori knowledge on the destination’s geographic position. A deterministic
geographic routing algorithm is said to guarantee delivery, if the packet always reaches its
destination after a finite number of routing steps; it is said to be local if it is a k-local
algorithm for some constant k; and it is stateless, if at most a constant number of node
addresses are allowed to be stored in the packet header and nodes do not have to store
previous routing decisions. In reactive geographic routing, the forwarding decision of a
node has to be taken on demand and without determination of this node’s neighborhood
in the network graph.

Known local and stateless geographic routing algorithms that guarantee message
delivery are based on the ideas of planar graph routing, such as FACE routing [36,57] (see
Section 2.3 for details). In order to guarantee the message delivery in case of a network
void, local topology control is used to route the packet along faces of a planar subgraph
of the underlying network graph. To avoid unnecessary routing hops and detours, it
is desirable that the planar graph provides constant topological and Euclidean stretch
properties, respectively.

Concerning reactive geographic routing, the strategy to first determine a node’s local
view on a connected, planar, constant stretch spanner, and then to select the next
forwarding edge based on this local view is not message-efficient. It is much more efficient
to determine reactively only the most suitable forwarding edge, as this saves unnecessary
message transmissions. However, as in the case of topology control, the state of research
in geographic routing is incomplete. On the one hand, there are guaranteed delivery,
local geographic routing algorithms that route packets along edges of constant stretch
Euclidean and topological spanners, but these algorithms are not reactive. On the other
hand, all existing guaranteed delivery, reactive geographic routing protocols use edges of
graphs whose Euclidean and topological stretch factors are either unknown, or known to
be non-constant. This research gap constitutes the third of the three main objectives of
this thesis, which are presented next.

1.2 Research Objectives

Based on the above motivation, in particular the gaps and open questions in the current
state of research specified therein, the three main objectives and research questions of
this thesis can be summarized as follows.

Objective 1: Foundation of reactive local topology control The goal is to generalize
and formalize the class of reactive topology control algorithms as well as the underlying
problem statement. These formalizations should

• unambiguously distinguish reactive from conventional, beacon-based, distributed
topology control algorithms,
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• serve as taxonomy for all existing and prospective algorithms of this kind, and

• facilitate in-depth investigations of the general power of the reactive approach.

Objective 2: Reactive algorithms for construction of planar spanners Based on
commonly used and appropriate model assumptions of wireless ad hoc and sensor networks,
the goal is to design mathematically correct, reactive local topology control algorithms,
for construction of a node’s local view (adjacency) on connected, planar, constant stretch
spanners of the underlying network graph.

Objective 3: Reactive geographic routing on planar spanners Based on commonly
used and appropriate model assumptions of wireless ad hoc and sensor networks, the
goal is to design mathematically correct, guaranteed delivery reactive geographic routing
algorithms that route the message along edges of a constant stretch spanner, without
prior construction of each node’s local view on this spanner.

The spanner property addressed in Objectives 2 & 3 should be achieved in terms of
topological or Euclidean path length for the reasons given in the motivation.

There are numerous models for wireless ad hoc and sensor networks. Regarding
algorithmic aspects of such networks, the most prevalent models are the unit disk or
quasi unit disk graph. For reasons of simplicity and compatibility with prior work in this
area, these models shall be used for the above research questions. For a more detailed
discussion and additional arguments in favor of this choice, see Section 2.1.

1.3 Summary of Contributions

In the following, the contributions of this thesis are listed in their order of appearance. A
discussion to which extent these contributions match the afore-stated research objectives
is part of the conclusion in Chapter 10.

Survey on local(ized) planarization techniques and spanner construction - Chapter 3
This survey systematically and comprehensively reviews local and localized techniques for
planarization and construction of planar spanners under unit disk and quasi unit disk graph
model assumptions. For both graph classes, the individual approaches are categorized
into groups with common modes of operation. Due to the quantity of publications dealing
with unit disk graph planarization, only those approaches which actually output planar
graphs are listed. There are fewer publications dealing with quasi unit disk graphs. This
allows to present also those approaches that construct spanners which are not necessarily
planar. A tabular taxonomy for both graph classes is provided that enables comparison
of the individual approaches.

Although there are several survey papers, textbooks, and textbook chapters on spanner
constructions [58–61], all of these cover the approaches listed here only in parts and have
different foci. Therefore, this survey and its taxonomies are novel and an individual
contribution of this thesis.
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Survey on beaconless algorithms - Section 4 This survey systematically and compre-
hensively reviews beaconless algorithms. It is not limited to beaconless algorithms that
directly relate to the algorithmic contributions given in this thesis, but shall provide a
more general overview on this research field.

The individual algorithms are categorized according to their objectives. If applica-
ble, the algorithms are further grouped into subcategories according to their modes of
operation and/or specific objectives. A generalized mode of operation is extracted and
described, whenever possible. Furthermore, tabular taxonomies are presented that allow
for comparison of related approaches.

To the best of the author’s knowledge, this algorithm class has not yet been surveyed as
a whole and no taxonomies are available. Hence, this is a novel and individual contribution
of this thesis.

Concept of O- and Ω-reactive topology control - Chapter 5 This concept mathemat-
ically formalizes and generalizes the formerly imprecise notion of reactive (aka beaconless)
topology control and its underlying problem statement.

Distributed message complexity is used as a means to define the classes of O- and
Ω-reactive topology control algorithms. These classes enable the distinction of reactive
from conventional, beacon-based, distributed algorithms, and facilitate classification of
reactive algorithms. The application to existing approaches yields a taxonomy which
reveals research gaps and peculiarities of the current state of research. Furthermore, based
on these formalisms, two fundamental propositions regarding the reactive computability
of standard topology control structures are proven. That is, this contribution does not
merely serve as a tool for classification of algorithms, but also constitutes a theoretical
foundation for in-depth investigation of this algorithm classes’ principal power.

Both the fundamental propositions as well as the classification scheme are used through-
out this thesis to analyze and discuss the quality of reactive topology control approaches
that are introduced in this work.

Euclidean spanning ratio of the partial Delaunay triangulation - Section 6.1 It is
proven that the partial Delaunay triangulation (PDT) applied on a connected unit disk
graph yields a connected, planar, constant stretch Euclidean spanner, whose spanning
ratio is at most 1+

√
5

4 · π2. This result finally answers the formerly open question of
whether PDT is a constant stretch Euclidean spanner for the unit disk graph. Some
authors [59, 62–65] have stated this to be unknown, whereas others [66, 67] have even
claimed that PDT is not a constant stretch spanner at all.

This result is obtained by showing that PDT is equivalent to the partial unit Delaunay
triangulation (PuDel), which was recently proven to be a (1+

√
5

4 · π2)-Euclidean spanner
for the unit disk graph [62]. Part of the contribution presented here is a completed and
simplified version of the proof given in [62].

Proving PDT to have a constant Euclidean spanning ratio has several implications,
which are listed as part of that section’s discussion.
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O-reactive local construction of planar Euclidean unit disk spanners - Section 6.2
The O-reactive local topology control algorithm reactivePDT (rPDT) is introduced and
proven to be correct. Executed by any node from a given unit disk graph, it computes
this node’s adjacency in the partial Delaunay triangulation, which is a constant stretch
Euclidean spanner for the unit disk graph.

So far only reactive local algorithms for construction of planar non-spanners have been
known. This contribution positively answers the open question, if planar spanners can
be constructed reactively at all [14, 15,68]. In addition, this is the first reactive topology
control approach that does not require sending additional protest messages, which makes
it a message optimal algorithm.

Guaranteed delivery reactive geographic routing on unit disk spanners - Chapter 7
The fact that the partial Delaunay triangulation (PDT) is a constant stretch Euclidean
spanner for the unit disk graph leads to several related contributions regarding guaranteed
delivery reactive geographic routing. First of all, it is shown that with Rotational
Sweep [15,68,69] in Sweep Circle mode (RS-SC), a guaranteed delivery, reactive geographic
routing protocol which uses only edges of Euclidean unit disk spanners already exists. This
result is obtained by showing that RS-SC recovery paths coincide with the corresponding
PDT face traversals. The second contribution is an analysis of RS recovery path properties.
Examples are given where RS performs particularly badly, when looking at the hop instead
of the Euclidean metric. These considerations ultimately lead to the third contribution:
the guaranteed delivery, reactive geographic routing protocol RS-Shortcut. Routing paths
produced by this algorithm use at most as many hops as those produced by RS-SC, skip
arbitrarily many unnecessary hops, and use only edges of PDT. At the same time this
algorithm requires at most a constant number of message transmissions per forwarding
step. With respect to these theoretical guarantees, RS-Shortcut is currently the most
advanced reactive geographic routing protocol.

Ω-reactive local construction of planar topological quasi unit disk spanners and re-
active geographic routing thereon - Chapter 8 The Ω-reactive local topology control
algorithm ReactiveBackbone is introduced and proven to be correct. Executed by any node
from a quasi unit disk graph, satisfying that the ratio of the maximum to the minimum
communication radius is bounded by

√
2, this algorithm computes the node’s local view

on a connected routing graph whose topological spanning ratio is bounded by a constant.
This routing graph consists of two parts: a planar backbone graph whose planarity is
achieved by replacing edge intersections by virtual nodes, and one edge per non-backbone
node connecting it to the backbone. It can be extended by means of algorithm rPDT in
order to also guarantee constant Euclidean stretch properties.

ReactiveBackbone is the first local algorithm designed for the construction of a node’s
local view on a quasi unit disk graph spanner and, in particular, it is the first reactive
approach. All previous techniques are designed for network-wide operation or require
additional assumptions. Moreover, all previous approaches are conventional, beacon-based
approaches. Regarding its message-complexity the algorithm is worst-case optimal up to
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constant factors and outperforms any beacon-based counterpart. The routing graph and
the virtual planar backbone itself are not novel, but were introduced previously in [70,71].
As a part of this contribution, however, it is shown that these graphs are generated by a
k-local topology mapping, for k = 8.

Based on these results and algorithm Virtual-Face-Traversal [72, 73] the guaranteed
delivery, reactive geographic routing algorithm Reactive-Virtual-Face-Traversal is intro-
duced. It is the first reactive geographic routing algorithm which routes messages along
the edges of a constant stretch Euclidean and topological spanner under the given model
assumptions.

Asynchronous planarization of quasi unit disk graphs - Chapter 9 The final contri-
bution of this thesis is a digression on planarization and guaranteed delivery geographic
routing on quasi unit disk graphs in the absence of any node synchronization. The
correctness of reactive algorithms heavily relies on perfect synchronization as well as on
reliable and instantaneous transmissions. Therefore, such algorithms fail in completely
asynchronous networks. As a first step to remedy this situation, algorithm AsyncPDT is
introduced and proven to be correct. If executed by all nodes of a connected quasi unit
disk graph, satisfying that the ratio of the maximum to the minimum communication
radius is bounded by

√
2, a connected and planar overlay graph is constructed that

allows for application of any guaranteed delivery geographic routing algorithm. At first,
virtual edges are added. Afterwards, this supergraph is planarized by means of the
partial Delaunay triangulation (PDT). The output graphs of AsyncPDT are denser than
those from related approaches. Furthermore, it is shown that for the class of civilized
graphs, AsyncPDT can be transformed into a local algorithm, which can be used for local
topology control and, therefore, is a good starting point for reactive algorithms research
in asynchronous systems.

1.4 Own Publications Used in this Thesis

The contributions presented in this thesis are mainly based on the following publications
by the author. Contents and parts of these particular papers, such as verbatim quotations,
ideas, explanations, descriptions, proofs, figures, and tables have been taken over without
additional and explicit citation.

F. Neumann and H. Frey, “On the Spanning Ratio of Partial Delaunay Triangulation,” in
Proc. of the 9th IEEE Intl. Conf. on Mobile Ad-hoc and Sensor Systems (MASS),
LV, NV, USA, Oct. 2012, pp. 434–442. [74]

Contents: The paper proves the partial Delaunay triangulation to be a constant
stretch Euclidean spanner for the unit disk graph.

Used in: Section 6.1

Remark on authorship: The paper was authored by F. Neumann and co-authored
by H. Frey.
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M. Benter, F. Neumann, and H. Frey, “Reactive Planar Spanner Construction in Wireless
Ad Hoc and Sensor Networks,” in Proc. of the 32nd IEEE Intl. Conf. on Computer
Communications (INFOCOM), Torino, Italy, Apr. 2013, pp. 2193–2201. [75]

Contents: The paper introduces an O-reactive algorithm for construction of a node’s
adjacency in the partial Delaunay triangulation.

Used in: Section 6.2

Remark on authorship: The paper was authored by F. Neumann and co-authored
by M. Benter and H. Frey. The algorithm and its proof of correctness were jointly
derived by M. Benter and F. Neumann in the course of M. Benter’s Master’s thesis
(see reference below), which was supervised by F. Neumann and H. Frey.

M. Benter, “Reactive Message-Efficient Geographic Routing Using Partial Delaunay
Triangulation,” Master’s thesis, University of Paderborn, Germany, Oct. 2012.

F. Neumann and H. Frey, “Path Properties and Improvements of Sweep Circle Traversals,”
in Proc. of the IEEE 9th Intl. Conf. on Mobile Ad-hoc and Sensor Networks (MSN),
Dalian, China, Dec. 2013, pp. 101–108. [76]

Contents: The paper proves Sweep Circle traversals to use edges of constant stretch
Euclidean unit disk graph spanners and introduces a superior beaconless recovery
strategy.

Used in: Chapter 7

Remark on authorship: The paper was authored by F. Neumann and co-authored
by H. Frey.

F. Neumann, C. Botterbusch, and H. Frey, “Probing Message Based Local Optimization
of Rotational Sweep Paths,” in Ad-hoc, Mobile, and Wireless Networks: Proc. of
the 13th Intl. Conf. on Ad-hoc, Mobile, and Wireless Network (ADHOC-NOW),
ser. LNCS, S. Guo, J. Lloret, P. Manzoni, and S. Ruehrup, Eds. Benidorm, Spain:
Springer International Publishing, Jun. 2014, vol. 8487, pp. 58–71. [77]

Contents: The paper introduces a probing-based approach to avoid unnecessary
forwarding operations during Rotational Sweep recovery. Via mathematical analysis
and simulations it is shown to reduce energy consumption of recovery operations.

Used in: Chapter 7

Remark on authorship: The paper was authored by F. Neumann and co-authored by
C. Botterbusch and H. Frey. The algorithm and its simulation were jointly derived
by C. Botterbusch and F. Neumann in the course of C. Botterbusch’ Bachelor’s
thesis (see reference below), which was supervised by F. Neumann and H. Frey. The
generalized mathematical analysis was joint work of H. Frey and F. Neumann.

C. Botterbusch, “Reaktive Protokolle zur Optimierung von Rotational Sweep Re-
covery Pfaden,” Bachelor’s thesis (in German), University of Koblenz-Landau,
Germany, Feb. 2014.
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F. Neumann and H. Frey, “Partial delaunay triangulation-based asynchronous planariza-
tion of quasi unit disk graphs,” in Proc. of the 2nd Intl. Conf. on Networked
Systems (NetSys), Cottbus, Germany, Mar. 2015, pp. 1–8. [78]

Contents: The paper introduces an asynchronous distributed algorithm for con-
struction of the partial Delaunay triangulation over quasi unit disk graphs.

Used in: Chapter 9

Remark on authorship: The paper was authored by F. Neumann and co-authored
by H. Frey.

F. Neumann and H. Frey, “Foundation of Reactive Local Topology Control, ”IEEE
Commun. Lett., vol. 19, no. 7, pp. 1213–1216, Jul. 2015. [79]

Contents: The paper introduces a concise mathematical model of reactive topology
control. This model is used to classify existing approaches and to derive fundamental
impossibility results.

Used in: Chapter 5

Remark on authorship: The paper was authored by F. Neumann and co-authored
by H. Frey.

F. Neumann and H. Frey, “On Demand Beaconless Planar Backbone Construction for
Quasi Unit Disk Graphs,” in Proc. of the 12th Intl. Conf. on Mobile Ad-hoc and
Sensor Systems (MASS), Dallas, TX, USA, Oct. 2015, pp. 342–351. [80]

Content: The paper presents an Ω-reactive topology control algorithm for construc-
tion of planar and constant stretch topological spanners over quasi unit disk graphs
and its application to reactive geographic routing.

Used in: Chapter 8

Remark on authorship: The paper was authored by F. Neumann and co-authored by
H. Frey. Parts of the contents regarding beaconless clustering were jointly derived
by J. Mosen and F. Neumann in the course of J. Mosen’s Bachelor’s thesis (see
reference below) which was supervised by F. Neumann and H. Frey.

J. Mosen, “Ein Reaktiver Algorithmus für Geografisches Clustering,” Bachelor’s
thesis (in German), University of Koblenz-Landau, Germany, May 2014. [Online].
Available: https://kola.opus.hbz-nrw.de/frontdoor/index/index/docId/851

Lastly, parts of the survey on beaconless algorithms in Chapter 4 are joint work of D.
Vivas Estevao and F. Neumann in the course of D. Vivas Estevao’s Bachelor’s thesis (see
reference below), which was supervised by F. Neumann and H. Frey.

D. Vivas Estevao, “Eine systematische Literaturstudie zu beaconless Algorithmen für
drahtlose Ad-hoc- und Sensornetze,” Bachelor’s thesis (in German), University of Koblenz-
Landau, Germany, Oct. 2014. [Online]. Available: https://kola.opus.hbz-nrw.de/

frontdoor/index/index/docId/883
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1.5 Outline

1.5 Outline

Chapter 2 introduces fundamental concepts and definitions that are required to under-
stand the contributions of this thesis.

Chapter 3 systematically and comprehensively surveys local and localized techniques
for planarization of unit disk and quasi unit disk graphs. The part on unit disk graphs is
limited to approaches which provably output connected and planar graphs. The part on
quasi unit disk graphs also covers approaches that produce non-planar output graphs.

Chapter 4 systematically and comprehensively surveys beaconless algorithms. It pro-
vides a general overview on this research field. The scope of this survey is limited to
local(ized) beaconless algorithms that do not make use of flooding.

Chapter 5 presents the concepts of O- and Ω-reactive local topology control which
are then used for classification of existing approaches and derivation of fundamental
propositions.

Chapter 6 is dedicated to reactive local construction of Euclidean spanners under
unit disk model assumptions. In Section 6.1 it is first shown that the partial Delaunay
triangulation is a constant stretch Euclidean spanner for the unit disk graph. Subsequently,
in Section 6.2 the O-reactive local topology control algorithm rPDT for construction of
the partial Delaunay triangulation is introduced.

Chapter 7 applies the findings from Chapter 6 to state-of-the-art beaconless recovery
routing. Based thereon, new properties for existing approaches are derived and the
recovery algorithm RS-Shortcut is presented.

Chapter 8 is dedicated to reactive local topology control and geographic routing under
quasi unit disk model assumptions. The Ω-reactive local topology control algorithm
ReactiveBackbone is presented, which constructs planar, constant stretch topological
spanners. Based thereon, the guaranteed delivery reactive geographic routing protocol
Reactive-Virtual-Face-Traversal is introduced.

Chapter 9 introduces the asynchronous distributed algorithm AsyncPDT for construc-
tion of planar graphs over quasi unit disk graphs.

Chapter 10 concludes this thesis. It is discussed to which extent the presented contribu-
tions match the research objectives. Common aspects and implications of the contributions
are further discussed and directions for future research are given. The thesis closes with
some final remarks.
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Chapter 2

Fundamentals

This chapter introduces fundamental concepts and definitions that are required to un-
derstand the contributions of this thesis. In Section 2.1 the modeling of wireless ad hoc
and sensor networks, by so called unit disk and quasi unit disk graphs, is introduced and
discussed. The present work focuses on design and analysis of local algorithms under
these model assumptions. This term is defined and differentiated from so called localized
algorithms in Section 2.2. In that context, the notion of distributed message complexity is
introduced, which is a central metric for analysis of algorithmic efficiency that is used
frequently throughout this work. Section 2.3 explains the principles of geographic routing
and in particular of local geographic routing. The latter can be considered a key concept
for this thesis, since all contributions are strongly related to problems that arise within
that context. Topology control, another key term, is described in Section 2.4. For the
presentation of related work and the results in succeeding chapters, it is indispensable to
introduce some concepts from geometric graph theory and computational geometry1, the
subjects of Section 2.5.

2.1 Modeling of Wireless Ad Hoc and Sensor Networks

There is a wide spectrum of models for wireless ad hoc and sensor networks, starting
with rather simplistic connectivity models such as the unit disk graph (UDG) [81], to the
extreme, very technical models that take interference into account, such as the Signal-to-
Interference Plus Noise (SINR) model. Schmid and Wattenhofer survey the most common
models in [82]. The two models selected for this work are introduced and discussed next.

Definition 2.1 (Unit disk graph (UDG) [82]). Let V ⊂ R2 be a set of nodes in the
Euclidean plane and R > 0 a fixed constant. The Euclidean graph G = (V,E) is called
a unit disk graph (UDG), if any two nodes are adjacent if and only if their Euclidean
distance is at most R. That is, for any u, v ∈ V , edge uv is contained in E if and only if
‖uv‖ ≤ R. Typically this graph is denoted by UDG(V ).

The main weakness of this model is that the transmission radius (also known as radio
coverage area or communication range) is assumed to be a perfect circle, which is critical
in non-ideal, obstructed environments. Moreover, the area and shape of a node’s trans-
mission range is influenced by other factors such as antenna patterns and environmental

1Although these contents are well-known and often considered to be well established facts, they are
revisited so that this thesis is complete and self-contained.
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conditions. The quasi unit disk graph (QUDG) [83, 84] model generalizes UDG and
partially remedies its shortcoming by taking imperfections of the nodes’ communication
ranges and obstructions of the deployment area into account.

Definition 2.2 (Quasi unit disk graph (QUDG)). Let V ⊂ R2 be a set of nodes in the
Euclidean plane and 0 < r ≤ R two fixed constants, henceforth referred to as minimum
transmission radius r and maximum transmission radius R. In the quasi unit disk graph
over V , denoted QUDG(V ), two nodes u, v ∈ V are connected by a bidirectional edge
if ‖uv‖ ≤ r, whereas they are not connected if ‖uv‖ > R. In the remaining case where
r < ‖uv‖ ≤ R, the bidirectional edge uv may or may not be present. In the special case
where R = r, this model is equivalent to UDG.

This definition does not further specify under which conditions two nodes u, v ∈ V
with r < ‖uv‖ ≤ R are (dis)connected. Several options are proposed in [82]. In this thesis,
an adversarial connection of nodes is assumed, in order to challenge the universality of
the algorithmic solution at hand.

By adjusting the ratio of the maximum to the minimum communication radius, this
model can effectively model the presence of physical obstructions and irregularity of
transmission ranges. It can also model uncertainty in geographic node positions (see [71]
and the discussion in Section 10.2 for further details).

For modeling of certain environments such as urban scenarios, QUDG may still be
deficient and not be able to capture every observable degeneration in real-world de-
ployments. However, “including all these details in the network model would make it
extremely complicated and scenario-dependent, hampering the derivation of meaningful
and sufficiently general analytical results.” [85, p.169]

Although UDG model assumptions are rather simplistic, there are still good reasons
to start the algorithm design process using this model. Firstly, there are algorithms
developed for UDG which also perform well in more general models [82]. Secondly, many
algorithms designed for UDG can be transformed to work under the more realistic QUDG
model, although with additional costs [82,86]. Thirdly, the present work focuses on the
general power of beaconless topology control, a research field for which there is currently
only very limited understanding. It is a reasonable and common approach to start deriving
results beginning with a rather simplistic model, and then to gradually generalize these
results while relaxing model assumptions.

2.2 Local vs. Localized Algorithms and Message Complexity

Although the terms local algorithm and localized algorithm are often used synonymously,
these terms describe two special cases of what is generally referred to as a distributed
algorithm.2 Wattenhofer [88] defines localized algorithms as follows:

Definition 2.3 (Localized algorithm [88]). In a k-localized algorithm, for some parameter
k, each node is allowed to communicate at most k times with its neighbors. A node can

2 For details on the notion of distributed algorithms the reader is referred to the textbook on distributed
computing by Peleg [87]
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decide to retard its right to communicate; for example, a node can wait to send messages
until all its neighbors with larger identifiers have reached a certain state of their execution.

Such algorithms are local in the sense that each node communicates only with nodes in its
k-hop neighborhood. However, by allowing a node to retard its next communication step
until other network nodes have reached a certain state, inherently non-local information
flow is introduced. For instance, this may be the case if a node u waits for state change of
its neighbor v, which in turn waits for state change of its neighbor w, and so on. In the
worst-case, there can be a linear chain of causality [88] such that only one node is active
at a point in time and hence, the algorithm requires Θ(n) many rounds of communication.
This example also illustrates that a node’s decision (e.g., on state change) in localized
algorithms inherently depends on the decisions of nodes that are arbitrarily many hops
apart. Therefore, in a strict sense, approaches satisfying the above definition are not
local. Wattenhofer [88] and Suomela [60] define local algorithms in the following, more
restrictive sense.

Definition 2.4 ((Synchronous) local algorithm [88]). In a k-local algorithm, for some
parameter k, any node can communicate at most k times with its neighbors, but in contrast
to k-localized algorithms, nodes are not allowed to retard their right to communicate. In
particular, all nodes process k synchronized phases, and a node’s operations in phase i
may only depend on the information received during phases 1 to i− 1. An algorithm is
said to be local if it is k-local for some integer constant k.

This definition of local algorithms is very narrow as it covers only those algorithms
where communication proceeds in synchronized phases (rounds). In the context of wireless
ad hoc and sensor networking, however, there are many local algorithms which do not
fit the above definition because communication is not performed in synchronized phases.
This holds in particular for beaconless algorithms. Therefore, based on a formulation
given in [60], the following alternative and less restrictive definition of local algorithms,
encompassing the algorithm class defined by Definition 2.4, shall be used throughout this
thesis.

Definition 2.5 (Local algorithm). In a k-local algorithm, for some parameter k, the
output of a node is a function of the input of those nodes that are connected to it by at
most k hops [60]. Here, the input of a node is task-specific and refers, e.g., to the node’s
unique identifier or geographic position. An algorithm is said to be local if it is k-local
for some integer constant k.

In local algorithms, a node can gather information only about those nodes that are at
most k hops apart. In particular, implicit state propagation as in the case of localized
algorithms is impossible. Hence, this notion captures that such algorithms are completely
free of any centralized control [89]. For further details and discussions, the reader is
referred to [60,87–89] and the references given therein.

One major metric for analyzing the efficiency of a distributed algorithm is given by its
worst-case message complexity.
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Definition 2.6 (Message complexity [87]). The worst-case message complexity of a
distributed algorithm is the total number of messages sent during its execution in the
worst-case over any legal input.

In order to reduce communication overhead, it is of importance to design algorithms
with low message complexity.

2.3 Geographic Routing

Geographic routing (synonymously referred to as georouting [34] and position-based routing
[90]) is the class of routing protocols which base routing decisions on geographic node
positions. This presupposes that network nodes are provided with their geographic
positions or are able to determine these by means of some positioning system such as
the Global Positioning System (GPS). Furthermore, geographic routing requires that the
position of a packet’s destination is either known in advance, or has been determined prior
to the actual routing process, using so called location services. For a general overview
on geographic routing see [90, 91] and for surveys on geographic routing protocols and
location services see [92, 93].

Local geographic routing algorithms (often also referred to as localized geographic routing
algorithms) are distributed geographic routing algorithms that base their forwarding
decisions on partial knowledge of the network graph, as well as partial knowledge of the
routing path of the packet that has to be forwarded. Specifically, in this algorithm class
a forwarding node v is only provided with its own position, the position of the packet’s
destination, positions of its k-hop neighbors Nk(v) in the network graph (typically k = 1),
and a constant amount of information on the previous routing path of the packet (e.g., a
constant number of node positions visited by the packet). That is, local geographic routing
algorithms are (nearly) stateless routing algorithms. Generally, a routing algorithm is said
to be stateless if it is local, only a constant number of node addresses are stored in the
packet header, and nodes do not have to memorize past routing decisions for processing a
novel routing request [90].

A (local) geographic routing algorithm is said to be loop-free, if it does not cause
forwarding loops. Moreover, it is said to guarantee delivery, if the packet is successfully
routed from its source to its destination using only a finite number of routing steps,
provided that source and destination are connected, and assuming an ideal, collision-free
access scheme. Geographic routing algorithms differ in their path strategies. In single
path algorithms, only one copy of the packet is in the network at any time. The other
extreme are flooding-based approaches, where the packet is flooded through parts or even
the entire network. Multipath strategies route several copies of a packet along different
paths, which are typically disjoint [90].

(Local) geographic routing is not dedicated to unicast routing, i.e., routing of a packet
from one source to one destination. As discussed later in Section 4.4, there are also
geographic routing algorithms for multicast routing. The latter refers to sending of a
packet from one source to multiple destinations. Geographic multicast routing presupposes
that the multicast group, i.e., positions of all intended receivers, is known in advance.
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Figure 2.1: Example of a local minimum situation. Forwarder v has no neighbor in its
transmission range (circle) providing positive progress towards the destination
node d. The shaded area represents the positive progress area (PPA) of v, the
area where nodes are closer to the destination than v itself.

Local geographic routing algorithms typically consist of two components: Greedy routing
and Recovery routing.

2.3.1 Greedy Routing

Greedy routing is the principle of positively advancing the packet in each routing step
as much as possible with respect to a specific metric. This idea was first introduced
by Finn [94]. The node currently holding the packet, called forwarder or forwarding
node, selects the neighbor for forwarding, referred to as next-hop, which minimizes the
Euclidean distance to the destination.

Greedy routing fails in the case of a local minimum situation3(also called local optimum
[40] or void [96]). This refers to scenarios where the forwarder is neither able to forward
the message directly to the destination, nor does any of its neighboring nodes provide
positive progress towards the destination. An example of a local minimum situation is
given in Figure 2.1. Formally it is defined as follows:

Definition 2.7 (Local minimum). Given a network graph G = (V,E) embedded in R2,
a node v ∈ V is said to be a local minimum w.r.t. some destination node d ∈ V , if
d /∈ N1(v) and ∀u ∈ N1(v) : ‖ud‖ ≥ ‖vd‖.

A local minimum situation is given, if and only if the positive progress area (PPA),
which is defined as the intersection of the transmission radius of v and the circle centered
at d with radius ‖dv‖, of a forwarder v w.r.t. destination d is empty of other network
nodes. In Figure 2.1, the PPA is represented by the shaded area.

3 This does not hold for Greedy routing algorithms like geographical distance routing (GEDIR) [95],
which allow a message to travel backwards for one hop. However, this can be considered a simple
recovery heuristic and therefore, such schemes are not “pure” Greedy routing strategies.
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2.3.2 Recovery Routing

Let v be a local minimum node w.r.t. destination d. The purpose of Recovery routing
is to route the packet from v to a network node w, such that either w or a neighboring
node of w is closer to the destination than v. Formally, the underlying problem, called
Greedy recovery problem or simply recovery problem, can be defined as follows.

Definition 2.8 (Greedy recovery problem). Let G = (V,E) be a connected network
graph embedded in R2 s.t. v ∈ V is a local minimum w.r.t. d ∈ V . The Greedy recovery
problem refers to the problem of constructing a recovery path P=〈v=u0, ..., uk=w〉 in
G, s.t. either ‖wd‖ < ‖vd‖, or ∃w′ ∈ N1(w) with ‖w′d‖ < ‖vd‖, and where no edge on
path P is visited twice in the same direction (i.e, the recovery path is free of loops).

The most noted recovery strategy for local geographic routing algorithms is FACE
routing, which was initially introduced by Bose et al. [57]. FACE routing is a stand-alone,
guaranteed delivery, local geographic routing algorithm that works independently of
Greedy routing. It can also be combined nicely with Greedy routing to Greedy-Face-
Greedy (GFG) [36], which is introduced right after the explanation of FACE routing. The
latter requires the notion of planar graphs.

Definition 2.9 (Planar graph). Traditionally, a graph is said to be embeddable in the
plane, or planar, if it can be drawn in the plane so that its edges intersect only in their
endpoints. Such a drawing is called a planar embedding of the graph [97].

In the context of wireless ad hoc networks, including this thesis, the term planar graph is
used in the following and more specific sense: Given a graph whose nodes are embedded in
the Euclidean plane and whose edges are represented by straight line segments connecting
these nodes, a graph is said to be planar if the edges intersect only in their endpoints.

A planar network graph G = (V,E) partitions the Euclidean plane into several inner
faces and one outer face (see Figure 2.2).

Starting from some node s, FACE routing forwards the packet with destination d
along the interiors of one or several adjacent faces which are intersected by the straight
line connecting s and d, e.g., faces F1, F2, F3, F4 in Figure 2.2. Each face interior is
traversed using the well-known right-hand-rule [left-hand-rule], such that the packet is
forwarded clockwise [counterclockwise] from the previous edge. Whenever the packet
reaches an edge which intersects the sd-line, this edge is skipped and the next adjacent
face intersecting the sd-line is traversed in the same way. The algorithm is executed until
either the destination is reached, or the very first edge is used for a second time in the
same direction, in which case it can be concluded that d is not contained in the same
network component and hence, is unreachable.

Frey and Stojmenović [98] show FACE routing to be loop-free and to guarantee delivery
if it is applied on static connected, planar graphs embedded in the Euclidean plane.4

FACE routing can be combined with Greedy routing as follows: The packet is forwarded
using Greedy routing until a local minimum node v is reached. Then, the packet is switched

4In addition, [98] surveys many FACE routing variants and (dis)proves their delivery guarantees.
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Figure 2.2: Illustration of the FACE routing principle using the right-hand-rule. Starting
from node s, the packet is forwarded along the faces F1, F2, F3, F4 using the
highlighted edges until it reaches destination d.

from Greedy mode into Recovery mode and FACE routing is used until a node closer to
the destination than v has been reached. At this node, the packet is then switched back
to Greedy mode and forwarded using Greedy routing again. When switched to Recovery
mode, the packet header is extended by the recovery distance, the Euclidean distance
between the local minimum node and the destination, as well as by the first edge used
in Recovery mode. Given this information, each node receiving the packet in Recovery
mode can determine if it can switch back to Greedy mode. This is the case if it is closer
to the destination than the recovery distance, or if the packet is undeliverable. The latter
applies if the next FACE routing step is similar to the very first one made by the local
minimum node.

This combination of Greedy and FACE routing is known as Greedy-Face-Greedy (GFG).
It was first introduced by Bose et al. in [36] and was later extended by Karp and Kung [37]
to the well-known greedy perimeter stateless routing protocol GPSR by including the
IEEE 802.11 medium access control scheme. In general, routing paths produced by GFG
are shorter compared to those using only FACE routing [36].

For a survey on other recovery techniques, which are not necessarily local/localized, and
do not necessarily provide delivery guarantee, see the survey on void handling techniques
by Chen and Varshney [96].

2.4 Topology Control

In dense wireless network graphs, where density is measured e.g. by means of average
number of neighbors of a node, typical wireless networking problems arise [3].

• Many nodes interfere with each other.

• There are lots of possible routes available.

• Nodes might need needlessly large transmission power to exchange messages with
distant nodes, which reduces the reuse of available bandwidth.

• In mobile networks, routing protocols may have to recompute routing tables even if
only small changes have happened.
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Generally speaking5, topology control refers to the transformation of a given network
graph G = (V,E) into another graph G′ = (V ′, E′) that obeys certain desirable properties
and thereby alleviates some of the aforementioned problems [3].

For the reasons given in detail in the introduction, the present work is particularly
interested in local topology control algorithms for geometric input graphs G = (V,E), i.e.,
graphs where V ⊂ R2 and E is a set of straight lines embedded in the Euclidean plane,
which produce output topologies G′ = (V ′, E′) satisfying the following properties:

Connectivity If G is a connected graph, then G′ is a connected graph.

Planarity G′ is planar (see Definition 2.9).

Low stretch The shortest path distance between any two nodes in G is stretched by at
most a small (preferably constant) factor in G′. In this work, shortest path distances
are measured in terms of number of hops, or Euclidean shortest path length (see
Section 2.5 for further details).

Mainly two types of output topologies are considered in this work: Given an input
graph G = (V,E), then G′ is either a subgraph of G with G′ = (V,E′ ⊆ E), or G′ is a
backbone graph for G. Generally, a backbone of a network graph G = (V,E) is a connected
dominating set (CDS) for G. A subset S ⊆ V is called dominating set if every node either
belongs to S, or is adjacent to a node from S in G. Furthermore, a dominating set is
connected if any two dominating set nodes in S are connected by a path in G that consists
only of nodes from S.

2.5 Selected Terms in Geometric Graph Theory and

Computational Geometry

In the following let V ⊂ R2 always be a finite and distinct set of nodes of size |V | = n.

2.5.1 Trees, Paths, Dilation, and Spanning Ratio

Definition 2.10 (Euclidean Minimum Spanning Tree (EMST)). The Euclidean Minimum
Spanning Tree (EMST) over V , denoted EMST(V ), is the minimum weight spanning
tree over the complete graph whose node set is V and whose edges are weighted by the
function ω(u, v)=‖uv‖, ∀u, v ∈ V .

5 Some authors define topology control in a much narrower sense. For instance, Santi [6] defines topology
control as “the art of coordinating nodes’ decisions regarding their transmitting ranges, in order
to generate a network with the desired properties (e.g. connectivity) while reducing node energy
consumption and/or increasing network capacity [6, p.30].” This definition obviously excludes all
those algorithms that do not use adaption of transmitting ranges, but use other mechanisms and
methods for generation of a desired output topology. In the remainder of this work, the notion of
topology control is used in the more general sense defined above.
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Definition 2.11 (Euclidean/Hop shortest path). Let G = (V,E) be a geometric graph.
The Euclidean length of a path ΠG(v0, vk) = 〈v0, v1, ..., vk〉 of a sequence of neighboring
nodes vi ∈ V is the sum of the weights of its constituent edges:

||ΠG(v0, vk)|| =
k∑

i=1

‖vi−1vi‖ .

The Euclidean shortest path between any two nodes u, v ∈ V , denoted ΠG
min(u, v), then

refers to the (not necessarily unique) path in G having smallest Euclidean length among
all paths connecting u and v in G.

The hop length of a path ΠG(v0, vk) is simply the number of its constituent edges:

δ(ΠG(v0, vk)) =
k∑

i=1

1 .

The hop shortest path between any two nodes u, v ∈ V , denoted HG
min(u, v), then refers

to the (not necessarily unique) path in G having smallest hop length among all paths
connecting u and v in G.

Definition 2.12 (Dilation). Let G = (V,E) be a geometric graph. The dilation ∆(u, v)
of two nodes u, v ∈ V refers to the ratio of the Euclidean shortest path between u and v
in G to their Euclidean distance ‖uv‖. Formally,

∆(u, v) =
||ΠG

min(u, v)||
‖uv‖ .

The dilation of graph G, denoted ∆(G), is defined as the maximum dilation between
any two nodes u, v ∈ V , formally

∆(G) = max
u,v∈V

{∆(u, v)} .

Definition 2.13 (Euclidean t-spanner/Euclidean stretch factor/Euclidean spanning
ratio). Let G = (V,E) be a geometric graph and H = (V,E′ ⊆ E) a subgraph of G. It is
synonymously said that

• H is a Euclidean t-spanner of G,

• H has Euclidean stretch factor t w.r.t. G, and

• H has Euclidean spanning ratio t w.r.t. G,

if it holds that

max
u,v∈V

{ ||ΠH
min(u, v)||

||ΠG
min(u, v)||

}

≤ t .

If t is a constant, H is often referred to as a constant stretch Euclidean spanner, or even
as a Euclidean spanner if it is clear from the context. Synonymously it is said that H has
a constant Euclidean spanning ratio.
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In analogy to the notion of Euclidean spanners, there is another notion called Euclidean
weak spanner. Unlike Euclidean spanners, weak spanners do not ensure that shortest
Euclidean paths are stretched only by constant factors, but rather ensure that there
always exist paths which do not leave a specific geographic area. Formally this notion is
defined as follows.

Definition 2.14 (Euclidean weak t-spanner). Let G = (V,E) be a geometric graph and
H = (V,E′ ⊆ E) be a subgraph of G. Subgraph H is referred to as Euclidean weak
t-spanner, if for any two nodes u, v ∈ V there exists a path ΠH(u, v) connecting u and
v such that ΠH(u, v) is covered entirely by the disk of radius t · ‖uv‖, centered at the
midpoint of uv.

Definition 2.15 (Hop t-spanner/Hop stretch factor/Hop spanning ratio). Let G = (V,E)
be a graph and H = (V,E′ ⊆ E) a subgraph of G. It is synonymously said that

• H is a hop/topological t-spanner of G,

• H has hop/topological stretch factor t w.r.t. G, and

• H has hop/topological spanning ratio t w.r.t. G,

if it holds that

max
u,v∈V

{
δ(HH

min(u, v))

δ(HG
min(u, v))

}

≤ t .

If t is a constant, H is often referred to as constant stretch hop/topological spanner, or
even as hop/topological spanner if it is clear from the context. Synonymously it is said
that H has a constant hop/topological spanning ratio.

2.5.2 Voronoi Diagram, Delaunay Triangulation, and Proximity Graphs

Given a line segment uv between two nodes u, v ∈ V , the perpendicular bisector of u and
v is given by

B(u, v) = {x ∈ R2 : ‖ux‖ = ‖vx‖} .
B(u, v) divides the Euclidean plane into the closed half-plane

H(u, v) = {x ∈ R2 : ‖ux‖ ≤ ‖vx‖}
containing node u and the closed half-plane H(v, u) containing node v. While considering
closed half-planes, note that H(u, v) ∩H(v, u) = B(u, v) holds.

Definition 2.16 (Voronoi diagram [99]). Let u ∈ V . The region

VRV (u) =
⋂

v∈V \{u}
H(u, v)

is called the (ordinary) Voronoi region of node u w.r.t. the set V . Furthermore, set

VD(V ) = {VRV (u1), ...,VRV (un)} ,
where {u1, ..., un} = V , is called the (planar ordinary) Voronoi diagram, generated by V
(see Figure 2.3).
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Figure 2.3: Example of a Voronoi diagram VD(V ) (solid lines), its corresponding Delaunay
triangulation Del(V ) (dashed lines), and the Voronoi region of node v ∈ V
w.r.t. V , VRV (v), which is given by the shaded area including the bold
printed boundary lines.

The common boundary of two or more Voronoi regions is referred to as Voronoi edge,
which may be a line segment, a half-line, or an infinite straight line. The endpoints of
Voronoi edges are called Voronoi vertices. A Voronoi edge may be degenerated into a
single point if it is contained on the boundary of at least four Voronoi regions. In this
particular case, the notions of Voronoi edge and Voronoi vertex coincide. When there
exists at least one Voronoi vertex at which four or more Voronoi edges meet in the Voronoi
diagram VD(V ), it is said to be degenerated, otherwise it is said to be non-degenerated [99].
A Voronoi diagram is always degenerated if four or more nodes in V are cocircular. As
degenerated cases make proofs involving Voronoi-related concepts lengthy without adding
new insights, this thesis typically adopts the following common assumption.

Assumption 2.1 (Non-cocircularity [99]). Every Voronoi vertex in a Voronoi diagram
VD(V ) has exactly three Voronoi edges. I.e., no four points in V are cocircular.

Definition 2.17 (Delaunay triangulation [100]). The Delaunay triangulation over set V ,
denoted by Del(V ), is an undirected graph connecting each pair of nodes from V , whose
Voronoi regions share a Voronoi edge in the Voronoi diagram VD(V ) (see Figure 2.3).

Equivalently, Del(V ) can be defined as the set of line segments uv, ∀u, v ∈ V , for which
it holds that there exists a circle that has u and v on its boundary and does not contain
any node from V \ {u, v} in its interior (including the boundary).

Edges in Del(V ) are referred to as Delaunay edges.

In order for a Delaunay triangulation to be uniquely defined, the following assumption
is required.

Assumption 2.2 (Non-collinearity [99]). No three points in V are collinear.

In the remainder of this thesis it is generally assumed that node sets are neither
cocircular, nor collinear. While 3 ≤ |V |, V is not collinear, and V is not cocircular, a
Voronoi edge in VD(V ) can neither be an infinite straight line, nor can it degenerate into
a single point [99, Section 2.3]. Moreover, under these assumptions Del(V ) can also be
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defined as the set of all triangles △(u, v, w) in V , ∀u, v, w ∈ V , for which it holds that its
circumcircle (including the boundary) does not contain any other node from V \ {u, v, w}.
In particular, under these assumptions this definition and those given in Definition 2.17
are equivalent [99, Section 2.4].

Dobkin et al. [101] proved that Del(V ) has dilation of at most (1 +
√
5/2)π ≈ 5.08.

Keil and Gudwin [102] improved this upper bound to 2π/(3 cos(π/6)) ≈ 2.42. Recently,
Xia [103] proved that the dilation is actually less than 1.998.

It is well-known that the Delaunay triangulation cannot be computed by a local
algorithm, since the verification if an edge between two nodes belongs to it may require
non-local (i.e., network wide) communication. Following the same argument, this also
holds for the intersection of UDG(V ) with Del(V ), which is known as unit Delaunay
triangulation, which is defined next.

Definition 2.18 (Unit Delaunay triangulation). Given a UDG(V ) with unit transmission
radius R and the Delaunay triangulation Del(V ), the unit Delaunay triangulation UDel(V )
consists of all edges in Del(V ) of length at most R, i.e.,

UDel(V ) = {uv ∈ Del(V ) : ‖uv‖ ≤ R} .

Edges in UDel(V ) are called unit Delaunay edges.

Li et al. prove in [104] that UDel(V ) is a constant stretch Euclidean spanner for the
underlying unit disk graph whose spanning ratio is at most ((1 +

√
5)/2)π ≈ 5.08.6

Generally, graphs that are defined on the basis of proximity relations between nodes are
referred to as proximity graphs [99, p.102]. Aside from Delaunay-based proximity graphs,
the Gabriel graph (GG) [105] as well as the relative neighborhood graph (RNG) [106] are
the most prominent representatives of this graph family due to their numerous applications
in the context of geographic routing (see e.g., [36, 37]).

Definition 2.19 (Relative neighborhood graph (RNG)). Any two nodes u, v ∈ V are
connected by an edge in the relative neighborhood graph [106] over V , denoted RNG(V ),
if and only if the proximity region defined by the intersection area C‖uv‖(u) ∩ C‖uv‖(v)
(excluding the boundaries) does not contain any node from V \ {u, v}. See Figure 2.4a
for an illustration. The RNG proximity region is also referred to as RNG-lune.

Definition 2.20 (Gabriel graph (GG)). Any two nodes u, v ∈ V are connected by an
edge in the Gabriel graph [105] over V , denoted GG(V ), if and only if the proximity
region defined by the closed disk D(u, v) does not contain any node from V \ {u, v}. See
Figure 2.4b for an illustration. The GG proximity region is also referred to as Gabriel
circle or Gabriel disk.

Recently, an intermediate proximity graph of GG and RNG, called circlunar neighbor-
hood graph (CNG) [18, 107], has been proposed. It is defined as follows.

6Li et al. [104] also claim a stronger result, namely, a Euclidean spanning ratio of ((4
√
3)/9)π ≈ 2.42,

but do not give a complete proof. For this reason in later chapters only the weaker bound is used.
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(a) (b) (c)

Figure 2.4: Illustrations of proximity regions and relations of proximity regions of the
(a) relative neighborhood graph (RNG), (b) Gabriel graph (GG), and (c)
circlunar neighborhood graph (CNG).

Definition 2.21 (Circlunar neighborhood graph (CNG)). Any two nodes u, v ∈ V are
connected by an edge in the circlunar neighborhood graph (CNG) [18,107] over V , denoted
CNG(V ), if and only if the proximity region defined by the intersection area of the circles
(excluding their boundaries)

⋂

x∈{u,v,p1,p2}
C‖uv‖(x) ,

where p1 and p2 are the points of intersection of the perpendicular bisector of uv with
D(u, v), is free of nodes from V \ {u, v}. See Figure 2.4c for an illustration.

The relation of the proximity regions of RNG, GG, and CNG is illustrated in Figure 2.4c.
The proximity region of RNG encompasses the proximity region of CNG, which in turn
encompasses the proximity region of GG. Therefore, they satisfy the following subgraph
relations:

EMST(V ) ⊆ RNG(V )
(i)

⊆ CNG(V )
(ii)

⊆ GG(V ) ⊆ Del(V ) . (2.1)

Relations (i) and (ii) in Equation 2.1 are proven in [18, 107]. The remaining two relations
are well established facts, see e.g., [108, p.255] and [99, Property D22]. Equation 2.1
implies in particular that RNG, CNG, and GG are connected graphs, if applied onto a
finite node set V , for they contain the EMST(V ) which is a connected graph. Moreover,
since GG is planar [36, Theorem 3], this relation implies that CNG, RNG, and EMST
are also planar graphs.

Bose et al. prove in [109] that RNG and GG have a dilation of Θ(n) and Θ(
√
n),

respectively. Rührup et al. state in [18] that the example used in [109] for proving the
dilation of RNG (the so-called “RNG-tower”), can also be applied for showing that CNG
has dilation of Θ(n). Moreover, the tower-constructions used in all of the these proofs
imply immediately that RNG, GG, and CNG have a hop spanning ratio of Θ(n).

The aforementioned proximity graphs can also be defined over unit disk graphs. This
is covered in Section 3.1 as part of the unit disk planarization techniques.
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Chapter 3

Survey on Local and Localized

Techniques for Graph Planarization

In this chapter a comprehensive survey on local and localized techniques for planarization
of unit disk and quasi unit disk graphs is given.

Due to the quantity of publications related to this field of research and the focus of
the present work, the presentation of approaches that rely on unit disk graph model
assumptions in Section 3.1 is limited to those which provably output connected and planar
graphs if applied onto connected input graphs. The lesser number of approaches that are
designed for operation on quasi unit disk graphs allows in Section 3.2 a less restrictive
choice of related work to be presented. Here, all approaches are considered that aim for
construction of planar and almost planar construction of sub-, overlay, and backbone
graphs.

In both sections, at first a detailed presentation of all approaches is given in a classified
ordering, followed by a taxonomy that lists and summarizes the presented work.

3.1 Algorithms for Unit Disk Graphs

In the following let UDG(V ) always denote the unit disk graph over a finite and distinct
node set V ⊂ R2. Unless stated otherwise, it is assumed that UDG(V ) is connected.
As discussed previously, Delaunay- and Voronoi-based planarization techniques typically
presuppose that node set V is neither collinear, nor cocircular (see Assumptions 2.1 & 2.2
in Section 2.3).

Proximity Graphs and Their Extensions

The proximity graphs RNG, GG, and CNG have previously been defined in Section 2.5.2
over the complete Euclidean graph.

The intersection of RNG(V ), GG(V ), and CNG(V ) with a connected unit disk graph
UDG(V ), denoted RNG(V ) ∩ UDG(V ), GG(V ) ∩ UDG(V ), and CNG(V ) ∩ UDG(V ),
respectively, are connected and planar subgraphs of UDG(V ). For proofs, see [37,
Section 2.3], [36, Theorem 3], and [18, Theorem 6], respectively.

Moreover, it is easy to verify, that a node v can locally compute its one-hop neighborhood
in these subgraphs by merely considering the positions of its one hop neighbors N1(v) in
the underlying unit disk graph.

29



Chapter 3 Survey on Local and Localized Techniques for Graph Planarization

RNG(V ) ∩UDG(V ) and CNG(V ) ∩UDG(V ) both have a Euclidean spanning ratio of
Θ(n), whereas GG(V ) ∩UDG(V ) has a Euclidean spanning ratio of Θ(

√
n). The upper

bounds follow from the proofs given in [18,109] in combination with [110, Theorem 1.4].
The lower bounds can be obtained by appropriate scaling of the tower-constructions
in [109]. From the latter it also follows that all of these these graphs have topological
spanning ratios of Θ(n).

Based upon the observation that Gabriel graph planarization is too conservative, in the
sense that some links are removed although they are actually intersection-free, Boone et
al. [111] propose a simple extension of the Gabriel graph planarization rule which avoids
removal of such edges. This extension is called the Morelia test and produces a unit disk
subgraph, henceforth called Morelia graph (MG). A unit disk graph edge uv is always
removed if both half-circles of the Gabriel disk D(u, v) w.r.t. uv contain other nodes from
V . If only one of these half-circles contains a node w, then both u and v check, possibly
by means of additional neighborhood information N1(w), if there exists an edge with at
least one endpoint in N1(u) ∪N1(v) and one endpoint in N1(u) ∪N1(v) ∪N1(w) which
intersects uv. If that is the case, then uv is removed, otherwise it is maintained. The
Morelia test is a 2-local algorithm and hence any node can compute its adjacency in MG
using at most 2-hop neighborhood information. Because MG is a supergraph of GG, its
Euclidean spanning ratio is at most as large as that of GG.

Li et al. [112] propose the modified relative neighborhood graph (RNG’), whose node
degree is at most six. It is a subgraph of RNG and a supergraph of EMST. Hence, its
Euclidean spanning ratio is Ω(n) and its topological spanning ratio is Θ(n). A UDG edge
uv is maintained in RNG’ if the RNG-lune w.r.t. u and v is empty of other nodes, and if
there is no w ∈ V \ {u, v} located on the boundary of the lune with

i) ID(w) < ID(v) and ‖wv‖ < ‖uv‖, and

ii) ID(w) < ID(u) and ‖wu‖ < ‖uv‖, and

iii) ID(w) < ID(u), ID(w) < ID(v), and ‖wu‖ = ‖uv‖.

ID(x) denotes the unique node identifier of a node x ∈ V . A node’s adjacency in RNG’
can be computed by an 1-local algorithm.

Based on the graph RNG’, Li et al. [112] further propose the light weight relative
neighborhood graph (LRNG). Its 2-local construction is as follows. Each node computes
its adjacency in RNG’ and exchanges this information with all 1-hop neighbors. For
each RNG’ edge xy received by neighbor x, node u removes each of its incident RNG’
edges uv for which it holds that it is the longest of all edges in {uv, xy, ux, vy}. LRNG is
symmetric, contains the EMST as a subgraph, and is itself a subgraph of RNG’. Hence,
it is connected and it inherits the maximum node degree, planarity, as well as the lower
bound spanning ratios from RNG’.
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Figure 3.1: Illustration of the two PDT criteria: Although it is no GG edge, uv ∈ UDG(V )
is contained in PDT(V ) since the circle (shaded) around u, v, and the angle
maximizing node w is empty of other nodes and fully contained by v’s unit
disk of radius R. The dotted circle represents D(u, v).

Voronoi- and Delaunay-based Proximity Graphs and Planarization
Techniques

Li and Stojmenović [49,50] introduce another proximity graph, called Partial Delaunay
Triangulation (PDT). It plays a central role in this thesis. PDT is a subgraph of the unit
Delaunay triangulation. It is much denser than the corresponding Gabriel graph and at
the same time a node can compute its adjacency in this graph by merely inspecting its
1-hop neighborhood.

Definition 3.1 (Partial Delaunay triangulation (PDT)). Consider any edge uv ∈
UDG(V ) and let w ∈ V , w 6= u, v, be the angle maximizing node w.r.t. uv, i.e.,
∀w, x ∈ V \ {u, v} : ∡uwv ≥ ∡uxv. Edge uv is contained in the partial Delaunay
triangulation (PDT) [49, 50] over V , denoted PDT(V ), if and only if either

1. ∡uwv < π/2, (or equivalently: uv ∈ GG(V )), or

2. sin(∡uwv) ≥ ‖uv‖
R and C(u, v, w) ∩ V \ {u, v, w} = ∅.1

Note that PDT is GG plus those edges maintained by the second criterion. These are
edges for which the Delaunay circle property can be verified based on 1-hop neighborhood
information only. It ensures that the circle C(u, v, w) has a diameter of at most R and
hence, if there would be another node x 6= u, v, w located in C(u, v, w), then x would be
a neighboring node of u, v, and w, according to the UDG model (see Figure 3.1). PDT is

1The angle condition formulated here is slightly weaker compared to the original definition in [49,50],
where it is required that sin(∡uwv) > ‖uv‖/R. Hence, the definition given here produces supergraphs
of those obtained by the original definition. However, these supergraphs are still connected given that
the underlying UDG is connected because they contain GG. Moreover, these supergraphs are still
planar, since they are subgraphs of the corresponding unit Delaunay triangulations, which are planar.
Finally, a node can still decide its adjacency in this graph given its 1-hop neighborhood information.
Thus, this modification of the definition of PDT does not alter the idea underlying PDT in the first
place.
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planar and connected if applied onto a connected unit disk graph. It is symmetric, too: if
v decides to keep an edge vu, then u will decide symmetrically. In Section 6.1 it will be
proven that PDT is a constant stretch Euclidean spanner of UDG, with a spanning ratio
of at most ((1+

√
5)/4)π2 ≈ 7.98. This proof is based on a proof of equivalence to another

graph construction, called partial unit Delaunay triangulation, which is introduced shortly.
Besides this one-hop variant of PDT, Li. et al. [49,50] introduce also a two-hop variant,

called PDT2.

Definition 3.2 (PDT2). Consider any edge uv ∈ UDG(V ) and let w ∈ V , w 6= u, v, be
the angle maximizing node w.r.t. uv, i.e., ∀w, x ∈ V \ {u, v} : ∡uwv ≥ ∡uxv. Edge uv is
contained in the two-hop partial Delaunay triangulation (PDT2) [49, 50] over V , denoted
PDT2(V ), if and only if either

1. ∡uwv < π/2, (or equivalently: uv ∈ GG(V )), or

2. cos(∡uwv
2 ) ≥ ‖uv‖

2R and C(u, v, w) ∩ ((N1(u) ∪N1(v)) \ {u, v, w}) = ∅.

PDT2 is a connected and planar supergraph of PDT [113] and therefore it is also a
constant stretch Euclidean spanner as shown in Section 6.1. Its construction requires the
nodes to know their two-hop neighborhoods.

For both PDT and PDT2 it is easy to construct worst-case examples which show that
the topological spanning ratios of these graphs are Ω(n). Hence, their topological spanning
ratios are Θ(n).

The definition of the partial unit Delaunay triangulation (PuDel), introduced by Xu et
al. in [62], requires the following two auxiliary definitions.

Definition 3.3 (Directed local Delaunay edge). Let uv ∈ UDG(V ). Edge uv is called
directed local Delaunay edge, denoted by −→uv, if edge uv is contained in Del(N1(u)).

Definition 3.4 (Locally detectable). Consider any directed local Delaunay edge −→uv. It
is said to be locally detectable, if and only if there exists p ∈ R2 such that

1. p ∈ VRN1(u)(u) ∩VRN1(u)(v), and

2. ‖up‖ ≤ R/2.

Such a point p is also referred to as witness for the local detectability of a directed local
Delaunay edge. For an illustration see Figure 3.2.

Definition 3.5 (Partial unit Delaunay triangulation (PuDel)). The partial unit Delaunay
graph over a unit disk graph UDG(V ), denoted by PuDel(V ), contains exactly all locally
detectable directed local Delaunay edges in UDG(V ).

Just like PDT, PuDel is symmetric, planar, and connected if applied onto a connected
unit disk graph. In addition, a node can compute its adjacency in PuDel by merely checking
if its 1-hop neighbors satisfy the PuDel properties. PuDel is a constant stretch Euclidean
spanner for the UDG with a Euclidean spanning ratio of at most ((1 +

√
5)/4)π2 ≈ 7.98.
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Figure 3.2: Illustration of the two PuDel criteria: uv ∈ UDG(V ) is contained in PuDel(V )
since the intersection of VRN1(v)(v) (dotted) and VRN1(v)(u) (dashed) is not
empty and contains a point p with ‖vp‖ ≤ R/2.

The first proof for this property was presented by Xu et al. in [62]. A revised and extended
version of this proof is one of the contributions of this thesis and is given in Section 6.1.2.

Li et al. introduce in [66, 104] a k-locally computable supergraph of the unit Delaunay
triangulation (UDel), called Localized Delaunay triangulation (LDel), whose definition
requires the following auxiliary definition.

Definition 3.6 (k-localized Delaunay triangle). Given three nodes u, v, w ∈ UDG(V )
that build a clique in UDG(V ), the triangle △(u, v, w) is called a k-localized Delaunay
triangle, if its circumcircle C(u, v, w) does not contain any other node x ∈ V \ {u, v, w},
with x ∈ {Nk(u) ∪Nk(v) ∪Nk(w)}, i.e., if the circumcircle (including the boundary) does
not contain any k-hop neighbor of u, v, and w.

Definition 3.7 (k-localized Delaunay graph). The k-localized Delaunay graph over
UDG(V ), denoted by LDel(k)(V ), contains exactly all edges from GG(V ) ∩UDG(V ), as
well as all edges from all k-localized Delaunay triangles.

For any k ≥ 1, graph LDel(k)(V ) is connected if applied onto a connected UDG. It is
planar for k ≥ 2. Since UDel(V ) ⊆ LDel(k)(V ) for any k ≥ 1, it has a constant Euclidean
spanning ratio of at most 5.08. A node can compute its adjacency in LDel(k)(V ) by
merely looking at its (k + 1)-hop neighborhood.

Since LDel(1)(V ) is not planar, Li et al. [66, 104] propose a local algorithm for con-
struction of the planar localized Delaunay triangulation (PLDel), which is a planarized
version of LDel(1)(V ). Essentially nodes compute their 1-hop Delaunay triangulations
and then exchange triangles of side length at most R with their neighbors. Based on
this information, each node can compute its adjacency in LDel(1)(V ) and distribute the
adjacency in this graph to their 1-hop neighbors in UDG. Given this information, each
node can remove invalid Delaunay triangles. A final distribution of all incident GG-edges
and valid Delaunay triangles gives the final result: the adjacency in PLDel(V ). The latter
is a planar and connected supergraph of LDel(2)(V ) and therefore, a constant stretch
Euclidean spanner for UDG(V ). Auraújo and Rodrigues [63] as well as Bose et al. [114]
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show how to compute PLDel more communication efficient, i.e., with fewer communication
steps, but their approaches have the same worst-case message complexity of O(n).

Luan et al. [115] introduce the 1-hop local Delaunay diagram based on GG with additional
crossing edge elimination (1+-GLDD). It is similar to LDel(1)(V ). 1+-GLDD consists of
all GG edges and all non-GG edges uv for which it holds that the circumcircle around u,
v, and the angle maximizing node w contains no nodes from N1(u) ∪N1(v). This graph
may be non-planar; however, edge intersections can easily be removed by making use of
partial two-hop neighborhood information. 1+-GLDD is a connected and planar subgraph
of the underlying UDG and a supergraph of GG. Therefore, its Euclidean spanning ratio
is at most as large as that of GG.

Satyanarayana and Rao [116] observe that local planarization techniques like GG and
PLDel suffer from large hop-spanning ratios since nodes that are connected in the input
UDG may be separated by several hops in the planar subgraph. To remedy this problem,
they propose the Constrained Delaunay Triangulation (CDT), which is a planar subgraph
of the underlying UDG. Essentially they first compute PLDel and add long UDG edges
between nodes that are not connected in PLDel. Then, edges from PLDel intersecting
with the newly introduced edges are removed, based on local neighborhood information
exchange. Their algorithm is 2-local. The authors claim that CDT is a spanner, but do
not specify any spanning ratio, in particular not whether it is constant at all.

In a series of publications [89, 117–123], Kanj et al. show various results in the context
of local, bounded degree construction of constant stretch Euclidean and constant stretch
Power spanners.2These topologies are either subgraphs of GG (denoted KP06 and KPX09
in Table 3.2) or LDel(2) (denoted by MYS, KPXLoc08, and ∆11-Spanner in Table 3.2).
At this point, only the latest work [123] is further discussed, for it introduces the best
results w.r.t. the Euclidean spanning ratio. Therein, Kanj et al. introduce algorithm
∆11-Spanner. Given a node from UDG(V ), it locally computes this node’s adjacency
in a planar subgraph spanner whose Euclidean spanning ratio is < 7 and which has a
node degree of 11 at most. The node first determines its adjacency in LDel(2)(V ) and
selects any three consecutive and adjacent edges in LDel(2)(V ) whose angles at v sum
up to 4π/5. The remaining space is partitioned into a maximal number of cones of apex
at most π/5. In each such cone the node selects the neighbor in LDel(2)(V ) closest to it.
For every empty cone, one unselected edge left or right of that cone is selected, based
on some additional geometric constraints. Finally, this node keeps a selected edge if the
respective endpoint also decides to select it. In order for a node to decide its adjacency in
the ∆11-Spanner, it has to know at most all of its 4-hop neighbors. In fact, the 3-hop
neighborhood suffices to decide its adjacency in LDel(2)(V ) and to compute the outgoing
edges in the ∆11-Spanner. The final verification step for such an edge, however, requires
3-hop neighborhood information of the respective edge’s endpoint.

Frey and Rührup [14] propose a concept called Direct Planarization. Instead of using
geometric properties (like in GG, RNG, or DT) that implicitly construct planar graphs,
they describe two schemes which remove edge intersections explicitly: Angle-based Direct

2 For further details on planar Power spanners, their local construction, and other related work on this
topic, the reader may refer to [89,117,118] and references given therein.
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Planarization (ADP) and Delaunay-based Direct Planarization (DDP). Given a unit
disk graph edge uv, ADP does not remove this edge, if for all edges wx intersecting
uv it holds that max {∡uwv,∡uxv} < max {∡wux,∡wvx}. DDP does not remove
edge uv if for all intersecting edges wx it holds that x is not contained by the circle
C(u, v, w). The application of these simple geometric rules onto a connected unit disk
graph ensures the construction of a connected and planar subgraph. It moreover holds
that GG(V ) ∩ UDG(V ) ⊆ ADP(V ) and RDG(V ) ⊆ DDP(V ), where RDG denotes the
restricted Delaunay triangulation, which is introduced shortly. Hence, the Euclidean
spanning ratio of ADP is at most as large as that of GG, and DDP is even a constant
stretch Euclidean spanner for the underlying unit disk graph, since RDG is a constant
stretch Euclidean spanner for it. For a node v ∈ V to compute its adjacency in ADP(V )
and DDP(V ) it is sufficient to know its 2-hop neighborhood.

The idea of Direct Planarization is further elaborated by Mathews and Frey in [124].
They propose the two-staged algorithm localized link removal and addition based planariza-
tion (LLRAP). In the link removal stage, each node u removes exactly those adjacent
links uv for which it holds that they are intersected by another edge wx, with w ∈ N1(u),
and simultaneously wv is an edge in the network graph. This stage planarizes the network
graph but may lead to disconnection. Therefore, in the second stage, each node u checks
for each edge uv which has been removed in the first stage, if uv can be added without
producing new intersections. It is added again only if both u and v have ensured that
adding edge uv does not lead to an intersection. Nodes can decide their neighborhoods in
LLRAP based on their 3-hop neighborhoods. LLRAP is planar and connected if applied
onto a connected unit disk graph. Moreover, it is a Euclidean weak spanner with a
spanning ratio of at most 3/2. Interestingly, it ensures the aforementioned properties
not only for unit disk graphs, but for all input graphs satisfying the coexistence and
redundancy properties, which are defined next.

Definition 3.8 (Coexistence property). A network graph G = (V,E) satisfies the
coexistence property if for any node triple u, v, w ∈ V with {uv, uw, vw} ⊆ E and any
x ∈ V located inside the triangle △(u, v, w) it holds that {xu, xv, xw} ⊆ E.

Definition 3.9 (Redundancy property). A network graph G = (V,E) satisfies the
redundancy property if for any two intersecting edges uv, xy ∈ E it holds that at least
one node z ∈ {u, v, x, y} is connected in G by an edge to the remaining three nodes
{u, v, x, y} \ {z}.

Unit disk graphs satisfy both the redundancy (see proof of [125, Lemma 4.1]) and the
coexistence property (see proof of [124, Lemma 1]).

Localized Approaches Based on Proximity Graphs

The following localized algorithms also produce planar and connected subgraphs of unit
disk graphs by means of (Delaunay-based) proximity graphs, but in contrast to the afore-
mentioned ones, they are not local (for definitions of these terms, see Definitions 2.3 & 2.5).

Gao et al. introduce in [125, 126] the restricted Delaunay graph (RDG), which is a
planar and connected supergraph of the unit Delaunay triangulation (UDel). Therefore,
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RDG is a constant stretch Euclidean spanner for the underlying UDG. A node u adds
exactly those unit disk graph edges uv to RDG, for which it holds that uv ∈ Del(N1(w)),
for all w ∈ N1(u) ∩N1(v). Hence, the decision of whether an incident edge of some node
belongs to RDG or not depends only on that node’s 2-hop neighborhood. Gao et al. do
not construct RDG directly on a given unit disk graph, but on a clustered subset of it
in order to also obtain a constant topological spanning ratio. For this reason they first
apply the localized, hierarchical, round-based clustering scheme from [127, 128], where
nodes nominate neighboring nodes with largest IDs as cluster heads until finally a small
set of cluster heads is selected. In order to obtain a connected backbone graph, once this
clustering has been computed, cluster heads are locally interconnected by gateway nodes.
RDG is then constructed on the subgraph induced by the cluster heads and gateway
nodes. Finally, non-backbone nodes are connected to their closest cluster heads. The
resulting graph has a constant topological stretch factor, as well as a constant Euclidean
stretch factor. In the backbone graph, nodes have a constant node degree, whereas
after connection of non-backbone nodes to closest cluster heads, the latter may have an
unbounded node degree. It is worth noting that the clustering is the only localized and
non-local part of the computation. All remaining steps can be performed locally.

Alzoubi et al. [129] propose an approach which combines clustering techniques with the
localized Delaunay triangulation (LDel) [66,104]. They first apply a localized algorithm
[130] for construction of a Connected Dominating Set (CDS). This CDS has constant node
degree and the graph CDS’, resulting from connecting each non-backbone node by an
edge with its dominator, is a constant stretch Euclidean and constant stretch topological
spanner with spanning ratios of at most 6 and 3, respectively, for the underlying UDG. In
particular, the bounded degree property also holds for the graph induced by the node set
of CDS w.r.t. the underlying UDG, called ICDS. The latter obeys the UDG properties
but is not planar. Therefore, in a second stage, they locally compute PLDel [66, 104]
(discussed previously) on top of ICDS. The resulting graph LDel(ICDS) is a constant
stretch Euclidean as well as a topological spanner for the underlying UDG, and has only
a constant node degree. However, as in the case of the approach by Gao et al. [125,126],
the backbone construction itself is localized but not local, whereas all remaining steps
can be performed locally.

In [131,132], Wang and Li introduce a localized algorithm for construction of the bounded
degree localized Delaunay triangulation, called BPS2. For a given UDG(V ), each node first
computes locally its adjacency in LDel(2)(V ) based on complete two-hop neighborhood
information and exchange of the two-hop Delaunay triangulation with neighboring nodes.
Subsequently in a round-based scheme, some nodes apply a Yao-step3 and select a constant
number of their incident LDel edges, whereas other nodes retard their further actions

3 The Yaop graph proposed by Yao [133] is a technique for 1-local computation of supergraphs of the
MST in high dimensions. Each node partitions its transmission radius in p equally spaced cones
centered at it. For each cone, any node u selects the closest neighbor v, if there is any, and adds the
directed edge −→uv to Yaop. This graph then contains the MST as a subgraph. Hence, deletion of all
undirected links yields a connected graph of node degree at most p, but which is not necessarily planar.
This technique is often used for local computation of degree bounded subgraphs and is commonly
referred to as Yao-step.
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until certain conditions in the neighborhood apply. Therefore, this algorithm is localized
but not local. The resulting graph BPS2 has a node degree of 19+ ⌈2π/α⌉ and Euclidean
spanning ratio of max{π/2, π sin(α/2) + 1} · Cdel, where 0 < α ≤ π/3 is a parameter of
the algorithm and Cdel denotes the dilation of the Delaunay triangulation.

Based on the same algorithmic idea, Song et al. [134, 135] propose the computation
of the planar power spanners OrdYaoGG and SYaoGG. The former has node a degree
of at most k + 5, for a parameter k > 6 and the latter has a degree of k, for an integer
parameter k ≥ 9. Instead of using LDel(2)(V ), the Yao-step is performed on top of the
nodes’ Gabriel graph neighborhoods. Due to use of the Gabriel graph, nodes have to
exchange messages only with other nodes in their 2-hop neighborhoods. While being
subgraphs of GG, these graphs have Euclidean and topological spanning ratios of Ω(

√
n)

and Θ(n), respectively. Finally, for the same reason as in the approach of Wang and
Li [131,132], these algorithms are also localized but not local (see also the discussion by
Kanj et al. [89]).

Clustered Approaches and Planar Overlays

Frey [51] introduces the purged aggregated Gabriel graph (PAGG), a connected and planar
overlay graph for a given unit disk graph. The plane is partitioned into a regular hexagon
grid with grid cell diameter of at most unit disk radius. First, for each node its adjacency
in the Gabriel graph is computed. Then, for each non-empty cell one vertex, represented
by the cell’s geographic center, is introduced. The aggregated Gabriel graph connects any
two such vertices by an overlay edge, if there exists a Gabriel graph edge which connects
two nodes from the respective cells in the underlying network graph. The aggregated
Gabriel graph is not planar since it may be the case that the endpoint u of some overlay
edge uv may be located on another overlay edge xy. Such irregular intersections can
easily be handled by removing edge xy and replacing it by two appropriate (virtual)
overlay edges, which are edges that are not necessarily present in the aggregated Gabriel
graph. The planarized overlay graph is then called a purged aggregated Gabriel graph.
Any node can compute the adjacency of its cell’s vertex in PAGG using at most 3-hop
neighborhood information.

Independently of Frey [51], Tejeda et al. [136,137] describe a similar idea for construction
of the so called virtual spanner (VS). Given a regular tessellation of the plane (e.g., a
hexagonal partitioning) with cell diameter equal to the unit disk radius, initially for every
non-empty cell a vertex at this cell’s geographic center is introduced. Given a particular
vertex v it is first connected by an overlay edge to any neighboring cell which is connected
by a unit disk edge. Then, for every cell w which is potentially reachable by a unit disk
edge from the cell represented by v, it is checked if adding overlay edge vw causes an
intersection; it is added only if this is not the case. This way, a planar and connected
overlay graph of the given unit disk graph is constructed. Similarly to the approach from
Frey [51], the construction of incident overlay edges of a node’s cell requires the node to
know at most its 3-hop neighborhood in UDG.

The definition of spanning ratio cannot directly be applied, since overlay graphs are
not subgraphs of the underlying network graph. Instead, one can compare the ratio of
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the distance traveled by a message when simulating routing on the planar overlay graph
to the length of the actual shortest path in the network graph. This ratio represents the
routing stretch introduced by an overlay graph. However, neither Frey [51] nor Tejeda et
al. [136,137] consider the routing stretch of their approaches.

Catusse et al. [138] also present an approach based on geographical clustering of
the plane. In contrast to the aforementioned ones, their algorithm produces an actual
subgraph of the network graph. The plane is partitioned by a regular square grid, where
the grid cell diameter is equal to the unit disk radius. Cells that are adjacent by an
edge in UDG are connected by the shortest edge. Those edges for which there exist
short hop-paths are subsequently removed. All remaining intersections are handled by
a pattern matching routine: it identifies the type of edge crossing, removes one of the
crossing edges, and possibly adds another edge, according to the specific case, in order to
avoid disconnection of the graph. In a final step, nodes within the cells are connected as
follows. Each cell can be dissected by at most one inter-cluster edge, which partitions
the cell into at most two regions and the nodes in each non-empty cell into at most two
subsets of nodes. Between any two adjacent regions, the shortest edge connecting them
is added. Between any nodes in a subset, which are connected to nodes outside the cell
(by inter-cluster edges or inter-partition edges), a minimum spanning tree is constructed.
Finally, each node in each subset which is not connected to any node outside its cell is
connected to the closest neighbor in the spanning tree of its partition. The resulting
graph is a planar, connected subgraph of UDG and has a constant topological spanning
ratio of at most 10α+ 9, where α is the maximum distance between any two nodes that
belong to the same cell [138]. Although the authors claim that the output graph can
be constructed using only local neighborhood information, no algorithmic details are
provided. In particular the degree of locality is not clear.

Damian and Pemmaraju [139] introduce the local algorithm PLOS (Planar Localized
Spanner) for the construction of planar Euclidean spanners of low weight. In a first
step, nodes locally compute their adjacencies in PLDel [66] (see above). The plane is
virtually partitioned using a regular square grid of overlapping square cells, such that
nodes within one cell form a clique and each node belongs to at most four cliques. This
gives a clique cover of the node set. For each such clique, the planar, bounded degree
Euclidean spanner BPS2 [131,132] (see above) is computed. Since BPS2 is applied onto a
clique, this step is actually local and not localized. Then, each node removes incident
edges with both endpoints in the same clique. Finally, a clustering step is used again
to filter out those edges which span multiple cliques. The output graph HPLOS is a
Cdel · (1 + ǫ)(1 + π/2)-Euclidean spanner for the input UDG, where Cdel refers to the
dilation of the Delaunay triangulation. It has a constant node degree and its weight is
only a constant times that of the MST.

Other Approaches

So called local minimum spanning trees (LMST) have first been introduced by Li et
al. [140,141] and subsequently generalized to k-local minimum spanning trees (LMSTk)
by Li et al. [142].
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LMSTk contains a directed edge −→uv, if uv belongs to the minimum spanning tree over
node set Nk(u), denoted MST(Nk(u)); i.e., it can be computed by a k-local algorithm.
Two undirected variants of this graph can be distinguished. LMST−

k contains an edge
uv if both directed edges −→uv and −→vu belong to LMSTk, whereas LMST+

k contains edge
uv if at least one of these two directed edges is contained by LMSTk. LMSTk and its
variants are connected and planar subgraphs of the underlying unit disk graph and have a
maximum node degree of 6. Moreover, both LMST−

k and LMST+
k are subgraphs of RNG

and EMST is a subgraph of LMSTk for any k ≥ 1. The former implies that LMST−
k and

LMST+
k have Euclidean spanning ratios which are at least as large as that of RNG. In

addition, a topological spanning ratio of Θ(n) follows.
Li et al. [142] then further combine the ideas of local minimum spanning trees and the

degree bounded graph RNG’ [112] (see above) and obtain the Incident MST and RNG
Graph (IMRG). Its definition requires the following notation.

NRNG′

2 (u) = {w : vw ∈ RNG′ and v ∈ N1(u)} ∪N1(u) .

IMRG contains a directed edge −→uv if edge uv belongs to EMST(NRNG′

2 (u)). The two
undirected variants IMRG− and IMRG+ are then defined symmetrically to the undirected
variants of LMSTk. IMRG is a subgraph of RNG’. Thus, IMRG and its undirected
variants are planar and have a bounded node degree. In addition, IMRG+ and IMRG−

contain EMST as a subgraph and are therefore connected. IMRG and its undirected
counterparts can be computed by a 2-local algorithm, and their Euclidean and topological
spanning ratios are at least as large as those of RNG’.

Wattenhofer and Zollinger [143] introduce the 2-local algorithm XTC, which is aimed
at operation on network graphs that do not necessarily obey unit disk graph properties.
Initially all nodes gather their 1-hop neighborhood information and compute a local order
of their incident links. A link to a neighbor v appearing early in the order of u is regarded
as being of higher quality than the link to a neighbor w placed later in that order [143].
Once the order is computed, each node exchanges the order with all 1-hop neighbors.
Then, each node u traverses its order with decreasing link quality and selects the currently
processed neighbor v, only if it has no neighbor w, which appears earlier in u’s order
and which appears earlier in v’s order than u. If executed on a unit disk graph, then the
output graph GXTC is symmetric, connected, planar, and a subgraph of the respective
RNG. In case the unit disk graph contains no node which has two or more neighbors
at exactly the same distance, then GXTC is even identical to the respective RNG. From
this it follows that GXTC has Euclidean and topological spanning ratios which are at
least as large as those of RNG. On the other hand, this graph has a node degree of at
most 6. Algorithm XTC works correctly in general weighted graphs without geometric
assumptions. Under this general model, however, the graph is only guaranteed to be
symmetric.

Li et al. [67, 144] propose a radically new family of planar geometric graphs called
Hypocomb. A Hypocomb graph is the dual of a truncated mesh, also referred to as
Blocked-mesh or simply Besh. For a given set of nodes, the Besh is constructed as follows.
For each node draw four rays in each cardinal direction and allow distance-based blocking
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if two rays intersect. Hypocomb is obtained by connecting any two nodes that have a
ray-blocking relation in the Besh. It is a connected planar graph with an unbounded node
degree for the complete Euclidean graph. If instead only those edges are added between
nodes that have a mutual ray-blocking relation, Reduced Hypocomb is obtained, which
remains connected and planar, but has a node degree of six at most. Most importantly,
a variant of Reduced Hypocomb, called Local Hypocomb (LHC), can be computed by a
1-local algorithm. For any incident edge uv, node u simply computes if uv is an edge
in the Reduced Hypocomb w.r.t. node set N1(u) ∩ N1(v). The set of all such edges
constitutes Local Hypocomb, which is a symmetric, planar, connected subgraph of node
degree of at most 8 of the underlying UDG. However, it is unknown if graphs of the
Hypocomb graph family satisfy constant spanning properties.

Taxonomy of UDG Planarization Techniques

Tables 3.1 & 3.2 summarize the above given survey on unit disk graph planarization
techniques. Table 3.1 shows the resulting subgraph relations. Each of the rows 2–16
relate only to row 1; e.g., row 3 shows that EMST ⊆ LMST ⊆ RNG, which then implies
further subgraph relations of RNG as given by row 1. Those topologies for which it is
only known that they are subgraphs of the unit disk graphs are omitted. Table 3.2 gives
a complete taxonomy in chronological order. For each topology control structure the
following properties are listed:

k-locality refers to the degree of k-locality required by nodes to compute their adjacency.
Local is marked ’✓’ if the structure is computed by a k-local algorithm and ’✗’ otherwise.
Graph type specifies whether this structure is a subgraph (S) over all network nodes or

an overlay graph (O).
Euclidean stretch specifies the Euclidean spanning ratio if known and ’?’ otherwise.

Constants are provided whenever possible. In all remaining cases, the best known
upper and/or lower bounds are given, some of which follow from the subgraph
relations given in Table 3.1.

Topological stretch specifies the topological spanning ratio. In case no non-trivial upper
bound is known, it is stated to be O(n), which is the trivial upper bound for
any connected graph. Some of the lower bounds are implications of the subgraph
relations given in Table 3.1

Node degree is the maximum node degree in the structure, where “≥ x” means that the
node degree is a constant greater than or equal to x.

References refers to source(s).
Year lists the earliest point in time of publication.

40



3.1 Algorithms for Unit Disk Graphs

1.
E

M
S
T
⊆

IM
R

G
⊆

R
N

G
’⊆

R
N

G
⊆

C
N

G
⊆

G
G
⊆

P
D

T
=

P
u
D

el
⊆

P
D

T
2
⊆

U
D

el
⊆

L
D

el
(k

)
⊆

..
.

⊆
L
D

el
(2

)
⊆

P
L
D

el
⊆

L
D

el
(1

)
⊆

U
D

G
2.

⊆
L
R

N
G
⊆

3.
⊆

L
M

S
T

⊆
4.

G
X
T
C
⊆

5.
O

rd
Y

ao
G

G
⊆

6.
S
Y

ao
G

G
⊆

7.
K

P
06

⊆
8.

K
P

X
09

⊆
9.

⊆
M

G
⊆

10
.

⊆
1+

-G
L
D

D
⊆

11
.

⊆
A

D
P

⊆
12

.
⊆

R
D

G
⊆

D
D

P
⊆

13
.

B
P

S
2
⊆

14
.

M
Y

S
⊆

15
.

K
P

X
L
o
c0

8
⊆

16
.

∆
1
1
-S

p
.
⊆

T
ab

le
3.

1:
Su

m
m

ar
y

of
un

it
di

sk
su

bg
ra

ph
re

la
ti

on
s.

41



Chapter 3 Survey on Local and Localized Techniques for Graph Planarization

Topology k-locality Local
Graph
type

Eucl.
stretch

Top.
stretch

Node
degree

Ref. Year

GG 1 ✓ S Θ(
√
n) Θ(n) O(n) [105] 1969

RNG 1 ✓ S Θ(n) Θ(n) O(n) [106] 1980
RDG 2 ✗ S ≤ 5.08 O(n) O(n) [125,126] 2001
LDel(k) k + 1 ✓ S ≤ 5.08 O(n) O(n) [66, 104] 2002
PLDel 2 ✓ S ≤ 5.08 O(n) O(n) [66, 104] 2002
PDT 1 ✓ S ≤ 7.98 Θ(n) O(n) [49, 50] 2002
PDT2 2 ✓ S ≤ 7.98 Θ(n) O(n) [49, 50] 2002

LMST
(+/−)
k k ≥ 1 ✓ S Ω(n)† Θ(n)† ≤ 6 [140–142] 2003

LDel(ICDS) 3 ✗ S O(1) O(1) O(1) [129] 2003
RNG’ 1 ✓ S Ω(n)† Θ(n)† ≤ 6 [112] 2003
LRNG 2 ✓ S Ω(n)† Θ(n)† ≤ 6 [112] 2003
BPS2 3 ✗ S < 6.22 O(n) ≥ 25 [131,132] 2003
GXTC 2 ✓ S Ω(n)† Θ(n)† ≤ 6 [143] 2004
OrdYaoGG 2 ✗ S Ω(

√
n)† Θ(n)† ≥ 12 [134,135] 2004

SYaoGG 2 ✗ S Ω(
√
n)† Θ(n)† ≥ 9 [134,135] 2004

MG 2 ✓ S O(√n)† O(n) O(n) [111] 2004
1+-GLDD 2 ✓ S O(√n)† O(n) O(n) [115] 2004
IMRG(+/−) 2 ✓ S Ω(n)† Θ(n)† ≤ 6 [142] 2004
PAGG 3 ✓ O - - O(1) [51] 2005
KP06 2 ✓ S Ω(

√
n)† Θ(n)† ≥ 13 [117] 2006

VS 3 ✓ O - - O(1) [136,137] 2006
MYS 4 ✓ S 3.54 O(n) ≥ 14 [118–120] 2007
CDT 2 ✓ S ? O(n) O(n) [116] 2008
CNG 1 ✓ S Θ(n) Θ(n) O(n) [18, 107] 2008
KPXLoc08 ≤ 26 ✓ S 8.81 O(n) ≤ 14 [120,121] 2008
ADP 2 ✓ S O(√n)† O(n) O(n) [14] 2009
DDP 2 ✓ S ≤ 5.08 O(n) O(n) [14] 2009
KPX09 2 ✓ S Ω(

√
n)† Θ(n)† ≥ 10 [89] 2009

Catusse ? ✓ S ? 10α+9 O(n) [138] 2010
HPLOS ≥ 2 ✓ S O(1+ǫ) O(n) O(1) [139] 2010
LHC 1 ✓ S ? O(n) ≤ 8 [67, 144] 2011
PuDel 1 ✓ S ≤ 7.98 Θ(n) O(n) [62] 2011
LLRAP 3 ✓ S ? O(n) O(n) [124] 2012
∆11-Sp. 4 ✓ S < 7 O(n) ≤ 11 [123] 2012

†: Implication of subgraph relations which are listed in Table 3.1.
Graph type: S=Subgraph and O=Overlay graph for the underlying network graph.
RDG refers to the variant without clustering.

Table 3.2: Taxonomy of unit disk graph planarization techniques in chronological order.
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3.2 Algorithms for Quasi Unit Disk Graphs

Next, a comprehensive review of related work on local and localized planarization and
spanner construction techniques under QUDG model assumptions is given. This includes
some important aspects regarding geographic routing. Some of these algorithms require
that the ratio of the maximum to the minimum transmission radius in the underlying
QUDG is bounded by

√
2, i.e., R/r ≤

√
2. In this case a QUDG is said to be restricted.

Otherwise, it is said to be arbitrary.

Quasi Unit Disk Graph Properties

Fact 3.10. Given a connected quasi unit disk graph G = (V,E) with transmission radii
r and R such that r < R, in general it is impossible to planarize G by simply removing
edges while preserving graph connectivity.

To see this, consider Figure 3.3a showing a connected QUDG with r < R, where neither
of the two intersecting edges can be removed without disconnecting the graph.

This observation implies in particular that the local, proximity-based planarization
techniques introduced in the context of UDG, such as the Gabriel graph or the partial
Delaunay triangulation, applied onto arbitrary QUDGs with r < R, possibly yield
disconnected output graphs.

Fact 3.11. If the ratio R/r >
√
2, then for any integer k there exists a QUDG G such that

the existence of an edge intersection in G cannot be detected by any k-local algorithm.

This was first observed by Barrière et al. [83, 145]. See Figure 3.3b for an illustration.
Under the assumption that the ratio R/r >

√
2, it is possible to construct example graphs,

where any path between the endpoints of an edge uv and those of an intersecting edge xy
consists of more than k hops; hence, any k-local algorithm fails to detect this intersection.

In contrast, in case of restricted QUDGs, i.e., graphs for which R/r ≤
√
2 holds, edge

intersections can always be detected locally by the nodes incident to it.

Lemma 3.12. Let G = (V,E) be a QUDG with R/r ≤
√
2. If two edges uv, xy ∈ E

intersect, then there exists wz ∈ E with w ∈ {u, v} and z ∈ {x, y}.

This lemma was previously proven by Kuhn et al. in [86, Lemma 8.2] and Lillis et al.
in [71, Lemma 1] and it implies the following fact.

Fact 3.13. The maximum hop distance between the endpoints of two intersecting edges
uv, xy in a QUDG G satisfying R/r ≤

√
2 is at most three. Hence, 3-hop neighborhood

information in G is sufficient for a node to determine all edges and their corresponding
endpoints, which intersect its adjacent edges in G.

Guan [73, Lemma 6.2] further extends this fact by proving the following lemma.

Lemma 3.14. Let G = (V,E) be a QUDG with R/r ≤
√
2 and uv, xy ∈ E two intersecting

edges. If xy intersects uv at a point between u and the midpoint of uv, then there exists
uz ∈ E with z ∈ {x, y}.
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(a) (b)

Figure 3.3: (a) Example of a QUDG that cannot be planarized without disconnecting
it. (b) Example of a QUDGs where the edge intersection between uv and xy
cannot be detected by any k-local algorithm since the endpoints in {u, v} are
more than k hops apart from the endpoints in {x, y}.

This lemma implies the following fact.

Fact 3.15. A node in a QUDG G satisfying R/r ≤
√
2, which is provided with 2-hop

neighborhood information in G, knows all edges and their corresponding endpoints, which
intersect its adjacent edges uv in G in points that are at least as far away from v than
from u.

The aforementioned facts as well as their implications have led to numerous distributed
approaches for construction of planar and almost planar topologies and geographic routing
protocols that guarantee message delivery if applied thereon. These approaches are
subsequently summarized.

Overlay Edge-Assisted Gabriel Graph Planarization

Barrière et al. [83, 145] propose a three-phased algorithm for geographic routing with
guaranteed delivery for restricted QUDGs. Starting from the observation that Gabriel
graph planarization possibly yields disconnected and asymmetric output graphs if applied
onto QUDGs (see example given in Figure 3.4), the Completion Phase first adds virtual
links between certain nodes in order to obtain a supergraph S(G). These virtual links
have a length of at most R and ensure that the output graph GG(S(G)), which is
computed during the Extraction Phase, does not lose connectivity and stays symmetric.
In the Routing Phase, local message forwarding using a guaranteed delivery routing
algorithm (e.g., GFG [36]) is performed on GG(S(G)). Forwarding along a virtual link
is performed by routing the message along an appropriate sequence of incident physical
edges. Despite its simplicity and the fact that this protocol guarantees correctness even in
fully asynchronous systems, it has several drawbacks. Unless the input graph is civilized4,

4 A civilized graph (the λ-precision/Ω(1) model) is defined to be a graph G = (V,E) embedded in R2,
where for any fixed λ > 0, two nodes u, v ∈ V are of a distance at least λ apart [146].
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Figure 3.4: Example where the Gabriel graph applied onto a QUDG with minimum and
maximum communication radii r and R is disconnected/asymmetric. Node u
removes edge uv due to GG-rule violation by its neighbors w and w′, whereas
node v does not remove this edge since D(v, u) (shaded area) is empty of
neighbors from N1(v) \ {u, v}. This figure is similar to [145, Figure 7].

the construction of virtual edges is not necessarily a local operation. This is due to the
fact that the addition of a virtual edge may cause the addition of another virtual edge,
and so on. Given a λ-civilized graph, then the construction is (1 + (R2 − r2)/λ2)-local.
Barrière et al. [83,145] show that the topological spanning ratio of the output graph is
Ω(n). Currently, there are no results regrading this construction’s Euclidean spanning
ratio. It is likely that the Euclidean spanning ratio is not constant, because GG is used
for planarization. An extension of this algorithm that yields output graphs with shorter
Euclidean spanning ratio is one of the contributions of this thesis and is presented in
Chapter 9.

In order to reduce the message complexity and avoid construction of unnecessary virtual
edges in the aforementioned approach, Moaveninejad et al. [147,148] suggest to remove
short non-Gabriel edges before constructing virtual edges. Only when intersections are
actively determined, virtual edges are added. This scheme also yields connected and
planar graphs, but it is unknown if these output graphs are equivalent to those obtained by
using the approach from Barrière et al. [83, 145]. By means of simulations Moaveninejad
et al. compare their approach to the one by Barrière et al. They show that less message
transmissions are required for low and medium network densities, whereas more message
transmissions are required for high network densities. Moreover, these simulations suggest
that the topological as well as the Euclidean spanning ratios of these output graphs are
identical, at least on average.

Backbones, Planar Backbones, and Virtual Planar Backbones

Kuhn, Wattenhofer, and Zollinger [84, 86] present localized algorithms for construction of
(planar) routing backbones for both arbitrary as well as restricted QUDGs.
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For arbitrary QUDGs, at first they let the nodes compute a maximal independent set
(MIS) and connect the independent set (IS) nodes via bridge nodes.5 This results in
the dense backbone graph. For further sparsification, they obtain a virtual overlay as
follows. Any two of the IS nodes are connected via a virtual edge, if they are connected
via a bridge node in the dense backbone graph. The plane is divided by four regularly
shifted grids into overlapping square cells of bounded side length. Then, in each cell a
standard (centralized) spanner algorithm is applied, which removes some of the virtual
edges. The routing backbone GBG is then the sparsified graph with virtual edges replaced
by corresponding physical edges. This graph is a O(log(1/(r/R))) hop spanner for the
dense backbone graph, but it is not planar. This algorithm is localized but not local since
it makes use of the localized MIS computation technique from [130].

For restricted QUDGs Kuhn et al. [84,86] describe a related protocol. Initially, again
an MIS is computed by the nodes and connected via bridge nodes. Then each node
determines its incident edges in the induced subgraph on this node set. This gives a
sparse QUDG on which the three-phased scheme by Barrière et al. [83,145] can be applied.
Due to the clustering, virtual edge construction requires local communication along paths
consisting of at most O(∆2) hops, where ∆ is the maximum node degree of the sparse
QUDG. The resulting routing graph GG(S(G′

BG)) is a constant stretch hop spanner for
the input graph having constant node degree. According to [71], these approaches do not
provide constant Euclidean spanning properties. As an alternative to the application of
the protocol from Barrière et al., Kuhn et al. further propose to replace edge intersections
of the induced subgraph by virtual nodes in order to planarize it. This idea is later
extended by Lillis et al. [70, 71] as described next.

Lillis, Pemmaraju, and Pirwani [70, 71] further elaborate on the virtual nodes idea
by Kuhn et al. [84, 86]. Their algorithm works on restricted QUDGs G. First, a
backbone graph is constructed in a network-wide initialization phase. Essentially, nodes
locally compute a Connected Dominating Set (CDS) on the basis of a regular square-grid
geographic clustering, where grid length is chosen dependent on the minimum transmission
range, such that all nodes in a cell form a clique. The subgraph Gb induced by the nodes
in the CDS w.r.t. G obeys the QUDG properties, has a constant node degree, and has a
constant number of edge intersections per edge. The planar overlay graph V irt(Gb) is
obtained by replacing every edge intersection in Gb by a virtual node which is controlled
by a physical node being incident to it. Nodes in V irt(Gb) have constant node degree.
The set of edges connecting non-backbone nodes to their corresponding cluster heads and
the planarized backbone graph V irt(Gb) form the routing graph Gr. It is a (4c+ 6)-hop
spanner for the input graph, where c ∈ O(1) denotes the maximum number of intersections
of any edge in Gb. Since this routing graph is not a constant stretch Euclidean spanner,
Lillis et al. propose the following extension of the routing graph construction. Instead of
using one grid, three shifted grids are placed on the input graph and for each cell the
localized Euclidean spanner construction from Wang and Li [132] (see Section 3.1) is
employed. The routing graph G′

r then consists additionally of all the grid cell’s Euclidean

5 Given a graph G = (V,E), an independent set is a set of nodes U ⊆ V , no two of which are adjacent in
G. An independent set is maximal if no node can be added to it without violating its independence [87].
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Figure 3.5: Illustration for explanation of protocol Virtual-Face-Traversal by Guan [72,73].
Blue and pink points represent real and virtual nodes, respectively. Point p is
the midpoint of edge uv. The dotted arrows show the virtual routing path
〈α→ β → γ〉. This figure is similar to [72, Figure 2]

spanner edges. Depending on the destination, routing is performed either on the planar
Euclidean spanners or on the planar backbone graph. Routing graph G′

r is a constant
stretch Euclidean spanner, but it is not planar. One major contribution of this thesis is a
reactive version of this algorithm. It is presented in Chapter 8.

Guan [72,73] elaborates the virtual node idea even further and presents a local geographic
routing protocol, called Virtual-Face-Traversal, which enables guaranteed delivery routing
in restricted QUDGs without network-wide planarization. Essentially, this protocol
simulates FACE routing on the input graph G where edge intersections are considered
as virtual nodes.6 Face routing applied onto the virtual planar graph yields a virtual
routing path consisting of virtual edges where either none, one, or both of the endpoints
are virtual nodes. Virtual-Face-Traversal computes a real path in the network graph that
follows this virtual routing path. This is best explained by means of an example, provided
in Figure 3.5. Suppose the endpoint u of real edge uv, which contains the current virtual
edge αβ, holds the packet containing α as the endpoint of the current virtual edge. Given
that u is provided with 2-hop neighborhood information in G and that the endpoint β is
in between u and the midpoint p of uv, then u can determine β and compute the real
path u→ v → w (according to Fact 3.15). It then forwards the packet to w containing β
as the endpoint of the current virtual edge. Otherwise, if β is in between p and v, then u
forwards the packet to v containing α as the endpoint of the current virtual edge. Based
on its 2-hop information, v is now able to determine the endpoint β of the current virtual
edge and forwards the packet to w containing β as the endpoint of the current virtual
edge. In either case, node w takes care of computation of the next virtual routing step
and simulation of the underlying real path.

Virtual-Face-Traversal is a 2-local protocol for guaranteed delivery geographic routing,
which does not require topology control operations. However, by avoiding topology
control and performing routing on the actual network graph, where the number of edge

6 In contrast to the original FACE routing algorithm, where a face is changed whenever the start-
to-destination-line (stored in the packet header) is about to be intersected, Virtual-Face-Traversal
makes a face change and updates the starting point, whenever a point (not necessarily a node) on a
forwarding edge is detected which is closer to the destination than the current starting point.
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intersections per edge is not bounded by a constant, this approach can cause severe
overhead regarding the number of message transmissions. One solution to this problem
is the combination of this approach with the approach by Lillis et al. [70,71] described
above. This is part of the contributions of this thesis and is presented in Chapter 8.

Chen et al. show in [149, 150] how to locally compute well separable, nearly-planar
Power stretch spanners for arbitrary QUDGs. As in the case of the two approaches by
Kuhn et al. [84,86] and Lillis et al. [70,71], they make use of a backbone, based on the
geographic grid clustering techniques. A (vertex) separator of a graph is a subset of
vertices that splits the graph into two non-adjacent components of similar size when
it is removed from the input graph [150]. A graph is called well separable, when any
subgraph has a relatively small separator [150]. The backbone is constructed as follows.
For the subgraph consisting only of edges of length at most r, a non-connected planar,
bounded-degree, Power stretch spanner is computed locally following the idea of [117]
(involving Gabriel graph planarization and a Yao-step for bounding the node degree).
Then, a grid of constant cell size is imposed and the shortest edges connecting two cells
are added to the backbone graph. The output graph QUDGBB is then a well separable,
nearly-planar (the average number of edge-crossings per edge is bounded by a constant),
O(R2/r2) degree-bounded, 3 + 2β+1 sinβ(π/k)-power spanner for the input QUDG, where
k ≥ 9 is a parameter and β is the power exponent.

Funke and Milosavljević [151] propose a landmark-based scheme for geographic routing
with guaranteed delivery on restricted QUDGs. It operates on a “macroscopic” level of
abstraction. The main idea is based on ideas from GLIDER [152] and can be summarized
as follows. At first, a k-hop independent set of landmark nodes is computed in a localized
fashion. From this the graph Voronoi diagram can be obtained. Each landmark node
represents a Voronoi cell. Each Voronoi cell consists of all regular nodes (i.e., non-
landmark nodes) for which this landmark is closest w.r.t. hop-distance. The combinatorial
Delaunay graph (CDG) is then the graph over all landmark nodes, where any two nodes
are connected by an edge if their corresponding Voronoi cells are connected by an edge in
the underlying network graph. CDG is typically not planar and is therefore transformed
into the planar Combinatorial Delaunay Map (CDM) as follows. Any two landmarks are
connected by an edge, if there exists a path between them, such that the path itself as
well as the 1-neighborhoods of nodes along this path belong to the corresponding two
Voronoi cells (see [151, 153] for details). Finally, an embedding of CDM is computed
which requires 2k-local communication. The graph embedding obtained then permits
use of guaranteed delivery geographic routing algorithms, such as GFG [36]. However,
according to an example construction by Lillis et al. (see [71, Figure 3]), CDM may not
be connected. As yet, spanning ratios of CDM have not been considered.

Subgraph Spanners

Chávez et al. [154] introduce a k-local algorithm for construction of connected, spanning
subgraphs of arbitrary QUDGs. In fact, they show that the k-local minimum spanning
tree construction by Li et al. [142] (see Section 3.1) also applies to QUDGs. Each node
gathers k-hop neighborhood information and computes the Minimum Spanning Tree
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(MST) over this neighborhood set. An edge uv is added to the output graph G≺
k if both u

and v use it in their locally computed MSTs (≺ refers to a unique linear order defined over
the edges in order to obtain uniquely defined MSTs). Graph G≺

k is a connected subgraph
of the input graph. It is planar if the input graph is civilized for λ ≥

√
1− r2. In case a

UDG is given, the node degree is bounded from above by 5, whereas in case of arbitrary
QUDGs it is bounded by 3 + 6

πr +
r+1
r2

. Moreover, if G≺
k is planar and kr > 1, then the

weight of this graph is only a constant times higher than that of the MST. Constant
upper bounds on the Euclidean or topological spanning ratios of this construction are not
known.

Damian et al. [155] propose a centralized algorithm Slise for construction of low-
interference spanners on arbitrary QUDGs and show that it can be turned into a localized
algorithm. In the following, only the centralized algorithm is briefly outlined. In a first
step, edges are sorted according to their outgoing interference (the outgoing interference
of an edge uv is modeled as the number of nodes w with ‖wu‖ ≤ ‖uv‖ or ‖wv‖ ≤ ‖uv‖).
Then the algorithm greedily eliminates edges with highest interference from the set of
candidate spanner edges, until no more edges can be eliminated without violating the
spanner property [155]. Afterwards, algorithm RelaxedGreedy is applied onto the resulting
subgraph, which processes the edges of the input graph in several phases: First, edges
that can be replaced by short paths are removed. Then, a distinct clustering of the nodes
is computed and only short edges between clusters are chosen. Finally, redundant edges
which are geographically close by are removed. For any t > 1 and ǫ > 0, the output graph
HSlise is a (possibly non-planar) Euclidean t(1 + ǫ) spanner with constant node degree.
Its distributed construction requires O(log(∆) + log∗(n)) synchronous communication
rounds, where ∆ denotes the ratio of the maximum to the minimum edge length in the
input graph.

In [139], Damian and Pemmaraju improve the former result by introducing a local
algorithm for construction of (possibly non-planar) low-weight Euclidean spanners for
arbitrary QUDGs. Again, they describe a centralized algorithm called LOS (localized
spanner) and show that it can be computed efficiently in a local fashion. As in the case
of PLOS (see Section 3.1), at first a partially overlapping square grid is virtually imposed
on the plane, such that each cell forms a clique and each node belongs only to at most
four cliques. Then, each node determines to which grid cells it belongs as well as to which
grid cells its one-hop neighbors belong. For each of the cliques a node belongs to, it
computes a Euclidean (1 + ǫ)-spanner using a centralized algorithm. Afterwards, each
node performs a Yao-step and selects for each of the k > 8 cones the shortest edge (if
any). This is succeeded by a reverse Yao-step, where any node u removes in each cone any
incident Yao-edge created by another node v, except the shortest one. Finally, a filtering
is applied on the edges in order to remove all but a constant number of edges incident
to a grid cell. This is done via local computation of an r-cluster cover. Basically, in a
four-phased algorithm in each cell a cluster center is elected. Nodes which are connected
to a cluster center by a path of Euclidean length of at most r belong to this cluster center.
Uncovered nodes with largest IDs decide to become a cluster center as well. Then, for
any two clusters of the r-cluster cover, one arbitrary edge connecting these clusters is
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added to the spanner. The output graph HPLOS is then a Euclidean (1 + ǫ)-spanner of
the input graph whose weight is only a constant times that of the MST. This output
graph has a constant node degree.

Graph Embeddings

Sarkar et al. [156] present a surprisingly different approach to the problem of guaranteed
delivery geographic routing on restricted QUDGs. Instead of computing a planar graph
that supports recovery for local geographic routing algorithms, a conformal map of the
underlying network is computed in a localized fashion. Based on this, a virtual coordinate
system is set up such that Greedy routing always succeeds. At first, they extract a planar
triangulation of the network graph, namely by locally computing the restricted Delaunay
graph (RDG) (see Section 3.1) on the edges of the input graph of length at most r. The
resulting graph can be disconnected but can be reconnected by adding virtual or actual
QUDG edges of length > r to RDG. The resulting graph is connected and there exists a
planar embedding of this graph in the classical, graph-theoretic sense (see Definition 2.9).
Then all internal triangles and all boundary regions of the network are oriented, which is
necessary to obtain a manifold on which the conformal mapping can be applied. Now
each node locally computes a discrete Ricci flow (a concept from differential geometry) as
well as its virtual coordinates by flattening of the triangles using a distributed gossip-style
process that makes use of the output of Ricci Flow computations. Finally, a conformal
mapping can be computed. Simulations suggest that the routing stretch is at most 3.21.

Taxonomy of QUDG Planarization Techniques

Table 3.3 summarizes the above given survey on quasi unit disk graph planarization
techniques in chronological order. For each topology control structure the following
properties are listed:

QUDG indicates if the ratio R/r is arbitrary (A) or restricted (R), i.e., R/r ≤
√
2.

k-loc. refers to the degree of k-locality required by nodes to compute their adjacency.
unb. abbreviates the word unbounded. “≥ x” refers to a constant which is greater
than or equal to x.

Local is marked ’✓’ if the structure is computed by a k-local algorithm and ’✗’ otherwise.
Graph type specifies if this structure is a subgraph (S) over all nodes, overlay graph (O),

and/or backbone graph (B) over a subset of the nodes.
Euclidean stretch specifies the Euclidean spanning ratio if known and ’?’ otherwise.
Topological stretch specifies the topological spanning ratio if known and ’?’ otherwise.

In case of subgraphs of the underlying QUDG, if no upper bound is known, then the
trivial upper bound of O(n) is specified, which holds for any connected subgraph.

Node degree is the maximum node degree in the structure.
References refers to source(s).
Year lists the earliest point in time of publication.
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Topology QUDG k-loc. Local
Graph
type

Eucl.
stretch

Top.
stretch

Node
degree

Ref. Year

GG(S(G)) R unb. ✗ a O ? Ω(n) O(n) [83, 145] 2001
GBG A ≥ 3 ✗ S,B ? O(1) O(1) [84, 86] 2003
GG(S(G′

BG)) R O(∆2) ✗ O,B ? O(1) O(1) [84, 86] 2003
GG(S(G)) R unb. ✗ a O ? ? O(n) [147,148] 2004
G≺

k A ≥ 2 ✓ S ? O(n) O(1) [154] 2006
QUDGBB A ≥ 9 ✓ S,B ? O(n) O(1) [149,150] 2007
CDM R ≥ 2 ✗ O,B ? ? O(n) [151] 2007
V irt(Gb) R 3 ✓ O,B ? O(1) O(1) [70, 71] 2007
G′

r R 3 ✓ O O(1) O(1) O(n) [70, 71] 2007
HSlise A O(log∗ n) ✗ S t(1+ ǫ) O(n) O(1) [155] 2009
HPLOS A ≥ 2 ✓ S 1 + ǫ O(n) O(1) [139] 2010

Graph type: S=Subgraph, B= Backbone, O=Overlay graph for the underlying network graph
a Algorithm is 1 + (R2 − r2)/λ2-local for the class of λ-civilized graphs.

Table 3.3: Taxonomy of QUDG planarization techniques in chronological order.
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Chapter 4

Survey on Beaconless Algorithms

This survey systematically and comprehensively reviews beaconless algorithms. It is not
limited to beaconless algorithms that directly relate to the algorithmic contributions given
in this thesis, but shall provide a more general overview on this research field. The scope
of this survey is, however, limited to local(ized) beaconless algorithms that do not make
use of flooding. Flooding-based algorithms annihilate the advantages of the beaconless
approach and are therefore of no further relevance for this thesis.

Section 4.1 introduces the general idea of beaconless algorithms. In Sections 4.2–4.5
the existing algorithms are presented according to their specific objectives. Each section
is complemented by a taxonomy that lists and summarizes the work presented therein.

4.1 Preliminaries

Beaconless algorithms are distributed algorithms that distinguish themselves from con-
ventional distributed algorithms by avoiding maintenance of neighborhood information
via beaconing. The latter refers to the periodic process of sending “HELLO”-messages
(so called beacons) by the network nodes in order to establish communication links with
neighbors in the communication network, as well as to detect link breakage. Once all nodes
have transmitted a beacon, each node is provided with current neighborhood information
in the communication graph.

Periodic broadcasting of beacons has several drawbacks, which are listed and discussed
in detail by Heissenbüttel et al. in [12]. In general, beaconing is a proactive process and
is performed independently of actual needs. Even if no task is to be completed, nodes
periodically update their neighborhood tables. Heissenbüttel et al. [12] list the following
direct and indirect impacts.

• Additional energy is consumed in order to transmit, receive, and process beacons.

• Beacons interfere with regular data transmissions and therefore, increase the number
of collisions, which causes additional retransmissions.

• Beaconing introduces additional control overhead. The bandwidth is partially used
for control traffic and is not available for user data.

• Due to fluctuations in the wireless channels and node mobility, the topology changes
frequently and therefore a node’s neighborhood table is likely to be inaccurate. Links
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may appear or disappear. Until the next update, the neighborhood information of a
node is outdated and may cause avoidable retransmissions, suboptimal application
layer decisions, or even failure of the application itself.

Füßler et al. [17] remark that sending beacons at a higher rate can lower the aforementioned
inaccuracies, but at the cost of a higher load on the bandwidth and increased energy
consumption.

Especially in dense networks and networks that are highly mobile, e.g., networks
consisting of mobile nodes that move at higher speed, beaconing often fails to provide
a node with current and correct neighborhood information. However, for applications
like localized geographic routing, the quality of the routing decisions heavily depends on
appropriate neighborhood information.

Sanchez et al. [22] state that the effects of the aforementioned problems on real-
world deployments should not be underestimated. This has been confirmed by several
studies [12,157,158].

Beaconless algorithms (also called contention-based or receiver-based algorithms) are
designed to avoid problems arising from the use of beaconing. They are fully reactive and
work without maintenance of neighborhood tables [18]. In this context, the term reactive
means that the algorithm is executed on demand only and must not involve any proactive
component. Moreover, beaconless algorithms assume that a node is completely unaware
of its network neighborhood at algorithm start.

Although beaconless algorithms are used to solve different algorithmic problems and
vary a lot in their specific details, descriptions, and underlying assumptions, the archetype
or generic scheme of any beaconless algorithm can be described as follows.

Generic scheme executed by a node u in order to solve problem P :

1. At algorithm start, node u is unaware of its network neighborhood. It is possibly
provided with some initial node knowledge, such as its geographic position, or node
ID. Node u locally broadcasts a request, possibly containing (parts of) its initial
knowledge. Then it starts a delay timer of duration tmax (a fixed time slice which
is either globally known to all nodes, or which is included in the request), and waits
for responses in the meantime.

2. The request from u is overheard by all network neighbors v of u. On reception, all
nodes v ∈ N1(u) inspect the request synchronously.

• If a node v decides, based on its initial node information and the information
contained by the request, that it is not of any help to solve problem P , then it
decides to stay passive for the moment (i.e., performs no operation), but keeps
on listening to messages sent by other nodes. Overhearing further responses
may lead to its reactivation.

• Otherwise, if v considers itself important for solving problem P , it schedules
sending a response, possibly containing (parts of) its initial node knowledge,
after a delay whose duration is a fraction of tmax. The duration of the delay
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timer is computed based on a function that usually depends on the node’s
initial knowledge and possibly on information contained in the request. It is
designed so that nodes that are more appropriate for solving problem P answer
earlier than those nodes that are less appropriate.

3. While a neighbor v of u waits for time-out of its delay timer it listens to other
messages.

• In case such a node v overhears a response by some other node w, which is
more appropriate to solve problem P or obviates the need for sending the
response, then v decides to become passive, cancels sending of its scheduled
response, but keeps on listening to messages sent by other nodes. Overhearing
further responses may lead to its reactivation.

• Otherwise, if it has either not overheard any other response or decides to still
be important for solving P , it locally broadcasts its response upon time-out of
the delay timer anyway.

4. While the delay timer of node u has not timed-out, it is ready to receive and process
responses. Typically, after having received the first response or a fixed number of
responses, node u is provided with enough information to solve problem P . In this
case, it may immediately transmit a stop message, which causes all nodes in N1(u)
to cancel their running delay timers and cancel transmission of scheduled messages.

After time at most tmax, node u has received at least 0 and at most |N1(u) − 1|
many responses. The former case translates to a situation where all neighboring
nodes consider themselves irrelevant for solving problem P . The latter case typically
does not arise, except for worst-case situations, since it is equivalent to requesting a
single beacon message from all neighboring nodes in N1(u). In regular cases, node
u receives one or several responses. Based on this information, node u either solves
problem P directly, which is the typical case, or may initiate another round of
algorithm execution by sending another request, possibly now containing additional
information collected from those nodes that have previously responded.

Nodes that decide to be passive in the above description may be of further use. In
some algorithms, the fact that some nodes become passive and do not transmit a message
is problematic, as they remain hidden (invisible) for others. This may cause some nodes
to respond although their response is superfluous or even adverse. Therefore, some
beaconless algorithms let these passive nodes further overhear the message exchange. If
they witness a response that can be considered adversarial given the local knowledge
of this passive node, then it can correct the outcome by sending an additional message,
often referred to as protest message, e.g., in [18].

The benefit of a beaconless algorithm compared to its beacon-based counterpart is that
the executing node computes the same output as if it was provided with full neighborhood
knowledge. During the execution of a beaconless algorithm by some node u, only a few
messages are transmitted, typically a constant number. Any beacon-based approach
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would require transmission of at least |N1(u)| many messages, which is in the order of O(n)
in the worst-case. Hence, beaconless algorithm can actually help to resolve the problems
arising with beaconing listed above: In total, fewer messages are being transmitted and
energy resources are saved. It is also less likely that regular transmissions are being
interfered and the overall control overhead is reduced. Additionally, the construction of
partial neighborhood knowledge requires potentially less time and therefore, yields more
current information and is less likely to be outdated.

These arguments are the prototypical motivation for use of beaconless instead of
beacon-based algorithms.

Note that beaconless algorithms are not only advantageous regarding theoretical worst-
case situations. Their practical implementability and advantages with respect to several
metrics have been shown empirically in various simulation studies (see e.g., [18–22], just
to name a few) as well as in actual testbed experiments (see e.g., [23–25]).

4.2 Greedy Routing

Beaconless Greedy routing algorithms shift the routing decision—which neighbor is the
locally optimal choice for forwarding—to the neighbors by means of a contention mecha-
nism. The numerous approaches can be categorized into two main groups: aggressive and
non-aggressive contention schemes.1.

Aggressive contention schemes usually make use of implicit acknowledgements. Staying
in the terminology of the generic scheme described above, the initiating node u includes
the packet that has to be forwarded in its initial request. The neighbor v which is the
most suitable for forwarding has the shortest time-out and immediately broadcasts the
next request, again including the packet. Node u then considers the forwarding by v as
an implicit acknowledgement.

In contrast, non-aggressive contention schemes usually make use of explicit acknowl-
edgements. Node u sends its request. The node v which is the most suitable for forwarding
answers first with a response; this can be considered as an acknowledgement. Upon
reception of the response, node u then forwards the actual data packet to v.

In the following, both groups are handled independently. Within a group, approaches
are clustered whenever possible with regard to their objectives. To simplify and harmonize
the description of the individual approaches, some terms have to be defined first (see
Figure 4.1 for an illustration).

In the following, denote by s always the source node of a unicast packet which is
destined at destination node d. The forwarder, or forwarding node, which currently holds
the packet, is always denoted by v. A candidate for forwarding is denoted by c. The area
of intersection of the transmission radius R of forwarder v and the circle centered at d
with radius ‖dv‖ is the positive progress area (PPA). It is represented by the shaded area
in Figure 4.1. The line segment sd between the source and the destination is referred to
as the source-to-destination line, or simply sd-line. Define the forwarder-to-destination
and candidate-to-destination lines accordingly. The interior angle α = ∡vcd for candidate

1To the best of the author’s knowledge, this categorization was introduced by Dinh et al. [159]
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Figure 4.1: Illustrations of several notions in the context of beaconless Greedy routing.
The shaded area represents the positive progress area (PPA) w.r.t. forwarder
v and destination d. The dashed line segment p represents a candidate’s
projected progress w.r.t. the forwarder-to-destination line vd.

c is used to express closeness to the vd-line. The projected progress of candidate c w.r.t.
v and d is the length of the line segment p, resulting from projecting the position of c
onto the vd-line. Line segment p′ is the difference of ‖vd‖ and p.

Aggressive contention algorithms often make use of so called forwarding areas. Typically,
these are subareas of the positive progress area and ensure that any two nodes which
are contained in the forwarding area can mutually overhear their messages. Only nodes
that are located within the forwarding area participate in the contention process. If one
candidate forwards the packet, then this is overheard by all other candidates, which then
cancel their scheduled transmission. Figure 4.2 illustrates the most common forwarding
areas in the shape of a (a) sector, (b) circle, and (c) Releaux triangle.

Finally, some of the approaches that are described below are so called cross-layered
approaches. Cross-layer design means that parameters of two or more protocol stack layers
can be retrieved and/or changed in order to achieve an optimization objective [160].

Aggressive Contention

The generic scheme underlying any aggressive contention Greedy routing approach can
be summarized as follows.

Generic aggressive contention scheme executed by forwarding node v:

1. Forwarder v locally broadcasts the packet, which includes its and the destination’s
position in the packet header.

2. Nodes in N1(v) overhear this packet. Neighbors that find themselves not suitable
for forwarding drop the packet, whereas all remaining neighbors start a delay timer.
The actual delay depends on the optimization criterion. In general, the more suitable
a node is for forwarding, the shorter is its delay.
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(a) (b) (c)

Figure 4.2: Illustration of different forwarding areas which are used in beaconless geo-
graphic Greedy routing algorithms: (a) forwarding sector with angle α, (b)
forwarding circle, and (c) forwarding Releaux triangle.

.

3. If upon expiry of a node’s delay timer, this node has not overheard a resubmission
of the data packet, it updates the packet header and locally broadcasts it to its
neighbors. Otherwise, it drops the packet.

Progress-based forwarding Beaconless routing (BLR) introduced by Heissenüttel et
al. [16, 161] comes with three delay functions. The first basically implements the idea
of most forward within radius (MFR) [162], which locally optimizes the progress. The
delay of a candidate is inversely proportional to its progress and hence, the neighbor
providing the largest progress forwards the packet. The second delay function implements
a modified version of nearest with forward progress (NFP) [163]. The node with the least
progress within the forwarding area (sector, circle, or Releaux triangle) has the shortest
delay and forwards the packet, which increases the number of possible simultaneous
transmissions in the network. The third delay function essentially favors those nodes that
make large progress and are close to the vd-line at the same time. For the case of local
minimum situations, two approaches are proposed: the local minimum node performs
one-hop beaconing, extracts its adjacency in a planar subgraph, and uses the right-hand
rule for recovery; or it makes use of clockwise relaying (CR), which is described in detail
in Section 4.3.

Chen et al. [164] propose an extension of BLR [16, 161], henceforth referred to as
BLR with history (BLRwH), where a node’s delay is additionally influenced by recently
overheard network traffic. Their assumption is that nodes which have recently overheard
more network traffic are located in denser network areas than those having overheard
little or no traffic at all; therefore, they are more suitable for relaying the packet. On
the other hand, if the traffic load in the vicinity of a node is too high, then the delay
should be penalized in order to avoid collisions. They suggest a delay function based
on the progress criterion of BLR, which in addition accounts for a node’s historic traffic
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load. Recovery situations are resolved by employing beacon-based recovery strategies like
GFG [36].

Endo et al. [165] introduce another modification of BLR, called Distance-Aware For-
warding (DAF). They propose to alter the delay function so that the farthest node within
the forwarding area (sector) is assigned the shortest delay. In their analysis they show
that this reduces the total delay in a multi-hop transmission at the cost of increased
hop-length of the routing path.

Algorithm improved progress position based beaconless routing (IPBBLR) by Cao and
Xie [166] is a minor modification of BLR. The delay of candidate c is computed as in BLR
and weighted by cos(∡cvd) w.r.t forwarder v destination d in order to favor nodes that are
closer to the forwarder-to-destination line. Their simulations show minor improvements
in the delivery ratio.

Watanabe and Higaki propose cooperated no-beacon geographic distance routing (CNB-
GEDIR) [167] which is in fact a beaconless route discovery scheme. However, if the route
request messages used in this scheme are replaced with the actual data packet, it can be
considered a classical aggressive contention Greedy routing algorithm. In fact it is then
similar to BLR, since nodes providing large progress are favored during the contention.

Contention-based forwarding (CBF), introduced by Füßler et al. in [17,168], is similar to
BLR [161], although proposed independently of it. CBF is a forwarding scheme composed
of two parts: the selection of the next-hop is performed by means of contention, while
suppression is used to reduce the number of packet duplications. CBF comes in three
variants: basic suppression, area-based suppression, and active selection. The first two
variants are aggressive contention algorithms, whereas the latter one belongs to the class
of non-aggressive contention algorithms and is discussed later. In CBF, a node’s delay is
inversely proportional to the progress it provides towards the destination. In CBF with
basic-suppression (henceforth CBF-BS), the forwarder initiates the contention process
among all neighbors in the positive progress area, which may lead to packet duplication
as nodes in the positive progress area may not be able to overhear the forwarding of the
data packet. Therefore, in CBF with area-based suppression (henceforth CBF-ABS), only
nodes in the forwarding Releaux triangle (see Figure 4.2c) participate in the contention
process. Hence, CBS-ABS is in fact identical to BLR [161].

In contention-based beaconless geographic routing (CBGR) by Shi and Liu [169] it is
considered how far the next hop can forward the packet. The candidate within the
π/3-forwarding sector whose communication radius minimizes the Euclidean distance to
the destination is assigned the shortest delay and forwards the packet. In static networks,
nodes remember previous forwarding decisions and avoid repeated contentions. In mobile
ad hoc networks, previous routing decisions are deleted after some fixed time interval and
the contention mechanism is repeated. If no suitable next-hop exists within the forwarding
area, the node performs beaconing and chooses another node within the positive progress
area. To avoid routing loops, nodes drop a packet as soon as it would be forwarded to
the same neighbor twice.

Blind geographic routing (BGR), introduced by Witt and Turau [21, 170], addresses
the problem which arises if more than one node forwards the packet simultaneously
during the contention process. It also supports different delivery semantics (e.g., if the
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destination’s position is not known in advance or if several nodes in the vicinity of a
destination position are targeted). BGR supports three-dimensional geographic positions.
In principle, BGR is an algorithm framework and supports various forwarding areas and
delay functions. The instance they use for simulations uses a forwarding sector and a
delay function that favors nodes which are close to the destination. For handling cases
in which two or more nodes (nearly) simultaneously forward a packet, the number of
hops that a packet has been forwarded is stored in the packet header. In case a node has
started a timer for a particular packet having a hop-count of k, the node only cancels its
delay timer if it overhears forwarding of a packet with a hop-count larger than k. If the
node overhears forwarding of a packet with a hop-count equals k, this packet stems from
a simultaneous transmission and is simply ignored. BGR proposes two recovery strategies.
If a circular forwarding area is used, it is turned by π/3 into a random direction (possibly
multiple times) and the protocol is restarted with the rotated forwarding area. In case of
a forwarding sector, it is augmented by π/6 in each step until either a suitable next-hop
is detected, or the entire half-circle facing the destination has been covered.

Lee et al. propose angled relaying with backoff time and (relay) cancellation (ABC) [171],
which uses a sector as the forwarding area. The sector is divided into equally spaced
stripes (annuli) and each stripe is assigned a non-overlapping contention window. Stripes
closer to the destination are assigned earlier contention windows. Each contention window
is slotted into k time slots. Based on its own and the destination’s position, a node
can compute to which stripe it belongs. Any two nodes in the forwarding area which
are located in the same stripe are assigned to the same contention window. Moreover,
each node chooes one of the respective k time slots uniformly at random. The number
of stripes and slots determines the collision probability. In case the forwarding sector
is empty, the next forwarding sector in counter-clockwise direction is used. This event
causes a boundary-detection process. Essentially the packet is routed around the void
region until a node with a next-hop residing in the original forwarding sector is found. To
solve future recovery situations, another control packet is routed further around the void
region until the initial node on the void is reached. From then on, the void is detected
and recovery is performed around the void using the known boundary nodes. However,
since arbitrary edges are used for recovery, routing loops are possible.

Pizza Forwarding (PF) by Amadou and Valois [172] supports asymmetric communication
links and non-isotropic radio propagation. Moreover, nodes do not have to know their
communication range for delay timer computation. The current forwarder v partitions
the plane into eight equal circular sectors (pizza slices) centered at v, see Figure 4.3. The
four sectors facing the destination represent the Greedy forwarding area, whereas the
two adjacent sectors facing the backwards direction are used for Recovery routing. These
sectors are assigned priorities in {p1, p2, p3}. The delay function of candidates c with
highest and second highest priority p3 and p2, respectively, is similar to the third delay
function of BLR [161] (see above) and favors those nodes that provide large progress and
simultaneously minimize the angle ∡cvd. Nodes add a (not further specified) random
value to their delay timers in order to avoid collisions. The forwarder reacts by sending
a SELECT packet upon relaying of the packet in order to avoid packet duplications.
However, under the assumption that links are not necessarily bidirectional, this protocol
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Figure 4.3: Illustration of the partitioning of the forwarding area (priorities p2 and p3) and
the recovery area (priority p1) as used in algorithms PF [172] and PFMAC [173].
Areas have different priorities pi, v is the current forwarder, and d is the
packet’s destination. In recovery areas the delay of a node wi also depends on
the angle Θi. This figure is partially similar to [173, Figure 2]

.

still may produce packet duplications in case the forwarder does not overhear packet
forwarding by the next-hop. The delay functions used in Recovery mode for handling
local minima are discussed in Section 4.3.

Pizza-Forwarding Medium Access Control (PFMAC) [173] is a MAC-Routing cross
layered version of Pizza-Forwarding (PF) [172]. Nodes perform asynchronous duty cycling.
If a forwarding node wants to forward its data, it starts with a preamble transmission
which is at least as long as the sleeping time of nodes. The preamble encodes information
of whether greedy or Recovery mode is active. Nodes in the appropriate forwarding
sectors that wake up and detect the channel activity start the PF [172] contention
process, whereas nodes in other areas go back to sleep. In contrast to PF, the delay
functions do not make use of a randomly chosen offset. Simulations show that PFMAC
outperforms BOSS [174] (see non-aggressive contention algorithms below) in terms of
energy consumption, end-to-end delay, and control message overhead.

Balancing of residual energy levels Jain et al. introduce Energy aware Beacon-less
Geographic Routing (EABGR) [175]. It is explicitly designed for operation in three-
dimensional networks. The forwarding region is a cone (3D sector). The candidate which
minimizes the ratio of the quadratic progress to its residual energy level is assigned the
shortest delay. That is, not only the closeness of a node to the destination, but also the
state of its energy resources are taken into account. In case the forwarding volume is
empty, it is shifted left or right, and the protocol is restarted.

In a follow-up study, Mishra and Gore [176] compare different combinations of delay
functions and forwarding volumes (elliptic, parabolic, and regular cones) in EABGR.
They propose to weight the delay function which is used in EABGR additionally by
any of the following three factors: (1) angle α = ∡vcd, (2) the slope of c w.r.t. the
forwarder-to-destination line, or (3) the corresponding angle α = ∡cvd. Their simulations
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suggest that option (3) is best suited to differentiate between candidate nodes which have
similar projected distances. Regular cones turn out to be best suited for dense networks,
whereas elliptic cones are preferable in sparse and moderately-dense networks.

Base station assisted routing The beaconless multihop routing algorithm (BMR) by
Nawaz et al. [177] is designed for static wireless sensor networks where the data sink is
powerful base station outside the actual network. In the network configuration phase
the base station transmits increasing zone-IDs while increasing transmission power. A
node belongs to the smallest zone-ID it has overheard. This way the network is clustered
into zones Z0, ..., Zk. In the data communication phase a forwarder locally broadcasts
its packet including its zone-ID. Only nodes with smaller zone-ID start a delay timer.
The latter is based on the nodes’ residual energy and the nodes’ zone-ID. Effectively, the
node with the smallest zone-ID and the highest residual energy is the first to forward the
packet. However, the forwarding area is not specified and hence, packet duplications may
occur.

Jurdak et al. [178] present an approach which is similar to BMR, called Directed
Broadcast with Overhearing (DBO). In a setup phase, a data sink broadcasts a packet over
the entire network. All nodes at hop distance k from destination d are grouped into the
same hop-zone. Once a node at hop distance k wants to send a packet to the destination,
it locally broadcasts it and only nodes belonging to group k − 1 start a random delay.
One node relays the packet and other nodes in this hop-zone which overhear the relay
transmission cancel their delay timers. As in the case of BMR, this may lead to packet
duplications. DBO is a MAC cross-layer protocol. It combines directed broadcast at the
network layer with CSMA and packet overhearing at the MAC layer.

Real-time routing The receiver-based beaconless real-time routing protocol (RBRR) by
Yim et al. [179] enables a real-time communication service. The forwarder includes
information about the average single hop delay (average delay between entering time to
output queue and sending time of the last bit for a packet) in the packet header. Once
the delay timer of a neighboring node expires, it only relays the packet if the real-time
constraints can still be met with regards to the average single hop delay. The forwarding
area is a Releaux triangle which is partitioned into concentric stripes (centered at the
destination). Stripes are assigned non-overlapping contention timers. The stripe closest
to the destination has the shortest delay. The order of nodes within a stripe is determined
by a randomly chosen offset.

Multipath Al-Otaibi et al. introduce multipath routeless routing (MRR) [180], a multi-
path routing protocol designed for highly mobile networks. The forwarding area, called
route broadcast virtual channel, is a rectangle of unlimited length that is fixed and centered
at the position of the source node s and whose width is 2α, where R/2 < α < R is a
fraction of the unit disk graph radius R (see Figure 4.4 for an illustration). Specification
of this forwarding area is part of the packet header and only nodes located within this
area participate in the multi-hop forwarding process. The actual forwarder selection is
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Figure 4.4: Illustration of the forwarding area used in algorithm MRR [180]. R denotes
the unit transmission radius, s is the source and d the destination of the
packet. Parameter α ∈ [R/2, R] specifies the width of the forwarding area.
This figure is similar to [180, Figure 1]

.

similar to BLR [161], however, the delay function is based on three criteria: the receiver
sensitivity, the distance of the candidate to the source-to-destination line, and the node’s
residual energy. The delay function is designed so that nodes receiving weaker signals,
located closer to the boundaries of the forwarding area, and having more remaining energy
have shorter delays [180]. Since nodes which are close to the border are preferred and the
width of the forwarding area is larger than R, at least two non-interfering routes exist.

Multimedia streaming The Link quality and Geographical beaconless Opportunistic
Routing protocol LinGO by Rosario et al. [181] is a cross-layered approach for enabling
efficient video dissemination for mobile multimedia Internet of Things. Essentially, they
make use of the standard aggressive contention principle to establish on demand a route
from a source to a destination node, which is then used for forwarding the entire data
stream. During the contention process, which is similar to MRR [180], all nodes in the
positive progress area participate. The delay function regards a candidate’s progress,
its residual energy, as well as the link quality (based on Signal-to-Noise Ratio (SNR),
Signal-to-Noise plus Interference Ratio (SINR), or the Link Quality Indicator (LQI))2.
If the forwarder does not detect the relaying of the packet, or if the forwarding area is
empty, it retries until a next-hop is found.

Vehicular networks Vehicular ad hoc networks, so called VANETs, comprise vehicle-to-
vehicle and vehicle-to-infrastructure communications based on wireless local area network
technologies [182]. Unlike in typical ad hoc networks, in VANETs it is typically assumed
that nodes are provided with street maps and are possibly able to communicate with
some fixed roadside infrastructure providing nodes with information on traffic flow, etc.

In [183], Füßler et al. propose contention-based forwarding in street scenarios (CBFSS),
which adopts the basic suppression version of their protocol CBF [17] for use in VANET
scenarios. The forwarding node locally broadcasts the packet and all nodes in the positive

2For details on these metrics, the reader is referred to the textbook by Karl and Willig [3].
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progress area start their delay timers inversely proportional to their progress towards
the destination. The node with earliest timeout performs the next forwarding step. The
authors claim that packet duplications rarely occur in street scenarios since cars can
only be located in narrow areas (streets) and therefore no further suppression scheme is
required. Moreover, in order to avoid packet duplications, nodes store the unique packet
IDs and simply drop duplicated packets.

The Routing Protocol with Beacon-Less (RPBL) by Sasaki et al. [184] is similar to
CBFSS [183]. Nodes are provided with road maps and can locally compute the shortest
path to the destination. Instead of selecting candidates that maximize progress towards
the destination, the candidate maximizing the progress towards the next intersection on
the shortest path (called temporary destination) is determined in the contention process.

Taxonomy Table 4.1 lists and summarizes the aforementioned aggressive contention,
geographic routing algorithms in chronological order.3 For each algorithm, this table lists
the following:

k-locality refers to the degree of k-locality required by nodes to compute the next-hop.
Path strategy specifies if it is single path or multi path approach.
Metrics specifies which metrics are considered for selection of the next-hop during the

contention process.
Stateless is checked with ’✓’, if the algorithm is stateless.
Cross layer is checked with ’✓’, if the algorithm explicitly combines multiple network

layers.
3D is checked with ’✓’, if the algorithm explicitly handles 3D node positions.
VANET is checked with ’✓’, if the algorithm is explicitly designed for application in

vehicular ad hoc networking scenarios.
Reference refers to source(s).
Year lists the earliest point in time of publication.

3The only work not considered in this table is [176], as it does not describe an individual algorithm, but
rather compares different combinations of delay functions and forwarding areas on top of another
algorithm.
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Algorithm k-loc.
Path

strategy
Metrics

State-
less

Cross
layer

3D VANET Ref. Year

CBF-(A)BS 1 Single D ✓ [17, 168] 2003
CBFSS 1 Single D ✓ ✓ [183] 2004
BLR 1 Single D ✓ [16, 161] 2004
IPBBLR 1 Single D ✓ [166] 2005
BGR 1 Single D ✓a ✓ [21, 170] 2005
CNB-GEDIR 1 Single D ✓ [167] 2007
BLRwH 2 Single D,δ [164] 2007
CBGR 1 Single D [169] 2008
DBO 1b Multi H ✓ [178] 2009
EABGR 1 Single D,E ✓ ✓ [175] 2009
DAF 1 Single D ✓ [165] 2010
ABC 2 Single D ✓ [171] 2010
PF 1 c Single d D ✓ [172] 2010
BMR 1b Multi D,E [177] 2011
MRR 1 Multi S,D,E ✓ [180] 2011
PFMAC 1 c Single d D ✓ ✓ [173] 2011
RBRR 1 Single D,T ✓ [179] 2013
RPBL 1 Single D ✓ ✓ [184] 2013
LinGO 1 Single S,D,E ✓ ✓ [181] 2014
a Only if nodes store a constant number of previously forwarded packets
b Requires a global setup phase
c Recovery mode requires 2-hop information
d Packet duplication may occur due to unidirectional links
Metrics: D=Distance, E=Energy, H=Hops, T=Time, S=Signal strength, δ=Node density

Table 4.1: Taxonomy of aggressive contention, reactive Greedy routing algorithms in
chronological order.
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Non-Aggressive Contention

The generic scheme underlying any non-aggressive contention, Greedy routing algorithm
can be summarized as follows.

Generic non-aggressive contention scheme executed by forwarding node v:

1. Forwarder v locally broadcasts a REQUEST, including its and the destination’s
position.

2. Nodes in N1(v) overhear this packet. Neighbors that find themselves not suitable for
forwarding stay passive, whereas all remaining neighbors start a delay timer. The
actual delay depends on the optimization criterion. In general, the more suitable a
node is for forwarding, the shorter is its delay.

3. Upon expiry of a node’s delay timer, it answers the REQUEST by sending a
RESPONSE including its position.

4. Nodes whose delay timers have not yet expired and which overhear sending of a
RESPONSE, cancel their delay timers and refrain from sending a RESPONSE.

5. Upon reception of a RESPONSE, forwarder v locally broadcasts a SELECT, which
announces the next forwarding hop. Typically, this is the node which has answered
first. Nodes overhearing this SELECT and that still have a running delay timer,
cancel it and refrain from sending a RESPONSE.

In this general scheme, the actual DATA packet is either contained in the REQUEST, or
in the SELECT.

In contrast to aggressive contention algorithms, in non-aggressive contention algorithms
the forwarder’s positive progress area (see Figure 4.1) can be used exhaustively. Other
nodes in the progress area overhear the RESPONSE or the SELECT. In both cases, they
cancel their delay timers and refrain from answering the REQUEST. While using the entire
progress area, the delivery rate is maximized at the cost of additional message overhead,
which in turn reduces the available bandwidth and causes higher energy consumption.

The above generic scheme resembles the RTS/CTS handshake as used in IEEE 802.11
[185], which is based on the MACAW protocol [186]. In MACAW, when node a wants to
send some DATA to a node b, it first sends a request-to-send (RTS). If c has properly
received the RTS, b answers with clear-to-send (CTS). If a has properly received the CTS,
then it starts transmitting the actual DATA, which is then acknowledged with an ACK
by b upon successful retrieval. Many of the non-aggressive beaconless geographic routing
algorithms borrow this RTS-CTS-DATA terminology. It is therefore used interchangeably
with the REQUEST-RESPONSE-SELECT terminology in the remainder of this work.

Variations of the generic approach Contention-based forwarding (CBF) with active
selection (henceforth, CBF-AS), introduced by Füßler et al. [17, 168], is a one-to-one
implementation of the generic non-aggressive contention scheme. First, the forwarding
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node locally broadcasts the RTS including the data packet. A candidate’s delay is inversely
proportional to the progress it provides towards the destination. The candidate whose
timer expires first answers with a CTS. The forwarder then locally broadcasts a SELECT
indicating which node has been selected for forwarding. This suppresses all other timers
of nodes in the positive progress area. In case of a local minimum situation, standard
beacon-based approaches like FACE [36] may be used for recovery.

Chawla et al. [187,188] propose Guaranteed delivery beaconless forwarding (GDBF). It
proceeds just like CBF-AS: the delay functions are similar, but the data is contained in
the SELECT rather than in the initial broadcast by the forwarder. In case there are two or
more nodes at the same distance with respect to the destination, which causes a collision
at the forwarder, the forwarder requests a resubmission, but this time with randomly
chosen timer values. The mechanism used for recovery in local minimum situations is
discussed in detail in Section 4.3.

Distributed Passive Routing Decisions (DPRD) introduced by Škraba et al. [189,190] is
a CSMA/CA based cross-layered version of the generic scheme. It assumes that nodes are
able to do carrier sensing. The main emphasis of this work is the analysis of two classes
of delay functions which are based on different physical layer parameters. Their analysis
suggests the following: When the delay function is modeled as an exponential function,
then it is possible to optimize both delay and probability of collision, even at high node
densities. However, when the delay functions is modeled as a linear function, then the
collision probability can reach unacceptable levels at high node densities.

Beacon-less on demand strategy for geographic routing in wireless sensor networks
(BOSS), proposed by Sanchez et al. in [23,174], is designed for operation in error-prone
networks. Data is transmitted as part of the initial REQUEST by the forwarder, as in the
case of CBF-AS [17,168]. Only nodes that are located in the positive progress area and
that have correctly received the packet are allowed to participate in the contention process.
The positive progress area is sub-divided into stripes (see Figure 4.5). Stripes are assigned
unique and non-overlapping delay intervals. Nodes within a particular delay zone add
a random value to the zone’s minimum delay value such that the overall delay remains
within the zone’s assigned delay interval. In local minimum situations BOSS makes use of
the recovery mechanism of GDBF [187,188] or the dedicated recovery algorithm Angular
Relaying (AR) [18,107], both of which are described in Section 4.3.

Aguilar et al. [192] propose a beaconless geographic cross-layer protocol, called CoopGeo,
for cooperative wireless ad hoc networks. This combines geographic routing and geographic
relay selection. CoopGeo is composed of several components: the MAC-network cross-layer
protocol beaconless greedy forwarding (BLGF), based on BOSS [174]; the MAC-network
cross-layer protocol beaconless recovery forwarding (BLRF), based on BFP [18] (see
Section 4.3); and a beaconless MAC-PHY cross-layered relay selection scheme, which
is executed if the data packet cannot be encoded correctly at the selected forwarder.
BLGF is similar to BOSS. However, all nodes in the positive progress area participate in
the contention process, independent of whether the data (contained by the REQUEST)
could be decoded correctly or not. Upon expiry of the delay timer, a node transmits
its RESPONSE and indicates in this packet if relay cooperation is needed due to error
decoding. In case relay cooperation is required, all nodes in a particular area (the Releaux
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Figure 4.5: Illustration of the partitioning of the positive progress area (pink) as used in
algorithms GeRaF [27,191] and BOSS [174]. R denotes the unit transmission
radius, s is the source and d the destination of the packet. This figure is
similar to [174, Figure 3]

.

triangle or the RNG-lune between the forwarder and the selected next-hop) which have
received and correctly decoded the data start another timer-based contention, where the
timers are based on cooperative link quality in terms of average point-to-point symbol
error rate (SER). The first node whose timer expires becomes the relay node and relays
the data to the selected next-hop, which then uses maximum ratio combining for data
decoding. CoopGeo uses BFP [18, 107] (described in Section 4.5) for handling local
minimum situations.

Balancing residual energy levels Implicit geographic forwarding (IGF) by Blum et
al. [19] is a MAC-cross layer approach which modifies the 802.11 MAC protocol for
contention-based selection of the next forwarding hop. At first, this protocol proceeds just
like the generic scheme formulated above. A node’s delay timer depends on its progress
towards the destination, its residual energy level, and an additional random value. After
the RESPONSE has been received by the forwarder, communication proceeds as in IEEE
802.11 semantics (CTS-DATA-ACK). To avoid collisions, IGF uses a π/3-forwarding
sector. If no suitable next-hop can be found, the forwarding area is shifted and the
protocol is restarted.

State-free Implicit Forwarding (SIF) [193] and On-demand Geographic Forwarding
(OGF) [20], both proposed by Chen et al., are similar to IGF [19]. Instead of using
only a forwarding sector, both make use of the entire positive progress area. To avoid
collisions, nodes are assumed to be able to perform carrier sensing within at least two
times the regular transmission range. The delay functions used in SIF and OGF are also
similar to the one proposed in IGF. However, OGF differs in so far as nodes maintain
routing tables in which previous forwarding decisions are stored. A contention-based
next-hop forwarding decision is only performed if the routing table does not contain an
appropriate entry. For handling local minimum situations, SIF proposes to gradually
increase transmission power until a suitable next-hop is detected, or to make retries at a
later point in time. In OGF, Partial Source Routing (PSR) is proposed to handle voids. It
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is essentially a partial k-hop flooding technique for route discovery. Once the destination
node or a node being closer to the destination than the local minimum receives the packet
flooded, it uses path information stored in the packet to answer the minimum node. It
thereby establishes a route to the destination.

Optimizing energy efficiency Algorithms EBGR [194] (also called EEGR in [195]) and
MEGAN [196] are designed for energy efficient routing. The idea underlying all of these
protocols is as follows: The current forwarder computes first the ideal position of the
next-hop with regards to energy consumption. Then, the forwarder starts a conventional
contention process where nodes close to the ideal position have shorter delays and are
favored for forwarding.

Energy-efficient Beaconless Geographic Routing (EBGR) by Zhang and Shen [194] is a
follow-up and further development of their algorithm Energy-Efficient Geographic Routing
(EEGR) introduced in [195]. In EBGR, the ideal next-hop position p (a point on the
forwarder-to-destination line) is calculated based on the optimal forwarding distance in
terms of minimizing the total energy consumption for delivering a packet from the current
forwarder v to destination d [194]. The circle centered at p with radius at most ‖vp‖,
called relay search region, is then subdivided into concentric annuli of equal covered area.
Like in BOSS [174], each annulus is assigned a unique and non-overlapping time period.
The closer the annulus is to the optimal position p, the shorter is the delay. Moreover,
the delay function used in EBGR ensures that two nodes that are located in the same
annulus have different timeouts. For recovery from local minimum situations, EBGR uses
the dedicated recovery algorithm AR [18,107] (see Section 4.3).

Mitton et al. introduce in [196] Mobility assisted Energy efficient Georouting in energy
harvesting Actuator and sensor Networks (MEGAN). It aims at prolonging the overall
network lifetime, rather than reducing the energy consumption over a single path [196].
It assumes that nodes are mobile and have the capability to harvest energy. The current
forwarder v of a packet first estimates the ideal position p based on its current energy
consumption and harvesting rates, as well as its maximal and current residual energy
levels. Then, the forwarder v adjusts its transmission range to ‖vp‖ + ǫ and locally
broadcasts the REQUEST including the positions of p and itself. Nodes overhearing this
transmission start a delay timer so that the node with more residual energy after the
movement to ideal position p is the first node that answers the REQUEST. This node
then moves towards p. If it finds a good spot for energy harvesting on its way, it stops
and proceeds with the next routing step.

The author of this thesis is well aware of algorithm energy-efficient beaconless geographic
routing with energy supply (EBGRES) by Jumira et al. [197]. However, the contents and
results presented there are suspiciously similar to those presented first in EBGR [194].
Therefore, this work is simply disregarded.

Duty cycling Geographic Random Forwarding (GeRaF) by Zorzi and Rao [27, 191]
considers problems arising with duty-cycling. The idea is to use whatever node is available
at any given time, without waiting for a specific node to wake up [198]. In GeRaF the
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positive progress area is partitioned into several priority regions ordered by distance (see
Figure 4.5). Each region is assigned a unique time slot upon sending of the REQUEST
by the forwarder. Nodes residing in the region with the highest priority are the first to
answer and their RESPONSE cancels transmissions by nodes in lower priority regions. If
there are several nodes within the region with highest priority, all of them transmit their
RESPONSE simultaneously, which causes a collision at the forwarder. This is detected
and a collision resolution algorithm is executed. Nodes in the highest-priority region
retransmit their RESPONSE with probability 1/2 until exactly one node has successfully
transmitted its packet. In case the forwarding area is empty, the protocol is restarted at
a later point in time when another set of nodes is awake.

In a follow-up paper [198], Zorzi proposes a collision avoidance scheme for GeRaF.
Traditional carrier sense schemes only partially avoid collisions if nodes wake up asyn-
chronously and hence, hidden terminal problems may occur. To avoid this, nodes listen to
the radio channel for a particular time frame Tsens before transmitting a packet. If within
this time frame no activity has been sensed, the transmission can be started. Otherwise,
the node backs off and retries transmission at a later point in time. In order to actually
avoid collisions, the length of time frame Tsens is based on the relationship between the
sensing time and the transmission schedule which is followed by active nodes.

The cross-layer module (XLM) by Akyildiz et al. [29] is similar to GeRaF, but it
also incorporates transport layer functionalities. The protocol is based on a concept
called initiative determination. Nodes only participate in the contention process if the
REQUEST is sent over a channel with adequate quality (determined on the basis of the
Signal-to-Noise Ratio (SNR)), if the node is not congested, if enough buffering capacities
are available, and if the residual energy allows for participation in the forwarding process.
In an extension of this algorithm, called XLP [28], Vuran and Akyildiz propose to add
a sweep line-based recovery strategy for handling local minimum situations. This is
explained in detail in Section 4.3.

Taking network density into account Priority-based stateless geo-routing (PSGR) by
Xu et al. [32, 199] also subdivides the positive progress area into unique forwarding zones.
Unlike in GeRaF [191] or BOSS [174], however, the number of zones is not predetermined,
but computed dynamically based on estimated node density. For an estimation of the
node density, the forwarder overhears network traffic for a certain amount of time and
counts the number ρ of distinct nodes to which it is connected. Then, the positive progress
area is subdivided into stripes, such that each stripe covers area A/ρ, where A is the area
covered by the positive progress area; i.e., assuming that nodes are uniformly distributed,
each stripe contains one node in expectation. Each stripe is assigned a unique delay
timeout and the first node to answer is the next-hop for forwarding. In order to further
minimize the delay time, the authors introduce another heuristic, which first subdivides
the positive progress area into forwarding zones, such that all nodes within a particular
zone can overhear each other. Each zone is assigned a unique delay window. The formerly
outlined approach is applied within each zone, i.e., each zone is further subdivided into
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stripes containing one node in expectation. Their routine for handling local minima,
called Bypass, is described in detail in Section 4.3.

Real-time routing The contention-based beaconless real-time routing protocol for wireless
sensor networks (CBRR) by Huang and Wang [200] aims at energy efficient end-to-end
real-time routing and is similar to the aggressive contention real-time routing protocol
RBRR by Yim et al. [179] (see Section 4.2). Only those nodes that meet the packet’s
real-time constraints participate in the contention process. The actual delay function
takes into account a combination of the candidate’s progress, its residual energy, the
number of packets waiting in its output queue, as well as a random value. A node stores
previous forwarding decisions in a routing table. If a packet is to be forwarded, the
node first checks its neighborhood table and only starts the contention process if no
suitable neighbor could be determined. The authors also describe a two-hop version of
the protocol, where nodes overhear transmissions of other nodes and update their two-hop
neighborhood tables accordingly.

Variable transmission range Das et al. propose in [34] the partially beaconless algorithm
Geographic Routing with Variable transmission range (GRoVar). It is assumed that
nodes can vary their transmission range and that nodes perform beaconing only at low
transmission range Rinit, a fraction of the maximal transmission range Rmax. If a forwarder
v wants to forward a packet, it chooses among all neighbors within range Rinit the one
that minimizes the cost w.r.t some metric such as distance to the target or power over
progress [201]. If no such neighbor exists, the transmission range is increased stepwise.
Then, the generic non-aggressive contention scheme is used to find a neighbor maximizing
the progress towards the destination. In case that no appropriate next-hop can be found,
even with a maximal transmission range Rmax, the dedicated recovery algorithm AR [18]
(see Section 4.3) is used.

The integrated MAC/Routing protocol (MACRO) by Galluccio et al. [202] aims at mini-
mizing energy consumption by exploiting the nodes’ capability to adjust their transmission
ranges. It is assumed that nodes perform asynchronous duty cycling. If a forwarder v
wants to forward a packet, it transmits several wake-up messages until all forwarding
candidates are active. It then locally broadcasts a REQUEST. Nodes overhearing it
start their delay timers depending on their weighted progress (the ratio of the distance
progress towards the destination to the transmission power used by the forwarder). Upon
timer expiration, a node answers by transmitting its weighted progress. The forwarder
estimates, based on a probabilistic function, if an increase in transmission power will lead
to a next-hop with higher weighted progress. If no higher weighted progress is expected,
the packet is forwarded to the candidate currently maximizing the weighted progress;
otherwise, the procedure is repeated with increased transmission power.

Multipath routing The Beacon-less Geographic Multipath routing protocol (BGM) by
Dong et al. [203] aims for reliable geographic routing using maximally node-disjoint
multiple routing paths. Similarly to the aggressive contention algorithm MRR [180], the
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source node s partitions the area between s and destination d into k zones zi, using elliptic
curves instead of rectangles. The packet, including the information which is necessary
for a node to determine in which zone it is located in, is then injected into each zone
and forwarded independently. Let v be a forwarder in zone zk. Upon transmission of
a REQUEST, nodes in the positive progress area start their delay timers. The delay
function favors those nodes that are in the same zone and provide large progress towards
the destination. Nodes in neighboring zones that are also in the positive progress area
are penalized and compute their delay based on the proximity to the respective boundary
curve. This way packets are allowed to leave their zone, but keep close to the zone
boundary for eventual return. In addition, delay timers are multiplied with a random
number in order to avoid collisions. The node with earliest time-out wins the contention
and is selected for forwarding.

Convergecast Zhang introduces in [26] a context-aware duty cycle assignment protocol
called Receiver-Based Heading (RBH). It assumes that there are several data sources that
periodically send data towards a common data sink. The sending period is globally known
to all nodes and they are programed to wake up during packet generation at the sources.
This is called the detection phase. This phase creates a tree, rooted at the destination
and connecting it with all sources, using a standard non-aggressive contention process.
Nodes closest to the destination in the positive progress area are assigned the shortest
delay and data packets are routed from the sources to the destination. All forwarders
along this path, called heads, build the desired tree. In the succeeding heading phase, all
non-head nodes are set back to sleep mode to conserve energy.

Based on the regular packet generation interval and the transmission durations of
packets in the detection phase, head nodes compute during which time frames they
have to be awake in order to cover upcoming forwarding events. This protocol performs
context-aware duty cycling in so far as the cycles are computed on demand and dependent
on the actual node deployment.

Hybrid contention Hybrid Contention-Based Geographic Routing (HCGR) by Dinh et
al. [159] combines aggressive and non-aggressive Greedy routing into a single protocol. The
positive progress area of a forwarding node v is partitioned into an aggressive contention
area (AA) and a non-aggressive contention area (NA) (see Figure 4.6a). The forwarder
locally broadcasts the DATA packet. All nodes u in AA and NA (i.e., in the entire
positive progress area) start their delay timers using the same delay function. The latter
favors those nodes that are close to the vd-line, and which provide large progress. The
authors claim that their delay function always assigns shorter delays to nodes in AA
than to nodes in NA. It is, however, easy to construct counter-examples where this is
not correct.4 Nodes in AA immediately forward the DATA packet, whereas nodes in NA
send a RESPONSE upon timer expiration. Upon reception of DATA or RESPONSE sent
by node u, forwarder v acknowledges the transmission with a SELECTION containing

4 For example, in Figure 4.6a the delay of node e is 0.15 · tmax, whereas the delay of node f is 0.13 · tmax

although it is outside of AA.
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(a) (b)

Figure 4.6: (a) Illustration of the partitioning of the positive forwarding area into the
aggressive contention area (AA) and the non-aggressive contention area (NA)
as used in algorithm HCGR [159]. In this example, delay of node e is larger
than that of node f . (b) In Recovery mode the aggressive (AA) and non-
aggressive (NA) contention areas are defined in dependence of the previous
two hops e and f . In this example g minimizes the interior angle at v w.r.t.
I and is selected for forwarding. Figures (a) and (b) are partially similar
to [159, Figures 1 & 2]

.

the position of u in order to suppress timers of all other nodes. If forwarder v is a local
minimum, a Recovery mode is applied (see Figure 4.6b). In Recovery mode the aggressive
and non-aggressive contention areas are defined relative to the positions of the previous
two hops e and f . The delay of a node g is proportional to the interior angle ∡Ivg. The
actual forwarding procedure is similar to Greedy mode. Since the edges used in Recovery
mode are not necessarily free of edge intersections, the resulting routing path may loop.

Vehicular networks In [204] Ruiz et al. extend the non-aggressive Greedy forwarding
algorithm BOSS [174] (see above) to vehicular networking scenarios and introduce the
Beacon-less Routing Algorithm for Vehicular Environments (BRAVE). Nodes are provided
with street maps and can locally compute the shortest path on the street map from the
current position to the destination. A forwarding node v essentially executes algorithm
BOSS [174]. In case of a crossing, the forwarding node starts the contention process
among all nodes that are located in between the next and the after next crossings. In
case of a local minimum, BRAVE employs a store-carry-forward approach, i.e., the node
stores the packet until a suitable next-hop becomes available again.

Contention-based beaconless packet forwarding (CBBPF) by Asgari et al. [205] is also
similar to BOSS [174] (see above). Nodes are not provided with street maps and simply
try to forward the message as close to the destination as possible using the contention
mechanism from BOSS [174]. In contrast to BOSS, the actual data is sent last as a part
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of the SELECT. CBBPF is a cross-layered approach. The forwarder’s MAC layer sends
its data delivery report to the network layer to indicate whether the winning candidate
successfully received the data or not [205]. In case of a local minimum, CBBPF also
performs store-carry-forward.

Intelligent Beaconless geographical forwarding (IB) by Ghafoor et al. [206] is a modifica-
tion of IEEE 802.11 RTS/CTS frames for packet forwarding in VANET scenarios. Nodes
are provided with street maps and can identify if they are in between two intersections or
on an intersection. The RTS sent by the forwarder includes information about whether
the forwarder is in between or on an intersection. In the former case, all nodes overhearing
the RTS start a delay timer. The delay function favors those nodes that are moving in the
same direction of the forwarding node and that receive the RTS with a strong power level
signal. In case the current forwarder is on an intersection, the delay function includes a
greediness factor representing the closeness of the node to the destination, in addition to
the direction and the signal power level.

In [207] Nzouonta et al. propose similar modifications of IEEE 802.11, but for application
in a non-local route discovery scheme.

Security aspects For the sake of completeness, at this point it shall be mentioned that
there are several papers [208–210] dealing with security aspects in beaconless forwarding
algorithms, in particular in the context of vehicular networking. This line of research
considers the problems arising with malicious nodes disturbing the contention/forwarding
process. However, for the present work, these aspects are far out of scope.

Taxonomy of non-aggressive contention schemes Table 4.2 lists and summarizes the
aforementioned non-aggressive contention geographic routing algorithms in chronological
order. For each algorithm, this table lists the following:

k-locality refers to the degree of k-locality required by nodes to compute the next-hop.
Path strategy specifies if it is single path or multi path approach.
Metrics specifies which metrics are considered for selection of the next-hop during the

contention process.
Stateless is checked with ’✓’, if the algorithm is stateless.
Cross layer is checked with ’✓’, if the algorithm explicitly combines multiple network

layers.
VANET is checked with ’✓’, if the algorithm is explicitly designed for application in

vehicular ad hoc networking scenarios.
Reference refers to source(s).
Year lists the earliest point in time of publication.
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Algorithm k-loc.
Path

strategy
Metrics

State-
less

Cross
layer

VANET Ref. Year

IGF 1 Single D,E ✓ ✓ [19] 2003
GeRaF 1 Single D ✓ ✓ [191] 2003
DPRD 1 Single D ✓ ✓ [189,190] 2004
PSGR 1 Single D [32,199] 2004
SIF 1 Single D,E ✓ ✓ [193] 2005
XLM 1 Single D ✓ ✓ [29] 2006
GDBF 1 Single D ✓ [187,188] 2006
OGF 1 Single D,E ✓ [20] 2007
MACRO 1 Single E ✓ ✓ [202] 2007
BOSS 1 Single D,L ✓ [23, 174] 2007
GRoVar 1 Single D,H,E ✓ [34] 2007
CBRR 1/2 Single D,E,Q [200] 2010
EBGR/EEGR 1 Single E ✓ [194,195] 2010
BRAVE 1 Single D ✓ ✓ [204] 2010
BLGF 1 Single D ✓ ✓ [192] 2011
HCGR 1 Single D ✓ [159] 2011
BGM 1 Multi D ✓ [203] 2012
RBH 1 Single D ✓ ✓ [26] 2012
IB 1 Single D,S ✓ ✓ ✓ [206] 2013
MEGAN 1 Single E ✓ [196] 2013
CBBPF 1 Single D ✓ ✓ ✓ [205] 2013

Metrics: D=Distance, E=Energy, H=Hops, S=Signal strength, Q=Queue length,
L=Link quality

Table 4.2: Taxonomy of non-aggressive contention, reactive Greedy routing algorithms in
chronological order.

4.3 Recovery Routing

In the following, approaches to the beaconless recovery problem are reviewed. Some of
these approaches, especially those that guarantee message delivery, are of particular
interest for later chapters of this thesis. For this reason, these approaches are explained
in more detail. The beaconless recovery problem can be formalized as follows:

Definition 4.1 (Beaconless recovery problem). Let G = (V,E) be a connected geometric
graph and u ∈ V a local minimum node (see Definition 2.7) w.r.t. destination node
d ∈ V . The beaconless recovery problem refers to the algorithmic challenge of computing
locally and hop-by-hop, a connected node sequence S = 〈u = s1, s2, ..., sk〉 in G, such
that S is a recovery path (see Definition 2.8) for escaping the local minimum at node u,
without making use of beaconing, i.e., without intentionally gathering full neighborhood
information.

The majority of beaconless recovery algorithms makes use of sweep lines and sweep
curves for detection of the next hop on the recovery path. Their general idea can be
summarized as follows.
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(a) (b)

Figure 4.7: (a) Illustration of the sweep line-based beaconless recovery approach. The
delay of a node wi is proportional to angle Θi = ∡uvwi, where v is the current
forwarder and u is the previous-hop. (b) Scenario where selection of the angle
minimizing node w1 leads to routing loop 〈v → w1 → w2 → v〉.

Let v be the node currently holding the packet and let u be the previous hop, i.e., the
node which just forwarded the packet to v. Node v locally broadcasts a REQUEST (also
RTS) including its own as well as u’s position. Upon receiving of this REQUEST, all
other nodes wi ∈ N1(v) compute a delay timer, using a commonly known delay function
whose input is the set of positions {v, u, wi}. The delay function maps the angle ∡uvwi

to a fraction of time slice tmax, a parameter which is either globally known to the nodes or
part of the REQUEST. Once a node’s delay timer expires, it answers with a RESPONSE
(also CTS), including its position. This node then becomes a candidate for forwarding and
forwarder v reacts to the RESPONSE by immediately sending another message, which
cancels all other nodes’ delay timers.

Sweep line-based recovery Clockwise-Relaying (CR) [161], Bypass [32, 199], No-Bea-
con FACE (NB-FACE) [211], Angular Relaying (AR) [18,107], and angle-based routing
(ABR) [28] are sweep line-based approaches to the beaconless recovery problem. The
following explanation is illustrated by Figure 4.7a.

Given current forwarder v and previous-hop u, the delay of any neighbor wi ∈ N1(v)
is proportional to the counter-clockwise angle ∡uvwi. Graphically speaking, the first
node hit by rotating the sweep line segment vu in a counter-clockwise direction around
v, is the first node that answers in the contention process. In Figure 4.7a Θ1 < Θ2 and
hence, the delay timer of w1 expires earlier than that of w2, and w1 becomes candidate
for forwarding.

In CR [161], Bypass [32, 199], and ABR [28], the node wi ∈ N1(v), wi 6= u, v, which
minimizes the angle ∡uvwi is directly selected for forwarding, i.e., forwarding node v
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immediately forwards the DATA to wi after receiving this node’s CTS. However, as
illustrated in Figure 4.7b, this may lead to a routing loop (v → w1 → w2 → v), since
edge vw1 is intersected by another edge w2z, which is the only edge leading towards the
destination.

To avoid routing along intersected edges, NB-FACE [211] and AR [18,107] make use
of an additional protest phase. In NB-FACE [211] the forwarder waits for a time period
τ after having received the CTS by candidate wi before it announces a SELECTION
of wi. Within this time period nodes wj ∈ D(v, wi) send a PROTEST message. The
rationale behind this is that the existence of wj ∈ D(v, wi) implies that uvi is no edge of
the Gabriel graph and hence, is possibly intersected by other edges of the network graph.
The number τ is, however, not further specified in [211], which is problematic as pointed
out by Rührup et al. [18, Section VI-A]. If τ is proportional to a constant fraction of
the entire rotation angle, then this could cause multiple PROTEST messages, or lead
to selecting an edge which is not free of intersections. Otherwise, if τ is proportional to
the full rotation, then arbitrarily many nodes in N1(v) may send their CTS messages,
as they may not have been able to overhear the CTS sent by wi. Hence, in order for
this algorithm to produce a correct recovery path, the selection of a next-hop requires
transmission of Θ(n) many messages in the worst-case, since either Θ(n) PROTEST or
CTS messages are transmitted.

AR [18, 107] is similar to NB-FACE [211], but avoids the aforementioned problem.
Forwarder v sends the RTS including its position as well as the position of previous-hop u.
Nodes in wi ∈ N1(v) start their timer proportional to the counter-clockwise angle ∡uvwi.
Nodes wi with u ∈ D(v, wi) answer with an INVALID-CTS, which does not cause other
nodes to suppress sending their CTS. Although these nodes wi are no suitable forwarders
(vwi is no edge of the Gabriel graph), their existence is crucial to determination of actual
Gabriel graph neighbors of forwarder v. All other nodes respond with a CTS, including
their position, upon timer expiration. On receiving the first CTS by wj , forwarder v
immediately sends a SELECT, including the position of the respective candidate wj . This
message suppresses all other nodes’ timers and scheduled transmissions of CTS messages,
and initiates the protest phase. In this phase all nodes wk ∈ D(v, wj) start a delay timer
proportional to ∡uvwk − ∡uvwj which determines the order of protests (if any). Upon
time-out of such a protest timer, a node wk sends a PROTEST, including its position.
This node wk then immediately becomes selected as the next candidate by the forwarder
and another protest phase starts for node wk, and so on. The first candidate node for
which no PROTEST is received is guaranteed to be the first Gabriel graph neighbor of v
in counter-clockwise direction w.r.t. ray vu. However, it is easy to construct worst-case
examples, where all nodes in N1(v) either send a CTS or a PROTEST message during
algorithm execution. Thus, the worst-case message complexity of AR [18,107] is Θ(n),
too.

Sweep curve-based recovery The problems regarding the Θ(n) worst-case message
complexity are remedied by sweep curve-based beaconless recovery. Graphically speaking,
instead of rotating a sweep line, a sweep curve is rotated around the forwarder. This
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(a) (b)

Figure 4.8: Illustration of the delay timer computation in the sweep curve-based recovery
scheme Rotational Sweep (RS) using the (a) Sweep Circle (SC) and (b)
Twisting Triangle (TT) delay functions. In both cases, the delay of a node
wi is proportional to the opening angle Θi which depends on the positions of
the current forwarder v, previous-hop u, and candidate wi. These figures are
similar to [15, Figure 4 & 6].

idea was presented first by Kalosha and Rührup et al. in [18, 107] and later extended by
Rührup et al. in a series of publications [15,68,69].

Rotational Sweep (RS) [15, 68, 69] is a beaconless recovery scheme that makes use
of sweep curves. Generally, a forwarding node v locally broadcasts an RTS including
its position, as well as the position of the previous-hop u. As in sweep-line recovery
algorithms, neighbors wi ∈ N1(v) start a contention process based on a delay function,
which can be represented by a sweep curve rotating in the counter-clockwise direction
around the forwarder (see Figure 4.8). The node which is hit first by the sweep curve, i.e.,
the node whose timer expires first, answers with a CTS which includes its position. Upon
reception of this CTS, forwarder v immediately broadcasts the DATA, which suppresses
other nodes’ timers and suppresses sending of other CTS messages.

RS proposes two delay functions. Sweep Circle (SC) is a half-circle attached to v,
whereas Twisting Triangle (TT) is a Releaux triangle attached to v. The diameter of both
SC and TT is equal to the unit disk radius. Initially, these geometric shapes are placed
such that their boundary touches v and previous-hop u. Then, the counter-clockwise
boundary curve of the respective shape is rotated in a counter-clockwise direction until
the first node wi ∈ N1(v) is being hit. This can be expressed as a function of the positions
of v, u, and wi, such that the delay of a node wi is proportional to the opening angle Θi

(see Figure 4.8).
Let wi denote the node which answered first with a CTS during RS. If SC is used for

the contention process, then edge vwi belongs to a planar supergraph of the Gabriel graph
w.r.t. the underlying unit disk network graph. If instead TT is used for the contention
process, then edge vwi belongs to a supergraph of the relative neighborhood graph w.r.t.
the underlying unit disk network graph. Although the edges used for recovery in the case
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Figure 4.9: Illustration of the recovery routine of algorithm GDBF [187,188]. After the
RTS by executing node v, w1 and w3 respond with a CTS. Node w2 is
suppressed by the CTS of w1.

of TT are not necessarily free of edge intersections, they are provably free of critical edge
intersections that would lead to routing loops. Hence, both approaches yield guaranteed
delivery recovery paths.

Let TSC and TTT denote the recovery paths (also called traversals) produced by RS on
a particular local minimum situation when using SC and TT, respectively. The traversals
TSC and TTT can be partially node disjoint, i.e., nodes used in TSC may not be used in
TTT and vice versa. For an example see Figure 4.8, where for the exact same situation
SC selects node w2, whereas TT selects node w1.

Most importantly, independent of the choice of the sweep curve and the actual input
graph, RS requires only three messages for selecting the next-hop and forwarding the
data packet. Hence, this algorithm’s worst-case message complexity is O(1).

Topology-based recovery The non-aggressive contention Greedy mode of Guaranteed
Delivery Geographic Routing (GDBF) [187,188] has been discussed in Section 4.2. In the
following, its two staged Recovery mode is presented. See Figure 4.9 for an illustration.
Let v be a node in Recovery mode. In the first stage, v constructs a superset of its Gabriel
graph neighborhood. To do so, node v locally broadcasts an RTS including its position.
Neighbors wi ∈ N1(v) start a delay timer, where the delay function maps their Euclidean
distance ‖wiv‖ proportionally to a fraction of time slice tmax. Upon timer expiration,
a node locally broadcasts a CTS including its position. If a node wj overhears a CTS
from a node wi with wi ∈ D(wj , v) during its delay (i.e., if wj learns that it is not a
Gabriel graph neighbor of v), then it cancels its delay timer and refrains from sending a
CTS. This way, after time tmax a superset of the Gabriel graph neighborhood of v has
responded with a CTS.

For an example consider Figure 4.9, where the only Gabriel graph neighbor of v is
node w1. The CTS by w1, whose delay timer expires first, suppresses the CTS from w2.
Node w2 is said to be a hidden node, as it remains invisible for all other nodes. Then,
although w3 is not a Gabriel graph neighbor of v, it responds with a CTS, since w2—the
only witness for edge vw3 not being included in the Gabriel graph—is hidden. During
this stage the superset {w1, w3} of u’s Gabriel graph neighborhood responds with a CTS.
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In the second stage, forwarder v selects a candidate next-hop wi from the neighbors
that are known from the first stage according to the left-hand rule. That is, it selects the
node wi that minimizes the counter-clockwise angle ∡uvwi. Then, it locally broadcasts
this decision via a SELECT message. Nodes wj ∈ N1(v) with wj ∈ D(v, wi), if any,
start a delay timer proportional to distance ‖vwj‖. The node with the shortest delay
locally broadcasts a STOP message, which suppresses other nodes’ timers and STOP
message transmissions, and causes v to repeat the process with the next candidate in
the counter-clockwise direction. If there is no node in D(v, wi), then after time tmax no
STOP has been sent and wi is the next-hop. Since only valid Gabriel graph neighbors
are selected for forwarding, namely those according to the left hand rule, the resulting
recovery path guarantees message delivery in combination with the Greedy routing mode.
However, as in the case of the sweep line-based recovery algorithm AR [18, 107], it is
easy to construct worst-case examples where the selection of the next Gabriel graph edge
requires each node in N1(v) to send at least one CTS or STOP message. Therefore, this
algorithm’s worst-case message complexity is Θ(n).

Non-planar forwarding and partial two-hop knowledge Azimuth-Range ROuting for
large-scale Wireless sensor networks (ARROW) [212] differs from the previously described
approaches in so far as it does not determine edges of specific planar subgraphs. Instead,
the potential next-hop is determined, such that (1) it does not intersect one of the two
previous edges used for forwarding, and (2) there is no hidden edge leading to a better
forwarding node. The latter condition requires partial two-hop neighborhood information
of the forwarding node.

Initially, the local minimum node v determines the forwarding direction (clockwise
or counter-clockwise) using a simple contention process. Nodes wi ∈ N1(v) are delayed
proportional to the angle ∡wivd, or π−∡wivd if ∡wivd, where d is the packet’s destination.
The packet is forwarded to the node that minimizes this angle. The resulting forwarding
direction is stored in the packet header and maintained henceforth. In addition, the
packet always stores the positions of the two previous routing hops.

Whenever a node v in Recovery mode (i.e., after the first forwarding step by the
local minimum node) has received the packet from the previous-hop u, the next-hop is
determined as follows (see Figure 4.10 for an illustration). At first the current forwarder
starts a contention process by broadcasting an RTS. Nodes wi ∈ N1(v) are delayed
proportional to angle ∡wivu w.r.t. the direction stored in the packet header. Only
particular nodes wi participate. Note that given the positions of the previous hop u and
second-last hop u′, any node wi can easily determine if edge vwi intersects uu′ or uv.
Only those nodes wi which do not intersect these edges (i.e., satisfy the so called backward
rule) participate in the contention process. The node satisfying the backward-rule and
minimizing the angle is the first to reply with a CTS and is forwarded the data packet.
However, this simple angle-based choice may lead to routing loops (recall the situation
depicted in Figure 4.7b) and hence, it must be checked if edge vwi is intersected by a
hidden edge, which leads to a better forwarding node (see edge w2y in Figure 4.10). To
do so, the node currently holding the packet applies the interconnected triangle rule.
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Figure 4.10: Illustration of IC triangle rule during algorithm ARROW [212]. For the
next recovery edge vw1 it is checked if the isosceles triangle with γ = 2π/3
contains a node w2 which is connected to a node y, s.t. w2y intersects the
forwarding edge vw1.

Essentially, for any node such as w2 which is located in the isosceles triangle △(v, w1, k),
with ∡vw1k = ∡w1vk = π/6 and ∡vkw1 = 2π/3, it is checked if w2 is connected by
an edge to a node y s.t. w2y intersects edge vw1. In case such an edge exists, it is
used for recovery (in case there are multiple nodes wj in triangle △(v, w1, k) and/or
multiple intersecting neighbors yi, then the combination of nodes maximizing ∡vwjyi is
used for forwarding) and the interconnection triangle rule is applied again. Otherwise,
edge vw1 was a correct choice and the forwarding process is restarted at node w1. The
recovery path resulting from ARROW [212] is loop-free, provides positive progress towards
the destination, and therefore, provides delivery guarantee in combination with Greedy
routing. In contrast to the previous outlined beaconless recovery algorithms which
guarantee delivery, in ARROW the nodes do not need to know their communication
radius for computation of their delay timers.

In the worst-case, there are O(n) nodes located in the isosceles triangle, and each one
has to transmit at least one message to determine whether it has an adjacent edge that
intersects vw1. It is easy to construct scenarios, where all such nodes actually transmit
at least one message. ARROW thus has a worst-case message complexity of Θ(n).

In PF/PFMAC [172, 173]—described previously in the context of aggressive contention
Greedy routing algorithms in Section 4.2—a forwarding node v encounters a local minimum
situation if the higher priority sectors (p3 and p2 in Figure 4.3) are empty of nodes. The
Greedy contention function ensures that nodes in the recovery sectors, which have priority
p1, contend at least as long as nodes in higher priority sectors. In addition, this delay
function favors those nodes wi ∈ N1(v) in the recovery sectors which maximize the
Euclidean distance to forwarder v, while minimizing the angle Θi, the inner angle formed
by the line segment wiv and the orthogonal straight line to vd passing through v (see
Figure 4.3). Upon timer expiration, nodes in the recovery sectors transmit a so called
SOLICITATION message, which suppresses other such messages in their sectors. That is,
at most two such messages are being transmitted. These messages initiate a contention
process in the neighborhoods of their senders using the same delay functions as in Greedy

81



Chapter 4 Survey on Beaconless Algorithms

mode. Only one SOLICITATION-RESPONSE is allowed per sector. After that process,
senders of the SOLICITATION messages know at most six candidates and select the most
suitable one (e.g., based on progress towards the destination) and send the corresponding
node position to the current forwarder v. Upon receiving this information, it selects
the most suitable two-hop neighbor and forwards the message accordingly. Since the
algorithm makes use of heuristics only, it cannot guarantee progress along a recovery path
and hence, it does not provide delivery guarantee. However, the selection of the next
two forwarding hops requires at most a constant number of message transmissions and
therefore, this algorithm’s worst-case message complexity is O(1).

The author of this thesis is well aware of Adaptive Load-Balanced Algorithm, Rainbow
version (ALBA-R) [30] that may be used for beaconless recovery. However, it is not
stateless and therefore of no further relevance for this work.

Taxonomy Table 4.3 lists and summarizes the aforementioned beaconless recovery
routing algorithms in chronological order. For each algorithm, this table lists the following:

k-locality refers to the degree of k-locality required by nodes to compute the next-hop.
UDG is checked with ’✓’ if the algorithm is designed for operation in unit disk graphs.

Otherwise, it is marked with a ’✗’.
Guaranteed delivery is checked with ’✓’ if the resulting recovery path always satisfies

the progress criterion. Otherwise, it is marked with a ’✗’.
Message complexity refers to the algorithms worst-case message complexity.
Reference refers to source(s).
Year lists the earliest point in time of publication.

Algorithm k-locality UDG
Guaranteed

delivery
Message

complexity
Reference Year

CR 1 ✓ ✗ O(1) [161] 2004
Bypass 1 ✓ ✗ O(1) [31, 32] 2005
NB-FACE 1 ✓ ✓ a Θ(n) a [211] 2006
GDBF 1 ✓ ✓ Θ(n) [187,188] 2006
AR 1 ✓ ✓ Θ(n) [18, 107] 2008
PF/PFMAC 2 ✗ ✗ O(1) [172,173] 2010
RS-SC,RS-TT 1 ✓ ✓ O(1) [15, 68,69] 2010
ABR 1 ✗ ✗ O(1) [28] 2010
ARROW 2 ✓ ✓ Θ(n) [212] 2013
a Guarantees message delivery only if timers reflect full sweep rotations, in which case
the message complexity is Θ(n).

Table 4.3: Taxonomy of beaconless recovery algorithms in chronological order.

It is important to note that the delivery guarantees of the above protocols is only
provided if the input graph is a unit disk graph. Except for ARROW [212], nodes need
to know the unit transmission range R.
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4.4 Multicast Routing

Geographic multicast routing refers to the task of routing a packet from a single source to
a set of network nodes, the multicast group. This set of destination nodes as well as their
positions is assumed to be known in advance and explicitly addressed in the packet header.
A multicast algorithm succeeds or is said to guarantee delivery, if all addressed nodes
actually receive the packet. For a general overview on geographic multicast algorithms,
the reader is referred to the survey from Boukerche et al. [91].

Beacon-less geographic routing for multicast applications (BRUMA) [22] is the first
beaconless algorithm for geographic multicast and the only one that guarantees message
delivery without making use of beacon-based recovery. Let v be a node that wants to
send a message to a set of multicast destinations D = {d0, ..., dk} specified by their
geographic positions. Node v first computes the Euclidean Minimum Spanning Tree
(see Definition 2.10) ∆v = EMST(D ∪ {v}) and computes the set R(v) of first level
receivers, i.e., the subset of destinations from D to which v is connected by an edge in
∆v. In a second step, for each first level receiver ri ∈ R(v), node v uses a BOSS-like
contention process (see non-aggressive Greedy routing algorithms in Section 4.2) in order
to forward the packet to one neighbor wi ∈ N1(v), which has correctly received the packet
while maximizing the progress w.r.t. ri. If no such neighbor exists, i.e., if v is a local
minimum node w.r.t. ri, then the beaconless recovery strategy from GDBF [187, 188]
(see Section 4.3) is applied in order to route the message to the corresponding first level
receiver. The costs for forwarding a packet per hop are constant in Greedy mode, whereas
in Recovery mode they are Θ(n) in the worst-case. This is due to the same worst-case
message complexity of the recovery routine of algorithm GDBF [187,188]. In addition,
subroutine GDBF assumes unit disk input graphs.

Receiver-based multicast (RBMulticast) [24] and the distributed multicast protocol
based on beaconless routing (DMPB) [213] follow the same idea. A forwarding node
v partitions the plane into four quadrants with the origin at v. For each quadrant
containing at least one multicast destination, the packet is duplicated and assigned the
corresponding multicast destinations. The destinations of these packets are virtual nodes
at the barycenters of the multicast destinations in the respective quadrant. A beaconless
Greedy routing strategy is used to forward the packets towards the virtual nodes. In
RBMulticast, the node with largest progress towards the virtual node is selected for
forwarding. In DMPB, forwarder v partitions the plane s.t. the barycenter of the multicast
destinations lies on the angle bisector of one of the four quadrants. Local minimum
situations are not considered by DMPB. Hence, DMPB does not provide guaranteed
delivery and only requires a constant number of message transmissions per hop, depending
on the choice of the actual beaconless Greedy algorithm. In RBMulticast it is assumed
that local minimum situations can be resolved using the beacon-based recovery algorithm
GPSR [37]. Hence, provided that the network graph obeys the unit disk graph model,
RBMulticast actually provides guaranteed delivery, but at the cost of producing Θ(n)
many message transmissions per recovery hop in the worst-case.

Geographic multicast (GEM) [214] is a two-phased Greedy scheme for geographic
multicast. In the first phase, at most two directions are determined by the forwarding
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node v that point at positions of optimal next hops. To do so, it computes the average
distance between its position and the multicast destinations D = {d0, ..., dk}. The
difference between this value and the corresponding value for some other point in v’s
unit disk gives a notion of progress w.r.t. the destinations. Now depending on set D,
the algorithm determines either one or two points on the unit disk boundary of v that
maximize the progress. In order to keep the computation feasible, only points with fixed
angular distances are taken into consideration. In the second phase, forwarder v determines
the next hop for each optimal direction using a Greedy routing contention process. The
progress criterion is the nodes’ projected progress on the optimal directions. The greater
the progress, the shorter are the nodes’ delay timers. GEM assumes dense networks in
which no local minimum situations occur and recovery is not required. Therefore, this
algorithm cannot provide a delivery guarantee for arbitrary unit disk input graphs. The
costs for forwarding the packet are bounded by a constant.

Taxonomy Table 4.4 lists and summarizes the aforementioned beaconless multicast
algorithms in chronological order. For each algorithm, this table lists the following:

UDG is checked with ’✓’ if the algorithm is designed for operation in unit disk graphs.
Otherwise, it is marked with a ’✗’.

Guaranteed delivery is checked with ’✓’ if the algorithm provides delivery guarantee.
Otherwise, it is marked with a ’✗’.

Recovery strategy specifies which strategy is used for escaping local minimum situations,
if any.

Message complexity refers to the algorithms worst-case message complexity.
Reference refers to source(s).
Year lists the earliest point in time of publication.

Algorithm UDG
Guaranteed

delivery
Recovery
strategy

Message
complexity

Ref. Year

BRUMA ✓ ✓ GDBF [187,188] Θ(n) [22] 2009
RBMulticast ✓ ✓ GPSR [37] Θ(n) [24] 2012
DMPB ✗ ✗ - O(1) [213] 2013
GEM ✓ ✗ - O(1) [214] 2013

Table 4.4: Taxonomy of beaconless multicast algorithms in chronological order.

4.5 Topology Control

The task of a beaconless topology control algorithm is to provide its executing node with
its local view on the desired topology, without prior determination of this node’s network
neighborhood, i.e., without use of beaconing. To be more specific, given a network graph
G = (V,E) and a desired topology G′ = (V ′, E′) of G, the task of a beaconless topology
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control algorithm is to provide its executing node v ∈ V with its adjacency EG′(v) without
making use of beaconing on the underlying network graph G.

Note that the above definition is only a special case of the more general definition of
reactive local topology control introduced in Chapter 5

Until now, only few beaconless topology control algorithms have been proposed. These
focus on local view constructions on connected and planar subgraphs of unit disk graphs
UDG(V ). Before these algorithms are presented in detail, the generic scheme underlying
these is provided.

Generic beaconless topology control scheme executed by a node v:

1. At algorithm start, v is unaware of its network neighborhood N1(v). It starts
a selection phase by locally broadcasting a REQUEST (or RTS) including its
geographic position. This REQUEST is overheard by all nodes in N1(v). Node v
schedules termination of this selection phase after a delay of tmax, a fixed time slice
that is either globally known to all nodes, or specified in the REQUEST.

2. Upon reception of a REQUEST sent by v, any neighbor u ∈ N1(v) schedules sending
of a RESPONSE (or CTS), which includes its geographic position, after a certain
delay. Typically this delay is (‖uv‖/R) · tmax, where R denotes the unit disk radius.

3. Upon expiry of the delay timer, a node u ∈ N1(v) locally broadcasts its RESPONSE
which is overheard by all nodes in N1(u), in particular by v. If a node u ∈ N1(v)
overhears during its delay a RESPONSE of some node w with w ∈ PR(v, u), where
PR(v, u) denotes the proximity region (which depends on the particular topology;
see Figure 2.4 for details), then node u either extends its delay to some larger
fraction of tmax, or cancels the scheduled transmission of its RESPONSE.

4. After time of at most tmax, only a subset of candidates N ⊆ N1(v) has actually
transmitted a RESPONSE. Nodes in N1(v) \ N , i.e., nodes that have not sent any
message, are called hidden nodes, for they remain invisible. Depending on the delay
function and the proximity region, either N is the desired local view EG′(v) of node
v in G′, or not. In the former case the topology control task is completed. In the
latter case, an additional protest phase is needed which removes those candidates
from N that do not belong to v’s local view on the desired topology. Typically, this
protest phase is similar to the selection phase in the sense that few nodes decide to
transmit a PROTEST message during a contention process.

Next, the individual algorithms are described in detail.
Recall the routine for handling local minimum situations of Guaranteed Delivery

Geographic Routing (GDBF) [187,188], which has been described in detail in Section 4.3.
With the following simple modifications it can easily be converted into a reactive topology
control algorithm for computation of a node’s adjacency in the Gabriel graph of the
underlying unit disk graph.
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A node v starts the execution of the recovery routine of GDBF and obtains a superset
N of its Gabriel graph neighborhood.5 Nodes in N are referred to as candidates. Nodes
ci ∈ N are sorted, e.g., according to their counter-clockwise angle ∡uvci, where ties are
broken such that the node which is further away is processed earlier. For each edge vci in
this order, the PROTEST message-based test of whether edge vci belongs to the Gabriel
graph neighborhood of v is performed. Each PROTEST message is used by v to sort
out candidates from N which do not belong to its Gabriel graph neighborhood. That is,
each PROTEST message removes one or several candidates from N . The resulting set
of candidates is the set of Gabriel graph neighbors of v w.r.t. the underlying unit disk
network graph. The message complexity of this approach will be discussed along with the
one from BFP, which is presented next.

Beaconless Forwarder Planarization (BFP) [18, 107] generalizes and improves the
aforementioned approach. Essentially, instead of performing one protest phase per
candidate, it only performs one protest phase for all candidates. Besides the Gabriel
graph (GG), the algorithm can alternatively be used to construct a node’s local view on
the Circlunar Neighborhood Graph (CNG), or Relative Neighborhood Graph (RNG) by
using the corresponding proximity areas (see Figure 2.4). In the remainder of this thesis,
the instances of BFP which construct a node’s local view on GG, RNG, and CNG are
denoted by BFP-GG, BFP-RNG, and BFP-CNG, respectively.

The selection phase of BFP is similar to that of GDBF. Initiating node v locally
broadcasts an RTS, including its position, and starts a delay timer on input tmax. Neigh-
bors u ∈ N1(v) schedule sending of a CTS, including their position, after a delay of
(‖uv‖/R) · tmax. If a node u ∈ N1(v) overhears during its delay a CTS from a node w with
w ∈ PR(v, u) (i.e., w is located in the proximity region w.r.t. v and u), then u becomes
a hidden node, cancels its delay timer as well as its CTS transmission, and continues
listening to message transmissions. In case a hidden node u overhears a CTS by a node
w with u ∈ PR(v, w), then u adds w to its list of violating nodes.

After the selection phase, i.e., after time tmax, the protest phase begins. Nodes with
non-empty lists of violating nodes schedule sending of a PROTEST message, including
theirs as well as the positions of the violating nodes, using the same delay function as
in the selection phase. A node protests against a node w only if it has not overheard a
protest against w in the meantime.

After time at most tmax, all PROTEST messages have been sent. Nodes that have sent
a CTS and for which no PROTEST has been received by the initiating node v constitute
its neighborhood in the corresponding proximity graph.

One major drawback of distance-based delay functions in general is the collision of
messages of equidistant nodes. If there are two or more neighbors that are equidistant to
the executing node v, then their timers expire at the same moment and their messages
collide. In fact, this is a non-trivial problem, since the order of message arrivals is crucial
w.r.t. the algorithm’s correctness. Therefore, Rührup et al. [18, 107] assume that the
pairwise node distances in the underlying unit disk graph are distinct. This assumption,

5The positions of destination node d and previous-hop u can be chosen arbitrarily without invalidating
the correctness of this algorithm.
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Figure 4.11: Example where GDBF and BFP-GG produce Θ(n) message transmission
during execution by node v. Hidden nodes are white and are connected
by dashed edges. Edges of non-hidden nodes violating the GG-rule are
dotted. The solid line represents the only GG-edge. This figure is similar
to [18, Figure 4].

however, has notable implications. Whereas GG still has a maximum node degree of
O(n), the maximum node degree of RNG and CNG is bounded by 5 and 13, respectively,
under this assumption [18]. This observation has to be kept in mind while considering
BFP’s message complexity, which is discussed next.

The construction of a node’s Gabriel graph neighborhood using algorithm GDBF
[187, 188] or BFP-GG [18, 107] requires Θ(n) message transmissions in the worst-case.
To see this, consider the unit disk graph G = (V,E) depicted in Figure 4.11 which has
previously been defined by Rührup et al. for proving [18, Theorem 2]. It is defined as
follows:

• V = {v, w1, ..., wn−1},

• D(v, w1) ∩ V \ {v, w1} = ∅,

• ∀ 1 < i ≤ n− 1 : D(v, wi) ∩ V \ {v, wi} = wi−1, and

• ∀u, v ∈ V , uv ∈ E.

Consider the execution by node v. At first, node w1 transmits a CTS as it is closest
to v. Its CTS suppresses w2, since w1 ∈ D(v, w2). Since w2 is a hidden node, eventually
w3 transmits its CTS, which suppresses w4, and so on. In general, nodes having an odd
index i transmit a CTS and thereby suppress nodes having an even index i+ 1.

During the protest phase, each node with index i being even has to transmit exactly one
PROTEST message, since it is the only node witnessing the violation of the Gabriel graph
proximity rule w.r.t. edge vwi+1. Hence, in total each node wj ∈ V , 1 ≤ j ≤ n− 1, either
transmits a CTS or a PROTEST message. Since there may be arbitrarily many nodes wi,
construction of the single Gabriel graph edge vw1 requires Θ(n) message transmissions in
the worst-case.
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The number of message transmissions required for construction of a node’s neighborhood
in RNG and CNG using BFP-RNG and BFP-CNG, respectively, is substantially different.
In Corollaries 2 & 3 in [18], Rührup et al. prove that during execution of BFP-RNG
and BFP-CNG by any node v, at most a constant number of CTS and PROTEST
messages are being transmitted, and there exists a scenario where this upper bound is
actually reached. Therefore, the number of message transmissions is Θ(|NRNG(v)|) and
Θ(|NCNG(v)|), respectively, where |NH(v)| denotes the number of neighbors (node degree)
of v in graph H . Since the maximum node degree of a node in RNG and CNG is bounded
by a constant under the assumption that any two node distances are distinct in the input
graph, in fact both BFP-RNG and BFP-CNG have message complexity O(1).

Taxonomy Table 4.5 lists and summarizes the aforementioned beaconless topology
control algorithms in chronological order. For each algorithm, this table lists the following:

Topology control structure specifies the topology for which the local view of a node is
constructed.

Message complexity refers to the worst-case number of message transmissions during
algorithm execution.

Node degree refers to the maximum degree of a node in the constructed topology.
Reference refers to source(s).
Year lists the earliest point in time of publication.

Algorithm
Topology control

structure
Message

complexity
Node degree Reference Year

GDBF a GG Θ(n) O(n) [187,188] 2006
BFP-GG GG Θ(n) O(n) [18, 107] 2008
BFP-CNG CNG Θ(|NCNG(v)|) 13 [18, 107] 2008
BFP-RNG RNG Θ(|NRNG(v)|) 5 [18, 107] 2008
a GDBF refers here to the modified variant of the recovery strategy as described in
Section 4.5

Table 4.5: Taxonomy of beaconless topology control algorithms in chronological order.
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Chapter 5

Foundation of Reactive Local Topology

Control

In this chapter the concept of reactive local topology control1 is introduced and shown
to be meaningful. It is a generalization of what has previously been called beaconless
topology control (see Section 4.5), a term which is both too narrow to capture all possible
configurations of topology control algorithms that forgo beaconing, and too broad to
properly distinguish the elements which it subsumes. In addition, this notion is simply
too vague for in-depth investigations which topology control problems are principally
solvable if use of beaconing is disallowed.

In Section 2.4, topology control has been introduced as the art of transforming a given
wireless network graph G = (V,E) into another representation G′ = (V ′, E′), which obeys
certain desired properties such as connectivity, planarity, and low stretch.

Beaconless topology control has been described in Section 4.5 as the task of computing
the local view (adjacency) of a node v ∈ V in the desired topology G′ without making
use of beaconing.

In all existing beaconless topology control algorithms (see Table 4.5), the desired
topology G′ is always a subgraph of network graph G, such that G′ = (V,E′ ⊆ E).
However, there are local algorithms (e.g., [51, 70, 71, 136, 137]) which can be used to
obtain a node’s local view on planar topologies that are not subgraphs of the underlying
network graph. For instance, the planar backbone graph V irt(Gb) introduced by Lillis
et al. [70, 71] (see Section 3.2) is composed of physical nodes that actually belong to the
underlying QUDG, as well as of virtual nodes which do not belong to it. If V irt(Gb) is
used, e.g., for recovery in a local minimum situation occurring during local geographic
routing, it may be necessary to obtain the adjacency of a backbone node v in V irt(Gb)
on demand. But what if this node v is not a node from the set of physical nodes, but
a virtual node? Then a physical proxy u ∈ V is required that computes v’s local view
on V irt(Gb) on behalf of v. As shown later in this thesis (see Chapter 8), local views on
such graphs can also be constructed in a beaconless fashion. However, such approaches
are not covered by the notion of beaconless topology control as considered so far, but they
are covered by the concept of reactive local topology control introduced here.

1 The term local in reactive local topology control emphasizes the focus on local algorithms as given in
Definition 2.5, whereas the term reactive is used in the meaning ascribed to it by Frey and Rührup
in [14]: they label a (topology control) algorithm as reactive, if it can be executed by any node on
demand, without any neighborhood knowledge, and without making use of beaconing. Henceforth,
the term reactive is used with this meaning.
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Furthermore, the set of existing beaconless topology control algorithms is heterogeneous
w.r.t. message complexity in the following sense. As presented in Section 4.5, for
construction of the local view of some node v, algorithms BFP-RNG and BFP-CNG require
Θ(|NRNG(v)|) and Θ(|NCNG(v)|) message transmissions, respectively, where |NH(v)|
denotes the number of neighbors (node degree) of v in graph H . Informally speaking, the
ratio of the number of message transmissions to the number of constructed neighbors
in the desired topology is always bounded by a constant. In contrast, algorithms BFP-
GG and GDBF require Θ(n) message transmissions in the worst-case; therefore, the
aforementioned ratio is not bounded by a constant, but depends on the number of network
nodes.

This observation suggests that there are different classes of beaconless topology control
algorithms, at least from a message complexity point of view.

The concept reactive local topology control remedies all of the aforementioned shortcom-
ings as follows. It generalizes and formalizes the problem statement underlying beaconless
topology control. Based thereon, the general classes of O-reactive and Ω-reactive topology
control algorithms are defined by means of message complexity. These unambiguously
distinguish reactive from conventional, beacon-based, distributed algorithms, and simulta-
neously serve as taxonomy for all existing and prospective algorithms of this kind. Finally,
the concept actually facilitates in-depth investigations of the power of the beaconless ap-
proach. This is demonstrated by proving two fundamental propositions: the impossibility
of O-reactive computation of local views on Gabriel graphs and grid graphs.

5.1 Preliminaries

Unless stated differently, in this chapter wireless networks are modeled as general graphs
G = (V,E). V is a set of n network nodes and E is a set of undirected edges representing
bidirectional communication links. The particular algorithms considered in this chapter
require that V ⊂ R2, this is, however, of no further relevance for the general concept of
reactive local topology control.

In order to keep this concept as general as possible and not to limit it to problems related
to geometric graphs, in this chapter a classical addressing model is assumed, where nodes
are equipped with globally unique node identifiers (IDs). Each such ID (or node address)
requires Ω(log n) bits for its representation. Unless stated differently, it is assumed that
a message sent by a node always contains this node’s ID and possibly its geographic
position, if applicable. Hence, any message is of size Ω(log n) bits. Furthermore, the size
of a message (e.g., in terms of number of bits) is generally not restricted. Nevertheless,
the algorithm classes introduced in Section 5.2 implicitly restrict the message size in
terms of number of bits, by a function of the number of nodes n.

Local unicast [local broadcast ] refers to sending of a single message from a node v ∈ V
to one [all] of its neighbors w ∈ N1(v). It is assumed that transmissions are reliable,
delivered instantaneously, and can be performed by any node at any given time.

A collection of graphs satisfying a certain common property is termed a graph class.
One example of a graph class is UDG, the class of unit disk graphs.
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The k-hop neighborhood Nk(v) of a node v ∈ V refers to v and all nodes w ∈ V , which
are reachable from v along a path consisting of at most k edges. The k-hop local view
G[v, k] of v on graph G = (V,E) is a subgraph of G whose node set is Nk(v) and whose
edge set is given by {xy ∈ E : x ∈ Nk−1(v) and y ∈ Nk(v)}. Note that edges to nodes
that are more than k hops apart are not included.

The number of nodes in G[v, k] is denoted by |G[v, k]|. The 1-hop local view G[v, 1] is
abbreviated by G[v], whenever this is clear from the context.

Finally, in this chapter message complexity of a distributed algorithm is defined as the
total volume of communication measured in bits, i.e, it refers to the total number of bits
transmitted by all nodes during algorithm execution over every legal input in the worst-
case. Note that this is slightly different from Definition 2.6, where message complexity
simply refers to the number of messages transmitted during algorithm execution.

5.2 Formalization of Reactive Local Topology Control

5.2.1 Local Topology Mappings and Local View Topology Control

Formally, a topology control algorithm is a mapping function that maps a given topology
into another one.

Definition 5.1 (Topology mapping). A topology mapping is a function τ : C → D, where
C and D are graph classes. For a graph G ∈ C, graph τ(G) ∈ D is called the image of G,
whereas G itself is the pre-image of image τ(G).

This work concentrates on local topology mappings. Informally speaking, a topology
mapping is k-local for some constant k ≥ 1, if the local view of any node v from the image
graph τ(G) can be constructed by a k-local algorithm, i.e., based solely by considering this
node’s k-hop neighborhood information. For instance, Gabriel graph (GG) and partial
Delaunay triangulation (PDT) are 1-local topology mappings, whereas the 2-localized
Delaunay triangulation (LDel(2)) is a 3-local topology mapping. These topology mappings
are functions τ , such that the following two operations yield indistinguishable results:

Operation 1 Apply τ on the pre-image graph G and then obtain v’s local view τ(G)[v].

Operation 2 Restrict the pre-image graph G to the k-neighborhood of v, i.e., consider
G[v, k], then apply τ on G[v, k], and finally obtain v’ local view τ(G[v, k])[v].

In the virtual nodes example given in the beginning of this chapter, node v ∈ τ(G) is
not necessarily a physical node and consequently not necessarily a computational entity.
Therefore, in order to keep the definition as general as possible, the following definition
allows that the local view of a node v from the image graph may be computed based on
k-hop neighborhood information by an actual physical node u from the pre-image graph.
For the concepts introduced in this chapter it is of no further relevance how nodes u and
v are actually related; typically, they are identical.
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Definition 5.2 (k-local topology mapping). A topology mapping τ : C → D is termed
k-local topology mapping, if for each G ∈ C and every node v ∈ τ(G) there exists a node
u ∈ G such that τ(G)[v] = τ(G[u, k])[v].

The general problem of determining a node’s local view in a desired topology can be
defined as follows.

Definition 5.3 (Local view topology control). Local view topology control refers to the
task of computing a local view on a given topology mapping τ : C → D from a class of
communication graphs C to a class of image graphs D. That means, given a communication
graph G ∈ C and a node v in τ(G), a specific node u ∈ G has to determine the local view
τ(G)[v].

Reactive local topology control can be considered a special case of local view topology
control. Based on the observation that existing algorithms differ w.r.t. message complexity,
two classes can be distinguished that are introduced next.

5.2.2 O-Reactive Topology Control

Algorithms like BFP-RNG and BFP-CNG [18, 107] have in common that the number
of message transmissions that are required for computation of a node’s local view, is in
the order of the number of incident edges in this local view; one initial local broadcast,
one response for each edge in the local view, and possibly a constant additive overhead
related to a protest phase.2

The following definition combines the principal idea and scheme underlying beaconless
algorithms like BFP-RNG and BFP-CNG, generalized to k-hop neighborhoods on the
one hand, and the lower bound message size of distributed algorithms on the other hand.

Definition 5.4 (O-reactive topology control). A local view topology control algorithm
for a k-local topology mapping τ : C → D is called O-reactive if the following applies. Let
G ∈ C be any graph with n nodes. For any node v ∈ τ(G) there exists a node u ∈ G such
that the local view τ(G)[v] can be constructed, while the following holds:

• At algorithm start, nodes in G are unaware of their network neighborhoods (informa-
tion from previous algorithm executions is assumed to be outdated and discarded).

• Node u starts the algorithm by a single local broadcast.

• The number of bits transmitted during algorithm execution is in the order of

O (|τ(G)[v, k]| · log n) .

Recall that |τ(G)[v, k]| denotes the number of nodes in τ(G)[v, k] and note that
|τ(G)[v, k]| > 0, because v ∈ τ(G)[v, k].

2 These particular algorithms are designed for operation on geometric graphs, where nodes have distinct
positions in the Euclidean plane and are aware of these geographic positions. Under these assumptions,
geographic positions serve as unique IDs and therefore, no dedicated unique node IDs are assumed
or required. Furthermore, the messages exchanged in these algorithms contain at most a constant
number of geographic node positions.
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Note that the above definition does not restrict the maximum message size; e.g.,
algorithms requiring only O(1) messages, each of size O(|τ(G)[v, k]| · log n) bits, also
match the above definition. Ultimately, reactive topology control algorithms are of interest
since they reduce the overall communication load on the network. Thus, the total amount
of exchanged bits of an algorithm execution is the actual bound of interest, not the size
of an individual transmission.

5.2.3 Ω-Reactive Topology Control

The definition of O-reactive topology control excludes topology control algorithms like
BFP-GG [18, 107] and GDBF [187, 188], although they are reactive. This is due to
worst-case scenarios previously discussed in Section 4.5. In these scenarios the total
number of bits transmitted during algorithm execution is not bounded from above by
O(|τ(G)[v]| · log n), but is in the order of Ω(n log n), where the log n-term represents the
assumption that each message is of size Ω(log n) bits.

In general, however, these algorithms do better than a conventional, beacon-based
approach, where all 1-hop neighbor addresses/positions are determined. If nodes are
initially unaware of their network neighbors, determination of set N1(u) by any node u
presupposes that each node in N1(u) transmits at least one message in order to introduce
itself, which yields |G[u]| messages in total. Each such message contains at least one
node’s address/position. Therefore, the lower bound message complexity in terms of
number of bits is Ω(|G[u]| · log n).

This observation can be generalized to the k-hop case, i.e., approaches where node u
has to determine its complete k-hop neighborhood before it can compute a local view
on the topology. In this case, each node in Nk(u) has to transmit at least one message,
which results in a lower bound message complexity of Ω(|G[u, k]| · log n) bits.

In summary, approaches like BFP-GG [18,107] and GDBF [187,188] are not reactive in
the sense of the upper bound O(|τ(G)[v, k]| · log n) (i.e., they are not O-reactive), but are
better than conventional, beacon-based approaches based on full k-hop knowledge. Except
for worst-case scenarios, the number of bits transmitted during algorithm execution is
not in the order of Ω(|G[u, k]| · log n), where u is the network node (proxy) responsible
for local view topology construction of node v.

For characterization of this advantage over conventional approaches, and in analogy to
the class of O-reactive algorithms, the class of Ω-reactive algorithms is defined as follows.

Definition 5.5 (Ω-reactive topology control). A local view topology control algorithm
for a k-local topology mapping τ : C → D is called Ω-reactive if the following applies. Let
G ∈ C be any graph with n nodes. For any node v ∈ τ(G) there exists a node u ∈ G,
such that the local view τ(G)[v] can be constructed, while the following holds:

• At algorithm start, nodes in G are unaware of their network neighborhoods (informa-
tion from previous algorithm executions is assumed to be outdated and discarded).

• Node u starts the algorithm by a single local broadcast.
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• The number of bits transmitted during algorithm execution is, except for the
worst-case, not in the order of Ω(|G[u, k]| · log n).3

5.3 Classification of Existing Approaches

Next, the concepts of O- and Ω-reactive topology control are employed on existing
algorithms. The resulting taxonomy is provided in Table 5.1. Note that in all below-
mentioned algorithms, nodes v and u as defined in Definitions 5.4 & 5.5 are the same.
Therefore, only executing node v is mentioned.

Theorem 5.6. BFP-GG [18] and GDBF [188] are Ω-reactive local view topology control
algorithms.

Proof. Recall the discussion of worst-case message complexities of algorithms BFP-GG
and GDBF in Section 4.5, in particular the example unit disk graph G = (V,E) which is
given in Figure 4.11. Furthermore, recall the execution of algorithm BFP-GG or GDBF
if initiated by node v ∈ V .

During algorithm execution, every node wi ∈ N1(v) \ {v} sends at least one message
(either a CTS, or a PROTEST). Hence, in the worst-case, Θ(n) messages are transmitted,
assuming that |N1(v)| ∈ Ω(n). On the contrary, |τ(G)[v]| = 1. Even if each message is
only of size O(1) bits, message complexity of BFP-GG and GDBF is Ω(n) bits.

On the other hand, it is easy to construct scenarios where the only Gabriel graph
neighbor of executing node v suppresses CTS responses of arbitrarily many other neighbors
in N1(v). To see this, consider UDG G′ = (V ′, E′) depicted in Figure 5.1, which is defined
as follows.

Let V ′ = {v, w, u1, ..., un−2} be a set of nodes, such that any two nodes in V are at
distance at most R from each other. Moreover, let V ′ be such that vw is an edge of the
Gabriel graph, whereas for all 1 ≤ i ≤ n− 2 the Gabriel circle of any edge vui contains
node w, which implies in particular that ‖vw‖ < ‖vui‖ holds. Now, consider the execution
of BFP-GG or GDBF by node v. Then, although |G′[v]| = n− 1, only the single neighbor
w of v in τ(G′)[v] responds with a CTS and suppresses all other nodes’ CTS responses.
RTS and CTS messages contain at most a single node position/address and hence, any
such message is of size at most O(log n) bits. Therefore, Ω(|G[v]| · log n) is not a lower
bound for the message complexity of BFP-GG and GDBF.

Theorem 5.7. BFP-RNG and BFP-CNG [18] are O-reactive local view topology control
algorithms.

Proof. In Theorems 3 & 4 and Corollaries 2 & 3 in [18], Rührup et al. prove that during
the execution of BFP-RNG and BFP-CNG at most a constant number of non-RNG (non-

3More formally, Ω(|G[u, k]| · log n) is an existential but not a universal lower bound for the message
complexity of the algorithm [87]. I.e., for all sufficiently large positive values of n there exists an
n-node graph G′ ∈ C, v′ ∈ τ(G), and u′ ∈ G′, s.t. the number of bits transmitted during algorithm
execution by u′ is not in the order of Ω(|G′[u′, k]| · log n).
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Figure 5.1: Example where GDBF and BFP-GG produce O(1) message transmissions
during execution by node v. Hidden nodes are white and dotted circles
represent GG-circles.

CNG) neighbors of executing node v send CTS messages.4Consequently, only a constant
number of PROTEST messages is required in order to obtain the correct output graphs.
Moreover, each such message contains at most a constant number of node positions.
Hence, these algorithms have message complexities of O(|τ(G)[v]| · log n) bits.

Table 5.1 summarizes these results.

Algorithm Topology O-reactive Ω-reactive References

GDBF a GG ✓ [187,188]
BFP-GG GG ✓ [18, 107]
BFP-RNG RNG ✓ [18, 107]
BFP-CNG CNG ✓ [18, 107]
a GDBF refers here to the modified variant of the recovery strategy
as described in Section 4.5

Table 5.1: Classification of existing approaches according to the definitions of O- and
Ω-reactive topology control.

5.4 Derivation of Fundamental Propositions

The concept of O- and Ω-reactive local topology control does not merely enable classifi-
cation and comparison of existing approaches. It is more powerful in the sense that it
facilitates proofs of fundamental propositions, e.g., propositions of the type:

“For graph class C, there is no O-reactive local topology control algorithm
for construction of topology T .”

4These proofs presuppose that the pairwise node distances in the input unit disk graph are distinct and
therefore, the maximum node degrees of the output graphs are bounded by a constant.
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In the following, two such propositions are proven regrading the reactive computability
of the Gabriel graph and the grid graph [150]. Both the Gabriel and the grid graph are
important and frequently used topology control structures. For the Gabriel graph the
latter statement is beyond question considering the numerous approaches in the context
of geographic routing and graph planarization presented in Chapter 3 that rely on local
Gabriel graph construction. This is also true for grid graphs, which are used, e.g., in the
local planarization algorithms [51, 70, 71, 138, 139, 149, 150] introduced in Chapter 3. That
is, all algorithms relying on the reactive construction of these structures have generally
to take into account that this imposes a severe message overhead, at least in worst-case
scenarios.

Theorem 5.8. For the class of unit disk graphs, there is no O-reactive local view topology
control algorithm for construction of the Gabriel graph neighborhood.

Proof. The proof is based on the unit disk graph G = (V,E) previously defined for the
discussion of message complexities of BFP-GG and GDBF in Section 4.5 (see Figure 4.11
there for an illustration).

Let G = (V,E) be defined as follows. V = {v, w1, ..., wn−1}, D(v, w1)∩V \ {v, w1} = ∅,
∀ 1 < i ≤ n− 1 : D(v, wi) ∩ V \ {v, wi} = wi−1, and ∀u, v ∈ V , uv ∈ E holds.

Suppose there is a correct O-reactive local view topology control algorithm A for
construction of a node’s local view on GG. Since |τ(G)[v]| = 1 ∈ O(1) and A is O-
reactive, message complexity of execution of A by node v is bounded by O(log n) bits.
Assume that a single node position can be represented by O(1) bits. Then during A’s
execution, a subset of nodes V ′ ⊂ V of size |V ′| ∈ O(log n) may reveal their positions,
whereas all remaining Ω(n) nodes in V \ V ′ are not allowed to do so. Then there must
exist two consecutive nodes wl, wl+1 ∈ V \V ′, where 1 < l < n−1, that have not revealed
their positions during algorithm execution.

Let G′ be the unit disk graph obtained from G by removing wl from V . Note that wl+1

is now a GG-neighbor of v in G′ and it still holds that |τ(G)[v]| ∈ O(1). Now consider
the local views G[wl+1] and G′[wl+1] after the executions of A by node v w.r.t. both
graphs G and G′. If wl+1 decides not to reveal its position during execution of A on
G, then it will decide symmetrically during execution of A on G′ since the local views
G[wl+1] and G′[wl+1] are identical apart from knowledge about nodes that are irrelevant
for the decision of whether vwl+1 is a Gabriel graph edge, or not. However, since v is
not aware of its neighborhood at algorithm start, and wl+1 does not reveal its existence
in both executions, the output of A cannot contain information about wl+1 and hence,
algorithm A is not correct.

Given a quasi unit disk graph G = (V,E) with transmission radii r and R, define the
grid graph H = (V, E) for G as follows (see Figure 5.2): Place an infinite, axis parallel
square grid, with grid cell diameter r on the plane. For each non-empty grid cell, i.e.,
cells containing at least one node v ∈ V , create a new vertex c in V and map all nodes
from V located in this cell to c. Any two vertices c, z ∈ V are connected by an undirected
edge e ∈ E , if and only if there are two nodes from V in the corresponding grid cells that
are adjacent in G. Grid graph H is a connected overlay graph for G with various useful
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Figure 5.2: Illustration for the proof of Theorem 5.9. All nodes in graph G = (V,E) are
aligned in a single cell c and each node from V covers a unique part of cell
z. Grid cells have diameter r. The circles represent the transmission radii of
maximum transmission radius R.

properties (cf. [150, Theorem 1] and Chapter 8) and applications in local topology control
and georouting as shown in Chapter 3. For a node v ∈ V , the local view τ(G)[v] is then
the adjacency of its corresponding grid cell vertex in H.

Theorem 5.9. For the class of quasi unit disk graphs, there is no O-reactive local view
topology control algorithm for construction of a node’s adjacency in the grid graph.

Proof. Consider the quasi unit disk graph G = (V,E) illustrated by Figure 5.2. Nodes in
V are aligned axis-parallel and belong to one particular grid cell c. Then there exists a
cell z, s.t. the transmission area CR(vi) of any node vi ∈ V covers a unique subarea of z.
Note that |τ(G)[vi]| = 0, for all vi ∈ V , and hence any O-reactive local view topology
control algorithm may exchange at most O(log n) bits. Suppose there exists such an
algorithm A.

At algorithm start all nodes are unaware of their network neighbors. Each node is
potentially the only one being connected in G to a node located in z. Therefore, each
vi ∈ V has to transmit at least one message in order to provoke a response from a
neighbor located in z. Even if each message is of size O(1) bits, algorithm A has a
message complexity of Ω(n) bits in order to determine τ(G)[vi] correctly, where vi is an
arbitrary node from V . This holds regardless of the choice of the node initiating algorithm
execution. Hence, execution of A by any node vi has a message complexity of at least
Ω(n) bits.

Note that any “trivial” algorithm that simply outputs the empty set or tests only
O(log n) many nodes would fail, because one can always relocate any of the Ω(n) non-
tested nodes vj ∈ V into the uniquely covered area of another non-tested node, such that
this trivial algorithm would always fail to compute the correct output.
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5.5 Discussion

The concept of reactive local topology control enables profound research on the principal
power of the reactive approach as well as an unambiguous classification of existing and
prospective approaches in this field. It thereby supports identification of research gaps,
open questions, and implications for existing and prospective work.

For example, the proof that generally no O-reactive algorithm exists for construction
of a node’s local view on the Gabriel graph combined with the results given in Table 5.1
makes a rather surprising point: There are O-reactive algorithms for construction of a
node’s local view on subgraphs of GG, such as RNG and CNG, and there is one for PDT
which is a supergraph of GG (presented in Section 6.2). The resulting question is: Which
structural property of GG hinders its O-reactive computation?

Furthermore, the proof that generally no O-reactive algorithm exists for construction
of a node’s adjacency in the grid graph can be used to show that the algorithm presented
in Chapter 8 achieves an “optimal level” of reactivity.

It is worth noting that the above given definitions are held general enough in order
to capture other future extensions, like virtual overlay graph constructions as proposed
in [51,70,71,136,137,150] as well as reactive approaches that are k-local and where k > 1.

Finally, the introduced concept is itself an object for future investigation. As yet only
perfect localization and reliable communication have been considered. It is of particular
interest to merge this deterministic concept with failure models describing the stochastic
nature of localization and wireless communication.
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Chapter 6

Reactive Local Construction of Euclidean

Unit Disk Graph Spanners

When considering wireless networks modeled as unit disk graphs, the only reactive local
topology control algorithms for construction of a node’s local view on planar graphs are
BFP-RNG, BFP-GG, BFP-CNG [18,107], and GDBF [187,188]. However, the graphs
produced by these algorithms do not provide constant Euclidean spanning ratios, but
have worst-case spanning ratios that depend on the total number of network nodes (see
Section 3.1).

Until now in order to compute a node’s local view on planar and constant stretch
Euclidean spanners, it has been necessary to gather at least the node’s one-hop neighbor-
hood information and then to extract the desired local view, e.g., using the partial unit
Delaunay triangulation (PuDel) [62].

In this chapter this research gap is closed. At first, in Section 6.1 it is proven that
the partial Delaunay triangulation (PDT) [49, 50] constructed over a given unit disk
graph is a connected, planar, and constant stretch Euclidean spanner for the input graph.
Subsequently, in Section 6.2 the O-reactive local topology control algorithm reactivePDT
(rPDT for short) is introduced. Given a unit disk graph UDG(V ), after execution of rPDT
by any node u ∈ V , it outputs this node’s local view on PDT(V ), the partial Delaunay
triangulation over node set V , using an optimal number of message transmissions.

These contributions are relevant: Firstly, the question whether PDT is a constant
Euclidean spanner or not has long been an unanswered question (see Section 6.1.4 for
details). Secondly, rPDT is the first O-reactive local topology control algorithm for
construction of constant stretch Euclidean spanners at all.

6.1 Euclidean Spanning Ratio of the Partial Delaunay

Triangulation

In the following it is proven that the partial Delaunay triangulation (PDT) over a given
unit disk graph is a Euclidean (1+

√
5

4 π2)-spanner of this unit disk graph. In order to
prove this property, it is shown that PDT and the partial unit Delaunay triangulation
(PuDel) [62] (see Definition 3.1 and Definition 3.5, respectively) yield equivalent graphs,
if applied to the same unit disk graph. The desired result follows then from the fact that
PuDel is a Euclidean (1+

√
5

4 π2)-spanner of the underlying unit disk graph, which was first

99



Chapter 6 Reactive Local Construction of Euclidean Unit Disk Graph Spanners

proven by Xu et al. in [62]. Since the constant spanning property of PuDel is crucial
for proving the constant spanning property of PDT, after discussing a few preliminaries
in Section 6.1.1, in Section 6.1.2 the proof that PuDel is a constant stretch spanner is
revisited and completed. The proof of equivalence is then presented in Section 6.1.3. The
matter of fact that PDT is a constant stretch Euclidean spanner for UDG has several
implications. These are subsequently presented and discussed in Section 6.1.4.

6.1.1 Preliminaries

Model and Assumptions

Throughout this section, network graphs are modeled as unit disk graphs. UDG(V )
always denotes the unit disk graph with unit radius R over a finite and distinct node set
V ⊂ R2, which is further restricted as follows.

1. 3 ≤ |V |
2. No three points of V are collinear

3. No four points of V are cocircular

4. UDG(V ) is a connected graph

Assumptions 1–3 ensure that Voronoi edges of the Voronoi diagram VD(V ) are neither
infinite straight lines, nor degenerate into a single point, which simplifies the proofs (for
details, see Section 2.5.2). The results presented here could also be proven without these
assumptions, but it would complicate the proofs without adding any additional insights.
Note that the spanning ratio for two arbitrary nodes in an unconnected graph is undefined
and therefore assumption 4 is required.

Notations

For convenience, the following notation is used repeatedly. It refers to the subset of nodes
of V that are contained by CR(x), the circle with radius R centered at x.

CR(x) ∩ V = {v ∈ V : ‖xv‖ ≤ R} ⊆ V .

For formal definitions of the following terms, see Sections 2.5.2 and 3.1.
Given node set V and u ∈ V , VRV (u) denotes the Voronoi region of u w.r.t. set V .

VD(V ) refers to the Voronoi diagram generated by V . The Delaunay triangulation of
set V is denoted by Del(V ). The unit Delaunay triangulation (UDel), the intersection of
Del(V ) and UDG(V ), is denoted by UDel(V ).

The Gabriel graph (GG) over UDG(V ) is denoted by GG(V ) ∩ UDG(V ) to avoid
confusion with the Gabriel graph which is defined over the complete Euclidean graph
w.r.t. V . The partial Delaunay triangulation (PDT), as well as the partial unit Delaunay
triangulation (PuDel) are only well defined over a given unit disk graph UDG(V ) and are
therefore simply denoted PDT(V ) and PuDel(V ), respectively. Recall that the definition
of PuDel requires the notion of directed local Delaunay edges (see Definition 3.3) between
two nodes u and v, which are denoted by −→uv.
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6.1.2 PuDel has Constant Euclidean Spanning Ratio

In the following it is shown that PuDel(V ) is a constant stretch Euclidean spanner of the
underlying unit disk graph UDG(V ). This was first proven by Xu et al. in [62]. The
proofs presented here complete and simplify the original proofs in [62].1

Proof Structure

The structure of the proof is as follows. At first, the auxiliary Lemmata 6.1–6.5 are proven.
Subsequently, in Theorem 6.6, Corollaries 6.7 & 6.10, and Lemma 6.9, it is established
that GG(V ) ∩UDG(V ) ⊆ PuDel(V ) ⊆ UDel(V ). Theorem 6.11 and Corollary 6.12 show
that PuDel(V ) is symmetric and can be constructed based on one-hop neighborhood
information. Finally, in showing that the direct DT path between any two nodes in Del(V )
is a connected path in PuDel(V ) (Theorem 6.18), the proof is given that PuDel(V ) is a
constant stretch Euclidean spanner of UDG(V ) (Theorems 6.19 & 6.20).

Auxiliary Lemmata

Lemma 6.1. For any p ∈ VRV (u), D
o
‖pu‖(p) is empty of nodes from V .

Proof. Note that u /∈ Do
‖pu‖(p). Moreover, by definition of a Voronoi region it holds that

‖pu‖ ≤ ‖pv‖, for all v ∈ V \ {u}, and hence Do
‖pu‖(p) does also not contain any node from

V \ {u}.

Lemma 6.2. For a point p /∈ H(u, v), ‖pu‖ > ‖uv‖/2 holds.

Proof. By assumption p is not contained in H(u, v), i.e., ‖pu‖ > ‖pv‖. By the triangle
inequality it holds that ‖uv‖ ≤ ‖pu‖+ ‖pv‖ < 2 · ‖pu‖ and hence, ‖uv‖/2 < ‖pu‖.

Lemma 6.3 (Lemma 2.1 in [215]). If the circle C expanding from a point x ∈ R2 hits
exactly one node p ∈ V , then x belongs to VRV (p). If C hits exactly two nodes, p, q ∈ V ,
then x is an interior point of a Voronoi edge separating the Voronoi regions of p and q. If
C hits three or more nodes from V simultaneously, then x is a Voronoi vertex adjacent to
those Voronoi regions whose nodes have been hit.

Proof. See proof of Lemma 2.1 in [215].

Lemma 6.4. VRV (u) ∩ B(u, v) = VRV (v) ∩ B(u, v).

Proof. In the following it is shown that VRV (u) ∩ B(u, v) ⊆ VRV (v) ∩ B(u, v). The
remaining case can be shown analogously.

If VRV (u) ∩ B(u, v) = ∅, then for any point p ∈ B(u, v) it holds that there exists a
node x ∈ V with ‖px‖ < ‖pu‖. Since p ∈ B(u, v), it follows that ‖px‖ < ‖pv‖ and thus,
no such p is contained in VRV (v). Hence, VRV (v) ∩ B(u, v) = ∅ holds.

1The author of this thesis would like to emphasize that the proof of Lemma 6.5 is identical to the one
given in [62]. The proofs of Theorems 6.11, 6.18, and 6.19 as well as of Corollary 6.12 are given
with minor revisions. All other proofs concerning the spanning ratio of PuDel either include major
revisions or are completely new.
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If VRV (u) ∩ B(u, v) 6= ∅, consider any point p from VRV (u) ∩ B(u, v). By Lemma 6.1
Do

‖up‖(p) is empty of nodes from V . Since p ∈ B(u, v), both u and v are on the boundary
of C‖up‖(p). The application of Lemma 6.3 yields that p ∈ VRV (v) and hence, it holds
that p ∈ VRV (v) ∩ B(u, v).

Lemma 6.5. For any node u ∈ V it holds that VRV (u) ⊆ VRN1(u)(u).

Proof.

VRV (u) =
⋂

v∈V \{u}
H(u, v)

=




⋂

v∈N1(u)\{u}
H(u, v)



 ∩




⋂

v∈V \N1(u)

H(u, v)





= VRN1(u)(u) ∩




⋂

v∈V \N1(u)

H(u, v)





Properties of PuDel

Theorem 6.6. Let u, v ∈ V . Segment uv is a locally detectable directed local Delaunay
edge −→uv if and only if uv ∈ UDel(V ) and there exists p ∈ VRV (u) ∩ VRV (v) with
‖up‖ ≤ R/2.

Proof. “⇒”: Let −→uv be a locally detectable directed local Delaunay edge. Then the
following properties hold:

1. ‖uv‖ ≤ R and uv ∈ Del(N1(u)) (by definition of a directed local Delaunay edge).

2. ∃ p ∈ VRN1(u)(u)∩VRN1(u)(v) with ‖up‖ ≤ R/2 (by definition of a locally detectable
directed local Delaunay edge), and

3. p ∈ VRN1(u)(u) ∩ B(u, v) (follows from 2.).

By Lemma 6.5 it holds that VRV (u) ⊆ VRN1(u)(u). Distinguish the Cases (i) and (ii).
Case (i): Assume p /∈ VRV (u). Then there exists l ∈ V \ N1(u) s.t. p /∈ H(u, l). By

Lemma 6.2 it holds that ‖up‖ > ‖ul‖/2. Because l /∈ N1(u), it holds that ‖ul‖ > R. This
implies that ‖up‖ > ‖ul‖/2 > R/2. But this is a contradiction to the assumption that
‖up‖ ≤ R/2 and therefore, only Case (ii) may actually apply.

Case (ii): Assume p ∈ VRV (u). By property 3., p ∈ B(u, v) and by Lemma 6.4 it holds
that p ∈ VRV (u) ∩VRV (v), which implies that uv ∈ Del(V ). With properties 1. and 2.,
‖uv‖ ≤ R and ‖up‖ ≤ R/2 holds, which proves the first part of this claim.

“⇐”: Assume uv ∈ UDel(V ). Then, by definition of the Delaunay triangulation
VRV (u)∩VRV (v) 6= ∅ and it holds that ‖uv‖ ≤ R. Now assume ∃ p ∈ VRV (u)∩VRV (v)
with ‖up‖ ≤ R/2. Note that p ∈ B(u, v) and hence, p ∈ VRV (u)∩B(u, v). By Lemma 6.5,
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it holds that p ∈ VRN1(u)(u) and thus, p ∈ VRN1(u)(u)∩B(u, v). Lemma 6.4 implies that
p ∈ VRN1(u)(v). Therefore, uv is a locally detectable directed local Delaunay edge.

Corollary 6.7. PuDel(V ) is a subgraph of UDel(V ) and a planar graph.

Proof. Theorem 6.6 implies that PuDel(V ) is a subgraph of UDel(V ). Since UDel(V ) is
a subgraph of the planar graph Del(V ), PuDel(V ) is also a planar graph.

The proof that GG(V ) ∩ UDG(V ) is a subgraph of PuDel(V ) requires the following
observation.

Lemma 6.8 (Theorem 7.4 in [216]). The following holds for the Voronoi diagram VD(V ):

(i) A point q ∈ R2 is a Voronoi vertex in VD(V ), if and only if its largest empty circle
CV (q) (the largest circle centered at q which does not contain any node from V )
contains three or more nodes from V on its boundary.

(ii) The bisector between nodes u, v ∈ V defines a Voronoi edge of VD(V ), if and only
if there is a point q on the bisector such that the largest empty circle CV (q) contains
both u and v on its boundary but no other node from V .

Proof. See proof of Theorem 7.4 in [216].

Lemma 6.9. GG(V ) ∩UDG(V ) ⊆ PuDel(V ).

Proof. Let uv be any edge in GG(V ) ∩ UDG(V ). In the remainder it is shown that
uv ∈ PuDel(V ).

Let m denote the midpoint of uv, for which it holds that m ∈ B(u, v). By assumption
‖uv‖ ≤ R and since uv is a Gabriel graph edge, there are no nodes from V \ {u, v}
contained in the circle C‖um‖(m). By Lemma 6.8(ii), m is a point on the Voronoi edge
between u and v w.r.t. V , i.e., m ∈ VRV (u) ∩VRV (v). By Lemma 6.5, m ∈ VRN1(u)(u)
and by Lemma 6.4 it holds that m ∈ VRN1(u)(v). Thus, m ∈ VRN1(u)(u) ∩ VRN1(u)(v)
and ‖um‖ ≤ R/2. Hence, uv is a locally detectable directed local Delaunay edge and
therefore it belongs to PuDel(V ).

Corollary 6.10. If UDG(V ) is a connected graph, then PuDel(V ) is a connected graph.

Proof. Bose et al. prove in Lemma 1 in [36] that GG(V ) ∩ UDG(V ) is connected if
UDG(V ) is connected. By Lemma 6.9, GG(V ) ∩ UDG(V ) is a subgraph of PuDel(V )
and therefore it holds that PuDel(V ) is also connected if UDG(V ) is connected.

Theorem 6.11. PuDel(V ) is a symmetric graph, i.e., if −→uv is a locally detectable directed
local Delaunay edge, then −→vu is also a locally detectable directed local Delaunay edge.

Proof. Let u, v ∈ V s.t. −→uv is a locally detectable directed local Delaunay edge. The
following proof shows that from the view point of v, vu is also a locally detectable directed
local Delaunay edge. That is, there exists p ∈ VRN1(v)(v) ∩VRN1(v)(u) with ‖vp‖ ≤ R/2
and ‖vu‖ ≤ R.
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Figure 6.1: Illustration of the direct DT path DT(u, v) = 〈u = b0, b1, b3, b4 = v〉, which is
represented by the dashed line. The solid lines represent VD(V ), whereas uv
is given by the dotted line.

By Theorem 6.6, uv ∈ UDel(V ) and ∃ p ∈ VRV (u) ∩ VRV (v) with ‖up‖ ≤ R/2.
Thus, p ∈ B(u, v) and by definition of directed local Delaunay edges it also holds that
‖uv‖ ≤ R. Lemma 6.5 yields that VRV (v) ⊆ VRN1(v)(v) and thus, p ∈ VRN1(v)(v).
Because ‖up‖ ≤ R/2 and p ∈ B(u, v) it also holds that ‖vp‖ ≤ R/2. In combination with
Lemma 6.4, from this it can be concluded that vu is a locally detectable directed local
Delaunay edge.

The previous result almost immediately implies the following corollary.

Corollary 6.12. The partial unit Delaunay graph for the set V , PuDel(V ), can be
computed locally using only one-hop neighborhood information.

Proof. Each node v ∈ V queries its one-hop neighbors for their positions and computes
the local Voronoi diagram VD(N1(v)). Based upon this diagram, each node decides locally
which of its incident edges are locally detectable directed local Delaunay edges. From
Theorem 6.11 it follows that an edge uv added by node u to PuDel(V ) is also added to
this graph by node v based on its one-hop neighborhood information.

Euclidean Spanning Ratio of PuDel

The proof of the constant Euclidean spanning ratio of PuDel requires the well-known
concept of DT-paths introduced by Dobkin et al. in their seminal work [101].

Definition 6.13 (Direct DT path [101]). Let u, v ∈ V and assume for simplicity that
uv is parallel to the x-axis and that x(u) < x(v). The direct DT path between u and v,
denoted by DT(u, v), is a sequence 〈u = b0, b1, ..., bm−1, bm = v〉 of nodes from V that
corresponds to the sequence of Voronoi regions traversed by walking from u to v along
the line segment uv (see Figure 6.1 for an illustration). In case a Voronoi edge lies on uv,
the Voronoi region which lies above uv is chosen.

If all nodes bi along the direct DT path happen to be in the same half-plane defined by
the line connecting u and v, then this path is said to be one-sided.

Let DT(u, v) = 〈u = b0, b1, ..., bm−1, bm = v〉 be the direct DT path between two nodes
u, v ∈ V . The following three lemmata are proven by Dobkin et al. in [101].

Lemma 6.14 (Lemma 1 in [101]).

x(b0) ≤ x(b1) ≤ ... ≤ x(bm) .
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Lemma 6.15 (Lemma 2 in [101]). ∀ i, 0 ≤ i ≤ m, bi is contained by D(u, v).

Lemma 6.16 (Lemma 3 in [101]). Let D1, D2, ..., Dk be circles which are centered at the
x-axis, such that D =

⋃

1≤i≤k Di is connected. Then the boundary of D has a length of
at most π · (xr − xl), where xl and xr are the least and the greatest x-coordinates of D,
respectively.

Lemma 6.17. Let u, v ∈ V s.t. the direct DT path from u to v is one-sided, then the
length of this path is at most (π/2) · ‖uv‖.

Proof. Let DT(u, v) = 〈u = b0, b1, ..., bm = v〉 be a one-sided direct DT path between
u, v ∈ V . By Lemma 6.14, x(b0) ≤ x(b1) ≤ ... ≤ x(bm) holds. For all i, 0 ≤ i < m, the
Euclidean length of edge bibi+1 is bounded from above by the length of the circular arc
between bi and bi+1 w.r.t. the circle C‖zibi‖(zi), where zi is the point on the x-axis where
the Voronoi regions of bi and bi+1 intersect. Hence, the Euclidean length of DT(u, v) is
upper bounded by the sum of the respective arcs. By Lemma 6.16, the length of the
connected sequence of arcs is bounded from above by (π/2) · ‖uv‖.

Theorem 6.18. If uv ∈ UDel(V ), then the direct DT path from u to v in Del(V ) is a
connected path in PuDel(V ).

Proof. Let uv ∈ UDel(V ) be any edge and DT(u, v) = 〈u = b0, b1, ..., bm−1, bm = v〉 the
corresponding direct DT path in Del(V ). Let zi, 0 ≤ i < m, be the point of intersection
of the Voronoi edge between the nodes bi, bi+1 (w.r.t. V ) with the line segment uv; i.e.,
zi ∈ VRV (bi)∩VRV (bi+1), zi ∈ B(bi, bi+1), and zi ∈ uv (see Figure 6.1 for an illustration).

Since zi ∈ VRV (bi), by Lemma 6.1 it holds that there are no points from V contained
by the open disk Do

‖zibi‖(zi), and this holds in particular for u and v. Observe that
the circle’s center, namely zi, as well as the circle’s diameter, are located on the line
segment uv. By assumption that uv ∈ UDel(V ), it holds that ‖uv‖ ≤ R. It follows that
2 · ‖zibi‖ ≤ ‖uv‖ ≤ R. Since zi ∈ B(bi, bi+1), the triangle inequality yields

‖bibi+1‖ ≤ ‖bizi‖+ ‖zibi+1‖ = 2 · ‖zibi‖ ≤ R .

Thus, ‖zibi‖ ≤ R/2 and zi is a point of the Voronoi edge between bi and bi+1. From
Theorem 6.6 it now follows that bibi+1 ∈ PuDel(V ). This holds for every edge bjbj+1,
0 ≤ j < m, along the path DT(u, v). Therefore, DT(u, v) is a connected path from u to
v in PuDel(V ).

In the following, let Π(u, v) denote a connected and acyclic path from u to v whose
Euclidean length is given by ||Π(u, v)|| (see Definition 2.11).

Theorem 6.19. For each edge uv ∈ UDel(V ) there exists a connected path Π(u, v) in
PuDel(V ) of Euclidean length ||Π(u, v)|| ≤ (π/2) · ‖uv‖.

Proof. Let uv ∈ UDel(V ) be an arbitrarily chosen but fixed edge. Distinguish the Cases
(i) and (ii).
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Figure 6.2: Illustration for the proof of Theorem 6.19, Case (ii). The shaded area represents
the lower half-circle of D(u, v). C‖uq‖(q) is given by the bold black circle and
VD(V ) is represented by the dashed black lines.

Case (i): ∃ p ∈ VRV (u) ∩ VRV (v) with ‖up‖ ≤ R/2. In this case it holds that
uv ∈ PuDel(V ) according to Theorem 6.6. The path Π(u, v) := 〈u, v〉 is a connected path
in PuDel(V ) of Euclidean length

||Π(u, v)|| = ‖uv‖ < π

2
· ‖uv‖.

Case (ii): ∄ p ∈ VRV (u) ∩VRV (v) with ‖up‖ ≤ R/2. Let q be any point in VRV (u) ∩
VRV (v) (see Figure 6.2 for an illustration). Because q ∈ VRV (u) and q ∈ VRV (v), it
holds that q ∈ VRV (u) ∩ B(u, v). From this and the assumption that ‖qu‖ > R/2, it
follows that ‖uq‖ = ‖vq‖ > R/2.

Denote the midpoint of the line segment uv by m. Since uv ∈ UDel(V ), ‖uv‖ ≤ R and
‖um‖ = ‖vm‖ ≤ R/2 < ‖uq‖. In particular, this implies that m 6= q. Now consider the
following two circles with centers m and q, respectively, both of which contain u and v on
their boundaries:

• D(u, v) represents the circle with center m, radius ‖um‖, and which has line segment
uv as its diameter.

• C‖uq‖(q) is the circle with center q, radius ‖uq‖, and which contains both u and v
on its boundary, since ‖uq‖ = ‖vq‖.

Note that these circles do not coincide, as their centers as well as their radii differ.
Also, observe that one of the semicircles of D(u, v) that is bounded by uv, which is
henceforth called A (see shaded area in Figure 6.2), is entirely contained by C‖uq‖(q).
Since q ∈ VRV (u), by Lemma 6.1 it holds that no points from V are contained in the
open disk Do

‖uq‖(q). From this, it can be concluded that no points from V \ {u, v} are
contained inside or on the boundary of semicircle A.

Let DT(u, v) denote the direct DT path from u to v in Del(V ). By Lemma 6.15 it
holds that all nodes along the path DT(u, v) are contained within or on the boundary of
D(u, v). But since semicircle A of D(u, v) is empty of nodes from V \ {u, v}, all remaining
nodes from DT(u, v) must be contained in the remaining semicircle D(u, v)−A; i.e., all
nodes from DT(u, v) are contained in the closed half-plane that has uv as its boundary
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and contains D(u, v)−A. Thus, DT(u, v) is one-sided. By Theorem 6.18, DT(u, v) is a
connected path in PuDel(V ). Therefore, for Π(u, v) := DT(u, v) it holds by Lemma 6.17
that

||Π(u, v)|| ≤ π

2
· ‖uv‖ .

This section now concludes with the proof that PuDel is a constant stretch Euclidean
spanner of the unit disk graph. The spanning ratio proven here is slightly weaker than
the one in the original proof [62]. They claim a spanning ratio of (2π2)/(3

√
3), but their

proof relies on an unproven claim concerning the spanning ratio of the unit Delaunay
triangulation (for details see Section 2.5.2).

Theorem 6.20. Let V be a set of nodes such that UDG(V ) is a connected graph. Then,

PuDel(V ) is a Euclidean (1+
√
5

4 π2)-spanner of UDG(V ).

Proof. Let V be a set of nodes such that UDG(V ) is connected. According to Theorem 5
in [104], UDel(V ) is a Euclidean (1+

√
5

2 π)-spanner of UDG(V ). Next it is shown that
PuDel(V ) is a Euclidean π/2-spanner of UDel(V ) from which the theorem then follows.

Let u, v ∈ V be two arbitrarily chosen but fixed nodes. Assume the Euclidean shortest
path from u to v in UDel(V ) is given by

ΠUDel(V )(u, v) = 〈u = u0, u1, ..., uk−1, uk = v〉 , k ≥ 1 .

By Theorem 6.19, for each edge xy ∈ UDel(V ) there exists a connected path from x to
y in PuDel(V ) whose Euclidean length is at most (π/2) · ‖xy‖. In the following, denote
this path by x y. Each pair (ui, ui+1), for 0 ≤ i < k, represents an edge in UDel(V ).
Thus, the concatenation of all such paths ui  ui+1, for 0 ≤ i < k, is a connected path
from u to v in PuDel(V ).

Let ΠPuDel(V )(u, v) denote the Euclidean shortest path from u to v in PuDel(V ). The
Euclidean length of ΠPuDel(V )(u, v) can be upper bounded as follows.

||ΠPuDel(V )(u, v)|| ≤
k−1∑

i=0

||ui  ui+1||

Thm. 6.19
≤

k−1∑

i=0

π

2
· ‖uiui+1‖ =

π

2
·
k−1∑

i=0

‖uiui+1‖ =
π

2
· ||ΠUDel(V )(u, v)|| .

6.1.3 Equivalence of PuDel and PDT

It is now shown that the partial unit Delaunay triangulation (PuDel) and the partial
Delaunay Triangulation (PDT) are equivalent. The main Theorem 6.27 requires few
auxiliary Lemmata 6.21 –6.26 which are given first.
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Figure 6.3: Illustration for the proof of Lemma 6.21. VD(N1(u)) and VD(N1(v)) are
represented by dotted and dashed lines, respectively.

Lemma 6.21. Let uv ∈ PuDel(V ) and let p ∈ R2 be any witness for the local detectability
of −→uv (i.e., p ∈ VRN1(u)(u) ∩ VRN1(u)(v) and ‖up‖ ≤ R/2). It holds that p is also a
witness for the local detectability of −→vu.

Proof. Assume p is a witness for the local detectability of −→uv, then p ∈ VRN1(u)(u) ∩
VRN1(u)(v) and ‖up‖ = ‖vp‖ ≤ R/2 (see Figure 6.3 for an illustration). In particular it
holds that

p ∈
⋂

x∈N1(u)\{u}
H(u, x) .

Assume, for the sake of contradiction, that p /∈ VRN1(v)(v) ∩VRN1(v)(u). Then there
must exist l ∈ N1(v) \ {u, v} such that p /∈ H(v, l) but p ∈ H(l, v). The latter implies that
‖lp‖ < ‖vp‖. But then, l must be a one-hop neighbor of u for the following reason:

‖ul‖ ≤ ‖up‖+ ‖lp‖ < ‖up‖+ ‖vp‖ ≤ R ,

where the first inequality holds due to the triangle inequality. Because ‖lp‖<‖vp‖=‖up‖
it holds that p /∈ H(u, l). But this contradicts the initial assumption that p is a witness
for the local detectability of −→uv and hence, p ∈ VRN1(v)(v) ∩VRN1(v)(u) is a witness for
the local detectability of −→vu as well.

Definition 6.22 (Common local Voronoi edge). For two nodes u, v ∈ V that are connected
by an edge in UDG(V ), define the common local Voronoi edge of u and v w.r.t. their
one-hop neighborhoods, denoted CLVE(u, v), as follows:

CLVE(u, v) =
{(

VRN1(u)(u) ∩VRN1(u)(v)
)
∩
(
VRN1(v)(v) ∩VRN1(v)(u)

)}
.

For an example, see Figure 6.4 where CLVE(u, v) is represented by the line segment ab.

Lemma 6.23. Let u, v ∈ V . If CLVE(u, v) 6= ∅, then |CLVE(u, v)| > 1.
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Proof. For the sake of contradiction, assume there are two nodes u, v ∈ V such that
|CLVE(u, v)| = 1, i.e., it consists of a single point. Distinguish the following two cases:

(i) |VRN1(u)(u) ∩VRN1(u)(v)| = 1 or |VRN1(v)(v) ∩VRN1(v)(u)| = 1;

(ii) |VRN1(u)(u) ∩VRN1(u)(v)| > 1 and |VRN1(v)(v) ∩VRN1(v)(u)| > 1.

Case (i): At least one of the two local Voronoi diagrams is degenerated since a Voronoi
edge can only degenerate into a single point if four or more nodes are cocircular. This
contradicts the assumption that no four points in V are cocircular. Hence, only the other
case may actually apply.

Case (ii): Let p be the single point contained in CLVE(u, v). Observe that p must be
a Voronoi vertex in both VD(N1(u)) and VD(N1(v)) (otherwise the Voronoi regions of
u and v w.r.t. N1(u) and N1(v), respectively, would overlap and the size of CLVE(u, v)
would be strictly larger than one). Assume p is the point of intersection of

• VRN1(u)(u), VRN1(u)(v), and VRN1(u)(l), l ∈ N1(u) \ {u, v}, as well as of

• VRN1(v)(u), VRN1(v)(v), and VRN1(v)(l̂), l̂ ∈ N1(v).

Because the local Voronoi edges are assumed to be non-degenerated (following from the
non-collinearity assumption) and because p is the only point of intersection of the local
Voronoi edges, it holds that l 6= l̂. But this implies that p is equidistant to u, v, l, and l̂.
This contradicts the assumption that no four points in V are cocircular.

Lemma 6.24. Let uv ∈ PuDel(V ) be any edge with midpoint m. If there exists a closed
interval [a, b] ∈ CLVE(u, v), such that m ∈ [a, b] and m 6= a, b, then it holds that D(u, v)
is empty of nodes from (N1(u) ∪N1(v)) \ {u, v}.

Proof. Let uv ∈ PuDel(V ) be any edge and assume there exists a closed interval [a, b] ∈
CLVE(u, v), such that m ∈ [a, b] and m 6= a, b.

Because Voronoi edges are continuous, w.l.o.g. it can be assumed that a and b are both
contained in CR/2(u) ∩ CR/2(v). It may also be assumed w.l.o.g. that uv is parallel to
the x-axis and that y(a) > y(m). See Figure 6.4 for an illustration.

Next it is shown that the upper half-circle of D(u, v) containing a, denoted by A (see
shaded area in Figure 6.4), is empty of nodes from (N1(u) ∪N1(v)) \ {u, v}. In order to
show that the remaining, lower half-circle is also empty, an analogue line of argumentation
can be applied.

First of all, note that the radius of D(u, v) is strictly smaller than the radius of circle
C‖ua‖(a) (circle C(u, v, l) in Figure 6.4), which is due to the facts that m is the midpoint of
uv, and m as well as a are distinct points on B(u, v). From this and from the assumption
that y(a) > y(m), it follows that semicircle A is entirely contained by C‖ua‖(a). Because
(i) m, a ∈ B(u, v) and (ii) a ∈ CLVE(u, v) it holds that

‖ua‖ (i)
= ‖va‖

(ii)

≤ ‖la‖, ∀ l ∈ (N1(u) ∪N1(v)) .
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Figure 6.4: Illustration for the proof of Lemma 6.24. CLVE(u, v) is given by the line
segment ab, VD(N1(u)) and VD(N1(v)) are represented by the dotted and
dashed lines, respectively. The shaded area represents the upper half-circle of
D(u, v), whereas the bold black circle is C(u, v, l).

That is, the open disk Do
‖ua‖(a) is empty of nodes from (N1(u)∪N1(v))\{u, v} and hence,

this also holds for A. The analogue line of argumentation regarding the other interval
boundary point b completes this proof.

Lemma 6.25 (Theorem 5.7 in [108]). Given a point set V where no four points are
cocircular and no three points are collinear, then every Voronoi vertex in VD(V ) is the
common intersection of exactly three edges of the diagram.

Proof. See proof of Theorem 5.7 in [108].

Lemma 6.26 (Theorem 5.8 in [108]). For every Voronoi vertex x of the Voronoi diagram
VD(V ), the circumcircle of its three generating nodes from V does not contain other nodes
from V .

Proof. See proof of Theorem 5.8 in [108].

Next the equivalence of PuDel and PDT is proven.

Theorem 6.27. Let V ⊂ R2 be a distinct set of nodes of size 3 ≤ |V | <∞, which satisfies
that no four nodes are cocircular as well as that no three nodes are collinear. Then, for
any two nodes u, v ∈ V it holds that uv ∈ PuDel(V ), if and only if uv ∈ PDT(V ).

Proof. This proof of equivalence is given in two parts:

Part (1): uv ∈ PuDel(V )⇒ uv ∈ PDT(V ), and

Part (2): uv ∈ PDT(V )⇒ uv ∈ PuDel(V ).
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In the remainder of this proof it is assumed w.l.o.g. that line segment uv is parallel to
the x-axis. Let m always denote the midpoint of uv and R the radius of the underlying
unit disk graph.

In addition, note the following. If uv ∈ UDG(V ), then D(u, v) is entirely contained
by the unit disk centered at u. Thus, D(u, v) ∩ (N1(u) \ {u, v}) = ∅, if and only if
D(u, v) ∩ (V \ {u, v}) = ∅.

Part (1) Recall that an edge xy ∈ UDG(V ) is contained in PDT(V ) if either xy ∈
GG(V ) ∩ UDG(V ), or if there exists a circle C(x, z, y) which is empty of nodes from
N1(x) \ {x, y, z} and where sin(∡xzy) ≥ ‖xy‖/R.

Since uv is an edge in PuDel(V ) it holds that −→uv and −→vu are locally detectable direct
local Delaunay edges, i.e., there exists a point p ∈ VRN1(u)(u) ∩VRN1(u)(v) with ‖up‖ =
‖vp‖ ≤ R/2. By Lemma 6.21, p ∈ VRN1(v)(v) ∩ VRN1(v)(u). Hence, CLVE(u, v) is a
non-empty set and by Lemma 6.23, it follows in turn that |CLVE(u, v)| > 1. Also note
that it cannot be the case that CLVE(u, v) is equivalent to the straight line B(u, v), as
this would contradict the non-collinearity assumption regarding set V . Consequently, in
the case under consideration CLVE(u, v) can exclusively be of the following two types. It
is either

1a) a line segment [a, b] ∈ B(u, v), where a 6= b, or

1b) it is a half-line lying on B(u, v).

Case 1a) CLVE(u, v) is a line segment [a, b] ⊂ B(u, v) as illustrated by Figure 6.5. Since
a 6= b, at least one of the two points has to be different from m. Assume w.l.o.g. that
b 6= m and that b is below uv (the other case is symmetric can be proven analogously).
This assumption implies that y(a) > y(b).

If y(a) > y(m), then there exists [a, b] ∈ CLVE(u, v) with m ∈ [a, b] and m 6= a, b.
Lemma 6.24 yields that uv ∈ GG(V ) ∩UDG(V ), which implies that uv ∈ PDT(V ).

If y(a) ≤ y(m), then either a = m, or a lies strictly below uv, but within the area
CR/2(u) ∩ CR/2(v), since uv ∈ PuDel(V ). Moreover, in either case ‖ma‖ ≤ ‖mb‖ holds.

Observe that point a is a Voronoi vertex w.r.t. either VD(N1(u)), or VD(N1(v)).
Assume the former holds. In accordance with Lemma 6.25, there must exist a node l s.t.
a is the point of intersection of VRN1(u)(u), VRN1(u)(v), and VRN1(u)(l).

Node l must be contained by D(u, v) for the following reason. Firstly, point a is the
circumcenter of C(u, v, l) and while y(a) ≤ y(m), the arc of C(u, v, l) which is contained
in the upper half-plane w.r.t. uv is entirely contained by D(u, v). Secondly, y(a) > y(b)
and hence, l must be located in the upper half-plane w.r.t. uv.

From the above it follows that l ∈ (N1(u) ∩ N1(v)) and hence, l is a generator node
for the Voronoi vertex a in VD(N1(v)) as well. By Lemma 6.26 it holds that C(u, v, l) is
empty of nodes from (N1(u) ∪N1(v)) \ {u, v, l}. For the remainder let α = ∡ulv.

Consider the case where a = m (see Figure 6.5 for an illustration). In this case l must
be located on the boundary of D(u, v). Hence, D(u, v) and C(u, v, l) coincide and D(u, v)
must also be empty of nodes from (N1(u) ∪ N1(v)) \ {u, v, l}. Moreover, α = π/2 (by
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Figure 6.5: Illustration for the proof of Theorem 6.27, Part (1), case a = m. CLVE(u, v)
is given by mb. VD(N1(u)) and VD(N1(v)) are represented by the dotted and
dashed lines, respectively. The shaded area represents D(u, v).

Thales’ theorem) and thus, sin(α) = 1. With ‖uv‖ ≤ R, sin(α) = 1 ≥ ‖uv‖/R holds. It
can therefore be concluded that uv ∈ PDT(V ).

In the remaining case, both points a and b are located strictly below uv (see Figure 6.6).
Because −→uv is locally detectable and because of the assumption that y(a) > y(b), it
must hold that a ∈ CR/2(u), whereas b may or may not be contained in CR/2(u). The
former implies that l must be contained in the interior of D(u, v). Recall that C(u, v, l)
with center a is empty of nodes from (N1(u) ∪N1(v)) \ {u, v, l}. If it can be shown that
sin(α) ≥ ‖uv‖/R, for all possible positions of a, then uv ∈ PDT(V ) follows immediately.

Suppose a is moved along CLVE(u, v) towards the lower point of intersection of CR/2(u)
and CR/2(v), denoted by p. Figure 6.6a shows a possible initial position, whereas
Figure 6.6b shows the situation after moving a, such that a = p.

It can be observed that with monotonically decreasing value y(a), angle α increases
monotonically, whereas sin(α) decreases monotonically, because π/2 < α < π. Moreover,
α reaches its maximum and sin(α) reaches its minimum, if a = p, since only those cases
need to be considered where −→uv remains locally detectable, i.e., cases where ‖ua‖ ≤ R/2.
Hence, it is sufficient to consider the case where a = p. The application of the law of
sines yields:

sin(α) =
‖uv‖

2 · ‖ua‖ =
‖uv‖
2 · R/2 =

‖uv‖
R

.

Thus, sin(α) ≥ ‖uv‖/R for all possible positions of a under consideration and it can be
concluded that uv ∈ PDT(V ).

Case 1b) The case where CLVE(u, v) is a half-line is a special case of Case 1a) and can
be proven equivalently. Let p denote the unique endpoint of CLVE(u, v) and apply the
same line of argumentation as used in the proof of Case 1a) on point p, instead of point
a. Then, uv ∈ PDT(V ) follows for this case as well.
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(a) (b)

Figure 6.6: Illustration for the proof of Theorem 6.27, Part (1), case a 6= m. (a) Case
where a is strictly below uv. (b) Case where a = p, where p is the lower point
of intersection of CR/2(u) and CR/2(v). In both figures CLVE(u, v) is given
by ab. VD(N1(u)) and VD(N1(v)) are represented by the dotted and dashed
lines, respectively. The shaded area represents D(u, v) and the bold black
circle represents C(u, v, l).

Part (2) For the remainder of this proof let uv ∈ PDT(V ). Recall that uv is assumed
to be parallel to the x-axis. Let l be the angle maximizing node w.r.t. uv, i.e., the node
maximizing the angle ∡ulv among all nodes in (N1(u) ∪N1(v)) \ {u, v}. Note that under
the assumption that V is non-collinear, the angle maximizing node is uniquely defined.
Let α = ∡ulv and refer to Figure 6.7 for an illustration of the following proof.

According to the definition of PDT, uv ∈ UDG(V ) and uv is either an edge of the
Gabriel graph, or circle C(u, v, l) is empty of nodes from N1(u) \ {u, v, l} and satisfies
sin(α) ≥ ‖uv‖/R.

If uv ∈ GG(V )∩UDG(V ), then uv ∈ PuDel(V ), since GG(V )∩UDG(V ) ⊆ PuDel(V )
by Lemma 6.9.

Therefore, assume that uv /∈ GG(V ). In order to prove that uv ∈ PuDel(V ) it suffices
to show that uv is a locally detectable directed local Delaunay edge. That is, it is required
to show:

(a) VRN1(u)(u) ∩VRN1(u)(v) 6= ∅ (i.e., uv is a directed local Delaunay edge), and

(b) ∃ p ∈ R2 : p ∈ VRN1(u)(u) ∩ VRN1(u)(v) with ‖up‖ ≤ R/2 (the directed local
Delaunay edge is locally detectable).

Obviously, (b) implies (a) and it suffices to prove existence of a point p as defined in (b).
In the case under consideration uv /∈ GG(V ) and hence, angle maximizing node l is

either on the boundary of or in the interior of D(u, v). Therefore, ‖ul‖ < ‖uv‖ which
implies that l ∈ N1(u). Let p denote the midpoint of circle C(u, v, l) and observe that
p ∈ B(u, v) as shown in Figure 6.7. Because uv ∈ PDT(V ), the interior of C(u, v, l) is
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Figure 6.7: Illustration for the proof of Theorem 6.27 Part (2). The dashed lines represent
VD(N1(u)). The shaded circle is D(u, v), whereas the bold black circle
represents C(u, v, l).

empty of nodes from N1(u) \ {u, v, l} and C(u, v, l) is entirely contained by the unit disk
centered at u. Thus, C(u, v, l) is empty of nodes from V \ {u, v, l}. From Lemma 6.3 it
follows that p is a Voronoi vertex in VD(V ) joining the Voronoi regions VRV (u), VRV (v),
and VRV (l). By Lemma 6.5 p ∈ VRN1(u)(u) ∩ VRN1(u)(v) holds as well. It remains to
show that p is a witness for −→uv’s local detectability for all possible positions of l.

If l lies on the boundary of D(u, v), then p = m. Since ‖uv‖ ≤ R, ‖up‖ ≤ R/2
holds. Therefore, assume l lies strictly inside D(u, v) and assume in addition w.l.o.g.
that l is contained in the upper half-circle of D(u, v) w.r.t. uv. Because uv ∈ PDT(V ),
sin(α) ≥ ‖uv‖/R holds. Observe that with increasing value of α, which is the case if the
distance between l and the midpoint m of uv decreases, the difference between sin(α)
and ‖uv‖/R decreases. Moreover, with increasing angle α, the radius of C(u, v, l) is
monotonically increasing and so is the distance between u and p. While uv is an edge
in PDT(V ), ‖up‖ is maximized if sin(α) = ‖uv‖/R holds. Therefore, it suffices to show
that ‖up‖ ≤ R/2 holds in the latter case. Let r denote the radius of C(u, v, l). The law
of sines yields:

R =
‖uv‖
sin(α)

= 2 · r = 2 · ‖up‖.

That is, independent of l’s position, while uv ∈ PDT(V ), p is a witness for the local
detectability of the directed local Delaunay edge −→uv and hence, uv ∈ PuDel(V ) holds.

6.1.4 Discussion and Implications

The equivalence of PuDel and PDT has various implications, which are discussed sub-
sequently. First and foremost, the equivalence of PuDel and PDT implies the following
important corollary.

Corollary 6.28. Let V be a set of nodes such that UDG(V ) is a connected graph. Then,

PDT(V ) is a Euclidean (1+
√
5

4 π2)-spanner of UDG(V ).
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Proof. By Theorem 6.20, PuDel(V ) is a Euclidean (1+
√
5

4 π2)-spanner of UDG(V ). By

Theorem 6.27, PuDel(V ) = PDT(V ). Hence, PDT(V ) is a Euclidean (1+
√
5

4 π2)-spanner
of UDG(V ).

This result answers the formerly open question, whether PDT is or is not a constant
stretch Euclidean spanner for UDG. Previously, some authors [59,62–65] stated this to be
unknown, whereas others [66, 67] even claimed that PDT is no constant stretch spanner
at all. In addition this results implies a constant Euclidean spanning ratio for PDT’s
2-hop counterpart (see Definition 3.2).

Theorem 6.29. PDT2(V ) is a Euclidean (1+
√
5

4 π2)-spanner of UDG(V ).

Proof. It holds that PDT(V ) ⊆ PDT2(V ) [113]. Since PDT(V ) is a Euclidean (1+
√
5

4 π2)-
spanner of UDG(V ) by Theorem 6.28, this also holds for PDT2(V ).

There are several applications of PDT which may benefit from the theoretical guarantees
provided in this section. For example, Tan [56] uses PDT as a component for a distributed
autonomous deployment algorithm for mobile robots in mobile sensor networks. Deng
and Stojmenović [53] as well as Li. et al [55] propose to use PDT for application in
geographic hashing. It will be the subject of future work to investigate in how far the
constant spanning properties of PDT extend and can improve these results.

Finally, the fact that PDT is a spanner also has direct and important impacts on recent
results in beaconless Recovery routing. These are discussed and presented in detail in
Chapter 7.

6.2 Reactive Local Construction of the Partial Delaunay

Triangulation

In the following it is shown that a node’s local view on PDT can be constructed by an
O-reactive local view topology control algorithm, called reactivePDT (rPDT).

Algorithm rPDT extends and improves the timer-based contention principles of BFP
[18, 107] in the following sense. Like BFP, algorithm rPDT is also an RTS-CTS-based
protocol that uses distance-based delay timers and requires no additional input other
than the geographic position of its executing node as well as the unit transmission radius.
However, unlike the select-and-protest-based approaches BFP and GDBF, the algorithm
presented here does not require an additional protest phase and consists solely of a
selection phase. This is achieved by making use of re-adjustable delay timers whose
timeouts are modified online, during algorithm execution.

The main contribution—the description and correctness proof of algorithm rPDT—is
presented in Section 6.2.2. Beforehand, in Section 6.2.1 important facts and definitions
are established. Lastly, Section 6.2.3 discusses algorithmic properties and implications to
the state of research.
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6.2.1 Preliminaries

As in the previous section, let V ⊂ R2 be a distinct and finite set of nodes, such that no
four nodes in V are cocircular and no three nodes in V are collinear. UDG(V ) denotes
the unit disk graph over V . For simplicity of the proofs and w.l.o.g. it is henceforth
assumed that the unit disk radius is equal to one, i.e., R = 1.

Elementary Geometric Constructions and Proofs

Given three non-collinear points u, v, w ∈ R2, let Hw(u, v) denote the open half-plane
which contains w and that is bounded by the straight line ℓ(u, v). For simplicity, the
following notation is used frequently. Let A ⊂ R2 be some area, e.g., a half-plane or a
circle. Then A refers to the complementary area of A, given by R2 without point set A.

A node w ∈ D(u, v) is referred to as angle maximizing node w.r.t. uv (or simply angle
maximizing node), if and only if ∡uwv ≥ ∡uzv, for all z ∈ D(u, v), z 6= u, v.

The proofs of Lemma 6.30 & 6.31 are similar to the proof of Lemma 1 in [50] and are
given here only for the sake of completeness.

Lemma 6.30. Let u, v, w ∈ V s.t. w ∈ D(u, v) and let α = ∡uwv, then

‖uv‖
sin(α)

= duvw .

Proof. Because w ∈ D(u, v), it holds that π
2 ≤ α ≤ π and hence, it also holds that

sin(α) = cos(α− π
2 ). Let z be the point on C(u, v, w), s.t. uz = duvw and let β = ∡zuv.

Then, because of symmetry of angles β = α− π
2 holds and hence,

sin(α) = cos(α− π

2
) = cos(β) =

‖uv‖
duvw

.

Lemma 6.31. Let u, v, w ∈ V s.t. w ∈ D(u, v) and let α = ∡uwv, then sin(α) ≥ ‖uv‖
if and only if duvw ≤ 1.

Proof. This follows immediately from Lemma 6.30.

Lemma 6.32. Let w ∈ D(u, v) be the angle maximizing node w.r.t. uv and let ŵ ∈ D(u, v)
be another node. It holds that duvw ≥ duvŵ.

Proof. Let α = ∡uwv and α̂ = ∡uŵv. Because w is assumed to be angle maximizing,
α ≥ α̂. This is equivalent to sin(α) ≤ sin(α̂) (note that π

2 ≤ α, α̂ ≤ π). With Lemma 6.30
it holds that

duvŵ =
‖uv‖
sin(α̂)

≤ ‖uv‖
sin(α)

= duvw .
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Proximity graphs and their equivalence

Next, two alternative definitions of PDT are given. These simplify the proofs given in this
section. Definition 6.33 defines PDT using half-planes. In Definition 6.34, this definition
is then further modified by replacing the concept of the angle maximizing node with a
statement that holds for all nodes contained in a Gabriel circle.

Definition 6.33 (Partial Delaunay triangulation (PDT)). Let uv ∈ UDG(V ) and w ∈ V
the angle maximizing node w.r.t. uv. Edge uv is contained by the partial Delaunay
triangulation PDT(V ), if and only if either D(u, v) does not contain any node from
V \ {u, v}, or if

1. ∄x ∈ V \ {u, v, w} s.t. x ∈ C(u, v, w) ∩Hw(u, v), and

2. sin(α) ≥ ‖uv‖, where α = ∡uwv.

Definition 6.34 (Generalized partial Delaunay triangulation (GPDT)). An edge uv ∈
UDG(V ) is contained by the generalized partial Delaunay triangulation GPDT(V ), if and
only if for all nodes w ∈ D(u, v), w 6= u, v, it holds that

1. ∄x ∈ V \ {u, v, w} s.t. x ∈ C(u, v, w) ∩Hw(u, v), and

2. sin(α) ≥ ‖uv‖, where α = ∡uwv.

Let uv ∈ UDG(V ) s.t. there exist nodes w ∈ D(u, v) and x ∈ C(u, v, w) ∩ Hw(u, v).
Edge uv is said to violate the first PDT (GPDT) criterion with angular node w and
witness node x. Likewise, edge uv is said to violate the second PDT (GPDT) criterion
with angular node w.

Next it is shown that PDT and GPDT are in fact equivalent definitions.

Theorem 6.35. Applied on any UDG(V ), the definitions of PDT and GPDT yield
equivalent subgraphs, i.e., for u, v ∈ V it holds that uv ∈ GPDT(V )⇔ uv ∈ PDT(V ).

Proof. “⇒”: Consider any edge uv ∈ GPDT(V ). If D(u, v) ∩ V \ {u, v} = ∅, then
uv ∈ PDT(V ). Otherwise, the fact that the two GPDT criteria hold for all nodes
contained in D(u, v) implies that they hold in particular for the angle maximizing node
w ∈ D(u, v) and thus, uv ∈ PDT(V ).

“⇐”: The remaining case is proven by showing that uv /∈ GPDT(V )⇒ uv /∈ PDT(V ).
Let uv ∈ UDG(V ) be any edge which is not contained in GPDT(V ). Then for at least

one node ŵ ∈ D(u, v), at least one GPDT criterion is violated. Let w ∈ D(u, v) be the
angle maximizing node w.r.t. uv.

If the first GPDT criterion is violated, then there exists at least one node x ∈ C(u, v, ŵ)
that lies on the opposite side of ŵ w.r.t. uv. Angle maximizing node w and node ŵ
are either on the same or on opposite sides w.r.t. uv. Assume the former holds. Then,
according to Lemma 6.32, duvw ≥ duvŵ, because w is assumed to be angle maximizing.
Because w and ŵ are on the same side w.r.t. uv, x ∈ C(u, v, ŵ) implies that x ∈ C(u, v, w).
Thus, the first PDT criterion is violated and hence, uv /∈ PDT(V ).
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Now assume that w and ŵ are on opposite sides w.r.t. uv. Then, because w, ŵ ∈ D(u, v),
it holds that w ∈ C(u, v, ŵ) and ŵ ∈ C(u, v, w). Again, the first PDT criterion is violated
and uv /∈ PDT(V ) holds.

Finally, consider the case where the second GPDT criterion is violated. Let α̂ := ∡uŵv
and α := ∡uwv. By assumption, sin(α̂) < ‖uv‖ and hence,

1
Lemma 6.31

< duvŵ
Lemma 6.32
≤ duvw

Lemma 6.30
=

‖uv‖
sin(α)

⇔ sin(α) < ‖uv‖ .

Thus, edge uv violates the second PDT criterion and uv /∈ PDT(V ).

6.2.2 Reactive Construction of PDT

In the following a beaconless algorithm for construction of a node’s adjacency in PDT is
introduced and proven to be correct. When executed by any node u from a given unit
disk graph UDG(V ), the algorithm computes N

PDT(V )
1 (u), the one-hop neighborhood of

u in PDT(V ). At the time of algorithm execution no node in V is aware of its network
neighborhood in UDG(V ). At first, the algorithm is described in detail and thereafter it
is proven to be correct.

Algorithm reactivePDT (rPDT)

Any node u ∈ V is assumed to have a delay timer t(u) with the following properties:
timeoutt(u) describes the point in time of the timer’s expiration, relative to its starting
time. That is, if timer t(u) is started at time t with timeoutt(u) = tmax, then this timer
expires at time t+ tmax. Moreover, the delay timer is assumed to be re-adjustable, i.e.,
while it is running, it may be extended (possibly multiple times) by some additional time
slice.2

Description of execution of algorithm rPDT initiated by u ∈ UDG(V ):

Node u initializes the output set N
PDT(V )
1 (u) to be the empty set, locally broadcasts

an RTS including its geographic position, and schedules termination after expiration of
the delay timer t(u) with timeoutt(u) = tmax.

Upon reception of an RTS sent by node u, any node v ∈ N1(u) initializes its set of known
nodes S(v) to be the empty set and initializes its current maximal angle αmax(v) = π/2.
In addition it schedules sending of a CTS response, including its geographic position,
upon expiry of delay timer t(v) with timeoutt(v) proportional to the diameter of the
Gabriel circle D(u, v), i.e., it sets timeoutt(v) = ‖uv‖ · tmax.

If a node v 6= u overhears a CTS sent by node z, then v adds z to its list of known
neighbors S(v). Furthermore, it checks if uv violates any of the two GPDT criteria w.r.t.

2For example, if node u sets up the delay timer t(u) with timeoutt(u) = 1/2 · tmax at time t, then as
long as the timer is still running, node u may extend the delay time dynamically, say by 1/4 · tmax.
Then this timer expires at time t+ 3/4 · tmax.
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the set of known nodes S(v). If a violation is detected, then v cancels its timer t(v)
and refrains from sending its CTS. Otherwise, if z is contained in D(u, v) and satisfies
α = ∡uzv > αmax(v), then node v updates the current maximal angle and re-adjusts
the timeout of timer t(v) proportional to the diameter of the circle C(u, z, v), i.e., sets
timeoutt(v) =

‖uv‖
sin(α) · tmax. The rationale behind this is that uv is now known not to be

an edge of the Gabriel graph, but it may still be contained in PDT(V ).

Whenever node u receives a CTS sent by a node v, then node u adds v to its output
set N

PDT(V )
1 (u). Once its delay timer is timed-out, it terminates.

A detailed pseudocode description of algorithm rPDT is given in Algorithm 1.

Algorithm 1 reactivePDT (rPDT)
Variables: u is the initiating node, R is the unit disk transmission radius, and tmax > 0 is a constant
known to all nodes.

Definition of message types

RTS(u) request for construction of N
PDT(V )
1 (u) by node u, represented by its position.

CTS(v) response from a PDT-neighbor v of u, represented by its position.

Action of initiator u

1: N
PDT(V )
1 (u)← ∅ ⊲ Initialize output set

2: Locally broadcast RTS(u)
3: Schedule termination after expiration of delay timer t(u) with timeoutt(u) ← tmax and process

incoming messages in the meantime
4: on reception of CTS(z) do

5: N
PDT(V )
1 (u)← N

PDT(V )
1 (u) ∪ {z}

Action of neighbor v 6= u

6: on reception of RTS(u) do

7: S(v)← ∅ ⊲ Initialize set of known nodes

8: αmax(v)← π/2 ⊲ Initialize current maximal angle

9: Schedule local broadcast of CTS(v) upon expiry of delay timer t(v) with timeoutt(v) ←
‖uv‖ · tmax, and process incoming messages in the meantime

10: on reception of CTS(z) do

11: S(v)← S(v) ∪ {z} ⊲ Update set of known neighbors

12: Check if edge uv violates any of the two GPDT criteria w.r.t. S(v)
13: if a violation is detected then

14: Cancel delay timer t(v) and cancel local broadcast of CTS(v)
15: else

16: α← ∡uzv
17: if α > αmax(v) then ⊲ Node z maximizes the angle w.r.t. uv
18: αmax(v)← α
19: Re-adjust the timeout of timer t(v) proportional to the diameter of circle C(u, z, v)

by setting timeoutt(v) ← ‖uv‖
sin(α) · tmax
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Structure of the Correctness Proof

Prior to proving reactivePDT to be correct, the most important ideas, observations, and
the proof’s structure are outlined.

The key observation is that once the executing node u has broadcasted its RTS,
u’s neighbors reply with a CTS message if and only if they are PDT-neighbors of u
(Theorem 6.47). Proving that each PDT-neighbor actually replies is rather simple;
however, proving that non-PDT-neighbors do not reply, requires a deeper analysis of
possible worst-case situations.

Recall that initially none of the nodes is aware of its neighborhood. Thus, a non-PDT-
neighbor v of u does not reply with a CTS message, if and only if it overhears one or
more CTS messages prior to expiration of its timer, which give evidence of v not being
a PDT-neighbor of u. Nodes not sending a CTS are henceforth called hidden nodes,
for they remain invisible to all other nodes. Node v becomes a hidden node if it either
overhears a message of angular node w, s.t. u, v, w violate the second GPDT criterion,
or if it overhears messages of angular node w and witness node x, s.t. u, v, w, x violate
the first or both GPDT criteria. Therefore, such nodes’ existence as well as their timers’
early expirations have to be proven. Note that both the angular and the witness node
have to be PDT-nodes (i.e., non-hidden nodes) in order to actually send a message.

The problem of showing the existence of such PDT-neighbors results from the following
worst-case situation of a cascaded sequence of hidden nodes (see Figure 6.9b for an
illustration). Assume uv is not a GPDT edge. The angle maximizing node wi w.r.t. uv
may itself be a hidden node. The angle maximizing node wi+1 w.r.t. uwi may also be a
hidden node, and so on.

Such situations and the existence of a suitable angular node for uv are considered in
Lemmata 6.39– 6.42. The existence of a suitable witness node is proven in Lemmata 6.43–
6.45. Lemma 6.46 then deals with timers’ early expirations. In Lemma 6.36 and 6.37,
geometric properties are proven that are used frequently throughout the other proofs.

Correctness Proof

Lemma 6.36. Let u, v, w ∈ V s.t. w ∈ D(u, v) is the angle maximizing node w.r.t. uv.
The interior of C(u, v, w) ∩Hw(u, v) is empty of nodes from V .

Proof. For the sake of contradiction assume the existence of z ∈ C(u, v, w) ∩ Hw(u, v).
Then ∡uwv < ∡uzv and w is not angle maximizing, contradicting the assumption.

Lemma 6.37. Let u, v, w, y ∈ V s.t. w ∈ D(u, v) and y ∈ D(u,w) are the angle
maximizing nodes w.r.t. uv and uw, respectively. It holds that

(i) duyv ≥ duyw, and

(ii) C(u, y, w) ∩Hw(u, y) ⊆ C(u, y, v) ∩Hw(u, y).

Proof. Assume w.l.o.g. that edge uw is parallel to the y-axis and that y(w) > y(u) (see
Figure 6.8 for an illustration). Let L denote the straight line which is orthogonal to edge
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Figure 6.8: Illustration of areas and node locations used in the proof of Lemma 6.37.
Gabriel circles are dotted and diamaters are given by dashed lines.

uw and that passes through w. Define the following areas: Let A be the closed half-plane
bounded by L and which does not contain node u, let B := A ∩ Do(u, y, w), and let
C := A ∩Hw(u, y). Moreover, let α = ∡uwv and δ = ∡uyv.

With w ∈ D(u, v), α ≥ π/2 holds and thus, v ∈ A. Because w is assumed to be angle
maximizing w.r.t. uv it also holds that α ≥ δ.

Assume v ∈ B. Let v̂ be the point of intersection of the straight line ℓ(v, y) with the
boundary of C(u, y, w) in area A and denote the angle ∡uwv̂ by α̂. Because u, y, w, and v̂
are located on the boundary of C(u, y, w) and v̂ ∈ ℓ(v, y) it holds that α̂ = δ. In addition,
v ∈ B and v̂ /∈ B implies ‖vv̂‖ > 0. Then α < α̂ = δ holds, which is a contradiction to
w being angle maximizing w.r.t. uv. Thus, v ∈ A \ B must hold from which claim (i)
follows directly.

Now, assume that v ∈ C. Then y is contained in the triangle defined by u, v, w (because
of the definition of area C), which implies that δ > α. But this contradicts again the
assumption that w is angle maximizing w.r.t. uv and thus, v /∈ C. With v /∈ B ∪C, claim
(ii) follows immediately.

Definition 6.38 (Hidden node sequence). Let uv be any edge in the unit disk graph
UDG(V ). Denote by HNS(u, v) := 〈v = w0, w1, ..., wk〉, k ≥ 0, a non-extendable sequence
of nodes from V , such that

• uwi /∈ GPDT(V ), for 0 ≤ i ≤ k, and

• wi+1 ∈ D(u,wi) is angle maximizing w.r.t. uwi, for 0 ≤ i < k.

Such a sequence is called a hidden node sequence since these nodes do not send a CTS
during algorithm execution and hence, remain hidden for all other nodes, in particular
for v.
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(a) (b)

Figure 6.9: Illustrations for the proofs of Lemma 6.40. (a) Representation of Case (i)
where wi+1 ∈ Hy(u, v). Area Ai+1 is part of area Bi. (b) Representation of
Case (ii) where wi+1 ∈ Hy(u, v).

Lemma 6.39. Let uv ∈ UDG(V ) be an edge with HNS(u, v) = 〈v = w0, w1, ..., wk = w〉,
k ≥ 0. Then, there exists an angle maximizing node y ∈ D(u,w) w.r.t. uw, such that
uy ∈ GPDT(V ).

Proof. Because uw /∈ GPDT(V ), there exists an angle maximizing node y ∈ D(u,w).
If uy /∈ GPDT(V ), then 〈w0, w1, ..., wk, y〉 is a valid hidden node sequence. But this
contradicts that a hidden node sequence is non-extendable and hence, the claim holds.

Lemma 6.40. Let uv ∈ UDG(V ) and let 〈v = w0, w1, ..., wk = w〉, where k ≥ 0, be a
sequence of nodes s.t. wi+1 ∈ D(u,wi), 0 ≤ i < k, is angle maximizing w.r.t. uwi. Let
y ∈ D(u,w) be the angle maximizing node w.r.t. uw. Then Do(u, y, w)∩Hy(u, v) is empty
of nodes from V .

Proof. For simplicity, let wk+1 := y. Define area Ai as follows:

Ai := Do(u,wi+1, wi) ∩Hy(u, v) ∩Hwi+1(u, v) .

Proof by induction on index i.
I.h.: For an arbitrary but fixed i it holds that area Ai is empty of nodes from V .
B.c. (i = 0): Area A0 is defined as A0 = Do(u,w1, w0) ∩Hy(u, v) ∩Hw1(u, v). Node w1

is either contained in Hy(u, v), or in Hy(u, v).
Assume w1 ∈ Hy(u, v) holds. Then Hy(u, v) ∩ Hw1(u, v) = ∅. Thus, A0 is empty of

nodes from V .
Now, assume w1 ∈ Hy(u, v) holds. Then, w1 and y lie within the same half-plane w.r.t.

uv and it holds that Hy(u, v) = Hw1(u, v). Then, A0 = Do(u,w1, w0 = v) ∩ Hw1(u, v).
Because w1 ∈ D(u, v) is assumed to be angle maximizing w.r.t. uv, Lemma 6.36 implies
that A0 is empty of nodes from V .
I.s. (i→ i+ 1): Node wi+2 is either contained in Hy(u, v), or in Hy(u, v).

If wi+2 ∈ Hy(u, v), then Hy(u, v) ∩ Hwi+2(u, v) = ∅ and Ai+1 is empty of nodes.
Otherwise, wi+2 ∈ Hy(u, v) holds. Two cases may be distinguished, namely,
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Figure 6.10: Illustration for the proof of Lemma 6.41. Node wl is contained in
Hwl+1(u,wl+2), which is given by the shaded area. The dotted circles repre-
sent D(u,wl) and D(u,wl+1), respectively. Hidden nodes are white.

(i) wi+1 ∈ Hy(u, v) (see Figure 6.9a), and

(ii) wi+1 ∈ Hy(u, v) (see Figure 6.9b).

Case (i): Because wi+2 ∈ D(u,wi+1) is angle maximizing w.r.t. uwi+1, Lemma 6.36
implies that area Bi := Do(u,wi+2, wi+1) ∩ Hwi+2(u,wi+1) is empty of nodes from V .
Moreover, because wi+2 ∈ Hy(u, v) and wi+1 ∈ Hy(u, v) holds, it follows that Ai+1 ⊆ Bi

and thus, Ai+1 is empty of nodes from V .
Case (ii): By i.h., area Ai is empty of nodes from V . In addition, because wi+1 and

y lie within the same half-plane w.r.t. uv it holds that Hy(u, v) = Hwi+1(u, v). Then,
Ai = Do(u,wi+1, wi) ∩ Hwi+1(u, v). The fact that Ai is empty of nodes from V implies
in particular that wi+2 /∈ Ai. Hence, C(u,wi+2, wi+1) ∩ Hwi+2(u,wi+1) ∩ Hy(u, v) ⊆ Ai

(see Figure 6.9b). Moreover, by Lemma 6.36 it holds that area Bi := Do(u,wi+2, wi+1) ∩
Hwi+2(u,wi+1) is empty of nodes from V . From the two latter observations it can be
concluded that area Ai+1 ⊆ Ai ∪Bi is also empty of nodes.
Termination (i = k): The i.h. implies that area Ak = Do(u,wk+1, wk) ∩ Hy(u, v) ∩
Hwk+1(u, v) is empty of nodes from V . With wk+1 = y and wk = w it follows that
Do(u, y, w) ∩Hy(u, v) is empty of nodes from V .

Lemma 6.41. Let uv ∈ UDG(V ) with HNS(u, v) = 〈v = w0, w1, ..., wk = w〉, k ≥ 0. Let
y ∈ D(u,w) be the angle maximizing node w.r.t. uw. For all 0 ≤ i ≤ k it holds that
wi ∈ Hw(u, y).

Proof. At first, notice the existence of such a node y ∈ D(u,w) according to Lemma 6.39.
It is now shown that the assumption that there is at least one node in HNS(u, v) which
is not contained in Hw(u, y) leads to a contradiction and hence, this cannot be the case.

It trivially holds that wk = w is located in Hwk(u, y). Assume there is at least one
node in 〈w0, w1, ..., wk−1〉 which is not contained in Hwk(u, y) and let 0 ≤ l ≤ k − 1 be
the largest index for which this holds. For convenience, rename y by wk+1.

Assume wl ∈ Hwl+1(u,wl+2) as illustrated by Figure 6.10. By definition of hidden node
sequences it holds that wl+1 ∈ D(u,wl) and wl+2 ∈ D(u,wl+1). The latter combined with
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(a) (b)

Figure 6.11: Illustrations for the proof of Lemma 6.42. (a) I.s.: Ai ⊇ Ai+1. (b) Diameter
of C(u, y, w) is at most as large as the diameter of C(u, y, v). The dotted
half-circle represents a half-circle of D(u,w), diameters are given by dashed
lines, and white nodes are hidden nodes.

the assumption that wl and wl+1 are separated by ℓ(u,wl+2) yields that wl+2 ∈ D(u,wl)
as well as that ∡uwl+2wl > ∡uwl+1wl. But this contradicts the assumption that wl+1

is the angle maximizing node w.r.t. uwl and hence, wl ∈ Hwl+1(u,wl+2) must hold. By
choice of wl it holds true for all 〈wl+1, ..., wk〉 that they are contained in Hwk(u, y). Using
the fact that wi+1 ∈ D(u,wi), for all 0 ≤ i ≤ k, it then holds that wl ∈ Hwk(u, y) which
contradicts the assumption.

Lemma 6.42. Let uv ∈ UDG(V ) with HNS(u, v) = 〈v = w0, w1, ..., wk = w〉, k ≥ 0,
and let y ∈ D(u,w) be angle maximizing w.r.t. uw whose existence is guaranteed by
Lemma 6.39. It holds that

(i) duyv ≥ duyw, and

(ii) C(u, y, w) ∩Hv(u, y) ⊆ C(u, y, v) ∩Hv(u, y).

Proof. For simplicity, let wk+1 := y. Define area Ai as follows (see Figure 6.11a):

Ai := C(u, y, wi) ∩Hv(u, y) .

The proof relies on the following claim, which is proven first.

Claim. A0 ⊇ A1 ⊇ ... ⊇ Ak .

Proof. Proof by induction on index i.
I.h.: For an arbitrary but fixed i it holds that A0 ⊇ ... ⊇ Ai.
B.c. (i = 0): The base case trivially holds with A0 = C(u, y, w0) ∩Hv(u, y).
I.s. (i→ i+ 1): By the i.h. it holds that A0 ⊇ ... ⊇ Ai and Lemma 6.41 implies that all
nodes from HNS(u, v) are located in the same half plane w.r.t. ℓ(u, y).
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Assume wi+1 ∈ Hwi(u,wi−1). By definition of hidden node sequences, it holds that
wi+1 ∈ D(u,wi) and wi ∈ D(u,wi−1). The latter combined with the assumption that
wi+1 and wi are in different half-planes w.r.t. ℓ(u,wi−1) yields that wi+1 ∈ D(u,wi−1)
as well as that ∡uwi+1wi−1 > ∡uwiwi−1. But this contradicts the assumption that wi is
the angle maximizing node w.r.t. uwi−1 and hence wi+1 ∈ Hwi(u,wi−1) must hold.

Next, define
Ao

i+1 := Do(u, y, wi+1) ∩Hv(u, y)

and assume wi ∈ Ao
i+1. Then, using a similar line of argumentation as in the proof of

Lemma 6.37 it follows that ∡uywi > ∡uwi+1wi, but which contradicts the assumption
that wi+1 is angle maximizing w.r.t. uwi. Hence, wi ∈ Ao

i+1, wi+1 ∈ Hwi(u,wi−1), and in
addition wi /∈ B := Hv(u, y), because all nodes from HNS(u, v) are in the same half-plane
w.r.t. ℓ(u, y). This directly implies that Ai ⊇ Ai+1 and thus, this claim holds.

By the above claim it holds that A0 ⊇ Ak and with wk = w and w0 = v it follows that

C(u, y, v) ∩Hv(u, y)
︸ ︷︷ ︸

A0

⊇ C(u, y, w) ∩Hv(u, y)
︸ ︷︷ ︸

Ak

,

which proves part (ii) of this lemma. It remains to prove part (i).
The fact that wi+1 ∈ D(u,wi), for all 0 ≤ i < k + 1, implies

‖uy‖ = ‖uwk+1‖ ≤ ‖uwk‖ ≤ · · · ≤ ‖uw0‖ = ‖uv‖ .

Partition C(u, y, w) into two circular sectors using the chord uw (see Figure 6.11b). With
y ∈ D(u,w) it holds that the diameter of the circular sector containing y is given by
‖uw‖ ≤ ‖uv‖ ≤ duyv. From A0 ⊇ Ak it follows that the diameter of the remaining
circular sector is at most duyv. Hence, duyv ≥ duyw and part (i) holds as well.

Lemma 6.43. Let u, v, w ∈ V be nodes such that the diameter of C(u, v, w) is at most one,
i.e., duvw ≤ 1. If there exists x ∈ V \ {u, v, w} with x ∈ C(u, v, w) and ux /∈ GPDT(V ),
then there exists a node x̂ ∈ C(u, v, w) with ux̂ ∈ GPDT(V ).

Proof. Let HNS(u, x) = 〈x = y0, y1, ..., yk = y〉, k ≥ 0, be the hidden node sequence w.r.t.
ux. According to Lemma 6.39, there exists an angle maximizing node ŷ ∈ D(u, y) w.r.t.
uy, s.t. uŷ ∈ GPDT(V ). If ŷ ∈ C(u,w, v), then the claim holds with x̂ := ŷ. Thus,
assume ŷ /∈ C(u,w, v) (see Figure 6.12).

For later reference, it is now first shown that

B := C(u, ŷ, y) ∩Hŷ(u, x) ⊆ C(u,w, v) .

By Lemma 6.42 it holds that C(u, ŷ, y)∩Hx(u, ŷ) ⊆ C(u, ŷ, x)∩Hx(u, ŷ). This implies in
particular that

B ⊆ A := C(u, ŷ, x) ∩Hŷ(u, x) .

Now assume there exists some point p ∈ R2, s.t. p ∈ A and p /∈ D(u,w, v). Then C(u,w, v)
and C(u, ŷ, x) intersect four times, since ŷ, p /∈ C(u,w, v), x ∈ C(u,w, v), but ŷ and p are
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Figure 6.12: Illustration of areas required for the proof of Lemma 6.43. White nodes are
hidden nodes.

located on different sides of the straight line ℓ(u, x). However, the number of intersections
of two circles in the Euclidean plane is either at most two, or infinity. Hence, the above
case cannot occur and A ⊆ C(u,w, v) must hold, which implies B ⊆ A ⊆ C(u,w, v).

Observe that uy cannot violate the second PDT criterion, since B is entirely contained
by C(u, v, w), whose diameter is duvw ≤ 1. In combination with Lemma 6.31, duŷy ≤ 1
follows. However, because uy /∈ GPDT(V ), uy must violate the first PDT criterion and
thus, there must exist z ∈ C(u, ŷ, y). In accordance with Lemma 6.40, there cannot exist
a node within Do(u, ŷ, y) ∩ Hŷ(u, x) and therefore, z ∈ B and in particular z ∈ C(u,w, v)
must hold.

If uz ∈ GPDT(V ), the claim holds with x̂ := z. Otherwise, repeat the above line
of argumentation inductively with z instead of x and circle C(u, ŷ, y) instead of circle
C(u, v, w).

Note that each node which is contained by C(u, ŷ, y) must also be contained by
C(u,w, v), because Lemma 6.40 particularly implies that area C (see Figure 6.12)

C := C(u, v, w) ∩ C(u, ŷ, y)

is empty of nodes from V . Furthermore, note that this induction eventually terminates,
because x /∈ C(u, ŷ, y) (which is due to the fact that B ⊆ A and the assumption that
no four points in V are cocircular) cannot take over the role of z in the induction step.
This implies in particular that the number of nodes (candidates) which could possibly
play z’s role shrinks by at least one in the induction step. Now assume there would be
no candidate left after the induction’s termination. Then, uy would neither violate the
first nor the second PDT criterion implying uy ∈ GPDT(V ). But this contradicts the
initial assumption that HNS(u, v) = 〈v = y0, y1, ..., yk = y〉 is a hidden node sequence
containing node y. That is, the only possibility of the induction’s termination without
finding a GPDT neighbor of u within C(u,w, v) results in a contradiction. From this it
can finally be concluded that such a GPDT neighbor of u must exist in C(u,w, v).
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(a) (b)

Figure 6.13: Illustration for the proof of Lemma 6.44. (a) Base case and (b) inductive
step. Gabriel circles are dotted.

Lemma 6.44. Let u ∈ V be any node and let 〈y0, y1, ..., yk〉 be a sequence of nodes from
V , s.t. uy0 ∈ GPDT(V ) and for all 0 ≤ i < k, yi+1 ∈ D(u, yi) is angle maximizing w.r.t.
uyi. Then, yk ∈ GPDT(V ) holds.

Proof. The main observation of this proof is that all edges uyi are contained in GPDT(V ).
This is proven by induction on index i. The induction hypothesis is tripartite: Parts (ii)
and (iii) correspond to the first and the second GPDT criterion, respectively, whereas
(i) just serves to prove the other two. Part (i) represents the fact that all nodes yi are
located in the same half-plane w.r.t. uy0, as illustrated in Figure 6.13b.
I.h.: For an arbitrary but fixed i, the following holds:

(i) yj+1 ∈ Hy0(u, yj), for all 1 ≤ j ≤ i,

(ii) C(u, y1, y0) ∩Hy1(u, y0) ⊇ . . . ⊇ C(u, yi+1, yi) ∩Hy1(u, y0), and

(iii) duy1y0 ≥ duy2y1 ≥ . . . ≥ duyi+1yi .

B.c. (i = 1): From Lemma 6.36 and the assumption that uy0 ∈ GPDT(V ) it immediately
follows that Do(u, y1, y0) is empty of nodes from V . By assumption, y2 ∈ D(u, y1) and
hence it can only be contained in D(u, y1) \ C(u, y1, y0) (dark gray area in Figure 6.13a).
Hence, y2 ∈ Hy0(u, y1) and part (i) of the i.h. holds. Moreover, from the observation it
follows that

C(u, y2, y1) ∩Hy1(u, y0) ⊆ C(u, y1, y0) ∩Hy1(u, y0) ,

which in turn implies that duy1y0 ≥ duy2y1 . Hence, part (ii) and (iii) hold for i = 1.
I.s. (i→ i+ 1): By assumption uy0 ∈ GPDT(V ) and therefore, C(u, y1, y0) ∩Hy1(u, y0)
is empty of nodes from V . With part (ii) of the i.h. this also holds for C(u, yi+1, yi) ∩
Hy1(u, y0). Furthermore, Lemma 6.40 implies that Do(u, yi+1, yi)∩Hyi+1(u, y0) is empty of
nodes from V . Moreover, Hyi+1(u, y0) = Hy1(u, y0) since y1 and yi+1 are on the same side
w.r.t. the straight line ℓ(u, y0) according to part (1) of the i.h. Using this equivalence, it
holds that Do(u, yi+1, yi)∩Hy1(u, y0) is empty of nodes from V and hence, Do(u, yi+1, yi)
is empty of nodes.
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By assumption yi+2 ∈ D(u, yi+1) and thus it can only be contained in D(u, yi+1) \
Do(u, yi+1, yi) (dark gray area in Figure 6.13b). Hence, yi+2 ∈ Hy0(u, yi+1) and part (i)
of the i.h. holds.

Moreover, from the observation it follows that

C(u, yi+2, yi+1) ∩Hy1(u, y0) ⊆ C(u, yi+1, yi) ∩Hy1(u, y0) ,

which in turn implies that duyi+1yi ≥ duyi+2yi+1 . Hence, part (ii) and (iii) of the i.h. hold
for i+ 1.
Termination: Considering edge uyk, two cases may occur.

Either there exists an angle maximizing node yk+1 ∈ D(u, yk), or not. In the latter
case uyk ∈ GPDT(V ) holds trivially. Therefore, assume the former holds.

Because uy0 ∈ GPDT(V ), it holds that C(u, y1, y0) ∩ Hy1(u, y0) is empty of nodes
from V . Applying i.h. (ii) yields that C(u, yk+1, yk) ∩Hy1(u, y0) is also empty of nodes
from V . Now, from i.h. part (i) it follows that y2 ∈ Hy0(u, y1), y3 ∈ Hy0(u, y2), up to
yk+1 ∈ Hy0(u, yk). This implies that all nodes y1, y2, y3, . . . , yk+1 are located in the same
half-plane w.r.t. uy0. Because especially y1 and yk+1 are in the same half-plane, it follows
that C(u, yk+1, yk) ∩Hyk+1(u, y0) = C(u, yk+1, yk) ∩Hy1(u, y0) holds.

According to Lemma 6.40, it follows that the empty area C(u, yk+1, yk) ∩Hyk+1(u, y0)
can be extended to C(u, yk+1, yk) ∩ Hyk+1(u, yk) and is still empty of nodes from V .
Therefore, uyk cannot violate the first GPDT criterion. According to i.h. part (iii) and
the fact that uy0 ∈ GPDT(V ), it follows that duyk+1yk ≤ duy1y0 ≤ 1. Thus, uyk is also
not violating the second GPDT criterion and therefore, uyk ∈ GPDT(V ).

Lemma 6.45. Given four nodes u, v, w, x ∈ V , s.t. duvw ≤ 1 and x ∈ C(u, v, w), then
there exists a node x̂ ∈ V satisfying the following three properties:

(i) ux̂ ∈ GPDT(V ),

(ii) x̂ ∈ C(u, v, w), and

(iii) duŷx̂ ≤ duvw, if there exists an angle maximizing node ŷ ∈ D(u, x̂) w.r.t. ux̂.

Proof. See Figure 6.14 for an illustration of this proof. Edge ux may or may not be
contained in GPDT(V ). If ux /∈ GPDT(V ), then replace x by the node x′ whose
existence is guaranteed by Lemma 6.43 and for which it holds that x′ ∈ C(u, v, w) and
ux′ ∈ GPDT(V ).

Consider the longest possible sequence S := 〈x = y0, y1, ..., yk〉 s.t. yi+1 ∈ D(u, yi),
0 ≤ i < k, is angle maximizing w.r.t. uyi and yk ∈ C(u, v, w) holds. Apply Lemma 6.44
on sequence S and observe that uyk ∈ GPDT(V ) holds. With x̂ := yk, part (i) and part
(ii) of the claim immediately hold.

Now, assume there exists an angle maximizing node ŷ ∈ D(u, x̂) w.r.t. ux̂ (otherwise,
the proof is finished). Then ŷ /∈ C(u, v, w) must hold, because otherwise S ∪ {ŷ} would
be a valid but longer sequence than S, contradicting the maximality of S. Finally, since
ŷ /∈ C(u, v, w), ŷ ∈ D(u, x̂), and x̂ ∈ C(u, v, w), it follows that duŷx̂ ≤ duvw.
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Figure 6.14: Illustration for the proof of Lemma 6.45. Circle C(u, v, w) is fully contained
by the unit disk centered at u. The angle maximizing node ŷ w.r.t. uyk is
outside of C(u, v, w). The dotted circle represents the Gabriel circle.

In the following, for any unit disk graph edge uv, define the angle maximizing GPDT
node w.r.t. uv as the node w ∈ D(u, v) with uw ∈ GPDT(V ) which maximizes the
angle ∡uwv among all such nodes in D(u, v). Moreover, expiret(v) refers to the maximum
duration of this node’s timer t(v) during algorithm execution. That is, for two nodes
u, v ∈ that start their timers upon reception of an RTS, if the timer of v expires later than
the timer of w, then expiret(v) > expiret(w). This is used to compare ultimate timeouts
of nodes in the following proofs.

Lemma 6.46. Let uv ∈ UDG(V ) be an arbitrary edge and let w ∈ D(u, v) be the angle
maximizing GPDT node w.r.t. uv. It holds that timer t(w) expires earlier than timer
t(v), i.e., expiret(w) < expiret(v).

Proof. Let sequence 〈v1, v2, ..., vk〉 represent the distance ordered neighborhood of u, i.e,
‖uvi‖ ≤ ‖uvi+1‖, for all 1 ≤ i < k. Assume w.l.o.g. that tmax = 1.
I.h.: For an arbitrary but fixed i and all 1 ≤ j ≤ i, the following holds: If there exists an
angle maximizing GPDT node w ∈ D(u, vj), then expiret(w) < expiret(vj).
B.c. (i = 1): I.h. for i = 1 holds trivially, because there is no node closer to u than v1.
I.s. (i→ i+ 1): If D(u, vi+1) does not contain any GPDT node, the claim holds trivially.
Therefore, let w ∈ D(u, vi+1) be the angle maximizing GPDT node.

If D(u,w) does not contain any GPDT node, then during execution of algorithm rPDT,
expiret(w) = ‖uw‖. With w ∈ D(u, vi+1) follows that

expiret(vi+1) ≥ ‖uvi+1‖ > ‖uw‖ = expiret(w) .

Otherwise, let ŵ ∈ D(u,w) be the angle maximizing GPDT node w.r.t. uw. Two cases
can be distinguished: (i) ŵ /∈ D(u, vi+1) and (ii) ŵ ∈ D(u, vi+1).

Case (i)—see Figure 6.15a: With w ∈ D(u, vi+1) and ŵ ∈ D(u,w), it follows that
‖uvi+1‖ > duŵw and ‖uvi+1‖ > ‖uw‖. Because ŵ is the angle maximizing GPDT node
w.r.t. uw, during execution of rPDT, the timeout of timer t(w) can be increased to at
most duŵw and it holds that expiret(w) ≤ max{duŵw, ‖uw‖}. The latter implies

expiret(vi+1) ≥ ‖uvi+1‖ > max{duŵw, ‖uw‖} ≥ expiret(w) .

129



Chapter 6 Reactive Local Construction of Euclidean Unit Disk Graph Spanners

(a) (b)

Figure 6.15: Illustrations for the proof of Lemma 6.46. (a) Case (i), where ŵ /∈ D(u, vi+1).
(b) Case (ii), where ŵ ∈ D(u, vi+1). The dotted circles represent D(u,w) and
D(u, vi+1), whereas the bold circles represent C(u, ŵ, w) and C(u, ŵ, vi+1).

Case (ii)—see Figure 6.15b: Because ‖uw‖ < ‖uvi+1‖ and ŵ is the angle maximizing
GPDT node w.r.t. uw, the i.h. implies that expiret(ŵ) < expiret(w). Then, during
execution of rPDT, ŵ sends a CTS message before timer t(w) expires. Because ŵ ∈
D(u, vi+1), during algorithm execution timeoutt(vi+1) will either be set to duŵvi+1

, or is is
already at least as large before timer t(vi+1) expires. Now, because w ∈ D(u, vi+1) and
ŵ ∈ D(u,w) are the angle maximizing GPDT nodes w.r.t. uvi+1 and uw, respectively,
Lemma 6.37 implies that duŵw < duŵvi+1

(where the strict inequality holds due to the
non-cocircularity assumption). It follows that

expiret(vi+1) ≥ duŵvi+1
> duŵw = max{duŵw, ‖uw‖} ≥ expiret(w) .

Hence, the i.h. holds for i+ 1 in all possible cases. Since the proof holds for each node
vi in the ordered neighborhood of u, it holds in particular for any particular node v as
claimed in the Lemma.

Theorem 6.47. Let UDG(V ) be any unit disk graph over a distinct and finite node set
V ⊂ R2, which is neither cocircular nor collinear. During the execution of algorithm
rPDT initiated by any node u ∈ V , within time tmax, each neighbor v ∈ N1(u) sends a
CTS message, if and only if uv ∈ GPDT(V ).

Proof. Let v ∈ N1(u) be an arbitrary node and assume w.l.o.g. that tmax = 1. The two
implications of the logic equivalence are shown separately as follows:

“⇒” v sends a CTS message within time tmax if uv ∈ GPDT(V ), and

“⇐” v does not send a CTS message at all if uv /∈ GPDT(V ).

“⇒” Because uv ∈ GPDT(V ), during algorithm execution v does not detect any
violation of the GPDT criteria. Thus, v’s timer expires eventually and it sends a CTS.
However, it has to be proven that sending of the CTS happens after time at most tmax

past sending of the RTS by the initiating node u.
It holds that expiret(v) = max{duwv, ‖uv‖}, where duwv is the diameter of C(u,w, v)

with w being the node maximizing duwv among all nodes contained in D(u, v) that send
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a CTS. If duwv > 1 holds, then uv violates the second GPDT criterion with angle
maximizing node w, which contradicts to uv being contained in GPDT(V ). Moreover,
with v ∈ N1(u), it holds that ‖uv‖ ≤ 1 and thus, expiret(v) = max{duwv, ‖uv‖} ≤ 1. I.e.,
v sends a CTS no later than one time unit past sending of the RTS by node u, which
proves the first part of the theorem.

“⇐” In this case uv /∈ GPDT(V ) holds. Let HNS(u, v) = 〈v = w0, w1, ..., wk = w〉,
k ≥ 0, be the hidden node sequence w.r.t. uv.

According to Lemma 6.39, there exists an angle maximizing node y ∈ D(u,w) w.r.t.
uw s.t. uy ∈ GPDT(V ) holds.

If there is more than one hidden node sequence, choose the sequence s.t. y maximizes
the angle ∡uyv, i.e., choose the hidden node sequence for which node y is the angle
maximizing GPDT node w.r.t. uv.

Node y may or may not be contained in D(u, v). In the following, these cases are
distinguished and proven separately. For each case it is required to show

1. the existence of nodes that witness the violation of at least one of the GPDT criteria
for edge uv,

2. the visibility of the aforementioned nodes, i.e., that these nodes are GPDT nodes
and their timers expire earlier than the timer of v, and

3. that these nodes are neighbors of v in UDG(V ).

The first property is needed for v being able to detect a violation of the GPDT criteria
during algorithm execution. The second property ensures that these nodes send a CTS
message timely. Finally, the third property ensures that v can actually overhear these
CTS messages and are therefore contained in v’s set of known neighbors S(v).

Case 1 (y ∈ D(u, v)): Node w might be hidden because uw either violates the first
or the second PDT criterion (if both criteria are violated, consider the violation of the
second criterion, which is handled in Case 1.1).

Case 1.1: Assume uw violates the second PDT criterion, as given in Figure 6.16. Then
it holds that sin(β) < ‖uw‖, where β = ∡uyw. By Lemma 6.30, duyw = ‖uw‖/ sin(β)
and duyv = ‖uv‖/ sin(δ), where δ = ∡uyv. Property (i) of Lemma 6.42 implies that
duyv ≥ duyw and thus,

‖uv‖/ sin(δ) = duyv ≥ duyw = ‖uw‖/ sin(β) > 1

⇔ ‖uv‖ > sin(δ) .

That is, uv violates the second GPDT criterion with angular node y. By assumption
y ∈ D(u, v) and by construction and choice of HNS(u, v) it holds that y is the angle
maximizing GPDT node w.r.t. uv. The application of Lemma 6.46 yields that timer
t(y) expires earlier than timer t(v). Thus, y sends a CTS before expiration of timer t(v).
With y ∈ D(u, v) and uv ∈ UDG(V ) it holds that vy ∈ UDG(V ) and hence, v actually
overhears the CTS from y and adds it to its set of known neighbors S(v). Therefore,
during algorithm execution, node v is able to detect a violation of the second GPDT
criterion for uv with angular node y ∈ S(v).
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Figure 6.16: Illustration for the proof of Theorem 6.47, Case 1.1. Node y sends a CTS
before expiration of timer t(v) and serves as a witness that uv /∈ GPDT(V ).
Gabriel circles are represented by dotted circles. The dashed lines represent
diameters. White nodes are hidden nodes.

Figure 6.17: Illustration for proof of Theorem 6.47, Case 1.2. Edge uw violates the first
PDT criterion with angular node y and witness x̂. Gabriel circles are dotted.
White nodes are hidden nodes.

Case 1.2: Assume uw violates the first PDT criterion, as given in Figure 6.17. Define
areas A,B, and C as follows:

A := C(u, y, w) ∩Hy(u, v)

B := C(u, y, w) ∩Hy(u, v)

C := C(u, y, v) ∩Hy(u, v)

Because uw violates the first PDT criterion with angle maximizing node y, there exists
at least one node x ∈ C(u, y, w). Since cases where in addition the second PDT criterion
is violated are handled by Case 1.1, it holds that duyw ≤ 1.

The application of Lemma 6.45 on C(u, y, w) and x guarantees the existence of a node
x̂ ∈ C(u, y, w) with ux̂ ∈ GPDT(V ) and duŷx̂ ≤ duyw (if there exists an angle maximizing
node ŷ ∈ D(u, x̂) w.r.t. ux̂).

Lemma 6.40 implies that area A is empty of nodes and hence, x̂ ∈ B must hold.
Additionally, by Lemma 6.42 B ⊆ C and hence, x̂ ∈ C holds. This implies that uv
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violates the first GPDT criterion with angular node y and witness x̂. Lemma 6.42 yields in
addition that duyw < duyv (where the strict inequality holds due to the non-corcirularity
assumption).

If the angular maximizing node ŷ ∈ D(u, x̂) exists, then

expiret(x̂) ≤ duŷx̂
Lemma 6.45
≤ duyw

Lemma 6.42
< duyv ≤ expiret(v) .

Otherwise, if ŷ does not exist, it follows that

expiret(x̂) = ‖ux̂‖
(1)
< duyw

Lemma 6.42
< duyv ≤ expiret(v) ,

where (1) follows from the fact that x̂ ∈ C(u, y, w). In summary, in both cases timer t(x̂)
expires earlier than timer t(v). In addition, with ux̂ ∈ GPDT(V ), x̂ ∈ C ⊆ C(u, y, v),
and duyv ≤ 1 it holds that v actually overhears x̂’s CTS and therefore x̂ ∈ S(v) holds
before the expiration of timer t(v).

Now consider node y. Because y ∈ D(u, v) and y is the angle maximizing GPDT node
w.r.t. uv, by Lemma 6.46 timer t(y) expires earlier than timer t(v), i.e., y sends a CTS
before timer t(v) expires. Furthermore, with y ∈ D(u, v) and uv ∈ UDG(V ) it holds that
vy ∈ UDG(V ) and hence, v actually overhears the CTS from y and adds it to its set of
known neighbors S(v) before expiration of its timer t(v).

Thus, at the time of expiration of timer t(v), {x̂, y} ⊆ S(v) holds and v can detect a
violation of the first GPDT criterion with angular node y and witness node x̂. According
to algorithm, rPDT, node v refrains from sending a CTS and remains silent.

Case 2 (y /∈ D(u, v)): The following proof shows that this case leads to a contradiction
and therefore cannot occur. For simplicity, let wk+1 := y.

Among all nodes in HNS(u, v) ∪ {wk+1} = 〈v = w0, w1, . . . , wk, wk+1 = y〉, let l be the
smallest index such that wl is located outside of D(u, v). Then node wl−1 is a hidden
node, located in D(u, v).

In the following case distinction it is proven that uwl−1 can neither violate the first
PDT criterion (Case 2.2), nor the second PDT criterion (Case 2.1), which contradicts to
the assumption that wl−1 ∈ HNS(u, v) is a hidden node. That is, the assumption that
y /∈ D(u, v) leads to a contradiction and hence, y ∈ D(u, v) must hold.

Case 2.1: Assume uwl−1 violates the second PDT criterion.
Recall that wl−1 ∈ D(u, v), whereas wl is assumed to be strictly outside D(u, v).

Therefore, D(u, v) 6= C(u,wk+1, wl−1) and these circles intersect exactly twice in area
A := Hwl(u,wl−1), as given in Figure 6.18.

In order to violate the second PDT criterion, it must hold that sin(β) < ‖uwl−1‖, β =
∡uwlwl−1, which implies according to Lemma 6.31 that duwlwl−1

> 1, i.e., C(u,wl, wl−1)

exceeds the unit disk centered at u in A = Hwl(u,wl−1). Then, there exists a point p ∈ R2

with p ∈ C(u,wl, wl−1) ∩A. Because D(u, v) is fully contained by the unit disk centered
at u, it holds that p /∈ D(u, v). But then, because both u and wl−1 are contained in
D(u, v), C(u,wl, wl−1) and D(u, v) must also intersect in area A, which leads to more
than two points of intersection. Since D(u, v) 6= C(u,wk+1, wl−1), this is a contradiction
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Figure 6.18: Illustration for the proof of Theorem 6.47, Case 2.1. Edge uwl−1 violates the
second PDT criterion with angle maximizing node wl. Gabriel circles are
dotted and hidden nodes are white.

Figure 6.19: Illustration for the proof of Theorem 6.47, Case 2.2. Edge uwl−1 violates the
first PDT criterion with angle maximizing node wl and witness x̂. Gabriel
circles are dotted and white nodes represent hidden nodes.

to the fact that two non-identical circles in the plane can intersect at most two times.
Thus, it cannot be the case that uwl−1 violates the second PDT criterion.

Case 2.2: Assume uwl−1 violates the first PDT criterion, but not the second one as
such cases are handled by Case 2.1.

Define areas A and B as follows, and see Figure 6.19 for an illustration.

A := C(u,wl, wl−1) ∩Hwl(u, v)

B := C(u,wl, wl−1) ∩Hwl(u, v)

Because uwl−1 violates the first PDT criterion with angle maximizing node wl, there
exists at least one node x ∈ C(u,wl, wl−1). Since uwl−1 does not violate the second PDT
criterion it holds that duwlwl−1

≤ 1.
The application of Lemma 6.45 on C(u,wl, wl−1) and node x then guarantees the

existence of a node x̂ ∈ C(u,wl, wl−1) with ux̂ ∈ GPDT(V ). By Lemma 6.40, area A is
empty of nodes from V . Since V is non-collinear, x̂ ∈ B follows.

Next, it is shown by contradiction that x̂ ∈ D(u, v) holds.
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Assume x̂ /∈ D(u, v). Recall that wl and x̂ lie on different sides of the straight line ℓ(u, v).
Because wl /∈ D(u, v) and u,wl−1 ∈ D(u, v), D(u, v) intersects C(u,wl, wl−1) twice in A.
Because x̂ ∈ B and x̂ is assumed to be outside of D(u, v), D(u, v) intersects C(u,wl, wl−1)
two more times in B. In combination with the observation that D(u, v) 6= C(u,wl, wl−1),
this is a contradiction, since any two non-identical circles in the plane can intersect at
most two times. From this it can be concluded that x̂ ∈ D(u, v) holds, which implies that
∡ux̂v ≥ π/2.

Recall that wl−1 is the last node in HNS(u, v)∪ {y = wk+1} being contained in D(u, v).
This implies in particular that y /∈ D(u, v). Thus, ∡uyv < π/2 holds. But this contradicts
the choice of HNS(u, v) ∪ {y}, which was chosen among all possible sequences such that
y is the angle maximizing GPDT node w.r.t. uv.

In summary, Case 2 leads to contradictions and therefore only Case 1 may actually
apply, for which the theorem has already been proven to hold.

6.2.3 Discussion

First of all it can be observed that algorithm rPDT is extremely efficient regarding message
complexity and message size.

Theorem 6.48. During execution of algorithm rPDT, initiated by any node u ∈ UDG(V ),

exactly |NPDT(V )
1 (u)| messages are being transmitted, where N

PDT(V )
1 (u) denotes the one-

hop neighborhood of u in PDT(V ), including u itself. Moreover, each such message is of
size O(Pmax) bits, where Pmax is the number of bits required to represent a single node
position.

Proof. By Theorem 6.47, exactly all those nodes v ∈ N1(u) send a CTS message for
which uv ∈ GPDT(V ) holds. Since GPDT(V ) = PDT(V ) by Theorem 6.35, it can
be equivalently stated that all neighbors of u in PDT(V ) reply with a CTS message.
Moreover, node u sends one initial RTS, which gives |NPDT(V )

1 (u)| message transmissions
in total. Furthermore, RTS and CTS messages contain only a single node position and
hence, the message size is O(Pmax) bits.

Under the assumption that all nodes are completely unaware of their network neigh-
borhoods at algorithm start, algorithm rPDT is in fact message optimal, at least in the
following sense. In order for node u to initiate some message passing routine, it has to
transmit at least one message. For node u to discover the existence of all of its PDT
neighbors, each such neighbor has to transmit at least one message in order to announce
its existence. Hence, at least |NPDT(V )

1 (u)| messages have to be transmitted, and this
coincides with the upper bound message complexity of the algorithm.

The above observations are strongly connected to the next result.

Theorem 6.49. rPDT is an O-reactive local view topology control algorithm.

Proof. Under the assumption that O(Pmax) ∈ O(log n), it holds by Theorem 6.48 that the
number of bits transmitted during execution of algorithm rPDT by any node v ∈ UDG(V )
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is O(|PDT(UDG(V ))[v]| · log n) and therefore, rPDT is an O-reactive local view topology
control algorithm.

To the best of the author’s knowledge, algorithm rPDT is the first reactive local view
topology control algorithm for construction of planar, constant stretch Euclidean spanners.
This positively answers the previously raised question (see e.g., [14] and [15]), if this is
possible at all. Moreover, it is the first such algorithm that does not require sending of
any protest messages, as required by BFP [18, 107] and GDBF [187, 188], discussed in
Section 4.5.

Algorithm rPDT can be applied in any application that requires on demand construction
of a node’s local view on planar graphs. Most notably these are applications in geographic
unicast and multicast routing. For a comprehensive list of applications see the list provided
in the motivation (Section 1.1). In addition, it can be incorporated in those applications
that make explicit use of PDT, such as [53, 55, 56]. Therein, PDT is computed by a node
based on full one-hop neighborhood information. Algorithm rPDT can be used to improve
these algorithms’ message efficiency.
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Chapter 7

Reactive Geographic Routing on

Euclidean Unit Disk Graph Spanners

In this chapter, the implications of PDT being a constant stretch Euclidean spanner of
the unit disk graph on the state-of-the-art algorithms in beaconless Recovery routing are
presented.

Except for Rotational Sweep (RS) [15, 68, 69] and ARROW [212], all of the beaconless
recovery algorithms that guarantee message delivery in combination with Greedy routing
(see survey in Section 4.3), make use of Gabriel graph planarization. Gabriel graphs con-
structed over unit disk graphs have Euclidean spanning ratios of Θ(

√
n). In consequence,

using these edges for recovery can lead to severe detours, which negatively affects the
resource efficiency of the routing operation.

Although for ARROW [212] it is unknown if the edges used for recovery possibly impose
a large stretch (in the worst-case), it is deficient regarding message complexity. Selection
of the next routing hop requires Θ(n) message transmissions.

By far the best beaconless Recovery routing algorithm currently known is Rotational
Sweep (RS) [15, 68, 69]. Using this algorithm, forwarding of the data packet along a
guaranteed delivery recovery path requires only three message transmissions. RS can be
combined with two delay functions, namely, Sweep Circle (SC) and Twisting Triangle
(TT). If using RS with TT (RS-TT), the edges used for recovery are guaranteed to belong
to a supergraph of the relative neighborhood graph. If instead using RS with SC (RS-SC),
then the recovery edges even belong to a supergraph of the Gabriel graph. Hence, in
particular for RS-SC it can be reasoned that the routing paths are potentially shorter
regarding Euclidean distance than those based on actual Gabriel graphs. However, for
now, it is unknown whether this supergraph of the Gabriel graph provides a constant
Euclidean spanning ratio, or not.

Obviously, it would be beneficial if it can be guaranteed that a routing path only uses
edges of a constant stretch spanner. Although local routing decisions may always fail
to route a message along the globally shortest path, local routing in a constant stretch
spanner potentially yields much shorter routing paths than routing along edges of a
subgraph with non-constant spanning properties.

The first contribution of this chapter, presented in Section 7.2, is that RS-SC always
uses edges that belong to PDT. In fact, it is shown that Recovery routing using FACE
routing [36] on PDT and RS-SC produce equivalent routing paths. Hence, edges used by
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RS-SC do not just belong to a supergraph of the Gabriel Graph, but belong to a constant
stretch Euclidean spanner.

The second contribution of this chapter, given in Section 7.3, is an analysis of properties
of paths produced by RS in general. It is shown that both RS-SC and RS-TT can produce
arbitrarily bad routing paths in terms of number of hops. However, sometimes paths
produced by RS-SC are beneficial compared to those produced by RS-TT, and vice versa.1

These considerations then lead to another contribution.
The third contribution, presented in Section 7.4, is a guaranteed delivery reactive recov-

ery algorithm, called RS-Shortcut. Essentially, it combines and extends the advantages
of RS-SC and RS-TT. Routing paths produced by this algorithm are at most as long as
those produced by RS-SC and may help to skip arbitrarily many unnecessary hops, while
requiring at most eight message transmissions per forwarding step.

Prior to the presentation of these results, the underlying network model and assumptions
are introduced in Section 7.1. The chapter concludes in Section 7.5 with a discussion and
further implications.

7.1 Preliminaries

In the remainder, network graphs are modeled as unit disk graphs UDG(V ), where
V ⊂ R2 is a finite and distinct node set of size |V | = n. The unit disk radius is denoted
by R. Henceforth, it is assumed that UDG(V ) is connected, which is necessary to ensure
that packets can successfully be routed between arbitrary node pairs. Moreover, as in
preceding chapters, and for the same reasons, it is assumed that V neither contains any
three collinear points, nor any four cocircular points (cf. Assumptions 2.1 & 2.2).

Given two non-adjacent nodes v and d from UDG(V ), node v is called local minimum
node (or simply local minimum) w.r.t. d, if no node in N1(v) is closer to d than v itself
(see Definition 2.7).

Definition 7.1 (Face traversal/recovery path). Let UDG(V ) be a connected unit disk
graph and H a connected and planar subgraph of UDG(V ). Let v, d ∈ V s.t. v is local
minimum w.r.t. d. The repeated application of FACE routing [36] (using the left hand
rule) on the planar subgraph H starting at v with destination d yields a node sequence
〈v = v1, v2, ..., vk = d〉, such that vivi+1, 1 ≤ i < k, is an edge in UDG(V ). This node
sequence is called a H-Face traversal . Let vj be the first node in this sequence for which
‖vjd‖ < ‖vd‖ holds. The H-Face recovery path of v w.r.t. destination d is given by the
node sequence SH = 〈v = v1, v2, ..., vj〉.

Definition 7.2 (Rotational Sweep traversal). Let UDG(V ) be a unit disk graph and
v, d ∈ V s.t. v is local minimum w.r.t. d. The node sequences SSC and STT that result
from applying algorithm Rotational Sweep on v using the Sweep Circle (SC) and Twisting
Triangle (TT) delay functions, respectively, are referred to as SC- and TT-traversals. The
subsequences of SSC and STT, starting at v and ending at the first node whose distance

1 This was previously shown by Rührup et al. [15].

138



7.2 SC and PDT Traversals are Equivalent

(a) (b) (c) (d)

Figure 7.1: (a) SC sweep area of v w.r.t. u and w1. (b) TT sweep area of v w.r.t. u
and w1. (c) SC(v, w1) with FRSC(v, w1) being shaded. (d) TT(v, w1) with
FRTT(v, w1) being shaded.

to d is strictly smaller than ‖vd‖ are then called the SC- and TT-recovery paths of v w.r.t.
d.

The sweep circle and twisting triangle hinged at a node v and touching node w1 are
denoted by SC(v, w1) and TT(v, w1), respectively (see dashed circle and Releaux triangle
in Figures 7.1c & 7.1d).

Definition 7.3 (Sweep area). The sweep area of node v w.r.t. previous-hop u and next-
hop w1, is the area touched by the sweep curve, when rotated from the initial position
(touching u) until it hits w1 [15] (given by the shaded areas in Figures 7.1a & 7.1b).

By [15, Lemma 3] it holds that the sweep area is always empty of other nodes.

Definition 7.4 (Forbidden region). Given two consecutive edges uv and vw1 on a
RS traversal, line segment vw1 divides SC(v, w1) and TT(v, w1) into two areas. The
area containing points p with ∡uvp > ∡uvw1 is called forbidden region [15] and is
denoted by FRSC(v, w1) and FRTT(v, w1), respectively (given by the shaded areas in
Figures 7.1c & 7.1d).

7.2 SC and PDT Traversals are Equivalent

In this section it is shown that PDT-Face and SC-traversals are equivalent if applied onto
the same local minimum situation. This is captured by Theorem 7.8. Its proof requires
few observations that are introduced first.

Fact 7.5. Let A ⊂ R2 be any area which is fully contained by the unit disk of node u.
Then A ∩N1(u) = A ∩ V .

Lemma 7.6. Let SSC = 〈v0, ..., vk〉 be any sweep circle traversal. The area defined by the
union of the sweep circle at v0 in its initial position and the SC sweep areas of nodes vi,
0 ≤ i < k, is empty of nodes from V \ {v0, ..., vk}.
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Figure 7.2: Illustration for the proof of Theorem 7.7. C(vi, vi+1, w) is dashed, SC(vi, vi+1)
is shaded, and D(vi, vi+1) is solid.

Proof. The claim is proven by induction on index i.
I.h.: The claim holds for an arbitrary but fixed i < k − 1.
B.c. (i = 0): Node v0 is a local minimum w.r.t. some destination node d ∈ V and hence,
C‖dv0‖(d) is empty of nodes from N1(v0) \ {v0}. The sweep circle at v0 in initial position
is entirely contained by C‖dv0‖(d) and hence, it is empty of nodes from N1(v0) \ {v0}. By
Lemma 3 in [15] it holds that the sweep area of v0 w.r.t. v1 and the initial position is
empty of nodes from N1(v0) \ {v0, v1}. With Fact 7.5, the claim follows.
I.s. (i → i + 1): By the i.h. it holds that the area defined by the union of the sweep
circle at v0 in its initial position and the SC sweep areas of nodes vi, 0 ≤ i < k − 1, is
empty of nodes from V \ {v0, ..., vi+1}. By Lemma 3 in [15] it holds that the sweep area
of vi+1 w.r.t. vi and vi+2 is empty of nodes from N1(vi+1) \ {vi+1, vi+2}. With Fact 7.5,
the claim follows.

Theorem 7.7. Let SSC be a sweep circle traversal and let vi and vi+1 be any pair of
successive nodes in SSC. Then, vivi+1 is an edge in PDT(V ).

Proof. Let SGG denote the Gabriel Face traversal corresponding to SSC. Rührup and
Stojmenović prove in Lemma 2 in [68] that SSC ⊆ SGG, i.e., each node contained in SSC is
also visited in SGG. If vi and vi+1 are successors in SGG, then vivi+1 ∈ GG(V )∩UDG(V ).
Moreover, GG(V ) ∩UDG(V ) ⊆ PDT(V ) holds by definition of PDT. Hence, in this case
vivi+1 ∈ PDT(V ) follows.

Otherwise, if vi and vi+1 are not successors in SGG, there exists at least one other node
in D(vi, vi+1). Let w ∈ V be the angle maximizing node w.r.t. vivi+1 (see Figure 7.2).
Because vi and vi+1 are successors in SSC, w must be outside of SC(vi, vi+1). This
implies that the diameter of C(vi, vi+1, w) is strictly smaller than R, which is the diameter
of SC(vi, vi+1). Hence, it remains to show that C(vi, vi+1, w) is empty of nodes from
N1(vi) \ {vi, vi+1, w}. By Lemma 7.6 this holds for C(vi, vi+1, w) ∩ SC(vi, vi+1). Because
w is angle maximizing, this also holds for C(vi, vi+1, w) \ SC(vi, vi+1).

Theorem 7.8. SPDT = SSC.

Proof. Let SPDT = 〈v = p0, p1, ..., pk〉 denote the PDT Face traversal starting at local
minimum node v, and let SSC = 〈v = v0, v1, ..., vl〉 denote the corresponding SC traversal.

By induction on index i it is shown that (1) SSC ⊆ SPDT and (2) SPDT ⊆ SSC.
I.h.: For an arbitrary but fixed i with
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Figure 7.3: Illustrations for the proof of Theorem 7.8. The sweep area of vi w.r.t. vi+1

and vi−1 is shaded, C(vi, vi+1, p̂) is dashed.

i) i < l, vi ∈ SPDT

ii) i < k, pi ∈ SSC

B.c. (i = 0): With v0 = v = p0 both claims hold.
I.s. (i→ i+ 1): At first, claim (1) is shown.

By part i) of the i.h., for all v0, ..., vi it holds that they are contained by SPDT. By
Lemma 7.6 the sweep area of vi w.r.t. vi−1 and vi+1 is empty of nodes from V \{v0, ..., vi+1}
and vi+1 is the first node to be hit by vi’s sweep circle.

Suppose vi+1 /∈ SPDT, then the successor of vi in SPDT, say p̂, must be located clockwise
of −−−→vivi+1 and outside the sweep area of vi (see Figure 7.3). This holds because edges
along SSC always belong to PDT(V ) by Theorem 7.7 and edge vip̂ is, by construction of
SPDT, the first counter-clockwise edge from PDT(V ) w.r.t. previous-hop vi−1.

For any possible position of p̂, the maximal angle w.r.t. vip̂, and a third node x ∈
V \ {vi, p̂} is at least as large as angle ∡vivi+1p̂. Because SC(vi, vi+1) with diameter R
does not touch p̂, and p̂ is clockwise of −−−→vivi+1, the diameter of C(vi, vi+1, p̂) is strictly
larger than R. But this implies that vip̂ /∈ PDT(V ), which contradicts the assumption
that p̂ is the successor of vi in SPDT. Hence, vi+1 ∈ SPDT must hold.

Now consider claim (2). By part ii) of the i.h., for all p0, ..., pi it holds that they are
contained by SSC. Note that this and the fact that claim (1) has already been proven
implies that pj = vj , for all 0 ≤ j ≤ i.

Edge pipi+1 is the first counter-clockwise PDT edge w.r.t. previous-hop pi−1. There
exists a circle C of diameter at most R, which has pi, pi+1, and at most one more node
on its boundary, and which is empty of other nodes from V . Assume pi+1 /∈ SSC. Then
the sweep circle hinged at pi hits vi+1 before it hits pi+1.

If vi+1 is counter-clockwise of −−−→pipi+1, then vi+1 must be located in D(pi, pi+1) and for
the angle maximizing node w w.r.t. pipi+1 it then holds that ∡piwpi+1 ≥ ∡pivi+1pi+1.
Since SC(pi, vi+1) has diameter R and it does not contain pi+1, it follows that the
diameter of C(pi, pi+1, w) must be strictly larger than R. But this is a contradiction to
pipi+1 ∈ PDT(V ).

In the remaining case, vi+1 is in clockwise direction of −−−→pipi+1. By Theorem 7.7,
pivi+1 ∈ PDT(V ) holds. But this contradicts the assumption that pi+1 succeeds pi in
SPDT.

It can be concluded that pi+1 ∈ SSC holds, which proves the claim.
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Figure 7.4: The TT traversal 〈v0, w1, w2, v2〉 (red) and the SC traversal 〈v0, v1, v2〉 (blue)
are partially disjoint. This Figure is similar to Figure 22 in [15].

7.3 Path Properties of Rotational Sweep Traversals

The results obtained in the previous section are now combined with previous results
on RS traversals and their relations to planar subgraph traversals. Ultimately, these
considerations lead to a scheme describing how to cut short in SC traversals without
violating the delivery guarantee.

The combination of Theorem 2 in [69], Lemma 2 in [68], and Theorem 7.8 yields the
following set of subpath relations, where S ⊇ S′, if each node in S′ is also in S, whereas
S + S′, if there exist scenarios such that a node in S′ is not contained in S.2

1. SRNG ⊇ SGG ⊇ SSC = SPDT

2. SGG + STT and SSC + STT

3. SRNG ⊇ STT

Figure 7.4 shows that TT and SC traversals may be partially disjoint (this example
has previously been given in [15,69]). This implies in particular that TT traversals make
use of non-PDT edges. For example, edge v0w1 in Figure 7.4 is not a PDT edge, but it
used by the TT traversal. Hence, the property of SC traversals proved in the previous
section, namely that SC traversals belong to PDT which is a constant stretch Euclidean
spanner of the unit disk graph, does not hold in general for TT traversals.

However, Rührup and Stojmenović [15] give empirical evidence that TT traversals yield
shorter paths, regarding Euclidean path length, compared to traversals produced by SC or
Angular Relaying (AR) [18, 107] (see Section 4.3). To the best of the author’s knowledge,
no theoretical bounds for TT traversals are known, apart from those listed above. In
fact there are node constellations where TT traversals produce detours compared to the
corresponding SC traversals. E.g., in Figure 7.4 the TT traversal is 6% longer than the
SC traversal, regarding Euclidean length. This example demonstrates in addition that
TT traversals may also exceed SC traversals regarding hop count.

2 Note that different notations for subpath relations have previously been used; compare e.g. [68] and [69].
Here, the notation from [68] is used, which is explained above.
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(a) (b)

(c)

Figure 7.5: (a) and (b) are examples where RS using SC (blue) and TT (red), respectively,
performs particularly bad and requires Θ(n) hops within unit transmission
range R; (c) while the SC traversal 〈v0, v1, ..., vk〉 makes Θ(n) hops, the TT
traversal 〈v0, vk〉 skips these unnecessary hops.

Looking at the hop count, there are examples where RS traversals in general perform
arbitrarily bad. Consider the node constellations depicted in Figures 7.5a and 7.5b, where
v0 is a local minimum node w.r.t. destination node d and where nodes {v0, v1, ..., vk} are
aligned on a line segment of unit length R.3 Independent of whether SC or TT delay
function is used, the RS algorithm outputs the sequence 〈v0, v1, ..., vk, ...〉. Obviously, if k
is in the order of the number of nodes n, such traversals make Θ(n) hops, although there
is a direct communication link between v0 and vk in the underlying unit disk graph.

In contrast, there are examples where a single TT traversal edge bypasses an SC
traversal consisting of Θ(n) hops. For an example consider Figure 7.5c, where the TT
edge v0vk skips the multi-hop SC traversal 〈v0, v1, ..., vk〉.

This example, combined with the above listed facts on RS traversals, suggests the
following algorithmic strategy for obtaining short recovery paths: “Take the next TT edge
instead of the next SC edge, whenever it helps to cut short at least two hops on the SC
traversal”. This strategy, however, leads to paths that are not necessarily subpaths of
SC traversals (e.g., vk in Figure 7.5c could be a node like w1 in Figure 7.4, leading to

3 It is easy to construct similar examples without aligning nodes along a straight line and hence, assuming
nodes not to be collinear does not resolve this problem.
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Figure 7.6: Illustration of the idea underlying algorithm RS-Shortcut, where u is the
previous-hop, v is the current forwarder and w and t are the next hops on
a SC and TT traversal, respectively. The pink colored area represents the
critical region incident to t.

an increase in hop or Euclidean path length). Most important, the properties proven in
Section 7.2 for SC traversals do not apply to such paths.

Therefore, the beaconless algorithm introduced next chooses to cut short on a SC path
by taking a TT edge, if and only if the shortcut leads to a node, which is guaranteed to
be part of the corresponding SC traversal. This way, the properties of SC traversals are
maintained, while per hop up to Θ(n) unnecessary routing steps can be avoided.

7.4 Beaconless Bypassing of Sweep Circle Detours

The following beaconless recovery algorithm, called RS-Shortcut, is based on the observa-
tions from the previous section. It can be considered to be an extension of the Rotational
Sweep algorithm [15]. Its purpose is to construct a recovery path along which a data
packet is being forwarded, starting at a local minimum node and ending at a node whose
distance to the packet’s destination is strictly smaller compared to the recovery distance
drec, the distance between the local minimum and the destination.

As opposed to the original RS algorithm, where the data packet is always directly
forwarded to the next counter-clockwise SC and TT neighbor, respectively, algorithm
RS-Shortcut adapts dynamically to whichever choice is beneficial. It tries to make as
much progress as possible, provided that the next-hop is guaranteed to be a node on
the SC recovery path. This is achieved with the aid of (very limited) partial two-hop
neighborhood information. For the following illustration of the main idea, see Figure 7.6.
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A node v in a recovery situation determines first its counter-clockwise SC and TT
neighbors w and t, respectively, by means of algorithm RS. If these nodes coincide, this
node is used for forwarding. Otherwise, the TT neighbor t determines reactively means of
a contention mechanism, whether there is at least one node in the critical region (CR(t))
incident to it, or not. If the critical region happens to be empty, the TT neighbor t is
selected for forwarding, otherwise the SC neighbor w. The critical region, given by the
pink colored area in Figure 7.6, is chosen such that t can verify reactively, using a single
contention, if it is empty or not. It is defined as follows.

Definition 7.9 (Critical region). Given a twisting triangle TT(v, t), let t′ be the corner
of the twisting triangle that is not incident to the arc connecting v and t. The critical
region incident to t, denoted CR(t), is given by the part of the closed disk D(t, t′) that is
outside of the unit disk of v. Formally,

CR(t) = D(t, t′) \ CR(v) .

Since the diameter of a twisting triangle is equal to the unit disk radius R, it holds
that D(t, t′) has diameter R. Hence, CR(t) is contained by the unit disk centered at t. If
it contains a node, than this node is a neighbor of t in the underlying unit disk graph.

7.4.1 Algorithm RS-Shortcut

Algorithm RS-Shortcut is executed by a node v, if and only if it is holding a DATA packet
in Recovery mode. That is, v is either a local minimum node w.r.t. some destination d, or
it is a node on a recovery path being at least as far away from d than recovery distance
drec = ‖v0d‖, the Euclidean distance between the local minimum v0 at which the recovery
process has started and d.

In the following description, u denotes the previous-hop on the recovery path from which
executing node v has received the DATA packet. Its position is required for computation
of the delay functions tSC(·, ·) and tTT(·, ·), which refer to the sweep circle and twisting
triangle delay functions described in [15] (see also Figure 4.8). In case there is no such
previous-hop, the intersection of vd with the unit disk centered at v is used instead (cf.
Section 4.3). tmax > 0 is a positive constant that is either known to all nodes or is part of
the packet header.

Description of execution of RS-Shortcut by node v:

Node v locally broadcasts RTS(SC, v, u) and waits for the first CTS(SC, w, v) response
by a neighbor w ∈ N1(v). If w is closer to the destination than the recovery distance,
then v switches the DATA packet to Greedy mode, forwards it immediately to w, and
terminates.

Otherwise, v locally broadcasts RTS(TT, v, u) and waits until it receives the first
CTS(TT, t, v) of a neighbor t ∈ N1(v).
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If the SC and TT neighbors w and t coincide or TT neighbor t is closer to the destination
than the recovery distance, then v immediately forwards the DATA packet to w and
terminates.4

Otherwise, if w 6= t, then v checks if w and d are in the same half-plane w.r.t. ℓ(v, t)
and if FRSC(w, t) ∩ Cdrec(d) 6= ∅ (see Figure 7.10). If this is the case, then routing to
t potentially leaves the SC recovery paths and therefore v forwards the DATA packet
immediately to w. In the other case, v needs to know if the critical region incident to t
is empty of nodes. It triggers this validation by sending RTS(SCut, v, t) and waits until
it receives a CTS(SCut, t, v, b) from t. If b = 1 (i.e., the critical region incident to t is
empty of nodes), then v forwards the DATA packet to t. Otherwise, if b = 0 (i.e., the
critical region is not empty), then v forwards the DATA packet to w. In either case, node
v terminates after sending the DATA packet.

On reception of the RTS(SCut, v, t) by TT neighbor t of v, node t computes the critical
region CR(t) incident to it, which is defined by the positions of v, t and distinguished
point t′. Then, it locally broadcasts RTS(CR, t, v, t′) and starts a delay timer of duration
tmax. Those neighbors x of t that are located in CR(t) overhear this message and schedule
sending of a CTS(CR, x, t) after a delay of duration (‖xt‖/R) · tmax. Now two cases can
occur. Either there is a neighbor x of t in the critical region, then this neighbor responds
with a message prior to expiration of t’s delay timer. In this case, t immediately sends
CTS(SCut, t, v, 0) to v. Otherwise, if there is no such neighbor x, then after time tmax

its delay timer expires and it can be sure that there is no neighbor in the critical region.
Then, it sends CTS(SCut, t, v, 1) to v.

Generally, upon overhearing CTS responses, new RTS requests, or transmissions of
the DATA packet, nodes that have neither initiated algorithm execution nor are the
corresponding SC and TT neighbors cancel their running delay timers and sending of
scheduled messages. This ensures that an RTS generates at most one CTS answer.

A detailed pseudocode description of algorithm RS-Shortcut is given by Algorithm 2.

7.4.2 Correctness and Analysis

In the following proofs, v always refers to the node executing the algorithm, whereas w
and t always refer to the SC and TT neighbor of v, respectively.

Theorem 7.10 (Message complexity and size). During execution of RS-Shortcut at most
nine messages are transmitted. The size of RTS/CTS messages is at most O(Pmax) bits,
where Pmax denotes the number of bits required to represent a single geographic position.

Proof. Observe that any RTS sent during execution of RS-Shortcut results in a single
CTS answer for the following reason. There are only two nodes that broadcast RTS
messages, namely, forwarder v and possibly its TT neighbor t. Upon reception of the
corresponding CTS both v and t always respond immediately either with another RTS or
DATA, which cancel running timers of their neighbors and suppress sending of further
CTS messages.

4Forwarding to the SC neighbor w instead of the TT neighbor t simply ensures that the DATA packet
is forwarded only to nodes that actually belong to the corresponding SC traversal.
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Algorithm 2 RS-Shortcut
Variables: u is the previous-hop, drec is the recovery distance, d is the destination of the DATA packet, R
is the unit disk transmission radius, and tmax > 0 is a constant known to all nodes.

Definition of message types

RTS(SC, v, u) request by v to start the SC delay timer w.r.t. v and previous-hop u

CTS(SC, w, v) response by w to the corresponding RTS(SC, v, u)

RTS(TT, v, u) request by v to start the TT delay timer w.r.t. v and previous-hop u

CTS(TT, t, v) response by t to the corresponding RTS(TT, v, u)

RTS(SCut, v, ntt) request by v destined at its TT neighbor ntt to verify if the critical region incident to
it is empty, or not

CTS(SCut, ntt, v, b) response by TT neighbor ntt of v to the corresponding RTS(SCut, v, ntt) containing
boolean variable b, where b = 1 if the critical region of ntt is empty and b = 0, otherwise

RTS(CR, ntt, v, t
′) request of v’s TT neighbor ntt, if the critical region defined by positions, ntt, t

′, and
v, is empty of nodes, or not

CTS(CR, x, ntt) response by x to the corresponding RTS(CR, ntt, v, t
′) serving as a witness that the

critical region of ntt is not empty

Action by initiator v

1: Initialize local variables nsc and ntt representing the next SC and TT neighbor of v
2: Locally broadcast RTS(SC, v, u) and wait for reception of the corresponding response
3: on reception of CTS(SC, w, v) do

4: nsc ← w
5: if ‖dnsc‖ < drec then

6: Switch DATA packet to Greedy mode, forward it immediately to nsc, and terminate
7: else

8: Locally broadcast RTS(TT, v, u) and wait for reception of the corresponding response

9: on reception of CTS(TT, t, v) do

10: ntt ← t
11: if nsc = ntt or ‖dntt‖ < drec then

12: Immediately forward DATA packet to nsc and terminate
13: else ⊲ Note that nsc 6= ntt and ‖dntt‖ ≥ drec holds
14: if nsc and d are in the same half-plane w.r.t. ℓ(v, ntt) and FRSC(nsc, ntt)∩Cdrec

(d) 6= ∅ then

15: Forward the DATA packet immediately to nsc and terminate
16: else

17: Locally broadcast RTS(SCut, v, ntt) and wait for reception of the corresponding response

18: on reception of CTS(SCut, ntt, v, b) do

19: if b = 1 then ⊲ Critical region incident to ntt is empty of nodes
20: Forward DATA packet to ntt

21: else ⊲ Critical region incident to ntt is not empty
22: Forward DATA packet to nsc

23: Terminate
(Continued on next page)
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Algorithm 2 (continuation)

Action by any node z 6= v

24: on reception of RTS(SC, v, u) do

25: Compute Θz = ∡uvz and schedule sending of CTS(SC, z, v) after delay of duration tSC(‖vz‖, Θz)

26: on reception of CTS(SC, y, v) do

27: Cancel delay timer and sending of CTS(SC, z, v) (if any)

28: on reception of RTS(TT, v, u) do

29: Cancel running delay timer and sending of CTS(SC, z, v) (if any), compute Θz = ∡uvz, and
schedule sending of CTS(TT, z, v) after delay of duration tTT(‖vz‖, Θz).

30: on reception of CTS(TT, y, v) do

31: Cancel delay timer and sending of CTS(TT, z, v) (if any)

32: on reception of RTS(SCut, v, ntt) do

33: if z 6= ntt then

34: Cancel running relay timer and sending of CTS(TT, z, v) (if any)
35: else ⊲ z = ntt, i.e.,z is TT neighbor of v
36: Compute CR(ntt), locally broadcast RTS(CR, ntt, v, t

′), where t′ is the distinguished point
defining CR(ntt), and start a delay timer of duration tmax. If within this delay period no
CTS(CR, x, ntt) is received from a neighbor x, then locally broadcast CTS(SCut, ntt, v, 1)

37: on reception of CTS(CR, x, ntt) do

38: if z = ntt then

39: Cancel running delay timer and immediately send CTS(SCut, ntt, v, 0)
40: else

41: Cancel delay timer and sending of CTS(CR, z, ntt) (if any)

42: on reception of RTS(CR, ntt, v, t
′) do

43: if z ∈ D(ntt, t
′) and ‖zv‖ > R then ⊲ I.e., if z is in the critical region incident to ntt

44: Schedule sending of CTS(CR, z, ntt) after delay of duration t(‖nttz‖) = (‖nttz‖/R) · tmax

45: on reception of DATA do

46: Cancel all running delay timers and sending of messages (if any)
47: if z is addressed in the packet header as next hop then

48: Handle the packet according to the packet’s mode, i.e., apply Greedy routing if the packet is
in Greedy mode, and RS-Shortcut if the packet is in Recovery mode
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Figure 7.7: Illustration for the proof of Lemma 7.11. The TT sweep area is striped, whereas
the SC sweep area is given by the gray shaded area. Circle C‖vi−1vi‖(vi−1) is
represented by the blue area.

If algorithm execution terminates at line 6, exactly three messages have been transmitted.
If instead it terminates at line 12 or 15, then five messages have been transmitted. Finally,
if it terminates at line 23, then four messages have been transmitted for detection of the
SC and TT neighbors w and t. Forwarder v as well as its TT neighbor t each broadcast
another RTS. At most two CTS responses are generated thereupon. Finally, the DATA
is forwarded and hence, at most nine messages are being transmitted.

Any RTS/CTS message contains at most a constant number of geographic positions
plus possibly a constant number of additional bits. Thus, the size of these messages is
O(Pmax) bits.

The above proof relies on the following two assumptions. Firstly, no four nodes in V are
allowed to be cocircular. Otherwise, the SC and TT delay functions yield simultaneous
CTS replies which may lead to a collision. Secondly, no two neighbors in the critical
region have the same distance to the TT neighbor t. Otherwise, a collision at t may
occur. This is unproblematic if t is able to observe collisions, since a collision implies the
existence of nodes in that area. Collisions due to simultaneous timeouts are a general
problem of position-based delay functions and are discussed in detail in Section 10.2.

Next, the correctness of algorithm RS-Shortcut is proven, which requires the following
auxiliary lemma.

Lemma 7.11. Let SSC = 〈v = v0, ..., vl〉 and STT = 〈v = w0, ..., wk〉 be the SC and TT
traversals, respectively, starting at a particular local minimum node v, such that these
traversals differ by at least one node. Let 0 < i ≤ l be any index s.t. vi−1 = wi−1 and
vi 6= wi, i.e., the edges vi−1vi and wi−1wi differ. Then, ‖vi−1vi‖ < ‖wi−1wi‖.

Proof. For the sake of contradiction, assume ‖vi−1vi‖ ≥ ‖wi−1wi‖.
In case ‖vi−1vi‖ = ‖wi−1wi‖, both vi and wi are on the boundary of the circle centered

at vi−1 = wi−1 with radius ‖vi−1vi‖ = ‖wi−1wi‖ (blue circle in Figure 7.7). Because
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Figure 7.8: Illustration for the proof of Theorem 7.12. Sweep region produced by
〈vj−1, vj = ti, vj+1, ..., vm〉 is given by the gray shaded area. TT(ti, ti+1)
is the blue dashed Releaux triangle. The pink area represents FRSC(ti, ti+1),
and the red area represents possible positions of vm’s SC traversal successor
vm+1. The green area represents CR(ti+1). The black circles are the unit
disks of ti and ti+1.

vi−1vi 6= wi−1wi either vi, or wi is the first node to be hit by both rotating sweep curves.
But this is a contradiction to vi 6= wi and hence, this case cannot occur.

In the other case, where ‖vi−1vi‖ > ‖wi−1wi‖, wi must be inside circle C‖vi−1vi‖(vi−1),
as illustrated in Figure 7.7.

Observe, that the union of SC(vi−1, vi−2) and the sweep area of the sweep circle of
vi−1 w.r.t. vi−2 and vi (given by the gray shaded area in Figure 7.7), restricted on
C‖vi−1vi‖(vi−1), covers entirely the union of TT(vi−1, vi−2) and the sweep area of the
sweep triangle of vi−1 w.r.t. vi−2 and vi (given by the striped area in Figure 7.7), also
restricted on C‖vi−1vi‖(vi−1). That is, if wi is hit by the sweep triangle before the triangle
hits vi, then wi is also hit first by the sweep circle. But this is a contradiction to vi 6= wi

and hence, this case can also not occur. Note that this argument also holds in the special
case where i = 1 (i.e., the first edges of SSC and STT differ) due to the sweep object’s
initial positions.

Correctness of algorithm RS-Shortcut is proven by showing that the DATA packet is
only forwarded to nodes belonging to the corresponding SC recovery path, which is known
to be a guaranteed delivery recovery path.

Theorem 7.12. Let SSCut denote the node sequence produced by the RS-Shortcut algorithm
if applied onto a local minimum node and let SSC be the corresponding SC recovery path.
It holds that SSCut ⊆ SSC.

Proof. Let v be a local minimum node w.r.t. destination d. Let SSCut = 〈v = t0, t1, ..., tk〉
be the path resulting from application of RS-Shortcut onto v and SSC = 〈v = v0, v1, ..., vl〉
the corresponding SC recovery path. By induction on index i it is now proven that
ti ∈ SSC, for all 0 ≤ i ≤ k.
I.h.: For an arbitrary but fixed i < k it holds that ti ∈ SSC.
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(a) (b)

Figure 7.9: Illustration of (a) Equation 7.1 and (b) Equation 7.2.

B.c. (i = 0): With t0 = v = v0, t0 ∈ SSC holds trivially.
I.s. (i→ i+ 1): By the i.h., for all i′ ≤ i it holds that ti′ ∈ SSC and in particular ti = vj ,
for some j ≥ i.

The fact that i < k implies that ‖tid‖ ≥ drec since RS-Shortcut is executed by a
node, only if it is a local minimum or another node with distance at least drec from the
destination. Since by Lemma 4 in [68], SSC always terminates at a node with distance to
the destination smaller than drec, the existence of node ti+1 ∈ SSCut implies the existence
of node vj+1 ∈ SSC.

If ti+1 = vj+1 the claim holds. Therefore, in the reminder of this proof it is assumed
that ti+1 6= vj+1. The latter implies that ti+1 is the successor of ti on a TT traversal
(see Figure 7.8). Thus, Lemma 7.11 can be applied and yields that ‖tivj+1‖ < ‖titi+1‖.
Moreover, due to the counter-clockwise sweeping direction, it holds that vj+1 is counter-
clockwise of the directed edge

−−−→
titi+1.

Let Σ = 〈vj+1, ..., vm〉 ⊂ SSC be the longest consecutive subsequence of SSC which
starts at vj+1 and such that all nodes of Σ are located in the same closed half-plane as
vj+1 w.r.t. the straight line ℓ(titi+1) (see nodes in the pink area in Figure 7.8).

If ti+1 ∈ Σ, then ti+1 ∈ SSC holds. Therefore, consider the case ti+1 /∈ Σ. Because
ti ⊕ Σ = 〈ti, vj+1, ..., vm〉 is a consecutive subsequence of SSC not containing ti+1, the
following holds (see Figure 7.9a):

FRSC(ti, ti+1) ⊃ FRSC(vj+1, ti+1) ⊃ · · · ⊃ FRSC(vm, ti+1) . (7.1)

This implies in particular that all nodes from Σ are contained by FRSC(ti, ti+1). Moreover,
the nodes in Σ must be outside of FRTT(ti, ti+1), since the sweep area produced by a
sweep triangle is empty of nodes according to Lemma 3 in [15]. Hence, for all nodes in Σ
it holds that they are located in area A (see Figure 7.9b), defined by

A = FRSC(ti, ti+1) \ FRTT(ti, ti+1) . (7.2)

Next, it is shown by contradiction that there must exist a successor vm+1 of vm in SSC.
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(a) (b)

Figure 7.10: (a) represents Case (1), where vm and d are in the same half-plane w.r.t.
ℓ(ti, ti+1). (b) represents Case (2), where vm and d are in different half-planes
w.r.t. ℓ(ti, ti+1).

For the sake of contradiction, assume vm is the last node in SSC, i.e., vm = vl. Then,
‖vmd‖ < drec must hold, since by Lemma 4 in [68] it holds that RS always terminates at
a node with distance to the destination smaller than recovery distance drec.

Distinguish the cases that vj+1 and destination d are located in (1) the same half-plane
(see Figure 7.10a), and (2) in different half planes w.r.t. ℓ(ti, ti+1) (see Figure 7.10b).

Case (1): If FRSC(vj+1, ti+1) ∩Cdrec(d) 6= ∅, then according to line 14 of algorithm RS-
Shortcut, vi+1 would have been selected for forwarding instead of ti+1, which contradicts
to the assumption that vj+1 6= ti+1 and hence, this case cannot occur.

Now consider the case where FRSC(vj+1, ti+1) ∩ Cdrec(d) = ∅, as given in Figure 7.10a.
If vm = vj+1, then ‖vmd‖ ≥ drec holds because otherwise, during Step 1 of RS-Shortcut,

vj+1 would have been chosen for forwarding, which contradicts again to the assumption
that vj+1 6= ti+1.

Otherwise, If vm 6= vj+1, the assumption that FRSC(vj+1, ti+1)∩Cdrec(d) = ∅ combined
with Equation 7.1 implies that ‖vmd‖ ≥ drec and hence, there must exist a successor vm+1

of vm in SSC.
Case (2): Note that ‖tid‖ ≥ drec, because RS-Shortcut was executed by ti. Moreover,
‖ti+1d‖ ≥ drec must also hold, as otherwise in line 11 of RS-Shortcut node vj+1 would
have been selected for forwarding, but ti+1 6= vj+1. Combined with the facts that vm and
d are on opposite sides of ℓ(ti, ti+1), and vm ∈ A, it holds that ‖vmd‖ ≥ drec and hence
there must exist a successor vm+1 of vm in SSC.

Finally, it is shown by contradiction that vm+1 = ti+1 holds, which concludes this proof,
since vm+1 ∈ SSC.

Assume vm+1 6= ti+1. By Lemma 7.6, the union of the sweep circle at v0 in initial position
and the sweep areas of the nodes v0, ..., vm−1 is empty of nodes from V \{v0, ..., vm}. Hence,
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vm+1 must be located outside this empty sweep region, but strictly inside SC(wm, ti+1)
(red area in Figure 7.8).

There are only two possible areas where wm+1 may be located, as TT(ti, ti+1) is empty
of nodes.

If wm+1 is contained by SC(vm, ti+1) ∩ CR(ti), then it must be located inside A. This
leads to a contradiction, because Σ is assumed to be the longest successive subsequence
of nodes from SSC, but in the case under consideration, Σ ⊕ wm+1 would be legitimate
and longer subsequence of SSC.

In the remaining case, vm+1 must be contained in SC(vm, ti+1) \ CR(ti). For any point
p ∈ R2 with p ∈ A and in particular for vm, it holds that

SC(p, ti+1) \ CR(ti) ⊆ D(ti+1, t
′) \ CR(ti)

︸ ︷︷ ︸

critical region incident to ti+1

,

where t′ is the corner of TT(ti, ti+1) that is opposite to the arc connecting ti and ti+1.
Therefore, vm+1 must be located in the critical region incident to ti+1. Then there
would have been at least one node x ∈ N1(ti+1) responding with a CTS(CR, x, ti+1) to
the corresponding RTS(CR, ti+1, vj+1, t

′) sent by ti+1. In turn, ti+1 would have sent a
CTS(SCut, ti+1, ti, 0) and ti would have selected vj+1 for forwarding, which contradicts
to ti+1 6= vj+1. Hence, ti+1 = vm+1 ∈ SSC must hold and thus, ti+1 ∈ SSC.

7.5 Discussion and Implications

The results presented in the previous sections have several implications.
The first implication concerns so-called α-shapes [217], an important graph-theoretical

foundation of (local) boundary detection.5

Corollary 7.13. PDT Face traversals are boundaries of (negative) α-shapes.

Proof. By Lemma 1 in [15], SC traversals are boundaries of (negative) α-shapes. The
claim follows from the equivalence of SC and PDT Face traversals (Theorem 7.8).

Secondly, algorithm RS-Shortcut is of use in geographic unicast routing.

Corollary 7.14. The combination of Greedy forwarding and algorithm RS-Shortcut
guarantees delivery in connected unit disk graphs.

Proof. This corollary follows directly from the two facts that an RS-Shortcut traversal is
a subpath of its corresponding SC traversal (Theorem 7.12), and that the combination of
Greedy forwarding and SC traversals guarantees delivery in connected unit disk graphs
by Theorem 1 in [15].

The next implication concerns the superiority of RS-Shortcut recovery paths over the
corresponding SC recovery paths.

5 For details, the reader may refer to the original work on α-shapes by Edelsbrunner et al. [217] and the
discussion on the relation of RS traversals and α-shapes in [15]
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Corollary 7.15. Recovery paths generated by algorithm RS-Shortcut are at most as long
as the corresponding SC recovery paths, regarding both hop and Euclidean path length.
Furthermore, they can help to avoid as many as Θ(n) unnecessary forwarding operations.

Proof. The first part of the claim follows directly from Theorem 7.12. The second part
holds with the example given in Figure 7.5c, illustrating that a single TT hop can avoid
as many as Θ(n) SC recovery hops.

It is easy to construct scenarios where RS-Shortcut does not perform any better than
RS-SC. To see this, consider the graph given in Figure 7.5c: If there exists a node in the
critical region incident to vk, then RS-Shortcut and RS-SC produce equivalent recovery
paths. This example highlights in addition that both recovery paths produce as many
as Θ(n) unnecessary forwarding operations, compared to RS-TT. On the other hand, in
contrast to TT recovery paths, for recovery paths produced by RS-SC and RS-Shortcut
it is known that they belong to a constant stretch Euclidean spanner. In summary, in
regard to the set of beaconless recovery algorithms that require only constant number of
messages per forwarding step, the paths produced by algorithm RS-Shortcut provide the
strongest theoretical guarantees.

RS-SC, RS-TT, and RS-Shortcut have one problem in common: For each of these
algorithms, bad-case scenarios such as those depicted in Figure 7.5 can be designed.
In these situations the data packet is forwarded multiple times within a single node’s
transmission radius, i.e., the algorithms perform poorly. The author presented in [77] (in a
joint work with Botterbusch and Frey) a simple but promising idea to determine and avoid
such situations. Instead of immediate data forwarding after detection of the next-hop,
a lightweight probing packet is used to explore the recovery path within the current
forwarding node’s transmission range. This way, a locally optimal hop (w.r.t. some
user-defined optimization function) for actual data transmission is determined and used.
For example, the best hop for forwarding on the recovery path according to some energy
optimization criterion can be selected. Simulations suggest that, independent of the node
density, this extension can lead to significant reductions of data packet transmissions, and
reduced energy consumption, compared to immediate data transmission.
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Chapter 8

Reactive Local Construction of

Topological Quasi Unit Disk Graph

Spanners

When replacing the simplistic unit disk by the more realistic quasi unit disk graph model,
the reactive local topology control and recovery algorithms rPDT and RS-Shortcut,
introduced in the previous chapters, are no longer guaranteed to operate correctly.
This results from the QUDG properties (summarized as Facts/Lemmata 3.10– 3.15 in
Section 3.2), in particular from the fact that local planarization techniques like Gabriel
graph and partial Delaunay triangulation possibly yield disconnected outputs if applied
onto QUDGs. In fact, it is in general impossible to extract planar and connected subgraphs
of QUDGs, while the maximum and minimum transmission radii of the nodes differ, i.e.,
while r < R. The survey on QUDG planarization techniques in Section 3.2 reveals two
common solutions to this problem, given that R/r ≤

√
2. Either the QUDG is enriched

by adding virtual edges, which guarantee connectivity when applying standard UDG
planarization techniques, or a sparse connected backbone graph is extracted, which is
then planarized, e.g., by replacing edge intersections by virtual nodes.

All of the existing approaches have in common that they are beacon-based in the sense
that they either make active use of beaconing for construction of nodes’ neighborhood
tables, or assume nodes to be provided with a priori k-neighborhood knowledge, where
k ≥ 1. To the best of the author’s knowledge, presently there are neither beaconless
algorithms for planarization of QUDGs, nor beaconless guaranteed delivery geographic
routing algorithms for such graphs.

In this chapter, this research gap is closed. The main contribution is an Ω-reactive local
topology control algorithm, called ReactiveBackbone. It allows a node from a QUDG,
satisfying R/r ≤

√
2, to compute its local view on a constant stretch topological spanner

of the input graph locally and without use of beaconing. Based on this algorithm, a
guaranteed delivery geographic routing protocol called Reactive-Virtual-Face-Traversal is
introduced. These algorithms are based on beacon-based planarization and geographic
routing techniques introduced by Lillis et al. [70, 71] and Guan [72,73], respectively.

Lillis et al. present the only local solution for distributed construction of planar QUDG
spanners. During execution of their algorithm the nodes maintain neighborhood tables and
exchange messages with their 3-hop neighbors. Given a QUDG G satisfying R/r ≤

√
2,

their algorithm computes a virtual planar backbone graph Virt(Gb) for G by planarizing
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a sparse backbone graph Gb via introduction of virtual nodes. The connection of any
non-backbone node with its cluster head in Virt(Gb) yields the routing graph Gr. The
latter is a constant stretch hop spanner for G and facilitates local geographic routing
with guaranteed delivery (see Section 8.1.2 for further details). However, this algorithm
is designed as a synchronous, distributed algorithm for construction of the topology over
the entire network graph and assumes synchronous wake-up of nodes. That is, all nodes
start execution of the algorithm proactively and synchronously.

The local geographic routing protocol Virtual-Face-Traversal by Guan [72, 73] (see
Section 3.2 for details) also uses the virtual nodes idea to guarantee delivery on connected
QUDGs satisfying R/r ≤

√
2. It does not require topology control operations. However,

for computation of the next forwarding decision, a node has to be provided with complete
2-hop neighborhood information. Since this protocol operates directly on the network
graph rather than on some controlled topology, its performance regarding routing stretch
and message overhead may be poor, at least in worst-case scenarios.

As a first major contribution, in Section 8.2 it is shown that the topology mapping
defined by the algorithm from Lillis et al. is in fact a k-local topology mapping for
k = 8. This implies that for the construction of a node’s local view on the virtual planar
backbone graph Virt(Gb) it suffices to execute the distributed algorithm by all nodes in
the 8-hop neighborhood of that node. Then it is shown that it is in fact even sufficient
to construct the backbone only by those nodes that belong to cells of a geographical
clustering that are at most six hops apart and belong to a specific geographic region,
called 3-cell neighborhood. Based on these results, in Sections 8.3 & 8.4, the Ω-reactive
local topology control algorithm ReactiveBackbone is derived, which consists of multiple
parts that are designed and explained successively. This algorithm is analyzed regarding
its message complexity and shown to be Ω-reactive in Section 8.5. In Section 8.6 the
guaranteed delivery reactive geographic routing protocol Reactive-Virtual-Face-Traversal
is introduced. This chapter closes with a discussion and further implications in Section 8.7.

8.1 Preliminaries

8.1.1 Model, Assumptions, and Notations

In the following, network graphs are modeled as quasi unit disk graphs G = (V,E) over
finite and distinct node sets V ⊂ R2, where |V | = n. It is assumed that nodes are provided
with their geographic positions, are aware of the maximum and minimum transmission
radii R and r, respectively, and that R/r ≤

√
2. The latter implies that the maximum hop

distance between the endpoints of two intersecting edges uv, xy ∈ E is at most three (see
Fact 3.13). For convenience, QUDGs satisfying R/r ≤

√
2 are henceforth also referred to

as restricted QUDGs.
As in previous chapters, the beaconless algorithms introduced here use a delay function

for delaying the nodes’ operations (e.g., sending of a message) by a fraction or multiple
of time slice tmax > 0, an arbitrary but fixed constant known to all nodes. The delay
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of a node v is proportional to some Euclidean distance δ that typically depends on v’s
geographic position. This is modeled by the following delay function:

t(δ,∆) = (δ/∆) · tmax , 0 < δ ≤ ∆ .

As usual in beaconless algorithms it is assumed that messages are transmitted instantly
and reliably. The problems arising with this simplifying assumption are dicussed in a
more general context in Section 10.2 as part of the conclusion.

8.1.2 Distributed Construction of the Virtual Planar Backbone Graph

The following is a detailed description of the distributed algorithm for construction of
Virt(Gb) and routing graph Gr by Lillis et al. [70, 71].

The plane is partitioned by virtually placing an infinite, axes-parallel square grid with
one grid vertex in the origin (0, 0) and grid cell diameter r (see Figure 8.1a). Under the
assumption that nodes know their geographic positions in a global coordinate system as
well as radius r, each node can compute to which grid cell (or simply cell) it belongs.
The grid cell in which a node u is located is addressed by C(u). This gives a unique
geographical clustering of the nodes in the underlying QUDG G = (V,E).1 Since the
diameter of the grid cells is r, all nodes within a particular cell form a clique in G and
the transmission of a node is always overheard by all other nodes in that cell.

At first, all nodes in V locally broadcast their positions such that all nodes know their
one-hop neighborhoods. Given this information, without further communication all nodes
in a particular cell C can deterministically agree on a cluster head, e.g., by choosing the
node closest to the geometric center of C, or the one having the smallest node ID (if
available). Then all nodes in V locally broadcast the position of their cluster heads. Given
this information, each node computes the set of distinct cluster heads of its neighboring
nodes and locally broadcasts this set. Now the cluster head of each cell C knows to which
other cells Cj it is connected by at least one edge in E. For each such neighboring cell,
the cluster head chooses exactly one representative bridge edge2. The cluster heads locally
broadcast their sets of representative bridge edges. Endpoints of representative bridge
edges inform the corresponding other endpoint about this choice via a local broadcast.3

Now every node in V knows whether it is a cluster head, bridge edge endpoint, or neither

1 This is a standard technique used also in [86,150]
2 Lillis et al. do not further specify how a representative bridge edge is chosen. In fact the choice is

irrelevant for proving the spanning ratio. The latter also holds for the choice of a cell’s cluster head.
However, in order to be able to compare the output graphs produced by the distributed algorithm
by Lillis et al. and the beaconless approach presented here, the following selection rules are defined:
Cluster head of a cell C is a node in C that is closest to the geometric center of C regarding Euclidean
distance. For two cells C,Z, let ECZ be the set of edges connecting nodes in C to nodes in Z; then
the cluster head of C selects as representative bridge edge for Z an edge cz ∈ EC , where c ∈ C and
z ∈ Z, such that both c and z minimize the Euclidean distance to the geometric center of Z among
all edges in ECZ .

3Lillis et al. do not mention this last step in [70, 71]. However, it is necessary in order to ensure
correctness of the approach, since otherwise some bridge edge endpoints are never informed about
their assigned role.
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(a) (b)

(c) (d)

Figure 8.1: (a) Input QUDG G = (V,E). (b) Cluster heads are red triangles and endpoints
of bridge edges are green dots. (c) Backbone graph Gb = (Vb, Eb) with induced
edges given by the dashed lines. (d) Routing graph Gr, where dotted lines
connect non-backbone nodes (blue) with their cluster heads; pink circles
represent virtual nodes at edge intersections of edges in Gb. This figure is
similar to Figure 8 in [71].

of it (see Figure 8.1b). The set of cluster heads and bridge edge endpoints is then the
set of backbone nodes Vb ⊆ V . One final local broadcast by all nodes in Vb suffices so
that each node knows its adjacency in the induced graph Gb = (Vb, Eb) w.r.t. G, i.e., the
graph with node set Vb and edge set Eb = {uv ∈ E : u, v ∈ Vb} (see Figure 8.1c).

Backbone graph Gb has the following properties.

(i) The node degree of any node in Gb is O(1).

(ii) Each edge in Eb is intersected at most O(1) times.

(iii) Vb is a connected dominating set for G.

Property (i) holds for the following reason. By Lemma 4 in [150], it holds that a cell C is
connected to at most O(R2/r2) other cells. Under the assumption that R/r ≤

√
2, this is
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a constant upper bound. This implies in particular that the 3-hop neighborhood of any
backbone node in Vb is of size O(1). For proofs of the other two properties, see Lemma 4
in [71].

Now the backbone graph Gb is transformed into a planar graph Virt(Gb) = (VVirt, EVirt)
using an idea previously described in [84, 86]. VVirt contains all nodes from Vb and in
addition, for each edge intersection of two edges uv, xy ∈ Eb, it contains a virtual node w
whose position is that of the corresponding edge intersection (pink circles in Figure 8.1d).
Edge set EVirt is composed of all edges in Eb with the following modifications: Any two
intersecting edges uv, xy are deleted and edges uw, vw, xw, yw are added.

The distributed construction of the backbone nodes’ adjacencies in Virt(Gb) is straight-
forward. All backbone nodes gather 3-hop neighborhood information in Gb and then
compute their adjacency in EVirt without further communication. This is feasible for
the following reason. Since Vb is a connected dominating set for G by property (iii), Gb

is a connected QUDG if G is a connected QUDG. Since G satisfies R/r ≤
√
2 this also

holds for Gb. While a node in Vb is provided with 3-hop neighborhood knowledge of Gb,
it knows all endpoints of edges in Eb that are intersecting its incident edges. Therefore,
without further communication it can compute the positions of the corresponding virtual
nodes as well as its adjacency in EVirt.

Finally, define the routing graph Gr as Virt(Gb) combined with all non-backbone nodes
V \Vb connected to their corresponding cluster heads by an edge from E (see Figure 8.1d).
The following theorem follows immediately from the proofs of Lemmata 4 & 7 in [71].

Theorem 8.1 (Topological spanning ratio of Gr). Let G = (V,E) be any connected
QUDG satisfying R/r ≤

√
2. Gr is a hop (4c+ 6)-spanner of G, where c ∈ O(1) denotes

the maximum number of intersections of any edge in Gb.

Lillis et al. observe that the routing graph Gr is not a constant stretch Euclidean
spanner for the underlying QUDG G = (V,E). This holds for the following reason. Let
u, v ∈ V be two non-backbone nodes which are connected in G by an edge, but which
belong to different, neighboring grid cells. While moving these nodes closer to the grid cell
boundary separating their cells, their Euclidean distance can be made arbitrarily small
and hence, the Euclidean spanning ratio w.r.t. Gr becomes arbitrarily large. Therefore,
Lillis et al. propose the following solution. Instead of only one grid, three grids (blue,
red, and green) of grid cell diameter at most r are placed on the plane. The blue grid
passes through the origin, whereas the other two are shifted by 1/3 and 2/3 of the
grid cell diameter to the right. In each grid cell of any color, the Euclidean spanner
BPS2 [131,132] (see Section 3.1) is constructed over the clique of nodes induced by this
cell. The routing graph G′

r then consists of Virt(Gb) constructed over the blue grid, as
well as of all Euclidean spanners. Routing graph G′

r is then proven to be a constant
stretch topological and constant stretch Euclidean spanner for the underlying QUDG.
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8.2 On the Local Constructibility of the Virtual Planar

Backbone Graph

In the following, two major contributions are derived. Firstly, in Section 8.2.1 it is proven
that the topology mapping described by Lillis et al. [70, 71] on how to transform a given
QUDG G into a virtual planar backbone graph Virt(Gb) is in fact a k-local topology
mapping w.r.t. Definition 5.2. Subsequently, in Section 8.2.2 it is shown that for the
construction of the local view of any real or virtual backbone node in Virt(Gb) it is
sufficient to construct the backbone in all cells which are at most a constant number of
hops apart and belong to a bounded geographic region around this node. This result
enables the design of the Ω-reactive local topology control algorithm ReactiveBackbone
in subsequent sections.

8.2.1 Local Topology Mapping

For simplicity and comprehensibility, the following notation is introduced. Given a QUDG
G = (V,E), τ(G) refers to the virtual planar backbone graph Virt(Gb) constructed over
the entire network graph G. Given any node u ∈ V , G[u, k] refers to the k-hop local view
of u on graph G, which is the set of nodes from V reachable from u via at most k hops,
i.e., Nk(u), and all edges {xy ∈ E : x ∈ Nk−1(u) and y ∈ Nk(u)}. Then τ(G[u, k]) refers
to the virtual planar backbone construction over graph G[u, k]. For a real node u ∈ V it
is said to be a generator of virtual node w, if u is a backbone node and one of its incident
backbone edges intersects at least one other backbone edge in w.

The main theorem requires the following auxiliary lemmata.

Lemma 8.2 (Lemma 2 in [71]). Let u, v ∈ τ(G) be any two neighboring virtual nodes.
The generators of u and v in τ(G) are at most 5 hops apart from each other in G.

For an illustration, see Figure 8.3b.

Lemma 8.3. A node v ∈ V belongs to τ(G), if and only if v belongs to τ(G[v, 3]).

Proof. It trivially holds that v is cluster head of its cell in τ(G), if and only if it is cluster
head in τ(G[v, 3]) since all nodes in cell C(v) are 1-hop neighbors of v and therefore
belong to G[v, 3]. If v is not a cluster head, then it is a bridge node, either selected by
the cluster head of its cell C(v), H(C(v)), or a cluster head of an adjacent cell Z. In the
former case, the decision of selecting v as a bridge node by H(C(v)) in τ(G) only depends
on the nodes in C(v) and their incident edges, all of which are contained by G[v, 2] and
hence, an equivalent decision is made in τ(G[v, 3]). In the latter case, the decision by the
cluster head H(Z) is based on all nodes in Z as well as their incident edges. The nodes
in Z are 2-hop neighbors of v and their incident edges connect to nodes that are at most
3 hops apart from v. Hence, these nodes and edges are contained by G[v, 3] and thus, an
equivalent decision is made in τ(G[v, 3]).

Theorem 8.4. The topology control mapping described by Lillis et al. [70,71] is a k-local
topology mapping for k = 8.
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Proof. It needs to be shown that for any restricted QUDG graph G = (V,E) and for all
v ∈ τ(G), there exits a node u ∈ V , such that τ(G)[v] = τ(G[u, 8])[v].

In the following, let G = (V,E) be any restricted QUDG, and v ∈ τ(G) any node.
“⇒”: It has to be shown that there exists u ∈ V such that for an arbitrary but fixed

neighbor w ∈ τ(G)[v] it holds that w ∈ τ(G[u, 8])[v].
Case 1 (both v and w are real nodes): It holds that vw ∈ E and hence, w ∈ G[v, 1] and

G[w, 3] ⊂ G[v, 8]. Then, by Lemma 8.3 it holds that w is a backbone node in τ(G[v, 8]).
Assume w /∈ τ(G[v, 8])[v], then there must exist a backbone edge xy in τ(G[v, 8]) that
intersects vw. This implies that x and y are at most 3 hops apart from v. Hence,
G[x, 3], G[y, 3] ⊂ G[v, 8] and by Lemma 8.3 both x and y are also backbone nodes in
τ(G), and the edge xy intersects vw in τ(G). But this contradicts the assumption that
vw is not intersected in τ(G), hence, w ∈ τ(G[v, 8])[v], and with u = v an appropriate
node exists.

Case 2 (v is a real node, w is a virtual node): In τ(G), virtual node w is generated by
some backbone edge vu, and one or several other backbone edges. Let xy be any such
backbone edge. It holds that u, x, y are at most 3 hops apart from v in G and hence,
G[u, 3], G[x, 3], G[y, 3] ⊂ G[v, 8]. Then, by Lemma 8.3 it holds that u, x, y are backbone
nodes in τ(G[v, 8]) and hence, w ∈ τ(G[v, 8]). Using the same argument as in Case 1, it
cannot be the case that vw is intersected by another backbone edge in τ(G[v, 8]). Thus,
w ∈ τ(G[v, 8])[v] holds and with u = v an appropriate node exists.

Case 3 (v is a virtual node, w is a real node): This case is symmetric to Case 2 and
with u = w, there exists a node such that w ∈ τ(G[u, 8])[v].

Case 4 (both v and w are virtual nodes): Because v and w are neighbors in τ(G),
it holds that they are generated by one common backbone edge xy. Let ab and cd be
arbitrary backbone edges that intersects xy in v and w, respectively. By Lemma 8.2, the
hop distance between any two generators p, q ∈ {x, y, a, b, c, d}, p 6= q, is at most 5. Hence,
it holds that G[q, 3] ⊂ G[p, 8]. Now Lemma 8.3 implies that all nodes in {x, y, a, b, c, d}
are also backbone nodes in τ(G[p, 8]) which implies in particular that the virtual nodes v
and w exist in τ(G[p, 8]). Using the same argument as in Case 1, it cannot be the case
that vw is intersected by another backbone edge in τ(G[p, 8]) and hence, w ∈ τ(G[p, 8])[v]
holds and with u = p an appropriate node exists.

“⇐”: It has to be shown that there exists u ∈ V , such that for an arbitrary but fixed
neighbor w ∈ τ(G[u, 8])[v] it holds that w ∈ τ(G)[v].

Case 1 (v is a real node): By assumption v ∈ τ(G) holds and hence, by Lemma 8.3 v is
also a backbone node in τ(G[v, 8])[v]. Let w ∈ τ(G[v, 8])[v] be any neighbor of it.

Subcase 1.1 (w is a real node): With vw ∈ E, G[w, 3] ⊂ G[v, 8] holds and Lemma 8.3
yields that w is a backbone node in τ(G). If w /∈ τ(G)[v], then there exists a backbone
edge xy in τ(G) which intersects vw. The latter implies that x, y are at most 3 hops
apart from v in G. Hence, G[x, 3], G[y, 3] ⊂ G[v, 8] and by Lemma 8.3 it holds that both
x and y are also backbone nodes in τ(G[v, 8]). But then, xy and vw would also intersect
in τ(G[v, 8]), which contradicts the assumption that vw are neighbors in that graph.

Subcase 1.2 (w is a virtual node): Let w be generated by the backbone edges uv and xy
in τ(G[v, 8]). Since u, x, y are at most 3 hops apart from v in G, G[u, 3], G[x, 3], G[y, 3] ⊂
G[v, 8] holds. By Lemma 8.3, u, x, and y are also backbone nodes in τ(G) and thus, w is

161



Chapter 8 Reactive Local Construction of Topological Quasi Unit Disk Graph Spanners

a virtual node in τ(G). Using the same argument as in Subcase 1.1, it cannot be the case
that vw is intersected by another backbone edge in τ(G). Hence, w ∈ τ(G)[v] holds.

In both subcases an appropriate node u, namely v, is shown to exist.
Case 2 (v is a virtual node): Consider τ(G[u, 8]), where u is any generator of v in τ(G).

Lemma 8.3 implies that u, as well as all other generators of v in τ(G) (which are at most
3 hops apart from u in G), are also backbone nodes in τ(G[u, 8]). Hence, v is a virtual
node in τ(G[u, 8]). Let w ∈ τ(G[u, 8])[v] be any node.

Subcase 2.1 (w is a real node): Backbone node w must be a generator of v, for which
it has already been shown that they are backbone nodes in τ(G). If w /∈ τ(G)[v], then
there exists a backbone edge xy in τ(G) which intersects vw. By Lemma 8.2, x and y
are at most 5 hops apart from u in G and hence, G[x, 3], G[y, 3] ⊂ G[u, 8]. Lemma 8.3
implies that x and y are also backbone nodes in τ(G[u, 8]). But then, xy and vw would
also intersect in τ(G[u, 8]), which contradicts the assumption that vw are neighbors in
that graph. Hence, w ∈ τ(G)[v] must hold.

Subcase 2.2 (w is a virtual node): Virtual nodes v and w are generated in τ(G[u, 8]) by
a common backbone edge xy and at least two other backbone edges ab and cd. Moreover,
it holds that u ∈ {x, y, a, b, c, d}. By Lemma 8.2 it holds that any of these generators is
at most 5 hops apart from u in G and hence, for any p ∈ {x, y, a, b, c, d}, it holds that
G[p, 3] ⊂ G[u, 8]. Then, Lemma 8.3 implies that p is also a backbone node in τ(G) and
therefore, both virtual nodes v and w exist in τ(G). Using the same argument as in
Subcase 2.1, it cannot be the case that vw is intersected by another backbone edge in
τ(G), and hence w ∈ τ(G)[v] holds.

In both subcases a suitable node u is shown to exist, which concludes the proof.

8.2.2 Local View Construction

The above theorem states that for any v ∈ Virt(Gb) there exists a node u ∈ V , such
that the local view of v on Virt(Gb) can be constructed if all nodes in G[u, 8] execute the
algorithm by Lillis et al.

In the following it is shown that it is in fact not necessary that all 8-hop neighbors of
u participate in the local view construction, but only those which belong to a specific
geographic region around u, called 3-cell neighborhood of u (defined shortly). More
specifically, it is shown that it is sufficient that backbone nodes are constructed by all
nodes w ∈ V for which the following holds: (1) Cell C(w) is contained in the 3-cell
neighborhood of u. (2) There exists at least one node in C(w) which is connected to u by
a path consisting of at most 6 hops.4 (3) This path visits only nodes that are contained
in the 3-cell neighborhood of u. The latter is defined as follows.

Definition 8.5 (k-cell neighborhood). Two grid cells C and Z are said to be neighboring
cells, if there exist a line segment pq of length at most R, s.t. p ∈ C and q ∈ Z. The

4 Note that this condition still reflects the constant k = 8 proven for the topology control mapping
described by Lillis et al. A node w whose cell is connected to u by a path of hop-length 6 is itself at
most 7 hops apart from u. Bridge edge selection requires each node to consider its 1-hop neighborhood
and hence, this requires information about 8-hop neighbors of u.
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Figure 8.2: Illustration of Definition 8.5 of cell neighborhoods of a particular cell C, where
CN1(C) and CN2(C) are given by the set of cells enclosed by the inner and
outer square, respectively.

1-cell neighborhood of a cell C, denoted CN1(C), is the set of all neighboring cells of C,
including C itself. The k-cell neighborhood of C for k > 1 is then given by

CNk(C) =
⋃

Z∈CNk−1(C)

CN1(Z) .

See Figure 8.2 for an illustration.

Lemma 8.6. For a QUDG G = (V,E) satisfying R/r ≤
√
2 and two intersecting edges

uv, xy ∈ E it holds that

{C(v), C(x), C(y)} ⊆ CN2(C(u)) .

Proof. Since ‖uv‖ ≤ R, C(v) ∈ CN1(C(u)). Now, consider the quadrangle formed by
u, v, x, y. At least one of the internal angles is at least π/2. Assume w.l.o.g. that
∠xvy ≥ π/2. Then v ∈ D(x, y). Since ‖xy‖ ≤ R, it holds that ‖xv‖, ‖yv‖ ≤ R. Hence,
C(x) and C(y) belong to CN1(C(v)) which is a subset of CN2(C(u)).

Definition 8.7 (Reachable cell). Let C be any non-empty grid cell and Z ∈ CNk(C).
Cell Z is said to be reachable w.r.t. CNk(C), if there exists a path ΠG(c, z) between any
node c ∈ C and z ∈ Z in G, s.t. all nodes in ΠG(c, z) are contained by CNk(C).

Lemma 8.8. Let G be a QUDG satisfying R/r ≤
√
2 and Z ∈ CN2(C) be a cell which

is not reachable w.r.t. CN2(C) in G. No edge in G with at least one endpoint in Z can
intersect with an edge from G that has at least one endpoint in C.

Proof. For the sake of contradiction assume that Z is not reachable w.r.t. CN2(C), but
there are two intersecting edges uv, xy ∈ E, with x ∈ Z and u ∈ C. It holds that at
least one of the nodes in {x, y} is connected to one of the nodes in {u, v} by an edge in
G. Assume w.l.o.g. that yv ∈ E. Lemma 8.6 implies that {C(u), C(v), C(x), C(y)} is
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a subset of CN2(C). But then ΠG(u, x) = 〈u, v, y, x〉 is a path from u to x for which it
holds that all nodes belong to CN2(C) and thus, Z is reachable w.r.t. CN2(C), which is
a contradiction.

The above lemma implies that edges in the backbone graph Gb with at least one
endpoint in cell C can only be intersected by other edges in Gb, whose endpoints are
contained by cells in CN2(C) and that are reachable w.r.t. CN2(C). Hence, to construct
the local view of a real node u in C in the virtual planar backbone graph, it is in fact
sufficient to construct all backbone nodes in all reachable cells in CN2(C).

Lemma 8.9. Given a QUDG G = (V,E) satisfying R/r ≤
√
2 and the corresponding

virtual planar backbone graph Virt(Gb). For a node v ∈ V it holds that v ∈ Virt(Gb) if
and only if cluster head and bridge edge construction has been performed at least in C(v),
as well as in any reachable cell w.r.t. CN1(C(v)).

Proof. The construction of Virt(Gb) is essentially nothing other than cluster head and
bridge edge selection in each non-empty cell. Moreover, any node v ∈ V belongs to
Virt(Gb) if it is cluster head of its cell, or if it is a bridge node selected by its cluster head,
or the cluster head of a reachable cell in CN1(C(v)). Hence, cluster head and bridge edge
selection by non-reachable cells or cells outside CN1(C(v)) have no influence on whether
or not v is a node in Virt(Gb).

The combination of Lemmata 8.8 & 8.9 has the following implication. Given a
constrained QUDG G = (V,E), then for the local view construction on Virt(Gb) for
any node u ∈ V it is sufficient to perform cluster head and bridge edge selection in all
reachable cells w.r.t. CN3(C(u)). This holds since cluster head and bridge edge selection
in all reachable cells w.r.t. CN3(C(u)) is sufficient to construct all backbone nodes from
Gb located in all reachable cells w.r.t. CN2(C(u)), by Lemma 8.9. Given these backbone
nodes, for any real backbone node v in C(u), all intersections of an incident backbone
edge vw are present, since it can only be intersected by backbone edges whose endpoints
are reachable w.r.t. CN2(C(u)) by Lemma 8.8.

In Theorem 8.12 it is now shown that for any real or virtual node w ∈ Virt(Gb) there
always exists a node u such that it can compute the local view of w as long as cluster
head and bridge edge selection is performed in all cells in CN3(C(u)) which are connected
to u in G by a path of at most 6 hops. This result requires the following two auxiliary
lemmata.

Lemma 8.10. Let G = (V,E) be a QUDG satisfying R/r ≤
√
2 and let Ep ⊆ E be the

subset of edges from E that share a common point p ∈ R2, i.e., all edges in Ep intersect
each other in p. For the endpoint u of edges in Ep that is closest to p regarding Euclidean
distance (with ties broken arbitrarily), it holds that u ∈ D(x, y), for all edges xy ∈ Ep.

Proof. Let v denote the other endpoint of the edge in Ep whose endpoint is u. By
assumption it holds that no three nodes in V are collinear. Hence, u 6= p. Moreover it
trivially holds that u ∈ D(u, v). For any other edge xy ∈ Ep it holds that ‖xp‖, ‖yp‖ ≥
‖up‖. Hence, circle C‖up‖(p) is completely contained by D(x, y). Since xy was chosen
arbitrarily, this holds for all edges in Ep.
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(a) (b)

Figure 8.3: Illustrations for the proof of Lemma 8.11. Disks are given by dotted circles.
(a) represents Case 1, where w′ is a virtual node on xy. (b) represents Cases
2a and 2b, where w′ is a virtual node not generated by xy.

Lemma 8.11. Given a QUDG G = (V,E) satisfying R/r ≤
√
2, let w ∈ Virt(Gb) be

any virtual node and N
Virt(Gb)
1 (w) the 1-hop neighborhood of w in Virt(Gb) (including w

itself). There exists a generator x ∈ V of w, s.t. all real nodes in NVirt(Gb)(w), as well
as all generators of all virtual nodes in NVirt(Gb)(w) are located in reachable cells w.r.t.
CN2(C(x)), and these nodes are at most 4 hops apart from x in G.

Proof. Let Ew denote the set of backbone edges in Virt(Gb) also contained in E, and
which contain point w. Let xy ∈ Ew be an edge, such that x is closest to w, regarding
Euclidean distance, w.r.t. all endpoints of edges in Ew (ties can be broken arbitrarily).
By Lemma 8.10 it holds that x ∈ D(u, v), for all uv ∈ Ew.

It trivially holds that C(x) and C(y) are reachable cells w.r.t. CN2(C(x)) because y is
a 1-hop neighbor of x in G.

Next, consider an arbitrary real neighbor u ∈ N
Virt(Gb)
1 (w). This node is a neighbor of

w, since one of its incident backbone edges uv intersects xy in w. By Lemma 8.6 it holds
that C(u) and C(v) are contained in CN2(C(x)). Moreover, it holds that u and v are at
most 3 hops apart from x in G. Hence, C(u) and C(v) are reachable w.r.t. CN2(C(x)).

It remains to show that the claim holds for all other generators of virtual nodes in
N

Virt(Gb)
1 (w). Let w′ be any such virtual node.
Case 1 (w′ is a point on xy): For an illustration, see Figure 8.3a. There exists at least

one other backbone edge ab that intersects xy in w′. By Lemma 8.6 it holds that C(a)
and C(b) are contained in CN2(C(x)). Moreover, it holds that both a and b are at most
3 hops apart from x in G. Hence, C(a) and C(b) are reachable w.r.t. CN2(C(x)).

Case 2 (w′ is not a point on xy): For an illustration, see Figure 8.3b. Virtual node w′

is generated by a backbone edge uv which intersects xy in w, as well as one or several
backbone edges which intersect uv in w′. Consider a fixed but arbitrarily chosen edge cd
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intersecting uv in w′. By choice of x it holds that x ∈ D(u, v). Since ‖uv‖ ≤ R it holds
that ‖xu‖, ‖xv‖ ≤ R. At least one of the internal angles of the quadrangle formed by
{u, v, c, d} is at least π/2.

Subcase 2.1 (∡ucv ≥ π/2 or ∡udv ≥ π/2): Assume w.l.o.g. that ∡ucv ≥ π/2 (the
other case is symmetric). Then, both x and c are contained in D(u, v) and with ‖uv‖ ≤ R
it holds that ‖xc‖ ≤ R. Since cd is an edge from the input graph, it holds in addition
that ‖cd‖ ≤ R. Application of the triangle inequality then yields

‖xd‖ ≤ ‖xc‖+ ‖cd‖ ≤ R+R = 2R .

Hence, C(c) and C(d) belong to CN2(C(x)). It also holds that x is at most 2 hops apart
from u and v in G (since x ∈ D(u, v)), and u or v is at most 2 hops apart from c and
d (since c ∈ D(u, v)). Hence, x is at most 4 hops apart from c and d in G. Then, there
exists a path from u to c and d, which only visits cells in CN2(C(x)) and thus, C(c) and
C(d) are reachable w.r.t. CN2(C(x)).

Subcase 2.2 (∡cud ≥ π/2 or ∡cvd ≥ π/2): Assume w.l.o.g. that ∡cvd ≥ π/2 (the other
case is symmetric). Then v ∈ D(c, d) and ‖vc‖, ‖vd‖ ≤ R holds. The triangle inequality
yields

‖xc‖ ≤ ‖xv‖+ ‖vc‖ ≤ R+R = 2R , and

‖xd‖ ≤ ‖xv‖+ ‖vd‖ ≤ R+R = 2R .

Hence, C(c) and C(d) belong to CN2(C(x)). Moreover, it holds that x is at most 2 hops
apart from u and v in G (since x ∈ D(u, v)), and v is at most 2 hops apart from c and d
(since v ∈ D(c, d)). Thus, x is at most 4 hops apart from c and d in G. With the same
argument as in Subcase 2.1, C(c) and C(d) are reachable w.r.t. CN2(C(x)).

Theorem 8.12. Let G = (V,E) be a QUDG satisfying R/r ≤
√
2 and w be any node in

Virt(Gb). There exists a node u ∈ V , such that cluster head and bridge edge selection in
all cells which are connected to u in G by a path of length at most 6 hops and which are
reachable w.r.t. CN3(C(u)), leads to an identical local view of w on the virtual planar
backbone graph compared to the construction of Virt(Gb) over the entire network graph.
In case w is a real node then this claim holds for u = w.

Proof. To improve readability, in the following the term global construction refers to the
construction of Virt(Gb) over the entire network graph, whereas local construction refers
to cluster head and bridge edge selection in the restricted area described in this lemma.

Case (w is a real node): By Lemma 8.9 it holds that w is also a backbone node in the
local construction starting from C(w).

“⇒”: It is first shown that any neighbor v of w in the local construction is also a
neighbor of w in the global construction.

Let v by any neighbor of w in the local construction. Backbone node v is either a real
node or a virtual node. Suppose it is a real node. All reachable cells w.r.t. CN1(C(v))
are reachable cells w.r.t. CN2(C(w)) and are connected to w by at most 3 hops. Hence,
by Lemma 8.9 v is a backbone node in the global construction. Now suppose that v
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is a virtual node generated by the intersecting backbone edges wu and xy in the local
construction. It holds by Lemma 8.8 that the cells C(u), C(x), and C(y) are reachable
cells w.r.t. CN2(C(w)) and are connected to w by at most 3 hops. Hence, the reachable
cells w.r.t. these cells’ one-cell neighborhoods are at most 5 hops apart from w in G and
are reachable cells w.r.t. CN3(C(w)). Hence, by Lemma 8.9, u, x, y are real and v is a
virtual backbone node in the global construction.

Now, in either of the two cases (v is real or virtual), assume that v is not a neighbor of
w in the global construction. Then there must exist a backbone edge ab in the global
construction that intersects wv. This leads to a contradiction, because a and b are at
most 3 hops apart from w in G and the cells C(a) and C(b) as well as their reachable
one-cell neighborhoods are reachable cells w.r.t. CN3(C(w)), which implies that a and
b are also backbone nodes in the local construction and v cannot be a neighbor of w.
Hence, v is a neighbor of w in the global construction.

“⇐”: It is shown that any neighbor v of w in the global construction is also a neighbor
of w in the local construction.

This can be proven analogously to the prior implication, where the terms local and
global construction are simply swapped. The argumentation stays the same.

Case (w is a virtual node): Let x be the generator of w whose existence is guaranteed
by Lemma 8.11. Then all real neighbors of w as well as all generators of virtual neighbors
of w are 4-hop neighbors of x in G and are contained by reachable cells w.r.t. CN2(C(x)).
For any such cell C it holds that its reachable cells w.r.t. CN1(C) are at most 6 hops
apart from x and are reachable cells w.r.t. CN3(C(x)). Consequently, all real neighbors
and generators of virtual neighbors of w in the global construction are also backbone
nodes in the local construction starting from C(x) and the latter actually contains the
virtual node w. Hence, the neighborhoods of w in the local and global construction can
only differ if there would be a backbone edge ab in the local construction which intersects
backbone edge wv, where v is a virtual or real neighbor of w in the global construction.
Suppose such an edge exists. Then using the same argumentation as in the proof of
Lemma 8.11 (Cases 1 and 2), it must hold due to the choice of x that a and b are at most
4 hops apart from x in G and that C(a) and C(b) are reachable cells w.r.t. CN2(C(x)).
Hence, their reachable 1-cell neighborhoods are connected by at most 6 hops to x and
are reachable cells w.r.t. CN3(C(x)). But then, a and b are also backbone nodes in the
global construction, which is a contradiction to v being a neighbor of w therein. It follows
that the neighborhoods of w in the local and the global construction are equivalent, and
with x there exists a real node satisfying the claim.

The above theorem implies correctness of the following algorithmic approach. Let node
u ∈ V be a node that wants to construct its local view on Virt(Gb). It requests all nodes
in G belonging to reachable cells in CN3(C(u)) by paths of length at most 6 hops in G
(e.g. using restricted flooding) to execute the distributed algorithm by Lillis et al. [70,71].
After termination by all nodes, u knows its adjacency in Virt(Gb) if it happens to be
a backbone node, and it otherwise knows its connecting edge to its cluster head in the
routing graph Gr.
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In the subsequent sections, it is now shown that this idea can be transformed into a
beaconless algorithm.

8.3 Beaconless Computation of Bridge Edges

The first step towards beaconless computation of a nodes adjacency in Virt(Gb) is the
construction of the bridge edges of a particular cell. This is the task of algorithm
BeaconlessBridgeEdge (BBE) that is introduced now.

Given any QUDG G = (V,E), after execution of BBE by any node u ∈ V , for each cell
in CN1(C(u)) which is connected by at least one edge in E to C(u), node u is aware of
exactly one such edge called the representative bridge edge. Initially node u is unaware of
its neighborhood. During the execution it exchanges messages only with a few neighbors.
Apart from worst-case situations, which are considered in Section 8.5, most neighbors of
u never send a message and therefore remain invisible for u. This avoids communication
overhead compared to any beacon-based approach, where all nodes transmit a message
regardless of whether they are important for this task or not.

It is worth noting that algorithm BBE is applicable for arbitrary QUDGs, i.e., it does
not require input graphs to satisfy R/r ≤

√
2.

8.3.1 Description of Algorithm BeaconlessBridgeEdge (BBE)

The algorithm consists of two phases (Phase I and Phase II), which are executed by the
initiating node u, and message handling routines for u as well as for all other nodes.

The algorithm is started by the initiator u with execution of Phase I, in which u
determines one representative bridge edge to each neighboring cell in CN1(C(u)) to which
it is connected in G. It does so by sending a FirstRequest which contains the 1-cell
neighborhood list Lu. This FirstRequest initiates a timer-based contention among nodes
in its neighboring cells. In all neighboring cells in which this FirstRequest is overheard,
nodes overhearing this message start a delay timer proportional to their Euclidean distance
to the geometric center of their cell and whose duration is at most tmax. As soon as a
node’s timer expires, it answers with a FirstResponse. If a node overhears a FirstResponse
from another node in its cell, it refrains from sending a message. This way, after time
at most tmax exactly one FirstResponse is generated in each cell that has participated.
Initiator u overhears these FirstResponses, stores the respective bridge edges, and removes
those cells from Lu. After time tmax it terminates Phase I and starts execution of Phase II.

The goal of Phase II is to determine one representative bridge edge for every neighboring
cell in CN1(C(u)) for which no bridge edge was found during Phase I, i.e., for every
cell contained in list Lu. To do so for every such “unprocessed” cell, node u starts a
contention among nodes in its cell C(u) by sending a SecondRequest containing one cell C
from Lu. Upon sending this message, node u starts a delay timer of duration tmax. This
delay may be extended later on. Those nodes in C(u) whose communication radius R
intersect the “unprocessed” cell C become candidates for this cell. Candidates start a delay
timer of duration at most tmax proportional to their Euclidean distance to the geometric
center of C. In turn, the node in C(u) closest to the geometric center of C will be the
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first to respond with a Phase II FirstRequest. All candidates as well as initiator u will
extend their delay timers by time tmax, after overhearing this message. This FirstRequest
additionally starts a contention among the nodes in cell C overhearing it, just like in
Phase I. Now two cases may occur.

If there is at least one node in C overhearing the message, then the one closest to the
geometric center to C will be the first to respond with a Phase II FirstResponse and
suppresses other responses from C. Upon overhearing this message, the corresponding
candidate sends a SecondResponse. This SecondResponse is overheard by all nodes in
C(u). Other candidates for C as well as the initiator u cancel their delay timers. Initiator
u stores the respective bridge edge, removes cell C from list Lu, and sends the next
SecondRequest unless Lu is empty.

In the other case, where no node in C has overheard the Phase II FirstRequest by the
candidate, after time tmax this candidate’s delay timer expires without having received
a Phase II FirstResponse. In turn, eventually the delay timer of the second closest
candidate to C expires (if any), which then performs identical action. Eventually, one
of the candidates succeeds in detecting a representative bridge edge—or not. In both
cases, initiator u eventually proceeds with the next unprocessed cell, either after having
received a SecondResponse, or after expiry of its own delay timer. Initiator u terminates
once Lu is empty and the delay timer of u has expired or canceled.

A detailed pseudocode description is given in Algorithm 3. In this description, variable
u always refers to the distinguished node which has initiated the algorithm’s execution.
Four different message types are used. Any message includes the position of its sender s.
Cells may, for example, always be represented by their geometric centers. The geometric
center (midpoint) of a cell C is denoted by gc(C).

8.3.2 Correctness

To prove termination, it is shown that every node involved in the computation reaches a
state in which no timer is running and no message sending is scheduled.

Theorem 8.13. Execution of BBE initiated by any node u ∈ V on a QUDG G = (V,E)
terminates.

Proof. Note that message sending by nodes v 6= u, implies expiry, i.e., not cancellation,
of delay timers.

After a delay of tmax past sending the FirstRequest, initiator u terminates Phase I
and every neighbor v of u in G has either decided not to start a timer, has canceled its
delay timer, or has actually answered with a FirstResponse; i.e., all of these nodes have
terminated at the moment when Phase II is being entered.

At the beginning of Phase II, |Lu| ≤ |CN1(C(u))| ∈ O(1) and during each loop pass,
one element is removed from Lu. Hence, to show termination of Phase II, it suffices to
show that a single loop pass terminates.

Let Zi be the head of list Lu removed in round i and denote this cell’s geometric center
by mi. Let C be the (possibly empty) distance-ordered set of candidates (which are nodes
in C(u)) for Zi, i.e., for any two cj , cl ∈ C, j < l⇔ ‖cjmi‖ < ‖clmi‖.
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Algorithm 3 BeaconlessBridgeEdge (BBE)
Variables: u is the initiator, r and R refer to the minimum and maximum transmission radius, respectively,
tmax > 0 is a constant known to all nodes.

Description of message types

FirstRequest(s,Ls,i) contains a list L of unprocessed cells and integer i ∈ {I,II} referring to the phase
during which the message is sent.

SecondRequest(s,C) contains a single unprocessed cell C.

FirstResponse(s,d,i) is a node’s answer to a FirstRequest previously sent by destination d which is
addressed by this message. Integer i ∈ {I,II} refers to the phase during which the message is sent.

SecondResponse(s,w,d) is a node’s answer to a SecondRequest previously sent by destination d which is
addressed by this message. Node w is located in the cell addressed by this SecondRequest.

Action of initiator u

1: Phase I

2: Set Lu ← CN1(C(u)) \ {C(u)} ⊲ Initialize list of neighboring cells
3: Send FirstRequest(u,Lu,I) and schedule termination of Phase I after delay of tmax

4: Terminate Phase I
5: Phase II

6: while Lu 6= ∅ do

7: Remove head of list Lu, denoted by Z
8: Send SecondRequest(u,Z) and start a delay timer of duration tmax

9: Terminate Phase II
10: on reception of FirstResponse(s,d,i) do

11: if i = I then ⊲ Note that d = u must be the case
12: Lu ← Lu \ {C(s)} and store us as representative bridge edge for C(s)

13: on reception of FirstRequest(s,Ls,i) do

14: if i = II then

15: Extend delay timer by tmax

16: on reception of SecondResponse(s,w,u) do

17: Store sw as representative bridge edge for C(w), cancel delay timer, and continue with the
while-loop in line 6

Action of node v 6= u

18: on reception of FirstRequest(s,Ls,i) do

19: if i = I and C(v) ∈ Lu then ⊲ Note that s = u, and therefore use variable u instead of s
20: Schedule sending of FirstResponse(v,u,I) after a delay of duration t(‖v, gc(C(v))‖, r/2)
21: if i = II then ⊲ Note that |Ls| = 1
22: if v is a candidate for the cell contained in Ls then

23: Extend delay timer by tmax

24: if C(v) ∈ Ls then

25: Schedule sending of FirstResponse(v,s,II) after delay of duration t(‖v, gc(C(v))‖, r/2)
26: on reception of FirstResponse(s,d,i) do

27: if C(v) = C(s) then

28: Cancel delay timer and sending of FirstResponse

29: if i = II and v = d then

30: Send SecondResponse(v,s,u)

31: on reception of SecondRequest(u,Z) do

32: if C(v) = C(u) and cell Z intersects v’s transmission radius R then

33: Become a candidate for Z and schedule sending of FirstRequest(v,Lv = Z,II) after delay of
duration t(‖v, gc(Z)‖,R+ r)

34: on reception of SecondResponse(s,w,u) do

35: if C(v) = C(s) and v is candidate for C(w) then

36: Cancel delay timer and sending of FirstRequest
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If C = ∅, then no node in C(u) schedules sending of a FirstRequest and after time
tmax, initiator u proceeds with the next loop pass. Otherwise, let C′ = 〈c1, ..., cg〉 ⊆ C,
with 1 ≤ g ≤ |C|, be the longest consecutive subsequence of C, beginning with the first
element c1 in C, s.t. nodes in C′ do not have an edge in E with the second endpoint being
contained in cell Zi.

An inductive argument on the length of C′ yields that after time at most (g + 1) · tmax

all nodes in {u} ∪ C \ C′ have a running delay timer with remaining delay of at most tmax.
If C = C′, by that time the delay timers of all nodes other than the initiator’s have

already expired. After a delay of at most tmax, the delay timer of initiator u expires as
well; i.e., no node has a running timer or has scheduled sending of a message and the next
loop pass begins.

In the remaining case, the next expiring delay timer belongs to cg+1, the first element
from C \ C′. By construction of C, ∃ cg+1z ∈ E, with z ∈ Zi and z answers to the
FirstRequest by cg+1. This causes cg+1 to send a SecondResponse for Zi, which cancels
delay timers and message transmissions of all other candidates in C. Moreover, this leads
to cancellation of the delay timer of u, which then proceeds with the next pass of the
while-loop.

To prove correctness, the following notation is required. Denote by N (C(u)) the subset
of neighboring cells of C(u), which are connected by a bridge edge to C(u) in the input
graph G. Partition N (C(u)) into two disjoint subsets N (1)(C(u)) and N (2)(C(u)) as
follows. N (1)(C(u)) encompasses exactly all cells in CN1(C(u)) to which node u shares
an edge in the input graph G, whereas N (2)(C(u)) encompasses the remaining cells from
CN1(C(u)) to which u does not share an edge, but other nodes in C(u) do.

Lemma 8.14. After termination of Phase I, node u knows exactly one representative
bridge edge for each cell reachable cell in CN1(C(u)).

Proof. If N (1)(C(u)) = ∅, then no neighbor of u in G starts a delay timer for a FirstRe-
sponse. After time tmax, u terminates with an empty set of representative bridge edges.

Otherwise, let C be any cell in N (1)(C(u)). By definition of this set, there exists
V ′ ⊂ V , V ′ 6= ∅, whose elements are contained by C and share an edge with u in E. The
node in V ′ closest to the geometric center of C is the first to send a FirstResponse. This
message is overheard by u, which stores uv as the representative bridge edge, and it is
overheard by all other nodes in V ′, which causes cancellation of these nodes’ timers and
scheduled transmissions.

Lemma 8.15. After termination of Phase II, node u knows exactly one representative
bridge edge for each cell in N (2)(C(u)).

Proof. After termination of Phase I, list Lu is a superset of N (2)(C(u)). Before the first
execution of the while-loop, 0 < |Lu| ≤ |CN1(C(u))| holds. Hence, the loop is actually
being executed. As the size of Lu decreases in every round by one element, there are at
most |CN1(C(u))| ∈ O(1) rounds of execution.

For an arbitrary i ≤ |CN1(C(u))| it is shown: If cell Ci which is processed during round
i belongs to N (2)(C(u)), then at the end of round i, u stores a representative bridge
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edge connecting C(u) and Ci. This proves the claim since the execution of a round is
independent of the outcome of previous rounds. Distinguish two cases:

Case (Ci ∈ N (2)(C(u))): There is a non-empty subset V ′ ⊂ V of candidates for Ci, all
of which are connected in G to at least one node in Ci. Let v ∈ V ′ be the node minimizing
the distance to the geometric center of Ci. At the moment this node’s delay timer expires,
it has not overheard any other SecondResponse for Ci. This follows from the choice of v.
Hence, v sends a FirstRequest for Ci, which is being answered by some neighbor w ∈ Ci

whose existence is guaranteed by assumption. In consequence, v sends a SecondResponse.
This is overheard by all nodes in C(u). Node u stores vw as bridge edge for Ci and other
candidates in V ′ cancel their delay timers and scheduled transmissions.

Case (Ci /∈ N (2)(C(u))): There is either no candidate in C(u), or none of the candidates
shares an edge in G with an endpoint in Ci. In the former case, no message transmissions
are scheduled by nodes in C(u). After delay tmax, u continues with the next loop pass.
In the other case, each candidate sends a FirstRequest for Ci, but which is not being
answered. Hence, no candidate sends a SecondResponse and u continues with the next
loop pass. In either case, u proceeds without storing a representative edge for Ci.

Theorem 8.16. After the execution of algorithm BBE on any QUDG G = (V,E) by any
u ∈ V , u stores one bridge edge for each cell in N (C(u)).

Proof. The proof follows directly from Lemma 8.14 and Lemma 8.15.

8.4 Beaconless Construction of the Virtual Planar Backbone

Graph

The desired goal is to design a reactive local topology control algorithm for construction
of a node’s local view on the virtual planar backbone graph. Given a distinguished
node u ∈ V , by Theorem 8.12 it is sufficient to select cluster heads and bridge edges
in all reachable cells w.r.t. CN3(C(u)) which are connected to C(u) by at most 6 hops.
Algorithm BBE from the previous section enables beaconless selection of bridge edges in
a single cell. In the following this algorithm is extended to algorithm BeaconlessBackbone
(BBB). Executed by an arbitrary node u it first selects a cluster head for C(u). This
cluster head then constructs bridge edges to neighboring cells using the technique from
BBE. In turn any neighboring cell of C(u) to which a bridge edge is constructed also
starts algorithm BBB, as long as it belongs to CN3(C(u)) and is connected to C(u) by at
most 6 hops, which again causes execution of BBB in its neighboring cells, and so on.

Algorithm BBB ensures that after its termination, which is detected by the cluster
head of the distinguished cell C(u), cluster head and bridge edge selections have been
successfully performed by all relevant cells. Then, each node in each of these cells
knows whether or not it belongs to the backbone. Then, the induced subgraph over
these backbone nodes is constructed and each backbone node in C(u) gathers 3-hop
neighborhood information in this graph. This information is sufficient for each of these
backbone nodes to compute its adjacency in Virt(Gb). In the following the algorithm is
developed step-by-step.
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8.4.1 Beaconless Cluster Head Selection

Let x ∈ V be any node and let gc(C(x)) denote the geometric center of C(x). Beaconless
selection of a cluster head in C(x), initiated by x, can be achieved as follows.

Node x locally broadcasts a message of type CH-Request including its position. Upon re-
ception of this message, every node v ∈ V with v ∈ C(x) (including x), schedules sending of
a message of type CH-Response, including its position, after delay of t(‖v, gc(C(x))‖, r/2).
If upon expiry of its delay timer, node v has not overheard a CH-Response by any other
node w ∈ C(x), then it locally broadcasts the CH-Response. Thereby, the sender of the
CH-Response announces itself as cluster head of C(x), denoted H(C(x)). All other nodes
in C(x) overhear this message, cancel their delay timers and scheduled transmissions, and
store v as cluster head.

Note that this algorithm is correct. There is at least one node, namely initiator x,
contained by the corresponding cell. Hence, one node actually responds and suppresses
all other CH-Responses.

8.4.2 Beaconless Backbone Construction

The combination of beaconless cluster head selection and beaconless bridge edge construc-
tion provides the basic functionalities of the desired algorithm.

However, the broadcast-like operation outlined above misses one important feature,
namely, termination detection. Although the cluster head of the distinguished cell C(u)
is aware of the termination of bridge edge selection process in its cell C(u), it cannot
possibly know when this operation has terminated in all other relevant cells in CN3(C(u)).
This is due to the following fact: During Phase II of bridge edge selection, for construction
of a representative bridge edge to a particular C it may be the case that not only one, but
multiple, or even all candidates (which can be arbitrarily many in the worst-case) have to
try to find a neighbor in cell C. Unless assumptions are made that allow to upper-bound
the time required to process a single neighboring cell (e.g., by making assumptions on the
maximum number of nodes in the network, or the like), the time required till termination
of beaconless bridge edge selection cannot be known or bounded in advance.

The solution to this problem in algorithm BBB is a convergecast operation. The
broadcast-like execution of cluster head and bridge edge selection gives a tree T of cells,
rooted at distinguished cell C(u). In this tree, cell C is the parent of cell C ′ if bridge
edge selection in C triggered algorithm execution in C ′. Leaves in this tree are those cells
that have not triggered algorithm execution in any other cell. Once beaconless bridge
edge selection by the cluster head of such a leaf cell has terminated, this cluster head
can report its termination to its parent in T . Once an internal node in T has terminated
bridge edge selection and all children in T have reported their termination, it can report
termination to its parent, and so on. In algorithm BBB, this operation is performed by
the cluster head of a cell, which maintains a list Ltrig of triggered neighboring cells.

Next, algorithm BeaconlessBackbone (BBB) is described as a whole.
Algorithm BeaconlessBackbone (BBB) is started on input C(u) by a single node u ∈ V

by sending a CH-Request. As described previously, this message starts a contention among
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all nodes in C(u) and the node closest to the geometric center of C(u) announces itself as
cluster head H(C(u)). This cluster head now starts beaconless bridge edge construction
as described in Algorithm 3. Each node v sending a FirstResponse during bridge edge
construction, which is outside of C(u), inside CN3(C(u)), and which is at most 6 hops
apart from C(u), starts execution of algorithm BBB on input C(u), unless this has already
been done by another node in its cell C(v). Moreover, if node v executes BBB, then its
sends a message of type Triggered to the destination node of its FirstResponse. If this
destination node is not the cluster head of its own cell, then it forwards this message
to its cluster head. Thus, in either case this cluster head is aware of the fact that cell
C(v) has been triggered by its bridge edge construction and stores this in Ltrig, the list of
triggered neighboring cells.

After termination of Phase II of beaconless bridge edge construction by any cluster
head H(C), this cluster head has either an empty list Ltrig—or not.

• If this list is not empty, then the cluster head waits for incoming messages of type
Terminated from triggered neighboring cells. Upon receiving such a message, it
removes the corresponding cell from its list Ltrig.

• If this list is empty and it is not the cluster head of distinguished cell C(u), then
its sends a message of type Terminated to the node in its cell which has initiated
execution of BBB in its cell by sending the CH-Response. This node then forwards
the message to the node in the neighboring cell by which it was triggered. If this
node is not the cluster head, one additional forwarding step is required such that
the corresponding cluster head finally receives this Terminated message.

• If this list is empty and it is cluster head of distinguished cell C(u), then it informs
all nodes in C(u) about the termination via a local broadcast and terminates.

The above algorithm is given by the combination of Algorithms 3 and 4, where
the latter extends the former by adding two operations5 and several message handlers.
These extensions require that the messages of the types FirstRequest, FirstResponse,
SecondRequest, and SecondResponse (introduced in Algorithm 3) as well as the message
types introduced in Algorithm 4 additionally contain information on distinguished cell
C(u). Moreover, the message types FirstRequest and SecondRequest have to be extended
by an integer variable hopCount, that counts the number of hops, by which a cell is
connected toH(C(u)). Then, each node v receiving such a message can immediately decide
if its cell C(v) is at most 6 hops apart from C(u) and if in addition C(v) ∈ CN3(C(u))
holds.

5 After sending a FirstResponse has to be executed by a node directly after sending a FirstResponse in
Algorithm 3.

After termination of Phase II is executed by every cluster head that has just terminated bridge edge
selection, i.e., that has reached Step 9. in Algorithm 3.

174



8.4 Beaconless Construction of the Virtual Planar Backbone Graph

Algorithm 4 BeaconlessBackbone (BBB)
Assumes: inital call by distinguished node u on input C(u).
Variables: r and R refer to the minimum and maximum transmission radius, respectively, tmax > 0 is a
constant known to all nodes.

Description of message types

CH-Request(s) requests election of a cluster head in cell C(s) by sender s.

CH-Response(s) is the announcement of sender s that it becomes cluster head of cell C(s).

Triggered(s,d,C) informs destination d that its FirstRequest triggered algorithm execution in cell C.

Terminated(s,d,C) informs destination d that algorithm execution in cell C has terminated.

Action of node v

1: Send CH-Request(v) and enqueue this message also in own inbox

Action of node v after sending FirstResponse(v, d, i) ⊲ Extension to Algorithm 3

2: if C(v) ∈ CN3(C(u)), v is connected to C(u) by at most 6 hops, and as yet no CH-Request for C(v)
has been processed then

3: triggeredBy← d, send Triggered(v, d, C(v)), and execute BBB(C(u))

Action of node v after Termination of Phase II ⊲ Extension to Algorithm 3

4: while Ltrig(v) 6= ∅ do ⊲ There are triggered neighboring cells that have not terminated yet
5: Wait for messages of type Terminated and process those

6: if C(v) 6= C(u) then ⊲ Node v is not cluster head of distinguished cell C(u)
7: Send Terminated(v, y, C(v)) to y ∈ C(v), where y is the node having sent the CH-Request for

C(v) (if y = v, then enqueue this message in own inbox)
8: else ⊲ Node v is the cluster head of distinguished cell C(u)
9: Terminate (if needed, inform nodes in C(u) about termination via a local broadcast)

Message handling by any node v

10: on reception of CH-Request(s) do

11: if C(v) = C(s) then

12: Schedule sending of CH-Response(v) and construction of representative bridge edges (as
described in Algorithm 3) after delay of duration t(‖v, gc(C(v))‖, r/2)

13: on reception of CH-Response(s) do

14: if C(s) = C(v) and s 6= v then

15: Cancel delay timer, sending of CH-Response, and construction of representative bridge edges
16: Store H(C(v))← s

17: on reception of Triggered(s, d, C) do

18: if d = v and v 6= H(C(v)) then

19: Send Triggered(v,H(C(v)), C) ⊲ Forward to cluster head

20: if d = v and v = H(C(v)) then

21: Ltrig(v)← Ltrig(v) ∪ {C} ⊲ Update list of triggered neighboring cells

22: on reception of Terminated(s, d, C) do

23: if v = d then

24: if C(v) = C then ⊲ I.e., v has sent the CH-Request for C(v)
25: Send Terminated(v, triggeredBy, C) ⊲ Forward to parent

26: if v 6= H(C(v)) then

27: Send Terminated(v,H(C(v)), C) ⊲ Forward to cluster head

28: if v = H(C(v)) then

29: Ltrig(v)← Ltrig(v) \ {C} ⊲ Remove C from list of triggered neighboring cells
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8.4.3 Correctness of Beaconless Backbone Construction

Lemma 8.17. The cluster head of the distinguished cell C(u) terminates eventually.

Proof. Execution of BBB in C(u) triggers execution of it in neighboring cells, as long as
they are at most 6 hops apart from C(u) and belong to CN3(C(u)). This gives a directed
tree of cells, rooted at C(u), containing an edge

−−→
CC ′ if cell C has triggered cell C ′. Each

cell has only a constant number of neighboring cells and the number of cells contained in
CN3(C(u)) is only a constant factor larger. Each cell can only be triggered once. Hence,
T consists of a constant number of internal cells and leaf cells.

Leaf cells represent those cells which have not triggered others. Hence, their cluster
heads have empty lists of triggered neighboring cells, Ltrig. Eventually, these cluster heads
have processed all neighboring cells and terminate Phase II, by Theorem 8.13, and then
send a message of type Terminated. Cluster heads of parent cells of these leaf cells in T
receive and process the Terminated messages and remove the corresponding cells from
their lists of triggered neighboring cells. An induction on the height of tree T yields that,
whenever all cells of height i have terminated, then all cluster heads of cells of height i− 1
have empty lists of triggered neighboring cells and terminate as well. Therefore, eventually
all successors of the root node have terminated and H(C(u)) receives terminated messages
from all such cells. Then H(C(u))) has an empty list of triggered neighboring cells and it
terminates.

Lemma 8.18. Once the cluster head of distinguished cell C(u) has terminated, algorithm
BBB has been executed in every reachable cell from CN3(C(u)) which is at most 6 hops
apart from C(u).

Proof. Assume there is Z ∈ CN3(C(u)), which is reachable w.r.t. CN3(C(u)) and
connected to C(u) by a path of length at most 6 hops, but in which BBB has not been
executed. Because Z is reachable, there exists a path ΠG(x, z), with x ∈ C(u) and
z ∈ Z, connecting x and z in G, s.t. all nodes of this path belong to CN3(C(u)). Let
C = 〈C(u) = C1, ..., Cl = Z〉, l ≥ 2, be the sequence of cells visited, while traversing
ΠG(x, z). The claim is proven by induction on the length of C.
I.h.: The claim holds for an arbitrary but fixed i.
B.c. (|C| = 2): By Theorem 8.16, during computation of representative bridge edges, one
such edge c1c2 connecting c1 ∈ C1 and c2 ∈ C2 is found. At this point, either another
node in C2 has already started execution of BBB, or c2 does so.
I.s. (i → i+ 1): By the i.h., it holds that all cells Ci, i < |C|, have executed BBB. By
the time it is executed in Ci, Ci+1 has either already been triggered by some other cell
in CN3(C(u)), or not. Consider the latter case. By assumption there exists at least
one edge cici+1 ∈ ΠG(x, z) with ci ∈ Ci and ci+1 ∈ Ci+1. By Theorem 8.16 one such
edge is eventually determined. By assumption, Ci+1 is reachable w.r.t. CN3(C(u)) and
connected to C(u) by a path of length at most 6 hops. Hence, the corresponding endpoint
in Ci+1 executes BBB.

Theorem 8.19. After termination of algorithm BBB by the cluster head of distinguished
cell C(u), in every reachable cell from CN3(C(u)) which is at most 6 hops apart from
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C(u) the cluster head and all bridge edges have been selected and each node in these cells
knows its role in the backbone graph.

Proof. The execution of BBB by any node v includes the selection of a cluster head and
the computation of the set of representative bridge edges by that cluster head for cell C(v).
By Lemma 8.18, these operations are performed by all relevant cells from CN3(C(u)).
Hence, after termination at H(C(u)) each node in each of these cells knows whether or
not it belongs to the backbone.

8.4.4 Construction of Nodes’ Adjacencies in the Virtual Planar Backbone

The final task is to equip all backbone nodes that are residing in distinguished cell C(u)
with their adjacencies in the virtual planar backbone graph Virt(Gb).

In the following assume algorithm BBB has been executed by a node u ∈ V of a given
QUDG G = (V,E) and cluster head H(C(u)) has reported the algorithm’s termination.
Let v ∈ C(u) be any backbone node. By Lemma 8.8 it holds that only those backbone
edges incident to backbone nodes residing in reachable cells w.r.t. CN2(C(u)) can intersect
backbone edges incident to v. Moreover, by Theorem 8.12, all such backbone nodes have
actually been constructed. Let V ′

b ⊂ Vb be the subset of backbone nodes residing in cells
that are reachable w.r.t. CN2(C(u)). The induced graph G′

b w.r.t. input graph G, i.e.,
the graph over node set V ′

b where any two nodes are connected by an edge if they are
connected in E, is a connected quasi unit disk graph satisfying R/r ≤

√
2. This holds

because G′
b is connected. The latter holds for the following reason: Firstly, BBB was

executed in any cell C ∈ CN3(C(u)) by a node which is connected by a path, consisting
of nodes that belong to V ′

b , to the distinguished cell C(u). Secondly, all nodes that belong
to C are connected by a clique in G. Hence, the nodes in V ′

b constitute a connected set
in G. In addition, the graph induced over a subset of nodes from a QUDG G = (V,E)
satisfying R/r ≤

√
2 is also a QUDG satisfying R/r ≤

√
2. By Lemma 3.12, it now follows

that each real backbone node v in C(u) can compute its adjacency in Virt(Gb) if it is
provided with 3-hop neighborhood information of G′

b.
Note that gathering 3-hop neighborhood information by a node in G′

b does not contradict
the reactive approach, since the degree of any node in G′

b is bounded from above by a
constant and therefore, the size of its 3-hop neighborhood is in O(1) as well (i.e, the costs
produced by gathering 3-hop neighborhood information is asymptotically the same as
sending of a single message).

Clearly, gathering of k-hop neighborhood information is easy and straightforward.
However, for completeness of the approach, now a simple algorithm called BackboneNeigh-
borhood (BBN) is presented which completes this task. If executed by the cluster head
H(C(u)) of distinguished cell C(u) right after termination of BBB, it provides all backbone
nodes in C(u) with their k-hop neighborhood in G′

b.
In the remainder, let the k-hop neighborhood of a node v ∈ V in G = (V,E) be defined

as follows: NG
0 (v) = {v} and for k ≥ 1, NG

k (v) is the subset of nodes from V reachable by
v in G along a path consisting of at most k hops.

Algorithm BBN executed by H(C(u)) on input k proceeds as follows.
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In rounds i = 0..k − 1, H(C(u)) locally broadcasts a message of type Neighborhood,
including number i as well as its i-hop neighborhood information, and delays the next
round by using a delay timer of duration (k + 1− i) · tmax. This delay ensures that all
backbone nodes which are at most (k − i) hops apart from H(C(u)) have learned about
their complete (i+ 1)-hop neighborhoods before H(C(u)) sends the next message.

Upon reception of such a message, any backbone node v (including H(C(u))) which
belongs to CN2(C(u)) updates its (i + 1)-neighborhood information accordingly. Any
node v 6= H(C(u)), which receives a Neighborhood message for number i for the very
first time, schedules transmission of a Neighborhood message containing number i and its
i-hop neighborhood information after a delay of at most tmax and proportionally to the
Euclidean distance to sender of the Neighborhood message.

Upon termination by H(C(u)), any backbone node in C(u) is then provided with its
full k-hop neighborhood information.

A detailed pseudocode description of algorithm BBN is given in Algorithm 5.

Algorithm 5 BackboneNeighborhood (BBN)
Assumes: execution of algorithm BBB on input C(u) by node u has terminated.
Variables: u is the distinguished node, r and R refer to the minimum and maximum transmission radius,
respectively, tmax > 0 is a constant known to all nodes.

Definition of message types

Neighborhood(s,C(u),i,N
G′

b

i (s)) contains the positions of sender s, distinguished cell C(u), an
integer 0 ≤ i < k, and the i-hop neighborhood set of s in G′

b.

Action by node v = H(C(u))

1: for i = 0 to k − 1 do

2: Send Neighborhood(v,C(u),i,N
G′

b

i (v))
3: Start a delay timer with delay of duration (k+1− i) · tmax for delaying the next loop pass

4: Terminate
5: on reception of Neighborhood(s,C(u),i,N

G′

b

i (s)) do

6: N
G′

b

i+1(v)← N
G′

b

i+1(v) ∪N
G′

b

i (s)

Action by any node v 6= H(C(u))

7: on reception of Neighborhood(s,C(u),i,N
G′

b

i (s)) do

8: if C(v) ∈ CN2(C(u)) and v is a backbone node (i.e., v ∈ V ′
b ) then

9: N
G′

b

i+1(v)← N
G′

b

i+1(v) ∪N
G′

b

i (s)

10: Unless sending of Neighborhood(v,C(u),i,N
G′

b

i (v)) has already been scheduled,
schedule sending of it after delay of duration t(‖vs‖,R)

Theorem 8.20. After termination of BBN on input k, initiated by H(C(u)), each
backbone node in C(u) knows all its k-hop neighbors in G′

b.

Proof. By induction on control variable i it is proven that after round i of the loop, all
nodes in N

G′

b

k−i(H(C(u))) know their complete (i+ 1)-hop neighborhoods in G′
b.
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I.h.: The claim holds for an arbitrary but fixed i < k − 1.
B.c. (i = 0): After round i = 0, i.e., after time (k + 1) · tmax, each v ∈ N

G′

b

k+1(H(C(u)))

has locally broadcasted its set N
G′

b

0 (v). Hence, all nodes in N
G′

b

k−i=k(H(C(u))) know their
complete i+ 1 = 1-hop neighborhoods in G′

b.

I.s. (i→ i+ 1): By the induction hypothesis, after round i all nodes in N
G′

b

k−i(H(C(u)))
have complete (i+ 1)-hop neighborhood information. During iteration i+ 1, all nodes

in N
G′

b

k+1−(i+1)=k−i(H(C(u))) locally broadcast their (i+ 1)-hop neighborhoods. Hence,

after round i+ 1, all nodes in N
G′

b

k−i−1(H(C(u))) have complete (i+ 2)-hop neighborhood

information in G′
b. Thus, after round k − 1, all nodes in N

G′

b

k−(k−1)=1(H(C(u))) have
complete k − 1 + 1 = k-hop information. Since all backbone nodes in C(u) are 1-hop
neighbors of H(C(u)), this proves the claim.

8.4.5 Summary

Given any node v from a restricted QUDG, this node can compute its role in the virtual
planar backbone graph by executing algorithm BeaconlessBackbone (BBB) on input C(v).
If it is a non-backbone node, then it instantly knows its adjacency in the routing graph
Gr, since in this graph it is simply connected to its cluster head H(C(v)). Otherwise, if
it is a backbone node and it requires its adjacency in Virt(Gb) and Gr, respectively, then
it either executes algorithm BackboneNeighborhood (BBN) on input k = 3, or asks its
cluster head H(C(v)) to do so. Given this information it can compute its adjacency in
Virt(Gb) without any additional communication. In the following analysis and discussion,
the combination of algorithms BBB and BBN is referred to as ReactiveBackbone.

8.5 Algorithm Analysis

Next, worst-case message complexity of ReactiveBackbone, as well as the size of messages
used therein, is analyzed. Afterwards, it is shown that this approach is an Ω-reactive
topology control algorithm.

Theorem 8.21 (Message complexity and size). Let G = (V,E) be a QUDG satisfying
R/r ≤

√
2 with |V | = n. In the worst-case, the total number of messages transmitted

during execution of ReactiveBackbone is Θ(n). Under the assumption that nodes do not
have any a priori neighborhood knowledge, this message complexity is worst-case optimal
up to constant factors. Moreover, each message is of size at most O(Pmax) bits, where
Pmax is the number of bits required to represent a single geographic position.

Proof. While assuming that R/r ≤
√
2, it holds that |CNk(C)| ∈ O(1) for some constant

k ≥ 1. By Lemma 4 in [71] it holds that the number of backbone nodes in CNk(C), for
constant k, is O(1).

During the execution of algorithm BBN on input k = 3, each of the O(1) backbone
nodes in reachable cells in CN2(C(u)) transmits exactly three messages. Hence this
overhead is constant.
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Cluster head selection requires two message transmissions per cell. Moreover, in each
cell at most one message of the types Triggered and Terminated are produced, respectively.
Any such message is forwarded at most a constant number of times. Hence, the total
number of messages used for cluster head selection, termination detection, and gathering
of backbone neighborhood information is bounded by a constant.

By far the most expensive part w.r.t. message complexity is the construction of repre-
sentative bridge edges. Consider any cell C. The number of FirstRequest/FirstResponse
messages (during Phase I) as well as the number of SecondRequests (during Phase II) is
upper bounded by |CN1(C)|+1. During Phase II any node in C, which may be as much as
O(n) in the worst-case, transmits at most |CN1(C)| FirstRequests. These FirstRequests
generate at most |CN1(C)| FirstResponses from nodes in neighboring cells, succeeded by
at most |CN1(C)| SecondResponse messages. Hence, the worst-case message complexity
per cell is dominated by sending of up to O(n) FirstRequests during Phase II. Then the
worst-case message complexity over all cells is O(n).

To see that the construction of beaconless bridge edges requires at least Ω(n) message
transmissions, recall the example graph in Figure 5.2 used for the proof of Theorem 5.9.
During algorithm execution initiated by any vi ∈ V , every single node in V eventually
sends one FirstRequest for C and hence, Ω(n) messages are transmitted.

Note that unless nodes are provided with a priori neighborhood knowledge, the latter
argument implies that the algorithm at hand is worst-case optimal up to constant factors
regarding message complexity.

Finally, any message transmitted during algorithm execution contains at most a
constant number of geographic positions plus a constant number of additional control
bits. Therefore, each message is of size at most O(Pmax) bits, where Pmax denotes the
number of bits needed to represent a geographic position.

Theorem 8.22. Algorithm ReactiveBackbone is an Ω-reactive local view topology control
algorithm for the k-local topology mapping described by Lillis et al. [70,71].

Proof. According to Theorem 8.4, the topology mapping described by Lillis et al. [70, 71]
is a k-local topology mapping for k = 8. By correctness of algorithms BBB (Theorem 8.19)
and BBN (Theorem 8.20), as well as Theorem 8.12 it holds that for any node v ∈ Virt(Gb)
there exists a node u ∈ G, such that ReactiveBackbone executed by u correctly computes
v’s local view on Virt(Gb), and hence, it is a local view topology control algorithm.
It remains to show that ReactiveBackbone is an Ω-reactive algorithm according to
Definition 5.5.

Note that prior to algorithm execution, nodes are not provided with neighborhood
knowledge and that it is started by a single local broadcast. Next, consider its message
complexity w.r.t. the number of transmitted bits. By Theorem 5.9, the set of representative
bridge edges for a cell C cannot be computed by any O-reactive algorithm, since in the
worst-case situation depicted in Figure 5.2 any node in C, which may be arbitrarily
many, has to transmit at least one message. Hence, algorithm ReactiveBackbone is not
O-reactive. Now, it remains to show that Ω(|G[u, k]| · log n) is not a lower bound for the
message complexity in terms of number of transmitted bits.
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Figure 8.4: Example used in the proof of Theorem 8.22. Only a constant fraction of V is
shown, all remaining nodes are contained in the shaded area in C(u).

Consider the restricted QUDG in Figure 8.4, where only a constant fraction m′ ∈ O(1)
of nodes from V is depicted. The remaining n−m′ = m ∈ O(n) nodes {x1, ..., xm} are
located in the shaded area of cell C(u) and are not shown to keep the figure clear. Node
u is connected to any node within its transmission radius R, given by the circle. In
addition, each of the nodes vi is connected to wi, for i = 1..4. All other nodes can be
connected arbitrarily as long as their edges obey the QUDG properties. The shaded area
represents cell C(u) without the four circles centered at wi and radius ‖wivi‖. This graph
is connected and it holds that all nodes from V are located in CN1(C(u)). In particular,
it holds that |G[u, k]| = n.

Now consider the execution of ReactiveBackbone by node u. During Phase I of bridge
edge construction, node u determines one bridge edge for each cell in CN1(C(u)), except
for the four cells containing the nodes wi. During Phase II, each of the nodes vi becomes
candidate for cell C(wi) and successfully determines the bridge edge viwi. In total, these
operations produce a constant number of message transmissions and none of the nodes xi
transmitted any message.

In each of the neighboring cells Ci of C(u), the single node contained in that cell
also starts executing BBB. Since these cells contain only one node, the total number of
messages generated per cell is bounded by a constant. Note that during these executions
at most |CN1(C(u))| many nodes xi may also be forced to transmit a message.

After termination at node u, at most m′+|CN1(C(u))| ∈ O(1) many nodes have actively
participated in algorithm execution by sending a message. Furthermore, each such node
has transmitted at most a constant number of messages. During subsequent execution of
BBN on input k = 3, each backbone node also transmits a constant number of messages.
Since there are only O(1) backbone nodes, this overhead is constant in total. Therefore,
the overall number of messages transmitted during execution of ReactiveBackbone is
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O(1). Hence, Ω(|G[u, k]) · log n) is not a lower bound for the message complexity in terms
of number of transmitted bits.

For simplicity of the proof, the graph used above is rather regular. However, it is
important to note that the beneficiality of algorithm ReactiveBackbone is not limited to
such artificial graphs, but can be observed in arbitrary graphs, as long as they do not
coincide with worst-case situations as given in Figure 5.2.

8.6 Reactive Geographic Routing on Topological Quasi Unit

Disk Spanners

The last contribution of this chapter is a short overview on how algorithm Reactive-
Backbone, in particular its constituting routines BBB and BBN, can be used to derive a
reactive local geographic routing protocol that guarantees delivery on connected QUDGs
satisfying R/r ≤

√
2.

Reactive-Virtual-Face-Traversal, described next, is similar to the routing protocol
Route1 described by Lillis et al. in [70,71] and mainly extends the Virtual-Face-Traversal
protocol by Guan et al. [72, 73] (see Section 3.2 for details).

Given a restricted QUDG G = (V,E), suppose some source node s ∈ V has to route
a packet to a destination d ∈ V , whose location is known in advance. If s and d are at
distance at most r from each other, then s forwards the packet directly to d. Otherwise,
s executes algorithm BBB on input C(s). After cluster head H(C(s)) has reported
termination of execution, node s knows whether it belongs to the backbone, or not. If
not, then it forwards the packet to its cluster head H(C(s)). In either case, the packet
is now held by a backbone node in C(s). This backbone node now executes algorithm
BBN on input k = 2, which provides this node with 2-hop neighborhood information on a
connected QUDG satisfying R/r ≤

√
2. Now Virtual-Face-Traversal is applied. The latter

updates the packet header according to the virtual routing path and computes a real path
consisting only of backbone nodes. The backbone node forwards the packet according to
the real routing path. While the packet has not been received by a backbone node which
resides in the same cell as the destination node d, the backbone node v currently holding
the packet, first executes algorithm BBB on input C(v), waits for termination announced
by its cluster head, executes BBN on input k = 2, and applies Virtual-Face-Traversal.
Eventually, the packet will be received either by the destination itself, or a backbone node
residing in the same cell as d. In the latter case, this backbone node forwards the packet
to d.

Theorem 8.23. Given a connected QUDG G satisfying R/r ≤
√
2, then Reactive-Virtual-

Face-Traversal guarantees delivery between any source-destination pair s, d ∈ V .

Proof. If ‖sd‖ ≤ r, then the packet is delivered directly. Otherwise, s and d reside in
different cells. If d belongs to Virt(Gb), then the packet is guaranteed to be delivered.
This holds due to the facts that Virtual-Face-Traversal guarantees message delivery on
connected QUDGs satisfying R/r ≤

√
2 [72, Corollary 5] and that Gb is a graph satisfying
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these properties. Finally, if d does not belong to Virt(Gb), then there exists at least one
other backbone node in its cell C(d), which eventually receives and delivers the packet.
In combination with the correctness of the algorithms BBB and BBN, this proves the
claim.

8.7 Discussion and Implications

This chapter introduces the first Ω-reactive local topology control algorithm (Reactive-
Backbone) for construction of constant stretch topological planar spanners, as well as
the first reactive guaranteed delivery geographic routing protocol (Reactive-Virtual-Face-
Traversal) for restricted QUDGs. All previous local and localized techniques for network
planarization and geographic routing on such graphs are beacon-based.

ReactiveBackbone is the first algorithm that is explicitly designed to construct a planar
spanner only locally in the proximity of its executing node, whereas all previous approaches
are either designed to be executed by all network nodes, or require additional assumptions
on the minimum node distances.

This algorithm can be further extended to reactively construct a routing graph G′
r

which is both a constant stretch topological spanner and a constant stretch Euclidean
spanner, using the idea of shifted grids by Lillis et al. (see explanation in Section 8.1.2)
combined with algorithm rPDT from Section 6.2. A node requiring its adjacency in G′

r

computes the blue, red, and green grid cells to which it belongs. Then it starts three
rounds of execution of algorithm rPDT and includes in the CTS the addressed grid cell.
Only those nodes belonging to this grid cell participate in the reactive construction of
PDT. After these three executions, the node is aware of its adjacent edges in three planar
Euclidean spanners for the clique induced by the respective grid cells. Note that using an
algorithm designed for unit disk graphs is feasible here, since the graph induced by the
nodes of a grid cell is a unit disk graph for unit disk radius r. Lastly, the node proceeds
with execution of algorithm ReactiveBackbone. After termination, it then knows its
complete adjacency in G′

r. Although PDT is used for Euclidean spanner construction
instead of BPS2, as proposed by Lillis et al., the constant Euclidean spanning property of
G′

r is maintained. The Euclidean spanning ratio of BPS2 is smaller than 6.22, whereas
the one of PDT is at most 7.98. Hence, this replacements affects the constant hidden in
the O-notation only marginally.

By showing ReactiveBackbone to be Ω-reactive, it immediately follows that it is at least
as efficient regarding the volume of communication in terms of number of transmitted
bits as any conventional, beacon-based algorithm that solves the problem at hand. In
worst-case situations, their performances are equally poor. In all other scenarios the
reactive solution actually helps to reduce the total number of message transmissions
and hence, improves the resource efficiency of this topology control operation. At least
theoretically, the gap in communication overhead between the reactive solution and any
beacon-based counterpart can be made arbitrarily large, as shown by the example graph
in Figure 8.4. Hence, conducting simulative experiments could merely help to quantify
this gap.

183



Chapter 8 Reactive Local Construction of Topological Quasi Unit Disk Graph Spanners

Of course, it would be desirable to design an O-reactive solution for the problem at
hand, to further reduce the message overhead. For the case of the virtual planar backbone
graph, which requires the computation of representative bridge edges, this is not possible
as shown in Section 5.4. Hence, the present solution is “as reactive as possible” at least in
the sense of the classification scheme of O- and Ω-reactive algorithms.

The major drawback of ReactiveBackbone is best explained in comparison to algorithm
rPDT (see Section 6.2). There, a node communicates at most with all its 1-hop neighbors
to construct its desired local view. In contrast, in ReactiveBackbone even nodes that
are 8 hops apart from the executing node may be involved in local view construction by
sending messages. In other words, there is a considerable gap in the level of locality of
these algorithms. Of course, this relates to the transition from unit disk to quasi unit disk
model assumptions on the one hand, and to the chosen topology mapping on the other
hand. Future research shall attempt to develop local topology mappings that reduce this
gap, if possible at all.

Another problematic aspect of this algorithm concerns the choice of cluster heads and
bridge edges; e.g., the node closest to its cell’s geometric center becomes the cluster head.
This choice is not unique as there could be two or more nodes at the same distance. In
consequence, two messages would be sent at the very same time, which causes a collision.
Similar situations can occur during the choice of bridge edges. Of course, this problem
can be fixed by additionally considering a lexicographical ordering of node positions, or
unique node ID’s for breaking such ties. It is, however, non-trivial to integrate such a
distinction in the distance based-delay functions used in the reactive constructions. In
fact this is not a problem specific to this algorithm, but affects any algorithm making use
of distance-based delay functions. Therefore, this problem is not further discussed here,
but is addressed in a more general discussion on message collisions in reactive algorithms
in Section 10.2 as part of the conclusion.

The beaconless computation of representative bridge edges, which is used as a subroutine
in algorithm ReactiveBackbone, is of further use, independent of the algorithm presented
here. All of the algorithms presented in [51,136,137,150,218–220] make use of rectangular
and hexagonal geographical clusterings. Instead of computing the cell’s adjacencies there
based on 2-hop neighborhood information, the beaconless scheme can be used to reduce
message overhead in these approaches.

Lastly, algorithm Reactive-Virtual-Face-Traversal is the first beaconless geographic
routing protocol for constrained QUDGs that guarantees message delivery. The difference
between this protocol and the underlying protocol Virtual-Face-Traversal by Guan [72,
73,221] is that messages are virtually routed along edges of the virtual planar backbone
Virt(Gb) instead of the virtual planar input graph. In the input graph, an edge can be
intersected O(n2) many times in the worst-case, i.e., an edge may contain O(n2) virtual
nodes. In contrast, in the reactive version of this protocol described here, messages are
virtually routed along backbone edges and these are guaranteed to be intersected at most
O(1) times. Therefore, the virtual routing path potentially consists of less routing steps
to virtual nodes and thereby avoids detours, which leads to a more efficient operation.
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Chapter 9

Local Planarization of Quasi Unit Disk

Graphs in Asynchronous Systems

In previous chapters, the power of the reactive approach has been demonstrated. However,
in order for these algorithms to be correct, simplifying assumptions are made.

In these algorithms it is assumed that message transmissions can be performed instan-
taneously in the following sense. Message m transmitted by a node u is received and
processed by all neighbors of u simultaneously, such that the neighbors’ delay timers are
started synchronously, i.e., at the very same point in time. In fact, already very small
differences in timing can lead to errors regarding correctness of the output. For instance,
in algorithm rPDT, if not the closest but the second closest node responds first to a
request due to non-synchronous start of delay timers, the requesting node’s local view
on the planar graph may be incorrect. This in turn possibly leads to incorrect routing
decisions; in consequence, a message could be dropped or looped instead of being delivered
correctly.

Furthermore, it is assumed that no retransmissions are required to transmit a message,
i.e., it is assumed that a message m transmitted by node u is always correctly received by
all neighbors of u on the first attempt. Without this assumption it could be the case that
a neighbor does not (correctly) receive a message and in turn does not participate in the
contention period, which would lead to the errors described above.

One application domain of reactive algorithms are wireless sensor networks. Such
networks are inherently asynchronous distributed systems1. Firstly, hardware clocks are
imperfect due to clock drift and therefore the nodes’ clocks are not globally synchronized.
In order to achieve the latter, an additional clock synchronization protocol (such as
NTP, the well known Network Time Protocol) has to be executed, although at the cost
of additional control and communication overhead. Secondly, due to link failures and
collisions in the broadcast domain, link delays are generally unbounded. Hence, reactive
algorithms which are relying on the aforementioned assumptions are likely to fail in such
networks without additional synchronization.

Indeed, every synchronous distributed algorithm can be executed in every asynchronous
environment by means of so called synchronizers. Synchronizers, however, impose addi-

1 Two system models are generally distinguished in distributed computing: in synchronous systems, it is
assumed that link delays are bounded and nodes have access to a global system clock; in asynchronous
systems, link delays are assumed to be finite but unbounded and no global clock access is provided to
the nodes (cf. [87]). A distributed algorithm is then said to be (a)synchronous if it is designed to
work in an (a)synchronous system.
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tional costs regarding time and message complexity, which depend on the network size
(see e.g., [87, pp.69] for a detailed discussion). Hence, in the context of wireless sensor
networks it is rather natural to solve algorithmic problems directly in an asynchronous
manner.

This chapter is concerned with asynchronous solutions for (local) topology control on
QUDGs. In contrast to previous chapters, the algorithm designed here is not reactive
and—without additional assumptions on the minimum node distances—it is not even local.
On the other hand, it neither requires the assumptions that messages are transmitted
and processed instantaneously, nor that transmissions are reliable. It only assumes that
sending of a message between two nodes succeeds eventually within finite time, e.g., by
means of multiple retransmissions. Therefore, this chapter can rather be considered a
digression and outlook on future research in reactive local topology control.

As pointed out in Section 3.2, QUDGs in which the minimum and maximum transmission
radii differ cannot be planarized by edge removals without possibly disconnecting the
graph. Due to this, there is a considerable body of work on distributed algorithms for
QUDGs for computation of (nearly) planar backbone graphs and planar overlay graphs
as surveyed in Section 3.2. Few of those algorithms are explicitly designed to operate
in synchronous networks [70, 71, 139, 155]. Several papers [72, 84, 86, 149–151, 154, 156]
leave this aspect unspecified. It is not clear if their solutions work under such conditions;
deeper investigations and possibly modifications may be required. Only the approaches
by Barrière et al. [83,145] and Moaveninejad et al. [147,148] are explicitly designed for use
in asynchronous network environments. However, the planar routing graphs constructed
by these algorithms suffer from large stretch factors. One reason for this is that they
make use of GG for planarization of their overlay graphs and GG is known to impose a
non-constant Euclidean spanning ratio, at least if used for unit disk graph planarization.

In this chapter, it is shown that the principle idea of these algorithms can be extended
and improved such that the Euclidean stretch factor can be significantly decreased.
The fully asynchronous distributed algorithm AsyncPDT introduced here constructs a
connected and planar overlay graph for a given QUDG satisfying R/r ≤

√
2. Hence, it

enables local geographic routing with guaranteed delivery. The algorithm uses messages
of size at most O(Pmax) bits, where Pmax denotes the number of bits required to represent
a node’s geographic position. Moreover, the algorithm is shown to be k-local if the input
graph belongs to the class of λ-civilized graphs, i.e., if any two nodes have a Euclidean
distance of at least λ > 0. Number k is a constant that only depends on λ and the
transmission radii R and r of the network nodes.

In AsyncPDT fewer edges are removed since PDT is used for planarization rather than
GG. Therefore, the resulting overlay graph is denser than that produced by the algorithm
from Barrière et al.

This chapter is structured as follows. Section 9.1 introduces the network model, provides
relevant definitions, and explains the approach by Barrière et al. [145] in more detail. The
presentation of algorithm AsyncPDT follows in Section 9.2. Its correctness proof and
analysis are provided in Section 9.3. Finally, in Section 9.4 advantages and disadvantages
are discussed, and future research ideas are given.
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9.1 Model, Preliminaries, and Fundamentals

Network Graph

Network graphs are modeled as quasi unit disk graphs G = (V,E), over finite and distinct
node sets V ⊂ R2.

Throughout this chapter it is assumed that G is a connected graph and that the ratio
of the maximum to the minimum transmission radius is at most

√
2. Recall that this

assumption guarantees that if two network edges uv and u′v′ intersect, then there exists
an edge between one endpoint of uv and one endpoint of u′v′ (see Lemma 3.12).

As in previous chapters dealing with Delaunay triangulations, it is assumed that V is
not collinear and not cocircular (cf. Assumptions 2.2 & 2.1).

System Model

Network nodes represent processing units that communicate via wireless multihop broad-
casts. Nodes do not have access to a global system clock and possibly wake up asyn-
chronously. Message transmissions are assumed to take arbitrary but finite time; i.e.,
messages are assumed to be transmitted eventually, possibly by means of multiple re-
transmissions. This model is known as the ASYNC model of distributed computing
(cf. [87]) and it exists in both settings, with and without restrictions on message size. The
approach presented here guarantees that message size is bounded in the order of number
of bits required to represent a node’s geographic position.

Asynchronous Computation of Gabriel Graphs

Given a QUDG G = (V,E) satisfying R/r ≤
√
2, from the viewpoint of some node u ∈ V ,

the algorithm from Barrière et al. [83, 145] proceeds as follows.
Initially, node u gathers full one-hop neighborhood information and stores it in its

adjacency list L(u). Each neighbor that is added to this list is initially marked as
unprocessed. Node u then enters the Completion Phase in which it processes its incident
neighbors. It is assumed that every node is ready to receive messages and to update its
adjacency list parallel to processing of its incident edges.

In the Completion Phase, node u processes each unprocessed neighbor v ∈ L(u) as
follows. If there exists w ∈ L(u)\{u, v} with r < ‖vw‖ ≤ R and w ∈ D(u, v), it ensures the
creation of a virtual edge between v and w by sending them unicast messages containing
the other node’s position. When node u receives a message from (virtual) neighbor v
containing position information about a node w with uw /∈ E, then u adds w to L(u) with
w marked as unprocessed, adds uw as a virtual edge and stores ve(u,w) = (u, v, w) as a
path for virtual routing along this virtual edge. The result of this phase is a supergraph
S(G) of the input graph.

Sending of a message m via a (virtual) edge uw proceeds as follows. If w is a physical
neighbor of u in G, then u simply forwards m to w. Otherwise, if w is a virtual neighbor
of u, then u sends m according to ve(u,w) = (u, v, w). Note that the path contained by
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Figure 9.1: Example QUDG where the execution of the algorithm by Barrière et al. [83,145]
yields an unconnected graph if full neighborhood information is not available
during the first Completion Phase.

ve(u,w) may contain other virtual edges and possibly requires additional recursive steps
for resolving the actual (physical) routing path.

Once all nodes in L(u) have been processed, node u starts the Extraction Phase in
which node u discards all adjacent (virtual) edges uv ∈ S(G) that violate the Gabriel
criterion, i.e., if there exists a (virtual) neighbor w of u s.t. w ∈ D(u, v). The result is
the graph GG(S(G)).

After finishing the Extraction Phase, node u enters the Routing Phase. In case node u
has some data packet to route, it uses any local guaranteed delivery geographic routing
protocol, such as GFG [36], for forwarding this packet using the planar graph GG(S(G)).
Forwarding of the packet along a virtual edge is done as described above.

Messages about new virtual neighbors arrive asynchronously at their destinations. In
particular it may happen that a node receives messages about new virtual neighbors
although it has already entered the Extraction or Routing Phase, in which case this node
returns to the Completion Phase and passes all phases again. However, the Completion
and Extraction Phase terminate eventually. The result is then a connected, symmetric,
and planar graph GG(S(G)).

For correctness, the algorithm in its original description [83, 145] as well as in the
summary given above, requires that a node’s neighborhood in the input graph is known
prior to the first execution of the Completion Phase by this node. To see this, consider
the simple QUDG given in Figure 9.1. Suppose node v processes its incident edge vu
without knowing its physical neighbor w. Then it does not send any message and virtual
edge uw is never created. During the Extraction Phase the graph will lose its connectivity
since edge vu is deleted by v.

This observation is problematic if the algorithm is executed in a strictly asynchronous
environment, where the delivery of a message takes finite but arbitrary time. A node
cannot know the point in time at which it has received all beacons from all neighboring
nodes and consequently, it is not clear to that node when to start the Completion Phase.
The algorithm introduced next avoids this problem and can be executed on completely
asynchronous systems.
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9.2 Asynchronous Computation of the Partial Delaunay

Triangulation

Algorithm AsyncPDT is a modification of the algorithm from Barrière et al. [83, 145].
Essentially, instead of computing the Gabriel graph over S(G), it computes the partial
Delaunay triangulation over S(G), denoted PDT(S(G)). PDT(S(G)) is a connected and
planar supergraph of GG(S(G)), whose Euclidean spanning ratio is significantly smaller
compared to that of GG(S(G))—at least on average in random scenarios.

The modifications concern the initialization as well as the Completion and Extraction
Phase. The virtual routing process and the Routing Phase itself are equivalent.

Description of Algorithm AsyncPDT

In the following let u denote the node executing algorithm AsyncPDT. As in the original
algorithm described above, it is assumed that parallel to the processing of incident edges,
every node is ready to receive messages and to update its adjacency lists. A pseudocode
representation of AsyncPDT is given in Algorithm 6.

Initialization Node u locally broadcasts [beacon, u] and initializes its adjacency list L(u)
and list of witnesses W(u).

The adjacency list L(u) represents the node’s adjacency in the supergraph S(G). During
further execution, L(u) will be complemented by new physical and virtual neighbors.

The witness list W(u) contains information about nodes at distance at most R from
u, called witnesses, with which u does not share a (virtual) edge, but about which it
has been informed by its (virtual) neighbors in order to guarantee symmetric removal
decisions of nodes during the Extraction Phase. Witnesses can become virtual neighbors
throughout the execution, but not vice versa. The algorithm ensures that the sets L(u)
and W(u) are always disjoint.

Nodes in the lists L(u) and W(u) have a flag which indicates if they have already been
processed. Whenever a node is added to any of these lists it is marked as unprocessed and
is processed during the next execution of the Completion Phase.

Completion Phase While there exists an unprocessed (virtual) neighbor v ∈ L(u), node
u processes it as follows.

For each (virtual) neighbor w with r < ‖vw‖ ≤ R, such that either

(i) w ∈ D(u, v), or

(ii) v ∈ D(u,w) and w is marked as processed,

node u sends messages [new, w] to v and [new, v] to w. This guarantees that (virtual) edge
vw is bidirectional. Moreover, part (ii) of this condition ensures creation of virtual edges
even if not all physical neighbors are known prior to the first execution of the Completion
Phase. This way the problem described in the context of the original algorithm (see
Figure 9.1) is solved.
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Algorithm 6 AsyncPDT
Variables: r and R refer to the minimum and maximum transmission radius, respectively.

Action by node u

1: Locally broadcast message [beacon, u] ⊲ Send beacon message
2: L(u)← {u} with u marked as processed ⊲ Initialize adjacency list
3: W(u)← ∅ ⊲ Initialize list of witnesses
4: Phase Completion

5: while there exists an unprocessed node v ∈ L(u) do

6: for each w ∈ L(u) \ {u} do

7: if r < ‖vw‖ ≤ R then

8: if w ∈ D(u, v) or v ∈ D(u,w) and w is marked as processed then

9: Send message [new, w] to v
10: Send message [new, v] to w
11: else

12: Send message [info, w] to v
13: Send message [info, v] to w

14: for each w ∈ W(u) do

15: if r < ‖vw‖ ≤ R then

16: Send message [info, w] to v

17: Mark v as processed

18: while there exists an unprocessed node v̂ ∈ W(u) do

19: for each w ∈ L(u) \ {u} do

20: if r < ‖v̂w‖ ≤ R then

21: Send message [info, v̂] to w

22: Mark v̂ as processed

23: Phase Extraction

24: EPDT ← ∅ ⊲ Initialize output
25: for each (virtual) neighbor v ∈ L(u) do

26: Select the angle maximizing node w ∈ L(u) w.r.t. uv
27: if w /∈ D(u, v) then

28: EPDT ← EPDT ∪ {uv} ⊲ uv belongs to GG
29: else

30: if C(u, v, w) ∩ (L(u) ∪W(u)) = {u, v, w} ∧ sin(∡uwv) ≥ ‖uv‖/R then

31: EPDT ← EPDT ∪ {uv} ⊲ uv belongs to PDT \GG

Message handling by node u

32: on reception of [beacon, v] from v do

33: if v /∈ L(u) then

34: L(u)← L(u) ∪ {v} and mark v as unprocessed

35: else ⊲ Node v is a physical neighbor, not a virtual one
36: Remove ve(u, v)

37: W(u)←W(u) \ {v} ⊲ In case v is currently known as a witness

38: on reception of [new, w] from v do

39: if w /∈ L(u) then

40: L(u)← L(u) ∪ {w} and mark w as unprocessed

41: ve(u,w)← (u, v, w)
42: W(u)←W(u) \ {w} ⊲ In case v is currently known as a witness

43: on reception of [info, w] from v do

44: if w /∈ L(u) ∪W(u) then

45: W(u)←W(u) ∪ {w} and mark w as unprocessed
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Furthermore, for each (virtual) neighbor w with r < ‖vw‖ ≤ R and w /∈ D(u, v), node
u sends messages [info, w] to v and [info, v] to w, which ensures symmetric edge removal
decisions during the Extraction Phase.

In addition, in order to facilitate symmetric edge removal decisions, for every witness
node w ∈ W(u) with r < ‖vw‖ ≤ R, node u sends message [info, w] to v. Note that w is
not a (virtual) neighbor of u and it is therefore not being sent a message.

Once all unprocessed (virtual) neighbors have been processed, all unprocessed witnesses
v̂ ∈ W(u) are processed as follows. For each (virtual) neighbor w with r < ‖v̂w‖ ≤ R
node u simply sends message [info, v̂] to w. This additional while-loop accounts for the
scenario that the (virtual) neighbor w of u has already been processed when u learns
about a witness v̂ with r < ‖v̂w‖ ≤ R.

Message handling Node u handles incoming messages as follows.
On reception of [beacon, v] from v, node u adds v to its adjacency list L(u) and marks

it as unprocessed, unless v is already contained in that list. In this case v is currently
known as a virtual neighbor and the corresponding virtual routing path can be removed.
Moreover, in the case that v is currently known as a witness, it is removed from W(u).

On reception of [new, w] from v, node u checks if w is already contained in L(u). If
this is not the case, u adds w to L(u), marks it as unprocessed, and stores the virtual
routing path ve(u,w) = (u, v, w). If w is currently a witness node (i.e., w ∈ W(u)), it is
removed from this list.

On reception of [info, w] from neighbor v, node u checks if w is already contained
in L(u) ∪ W(u). If not, w is added to the list of witnesses W(u) and is marked as
unprocessed.

Extraction Phase The set of PDT edges adjacent to u, denoted EPDT, is initialized to
be the empty set. Then, for each (virtual) neighbor v, node u checks if uv is contained in
PDT(S(G)), based on the current state of the sets L(u) and W(u). If so, it simply adds
it to EPDT. Note that set EPDT is computed from scratch each time a node (re)enters this
phase. This ensures that former (possibly wrong) decisions that were based on outdated
information are not taken over. After termination of this phase, node u may enter the
Routing Phase. However, as soon as it learns about new (virtual) neighbors or witnesses,
it returns to the Completion Phase and the Extraction Phase thereafter.

9.3 Correctness and Analysis

Termination and Symmetry

The proofs of Lemma 9.1, 9.3, & 9.5 are almost equivalent to the proofs of Lemma 1, 2, & 4
in [145] and are given here for completeness. The proof of Lemma 9.4 is partially similar
to the proof of Lemma 3 in [145].
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Lemma 9.1. If a node u learns about a virtual neighbor v, then v eventually learns about
the existence of u. Furthermore, the virtual routing protocol ensures the correct delivery
of messages through virtual edges.

Proof. Consider any virtual edge uv ∈ S(G). Node u learns about its virtual neighbor v
during processing of edge e by some node w 6= u, v, where either e = uw and v ∈ D(u,w),
or e = vw and u ∈ D(v, w). These cases are symmetric and hence, it can be assumed
w.l.o.g. that e = uw. Then, wv is an edge in G. If v ∈ L(w) while w processes u, then w
sends new-neighbor messages to u and v, which creates the virtual edge uv. Otherwise, u
has already been processed once w processes v. Because v ∈ D(u,w) and u is marked as
processed, w sends new-neighbor messages to u and v, which creates the virtual edge uv.

Showing that virtual routing protocol ensures the correct delivery of messages through
virtual edges is identical to the corresponding part of the proof of Lemma 1 in [145].

By construction, for any (virtual) edge uv ∈ S(G) there are two paths associated with
it. If uv ∈ E, then Π(u, v) = 〈u, v〉 and Π(v, u) = 〈v, u〉. If uv is a virtual edge, then

• Π(u, v) = 〈Π(u,w)⊕ Π(w, v)〉, where w is the node from which u learnt about v,
and ⊕ is the concatenation of two paths; and

• Π(v, u) = 〈Π(v, w′)⊕Π(w′, u)〉, where w′ is the node from which v learnt about u.

The paths Π(u, v) and Π(v, u) may not be symmetric due to asynchronous message
arrivals. Finally, it is shown that the virtual routing protocol as described above routes a
message m from u to v along Π(u, v). The proof is given by induction the length l of the
path Π(u, v).
I.h.: The message is successfully transmitted along a path of length l, for an arbitrary
but fixed length l.
B.c. (l = 1): Edge uv is an edge from the input graph and the message is sent along this
link.
I.s. (l→ l+ 1): Edge uv is a virtual edge and node u sends m along vw(u, v) = (u,w, v).
By the i.h., m eventually arrives at w, where it is forwarded from w to v. Again by the
i.h. this message arrives eventually at v.

Lemma 9.2. If applied onto the same input graph, the supergraphs produced by the
algorithms by Barrière et al. [83,145] and by AsyncPDT are equivalent.

Proof. In the following let A and B denote the supergraphs constructed by the algorithms
by AsyncPDT and Barrière et al. [83,145] over the same input graph G = (V,E). Note
that A and B can only differ w.r.t. their virtual edges.

Let uv ∈ B be any virtual edge. It has been created during processing of an edge e
by some node w 6= u, v. Using the same line of argumentation as in the first part of the
proof of Lemma 9.1, it follows that uv ∈ A holds.

Now, let uv ∈ A be any virtual edge. It has been created during processing of one of
the edges e and e′, where either e = uw, e′ = vw, and v ∈ D(u,w), or e = vw, e′ = uw,
and u ∈ D(v, w). In both cases it holds that e′ is an edge from the input graph. According
to the algorithm by Barrière et al., all physical edges incident to a node are known to it
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once it enters the Completion Phase for the first time. Therefore, during processing of
edge e the virtual edge uv will be constructed.

Lemma 9.3. The Completion Phase terminates, that is, all nodes eventually complete
the Completion Phase and never come back to it.

Proof. Each node u processes at most nu = V ∩ CR(u) − 1 many other nodes. The
processing of a node causes sending of a finite number of messages to a finite number of
nodes and these messages arrive eventually by Lemma 9.1. Furthermore, each such node
is processed exactly once.

Lemma 9.4. The graph obtained in the Extraction Phase is symmetric, that is, if a node
u decides to remove the (virtual) edge uv, then v eventually removes it as well.

Proof. Let uv ∈ S(G) be any (virtual) edge and assume u removes it during the Extraction
Phase. Then there is at least one node in D(u, v). Let w be the angle maximizing node
w.r.t. uv.

If ‖vw‖ ≤ r, then v receives the beacon from w eventually. Otherwise, if ‖vw‖ > r two
cases have to be considered. Since u is currently in the Extraction Phase, it has already
processed edge uv in the Completion Phase. At this point in time either w ∈ L(u), or
not. In the former case, u has send new-neighbor messages to v and w and by Lemma 9.1
these arrive eventually. In the latter case, at some point in time after processing edge
uv, node u learns about node w and processes it. During this process, node u sends the
new-neighbor messages to v and w, and these messages arrive eventually. Hence, in any
case, node v learns about node w.

If sin(∡uwv) < ‖uv‖/R holds, then v eventually removes edge uv. Otherwise, if
sin(∡uwv) ≥ ‖uv‖/R holds, then there must exists ŵ ∈ L(u) ∪W(u) with ŵ ∈ C(u, v, w)
and ŵ 6= u, v, w. Note that under these assumptions ‖ŵv‖ ≤ R holds.

Assume ‖ŵv‖ > r holds (otherwise, v receives the beacon from ŵ anyway and removes
uv) and consider the point in time when u processes ŵ. By that time, either v ∈ L(u) or
v /∈ L(u). If the former holds, then u sends the coordinates of ŵ to v. Otherwise, ŵ has
already been processed, when u processes v. In the course of this, u sends the coordinates
of ŵ to v.

Either way, by Lemma 9.1 these messages arrive eventually and v decides to remove uv
during the Extraction Phase.

Lemma 9.5 (Lemma 4 in [145]). The Extraction Phase terminates, that is, all nodes
eventually complete the Extraction Phase, and never come back to it.

Proof. During the Extraction Phase, a node processes each of its incident (virtual)
neighbors, which is a finite number, exactly once based on its local knowledge. Although
the Extraction Phase may be executed multiple times, by Lemma 9.3, the Completion
Phase terminates eventually. Then, the Extraction Phase is executed one more time.
After this, the algorithm never comes back to it.
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Figure 9.2: Illustration for the proof of Theorem 9.8. Shaded circles represent Gabriel
circles, dashed circles represent transmission radii r and R, and the bold
printed black circle represents C(u, v, w).

Connectivity, Planarity, and Euclidean Spanning Ratio

Theorem 9.6 (Subgraph relation). For any QUDG G = (V,E) with R/r ≤
√
2, it holds

that PDT(S(G)) is a supergraph of GG(S(G)), i.e., GG(S(G)) ⊆ PDT(S(G)).

Proof. Let uv ∈ GG(S(G)) be any edge. Then D(u, v) does not contain any (virtual)
neighbor of u or v. In this case, edge uv will be added to the output sets of u and v
during the Extraction Phase of algorithm AsyncPDT.

Theorem 9.7 (Connectivity). If G = (V,E) is a connected QUDG with R/r ≤
√
2, then

PDT(S(G)) is a connected graph.

Proof. According to Lemma 5 in [145], GG(S(G)) is connected, if G is connected and
R/r ≤

√
2 holds. Since GG(S(G)) ⊆ PDT(S(G)) by Theorem 9.6, the claim follows.

Theorem 9.8 (Planarity). If G = (V,E) is a QUDG with R/r ≤
√
2, then PDT(S(G))

is a planar graph.

Proof. The claim is proven by contradiction. For an illustration, see Figure 9.2.
Let uv, u′v′ ∈ PDT(S(G)) be two intersecting (virtual) edges. Consider the quadrangle

formed by the nodes u, u′, v, v′. At least one of the interior angles of this quadrangle is
at least π/2. It can be assumed w.l.o.g. that ∡uv′v ≥ π/2. Then, v′ is contained in
D(u, v) and hence, uv ∈ PDT(S(G)) \ GG(S(G)). This implies that the half circle of
D(u, v), which is bounded by uv and does not contain v′, is empty of other nodes from V .
Moreover, there exists a circle C(u, v, w), where w is the angle maximizing node w.r.t. uv,
s.t. sin(∡uwv) ≥ ‖uv‖/R and this circle is empty of (virtual) neighbors and witnesses
known to u and v. Note that v′ and w are located in the same half-circle of D(u, v) w.r.t.
uv.
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With v′ ∈ D(u, v) and the assumption that the input graph satisfies R/r ≤
√
2, it holds

in addition that v′ ∈ NG
1 (u) or v′ ∈ NG

1 (v). It can be assumed w.l.o.g. that v′ ∈ NG
1 (v).

Furthermore, because uv and u′v′ intersect, and V is assumed to be non-collinear (i.e.,
neither v′ nor u′ are located on uv), u′ must be located on the other side of ℓ(u, v) w.r.t.
v′. Distinguish the following two cases.

Case (u′ ∈ C(u, v, w)): With sin(∡uwv) ≥ ‖uv‖/R it holds that the diameter of
C(u, v, w) is at most R. Hence, ‖uu′‖, ‖vu′‖ ≤ R holds. But then, by the time node v′

processed edge v′u′, node v′ would have informed its neighbor v about the position of u′.
Hence, u′ would be a witness or a (virtual) neighbor of v and uv would have been removed
during the Extraction Phase, which contradicts the assumption that uv ∈ PDT(S(G)).

Case (u′ /∈ C(u, v, w)): Since u′ is outside C(u, v, w) and on the opposite site of ℓ(u, v)
w.r.t. w, the application of Thales’ theorem yields ∡uu′v + ∡uwv < π. As w is assumed
to be the angle maximizing node w.r.t. uv, it holds that ∡uv′v ≤ ∡uwv and hence,
∡uu′v + ∡uv′v < π. But then, one of the two interior angles ∡u′uv′ and ∡u′vv′ of the
quadrangle formed by u, u′, v, v′ must be at least π/2. Hence, u ∈ D(u′, v′) or v ∈ D(u′, v′)
must hold.

Assume w.l.o.g. that v ∈ D(u, v′). In particular this implies u′v′ ∈ PDT(S(G)) \
GG(S(G)). Since u′ is strictly outside C(u, v, w), v′ is on the boundary of (in case v′ = w)
or outside C(u, v, w), and u and v are separated by ℓ(u′, v′), circle C(u′, v′, v) must contain
u and w. But then, this holds in particular for circle C(u′, v′, w′), where w′ ∈ V is the
angle maximizing node w.r.t. u′v′. Since v′ ∈ D(u, v), ‖uv′‖ ≤ R holds and hence, v
would have informed its neighbor v′ about the position of u either while processing uv, or
while processing vv′. But then, v′ would have removed edge u′v′ during the Extraction
Phase which contradicts the assumption that u′v′ ∈ PDT(S(G)).

In the following, assign any physical edge uv a weight equal to its Euclidean length ‖uv‖
and any virtual edge uv a weight equal to max{||ve(uv)||, ||ve(vu)||}, i.e., the maximum
Euclidean path length of the two paths when using the virtual routing protocol between
u and v, and vice versa.

Theorem 9.9 (Euclidean spanning ratio). The Euclidean spanning ratio of PDT(S(G))
is at most as large as the Euclidean spanning ratio of GG(S(G)).

Proof. The claim follows immediately from Theorem 9.6 proving that GG(S(G)) is a
subgraph of PDT(S(G)).

The author of this thesis presented in [78] (in a joint work with Frey) preliminary
simulation results on the average Euclidean spanning ratios of GG(S(G)) and PDT(S(G)).
It is shown that the average Euclidean spanning ratio of PDT(S(G)) is roughly 1.5,
independent of the network density (average node degree). On average, the improvement
of the Euclidean spanning ratio of PDT(S(G)) compared to GG(S(G)) is 21%.

Message Size

Under the assumption that no two nodes have the exact same position, a node can be
uniquely identified by its position. Any message sent during algorithm execution contains
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at most a constant number of control bits and three node positions: namely, the positions
of the origin and destination, as well as the position of a single witness or virtual neighbor.
Hence, any message sent during algorithm execution is of size O(Pmax) bits, where Pmax

is the number of bits needed to represent a node’s geographic position.

Discussion of Locality

Next, the locality of the proposed approach is discussed. Recall that the supergraph
constructed by executing the Completion Phase is identical to the supergraph obtained
by the Completion Phase of the algorithm by Barrière et al. [145].

In Proposition 1 in [145] it is shown that if any two nodes in the input QUDG G with
R/r ≤

√
2 have a Euclidean distance of at least λ, then the hop-distance of the route in

G corresponding to a virtual edge in S(G) is at most 1 + (R2 − r2)/λ2. With R = 1 and
R/r ≤

√
2 it follows that any virtual edge has a hop-length of at most 1 + 1/(2λ2) (see

also Lemma 8.3 in [86]).
Let uv be a virtual edge in S(G) and k = ⌈1 + 1/(2λ2)⌉. In order to construct this

virtual edge uv, both u and v require at most k-hop neighborhood information in G.
However, as shown next, it may take c · k-hop neighborhood information, for a constant
c < 9, in order for u and v to decide if edge uv belongs to PDT(S(G)).

Lemma 9.10. If in G any two nodes have minimum Euclidean distance λ > 0, for any
node u, the decision of whether any of its adjacent (virtual) edges uv in S(G) is contained
in PDT(S(G)) depends on at most the c · k-neighborhood of u for some constant c < 9
and k = ⌈1 + 1/(2λ2)⌉.

Proof. Consider an arbitrary edge uv ∈ S(G) which is not contained in PDT(S(G)).
Then there exists at least one node from V \ {u, v} in D(u, v). Let w ∈ D(u, v) be the
angle maximizing node w.r.t. uv. With R/r ≤

√
2 it holds that w ∈ NG

1 (u) or w ∈ NG
1 (v).

Hence, it holds that v, w ∈ NG
k (u).

If sin(∡uwv) < ‖uv‖/R holds, then u can immediately decide that uv /∈ PDT(S(G))
based on set NG

k (u), which includes the positions of v and w.
For the remaining case, where sin(∡uwv) ≥ ‖uv‖/R, consider Figure 9.3.
Because uv /∈ PDT(S(G)), circle C(u, v, w) contains at least one other node in its

interior, which lies on the opposite side of w w.r.t. ℓ(u, v). Let ŵ be any such node
and assume that u is not a (virtual) neighbor of ŵ (otherwise, u can decide that uv /∈
PDT(S(G)) holds based on its k-hop neighborhood information).

There must exist a (virtual) neighbor of u that has sent an info-message about the
position of ŵ to u. Recall that for any node a, to send an info-message about the
position of a node c to a node b, a and b must be (virtual) neighbors and the Euclidean
distances ‖ac‖ and ‖bc‖ are at most R. This (virtual) neighbor itself may have received
an info-message about the existence of ŵ, along a (virtual) edge, and so forth.

This means that the longest possible hop-path in G along which the position of node
ŵ may be passed on is a sequence of virtual neighbors 〈u = u1, v = u2, ..., uc = ŵ〉 being
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Figure 9.3: Illustration for the proof of Lemma 9.10. Dashed circles represent the trans-
mission radii r and R, solid lines represent virtual edges, and the solid circle
represents C(u, v, w).

contained in CR(ŵ). As the distance between any two such virtual neighbors ui, ui+1 is
strictly larger than r, this path consists of at most

c <
2πR

r
+ 1− 1 (9.1)

≤ 2π
√
2 ≈ 8.89 (9.2)

virtual edges. In Equation 9.1, the minus one accounts for the virtual edge missing between
uc−1 and u1 (otherwise, there would be a shorter path via the (virtual) edge uc−1u1),
whereas the plus one accounts for the virtual edge uc−1uc. Hence, the information about
the position of ŵ is passed on along a path consisting of at most k · c hops in the input
QUDG G.
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One direct implication of the above lemma is that for λ-civilized QUDGs satisfying
R/r ≤

√
2, AsyncPDT is a ck-local view topology control algorithm as defined in

Definition 5.3. Hence, for computation of a node’s local view on PDT(S(G)) algorithm
AsyncPDT can be altered in the following manner while maintaining its correctness.

Some node u that requires its local view on a connected and planar subgraph, e.g., in
case of a local minimum situation, node u starts executing AsyncPDT. The messages of
type new and info it sends to its neighbors, contain additionally a time-to-live (TTL)
equal to ck. Upon receiving such messages, the one-hop neighbors also start execution
and send messages along with TTL ck − 1, and so on. Every node receiving a message
containing a TTL larger than zero participates in the planar graph construction.

9.4 Discussion

The proposed approach has several advantages and disadvantages in particular in compar-
ison to the other asynchronous approaches by Barrière et al. [83,145] and Moaveninejad
et al. [147,148].

Like the aforementioned approaches, algorithm AsyncPDT is only local under the
assumption that any two nodes are at least some Euclidean distance λ > 0 apart from
each other. This minimum distance assumption appears to be reasonable considering the
fact that nodes have a physical extent. Hence, the algorithm scales well with increasing
network size.

Furthermore, compared to the previous approaches, AsyncPDT yields the densest output
graphs and outperforms the approach by Barrière et al. regarding Euclidean spanning ratio.
For certain applications, such as local geographic routing, this is actually advantageous.
Shorter routing paths can contribute to more resource efficient routing operations, which
is strongly desirable, in particular with respect to the resource constraints wireless sensor
networks.

However, the advantage of short routing paths in PDT(S(G)) comes at the cost of
increased message complexity, which can be considered the major drawback of the proposed
algorithm.

One reason for the high message complexity is that a node possibly sends multiple
messages to one neighbor at a time. It is a straightforward extension of the proposed
algorithm to encapsulate the information of these messages into a single message at the
cost of increased message size. However, this solution only shifts the problem rather than
tackles it. Nevertheless, there are two solutions for actual reduction of message overhead
that are explained next.

Currently, during algorithm execution, it is possible that a node u sends k unicast
messages to inform its neighbors n1, .., nk about a witness node x. Instead it would suffice
if u locally broadcasts the position of x only once. Based on their own, the sender’s,
and the witness’ position, nodes n1, ..., nk can easily compute whether or not they are
addressed by this broadcast.

The other solution is based on ideas of Moaveninejad et al. [148]. Before entering the
Completion Phase, they remove short non-Gabriel edges of length ≤ r. This preliminary
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edge removal yields a sparser graph with fewer edge intersections, which helps to reduce
the message overhead produced during the Completion Phase. The Gabriel graph is
known to have a worst-case Euclidean spanning ratio of Θ(

√
n) [109] and removing these

edges leads to a higher spanning ratio. Instead, short non-PDT edges should be removed,
as PDT is a constant stretch Euclidean spanner of the unit disk graph and removal of
such edges does not increase pairwise node distances significantly. In contrast to the
aforementioned extensions, this algorithm modification invalidates some of the proofs.
Additional work for guaranteeing its correctness is required.

Finally, as already pointed out by Barrière et al. [83, 145], all these algorithms have a
problem with termination detection. Since messages are assumed to arrive asynchronously
within finite but unpredictable time, for node u it is not clear at which point in time its
Extraction Phase has finally terminated. In this model it may always be the case that
some message is still in delivery. This problem is generally non-trivial.

One possible heuristic solution is the use of a time-based threshold parameter tth. That
is, node u assumes that it does not receive any more messages if it has not received a
message within the last tth time steps. This threshold parameter tth depends on the
level of asynchrony and could be chosen based on experiments in a pre-processing stage.
However, this approach cannot guarantee correctness.

199





Chapter 10

Conclusion

Energy and bandwidth are severely constrained resources in wireless ad hoc and sensor
networks [6]. Moreover, depending on the application scenario, such networks are large-
scale and consist of thousands of nodes [9] or even more, as in the vision of “Smart
Dust” [10]. Therefore, scalability and resource efficiency are key challenges in algorithm
design for such networks.

Reactive local algorithms are particularly well suited to these demands. Firstly, they are
local distributed algorithms which scale well with increasing network size since computa-
tions of nodes involve only those nodes that are at most a constant number of hops apart.
Secondly, these algorithms are reactive (aka beaconless [16] or contention-based [17]).
Reactive algorithms reduce resource consumption for a given task by consistently avoiding
unnecessary message transmissions and communication overhead. In contrast to conven-
tional, beacon-based, distributed algorithms, nodes do not set up or maintain complete
neighborhood tables in reactive algorithms. Instead, only a small subset of a node’s
neighborhood actively participates in problem solving by using “blind” local broadcasts
and timer-based contentions. Neighbors that are not eligible to solve the problem stay
passive and do not transmit any message. This way, the overall communication load on
the network is reduced (see, e.g., [23]), which has various positive effects: Interference and
collision probability are reduced, which leads to an increase in packet reception ratio and
a decrease in latencies. Available bandwidth for user data is saved. And finally, topology
information gathered during algorithm execution is more current and less likely to be
inaccurate, which is the main cause of packet loss in uncongested networks [12].

In this sense, reactive algorithms support the common position [7, 8] that silence is
golden in wireless ad hoc and sensor networks.

Apart from theoretical worst-case scenarios, the aforementioned advantages have been
verified empirically by means of simulations [18–22] as well as in actual testbed experiments
[23–25].

In present research, the reactive approach is used to design resource efficient local
algorithms for geographic routing and topology control, in particular the construction of
connected and planar representations of given network graphs. Both geographic routing
and network planarization are two important basic functionalities for wireless ad hoc and
sensor networks. The former enables wireless multi-hop communication in the absence
of any network infrastructure, based on geographic node positions. The latter provides
sufficient conditions for efficient local solutions to a variety of algorithmic problems (see
the list provided in Section 1.1).
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The deficient state of research concerning reactive geographic routing and topology
control algorithms led to the three primary objectives of this thesis, listed as Objectives 1–
3 in Section 1.2. In Section 10.1 it is now discussed to what extent these objectives have
been achieved in this thesis. Subsequently, in Section 10.2 the contributions are further
discussed and new research directions are outlined. This thesis closes in Section 10.3 with
some final remarks.

10.1 Comparison of Research Objectives and Results

Objective 1: Foundation of reactive local topology control Reactive topology control
is a promising but immature research area. On the one hand, existing algorithms as
well as those introduced in this work show that they can significantly improve message
efficiency of topology control operations. On the other hand, the term reactive topology
control lacks conceptual and mathematical clarity. Prior to this work, answering the
following questions was tedious or even impossible: What formally distinguishes a reactive
topology control algorithm from a conventional distributed one? What is a “good” or
efficient reactive topology control algorithm? Which problems can or cannot be solved by
such algorithms in general?

The concepts of O- and Ω-reactive topology control introduced in Chapter 5 provide
a means to answer all of these questions. In the first place, these definitions clearly
distinguish the class of reactive from conventional, beacon-based, distributed algorithms
in terms of worst-case message complexity. This is a reasonable choice, since message
complexity is in general a key metric for quantifying the quality of distributed algorithms.
Secondly, these algorithm classes facilitate a taxonomy of all known and future algorithms
of this kind. This helps to sort contributions to this field and to expose research
gaps. These definitions are also held general enough to capture not only planar graph
constructions, but all aspects of topology control. Lastly, these definitions enable in-depth
investigation of the principal power of the reactive approach, beyond pure algorithm
design. This has been demonstrated by proving two impossibility results regarding the
reactive computability of well-know topology control structures.

For these reasons, Objective 1 is essentially achieved. The concept itself is, however, a
reasonable object for future investigation since in its current form it does not capture the
stochastic nature of localization and wireless communication.

Objective 2: Reactive algorithms for construction of planar spanners There is an
evident demand for reactive local topology control algorithms for construction of a node’s
adjacency in connected, planar constant stretch Euclidean and topological spanners.
Such algorithms would contribute to more efficient solutions to the various algorithmic
problems described in [35–56]. Prior to this work, there were only reactive local topology
control algorithms for construction of planar graphs, whose Euclidean and topological
spanning ratios are dependent on the number of nodes in the network [18,107,187,188].
Moreover, these algorithms guarantee correctness only for networks obeying unit disk
graph properties. A significant part of this thesis is dedicated to reactive local planar
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Euclidean and topological spanner constructions under unit disk and the less restrictive
quasi unit disk graph model assumptions.

Under unit disk graph model assumptions, in Chapter 6, it is shown that it is indeed
possible to reactively construct Euclidean spanners. The O-reactive local topology control
algorithm rPDT introduced there constructs a node’s local view on the partial Delaunay
triangulation (PDT), which is proven to be a connected planar Euclidean spanner of the
unit disk graph. This algorithm is not only the first reactive algorithm for construction of
Euclidean spanners, but also the first reactive topology control algorithm that is message
optimal. It completely avoids message transmissions by nodes that are not part of the
problem’s solution. In addition, the proof that PDT is a Euclidean spanner has important
implications regarding Objective 3 as well as for its applications in literature. On the
downside, PDT is not a constant stretch topological spanner for the unit disk graph, and
is not necessarily connected under the more realistic quasi unit disk model assumptions.

The Ω-reactive local algorithm ReactiveBackbone introduced in Chapter 8 remedies
the situation. It reactively computes a node’s local view on a connected routing graph,
which consists of a virtual planar backbone. The routing graph itself is a constant
stretch topological spanner for the underlying quasi unit disk graph and can be extended
by means of algorithm rPDT in order to also guarantee constant Euclidean stretch
properties. However, this graph is not planar. Applications relying on planar topologies
can be executed on the planar backbone and only have to keep track of the last mile,
the possibly non-planar last-hop connection from the backbone to non-backbone nodes.
ReactiveBackbone is the very first reactive topology control algorithm under quasi unit
disk model assumptions and, in fact, the first that is explicitly designed for local topology
construction. Although it is Ω-reactive and outperforms any beacon-based counterpart,
the communication overhead compared to rPDT is significant. Whereas rPDT involves
only qualified neighbors from a node’s one-hop neighborhood, ReactiveBackbone involves
nodes that are at most k = 8 hops apart from the executing node, some of which may
not even be of further relevance for the constructed topology.

Although it is not reactive, algorithm AsyncPDT introduced in Chapter 9 can be
considered a first step towards reactive topology control under relaxed model assumptions.
In contrast to the other approaches introduced in this work, this algorithm does not require
any node synchronization, nor does it assume that messages are transmitted instantly
and reliably. It only presupposes that messages sent over the wireless channel arrive
within finite time, possibly by means of several retransmissions. This algorithm also uses
PDT for planarization. The output graph is a connected and planar overlay graph of the
underlying QUDG and facilitates guaranteed delivery geographic routing. Furthermore,
it is shown that for the class of civilized graphs, AsyncPDT can be transformed into a
local algorithm, which can be used for local topology control, and therefore, is a good
starting point for reactive algorithms research in asynchronous systems.

In summary, regarding the chosen network models, Objective 2 is achieved. Nevertheless,
the author is profoundly convinced that further investigation of the problem statement,
in particular with regard to quasi unit disk model assumptions, may lead to stronger or
at least more elegant solutions.

203



Chapter 10 Conclusion

Objective 3: Reactive geographic routing on planar spanners Concerning the num-
ber of required transmissions for a single forwarding operation, state-of-the-art reactive
geographic routing algorithms are extremely efficient. For example, algorithm Rotational
Sweep (RS) [15] requires at most three transmissions for next-hop selection and packet
forwarding, regardless of whether the packet is routed in Greedy or Recovery mode. Fur-
thermore, under unit disk model assumptions, the algorithm provides delivery guarantee.
Algorithms of this type are much more efficient than conventional, topology-based, local
geographic routing algorithms such as FACE routing [36], which require additional ex-
change of topology information from all neighboring nodes. However, in order to guarantee
delivery, in Recovery mode only specific edges may be used for forwarding. In all known re-
active geographic routing algorithms that guarantee message delivery [15,18,188,211,212],
these edges belong either to a planar subgraph of the network graph, or to subgraphs
that are free of critical, routing-loop producing, edge intersections (e.g., RS-TT in [15]).
To ensure the existence of routing paths that are short in terms of number of hops or
Euclidean distance, it is important to select only those edges that belong to constant
stretch Euclidean or topological spanners. In the aforementioned algorithms this is not
necessarily the case since these use edges of graphs whose Euclidean and topological
stretch factors are either unknown or even non-constant. This raises the question: Is it
possible to design guaranteed delivery reactive geographic routing algorithms that use
only edges of constant stretch Euclidean or topological spanners?

Under unit disk model assumptions, this questioned is positively answers in this
thesis by showing that such an algorithm already exists. In Chapter 7 it is proven that
algorithm RS (using Sweep Circle delay, RS-SC) uses exactly those edges for recovery
which would be used by FACE routing if applied onto the partial Delaunay triangulation.
In combination with the proof that the partial Delaunay triangulation is a constant
stretch Euclidean spanner, it immediately follows that RS-SC already matches the
objective. In some scenarios, however, this algorithm produces many unnecessary hops.
This observation leads to algorithm RS-Shortcut. It combines the constant Euclidean
spanner guarantees of RS-SC with the benefits of algorithm RS-TT (algorithm RS
using twisting triangle delay) which tends to produce recovery paths with fewer hops.
Routing paths produced by RS-Shortcut use at most as many hops as those produced
by RS-SC, skip up to Θ(n) unnecessary hops, and use only edges of constant stretch
Euclidean spanners, while requiring at most eight transmissions per forwarding step.
Regarding these theoretical guarantees, RS-Shortcut is currently the most advanced
reactive geographic routing protocol. Therefore, this algorithm matches the objective
except for the constant topological spanning guarantees. As in the case of reactive
topology control, this algorithm is also not guaranteed to be correct under the more
general quasi unit disk graph assumptions.

The situation is partially remedied by introduction of algorithm Reactive-Virtual-
Face-Traversal in Section 8.6. This is a reactive geographic routing algorithm which
guarantees message delivery in quasi unit disk graphs and actually routes along edges of a
constant stretch topological spanner, namely the routing graph constructed by algorithm
ReactiveBackbone. As mentioned before, this graph can be extended to also satisfy
constant Euclidean spanning properties. To the best of the author’s knowledge, it is the
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first reactive geographic routing protocol under this model at all. Unlike the reactive
algorithms for unit disk graphs, this algorithm requires each node on the routing path
to construct its entire adjacency in the routing graph. On the positive side, the node
degree in this routing graph is bounded by a constant. On the negative side, as discussed
previously, the costs incurred by construction of this topology are still significant regarding
both the worst-case message complexity, as well as the degree of locality. Hence, under
quasi unit disk model assumptions the objective is achieved only partially. It remains an
open question if under these model assumptions guaranteed delivery, reactive geographic
routing without complete topology construction is possible at all.

In summary, Objective 3 is fully achieved under the unit disk model and partially
achieved under the quasi unit disk model.

10.2 Further Discussions and Outlook

Next, the algorithmic approaches introduced in this work are further discussed with an
emphasis on common limitations, in particular regarding robustness. These discussions
are complemented by ideas and directions on how to further improve these algorithms.
Moreover, several other future research directions are outlined.

10.2.1 Message Collision Resolution

In general, contention-based approaches suffer from issues arising from message collisions
due to (almost) simultaneous timeouts of delay timers. From a practical point of view,
delay functions are discrete and messages are not infinitely small. It may always be the
case that two or more nodes respond simultaneously to a request which causes a collision
at the intended receiver. Longer delay periods can be used to reduce the probability of a
collision, but ultimately this cannot be avoided [18].

If there is no means for a receiver to detect a collision, then algorithms that rely on the
right ordering of message arrivals for computation of certain geometric structures (e.g. the
algorithms presented in this thesis, or those presented in [15,18,68,69,107]) are doomed
to fail. For example, in algorithm rPDT, if not the closest but another node responds
first due to a collision of responses by the actual closest neighbors, the requesting node’s
local view on the planar graph may be incorrect, which may lead to fatal errors in the
application.

The situation is substantially different if a receiver is actually able to detect collisions.
A common approach to resolve collisions in reactive algorithms is the use of randomization.
For example, in GDBF [187, 188] the nodes that caused the collision are requested to
resend, but using a random delay slot within a contention window. In GeRaF [27], all
nodes having caused the collision are requested to resubmit with probability 1/2 until
eventually only one node has successfully transmitted. As previously pointed out by
Rührup et al. [18], this probabilistic drop out is not suitable for reactive topology control
and recovery algorithms, in particular not for those presented in this work. In these
algorithms, it is necessary that all eligible nodes actually transmit their responses in order
to guarantee correctness of the output. Consider the following two examples: In rPDT, a
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node’s response is necessary for other nodes to compute correctly if they are neighbors in
the partial Delaunay triangulation. In algorithm ReactiveBackbone the closest node to
a cell’s center has to transmit first in order to ensure global consistency of the output
graph.

A solution to overcome this problem, which is well suited for the algorithms introduced
here, is outlined in [18] and further extended in [212]. The delays of nodes participating
in the contention are mapped to one of N time slots. If there are multiple nodes in the
first occupied slot, a collision is detected at the receiver and it sends a short request for
collision resolution, indicating the index of the slot. The nodes that caused the collision
are now remapped into N slots, which reduces the collision probability. This process is
repeated until a single node successfully transmits in the first occupied slot. Analytical
results in [212] for the case of Greedy routing show that N = 3 is sufficient for reasonable
success in collision resolution.

The generic scheme for incorporating this strategy into the algorithms presented in
this work is as follows. A node u that has just started a contention process and detects
a collision reacts by immediately sending of a collision resolution request. This request
freezes the delay timers of all nodes currently participating in the contention process and
induces the collision resolution process outlined above. Once this process has finished,
node u requests all nodes to continue the contention process.

Another solution is based on the observation that collisions are more likely in dense
networks (measured, e.g., in terms of average number of neighbors per node) than in
sparse networks. In particular in dense networks, the neighbors of a node in planar
subgraphs such as GG or PDT tend to be very close because it is less likely that a
proximity region of a long link is actually empty. Therefore, these neighbors are particular
likely candidates to cause collisions [188]. The solution to this problem is to design delay
functions as exponential rather than linear functions of distance. Then, nodes that are
nearby are less likely to cause collisions, whereas only faraway nodes—that are anyway
likely to become passive during the contention—are more likely to cause collisions. This
idea has previously been investigated and concluded to be useful in case of beaconless
Greedy routing [189,190]. These results suggest that the investigation of this solution in
the context of network planarization is worthwhile.

10.2.2 Dynamics and Mobile Ad Hoc Networks

The reactive approaches introduced in this work, as well as those on which they are based
on, assume stable node neighborhoods during the contention process. From a practical
point of view this assumption is critical since wireless network graphs are in fact not static.
Due to interference, changes in the environment, and node failure, links can (dis)appear
over time. This is also the case in networks consisting partially or entirely of mobile
nodes, so called mobile ad hoc networks.

There is a variety of models for capturing non-static networks as well as the stochastic
nature of the wireless channel (see e.g. [3,88] and references given therein). Clearly, in the
long run it is desirable to formulate algorithmic solutions for those more realistic network
models. In a first step, however, the problems considered in this thesis should be studied
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using some intermediate model, such as the edge dynamic (quasi) unit disk graph [72,221].
This model has the same characteristics as the (quasi) unit disk model, but models the
edge set of the network graph as a function of time, such that edges can (dis)appear
dynamically at any given point in time. Guan shows [72,221] that in such graphs it is
still possible to route messages locally while guaranteeing message delivery, essentially
under the assumption that there exists a sequence of connected spanning subgraphs of the
routing graph, each of which is stable for a sufficiently long period of time. This suggests
that similar results can be expected regarding reactive georouting. So far, the problem
of reactive topology control has not been considered under such model assumptions
and therefore, it is an interesting and open research object. Once the problems arising
with dynamics have been better understood under this intermediate model, algorithmic
solutions for more realistic network models can be targeted. An appropriate starting
point is the constant density spanner construction from Kothapalli et al. [222].

10.2.3 Imperfect Positioning

Most of the algorithms introduced and referenced in this work assume perfect positioning
of the nodes in the Euclidean space. This is problematic since positioning methods and
systems are generally imperfect [223, 224] and typically limited to specific setups. For
example, the Global Positioning System (GPS) is limited to outdoor scenarios.

In the presence of positioning errors, the algorithms introduced in this work can fail to
compute correct outputs, since the delay functions rely on exact node positions. This
holds in particular for those algorithms designed for operation in unit disk graphs. On the
contrary, instead of modeling physical obstructions and irregularities in transmission ranges
of nodes, the quasi unit disk graph model can can also be used to model uncertainties in
node locations in unit disk graphs [71]. Nodes are assumed to be connected according to
the unit disk model, but to suffer from positioning errors of at most δ.

In this model, a node is guaranteed to have an edge to any other node at a distance of
at most R− δ, whereas it does not share an edge with nodes at a distance larger than
R+ δ. The topology control and geographic routing algorithms for QUDGs introduced
in this thesis are then already able to cope with positioning failures of at most δ, where
R+δ
R−δ ≤

√
2, for they require that the ratio of the maximum to the minimum communication

radius is at most
√
2.

To further enhance the robustness of the proposed algorithms against position failure it
should be studied, if and to which extent ideas and solutions from non-reactive algorithms,
that cope with inaccuracies or absence of position information, can be taken over. For
example, the approaches presented in [225–229], enable geographic routing in the presence
of location errors, whereas in [143,230–232] the problem of local planarization of wireless
network graphs in the absence of any positioning system is addressed.

10.2.4 Reducing Energy Consumption

Preserving the energy resources of network nodes in wireless ad hoc and sensor networks
is a major research topic and comes in various flaws (for a comprehensive list see [11]). A
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key concept to reduce energy consumption of nodes is the operation of their transceivers
at low duty cycle, i.e., to switch off transceivers when not required. At least for small
transmit powers, transmit and receive modes of transceivers consume power in the same
order of magnitude. Depending on the architecture this also holds for the transceiver’s
idle mode [3].

To operate correctly, the algorithms introduced in this work require that at algorithm
start by some node, all neighboring nodes’ transceivers are active and in receive mode to
facilitate overhearing of messages. As mentioned above, this consumes power as if they
were sending. Therefore, reactive algorithms are not per se more energy efficient than their
distributed counterparts that make use of full neighborhood information. Nevertheless,
depending on the particular algorithm at hand, there are considerable differences. For
example, in order for algorithm BFP [18,107] to operate correctly, all neighboring nodes
have to continue listening during the entire contention period since they may need to
send protest messages. In algorithm rPDT, however, all neighboring nodes that have
already responded with a CTS message, or have terminally concluded that they are no
PDT neighbors, can immediately drop out of the contention, turn off their transceivers,
and conserve energy resources.

To the best of the author’s knowledge, energy consumption of reactive and conventional
topology control algorithms have not yet been compared. Considering the close-to-reality
simulation results obtained in [149], which clearly show that beaconless georouting is
much more energy efficient than beacon-based georouting, it can be claimed that this
also holds for reactive topology control operations.

Various examples can be found in the literature where the reactive approach is further
combined with energy saving techniques such as duty-cycling, dynamic transmit power
adaption, or avoidance of costly retransmissions by using only the most reliable links. The
approaches in [26–30] combine the reactive approach and low duty cycled networking. In
[24,31–34] (semi-) beaconless algorithms are introduced that make use of dynamic transmit
power adjustment. The protocols described in [22,23,25,174] integrate communication
over particularly reliable links and beaconless routing. The algorithm introduced in [202]
even combines beaconless routing with duty cycling and adjustment of transmit power.

These examples clearly show that the reactive approach can generally be further
complemented with well-known energy saving techniques. Application of these ideas to
the approaches presented in this work will lead to even more resource efficient solutions.

10.2.5 Getting Rid of Circle Geometry

Mathews and Frey introduce in [124] the Localized Link Removal and Addition based
Planarization algorithm (LLRAP). This algorithm does not require any assumption
regarding nodes’ communication ranges. Instead, it correctly outputs a connected, planar
subgraph of a given geometric input graph as long as this input graph satisfies redundancy
and coexistence (see Definitions 3.8 & 3.9). They also show that the class of unit
disk graphs is a subclass of the graphs satisfying redundancy and coexistence. That
is, algorithms like LLRAP are applicable to a more general graph class than UDG,
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while replacing the simplistic unit transmission radius assumptions by structural graph
properties that simplify mathematical reasoning.

Reactive algorithms for this graph class (or further generalizations of it concerning k-hop
connectivity) have not yet been considered. Using the ideas and techniques presented
in this work it is, however, possible to transform LLRAP into a reactive local topology
control algorithm.

10.3 Final Remarks

This thesis makes novel and significant contributions to the research area of distributed
topology control and geographic routing in wireless ad hoc and sensor networks. Prior to
this work, reactive local construction of planar spanners and reactive routing thereon was
an open research question [14,15]. Now it is an established fact. Moreover, the former
used to be a rather fuzzy research object. Now it is a precise mathematical term enabling
fundamental research in this area.

To close this thesis, some remarks on the impact and the lessons learned are made.
Firstly, the partial Delaunay triangulation was presumed not to be a constant stretch

spanner [66, 67]. This work proves the opposite. It even turned out to be the most
important instrument for algorithm design in this thesis. This shows that it is always
worthwhile to question presumed facts in literature.

Secondly, referring to the surveys and concepts presented, this work structures and
broadens the scope of reactive algorithms research. It encourages the application of
reactive techniques to non-ideal (non-uniform) networks and to other algorithmic problem
statements in topology control. It thereby strengthens this field of study.

Thirdly, the way of thinking that silence is golden in wireless ad hoc and sensor
networks [7, 8] is an inspiring maxim: It forces the algorithm designer to question every
single communication step. Allegedly primitive operations, such as gathering a node’s
neighborhood, should not be taken for granted.
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