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OPEN ACCESS Lung adenocarcinoma (LUAD), a common type of lung cancer, has become a popularly ag-
gressive cancer. Long noncoding RNAs (IncRNAs) play a critical role in the pathogenesis
of human cancers, while the function of double homeobox A pseudogene 8 (DUXAPS8) in
LUAD remains to be fully inquired. Therefore, our study was conducted to elucidate the
DUXAPS8 expression in LUAD and its mechanism on the biological features of LUAD cells.
Loss-of-function experiments were performed to assess the function of DUXAPS8 prolifera-
tion and apoptosis of H1975 and A549 cells. Functionally, silencing DUXAP8 inhibited pro-
liferation and induced apoptosis of LUAD cells. Mechanistically, further correlation assay
indicated a negative association between miR-26b-5p and DUXAP8 expression. Subse-
quently, we testified that DUXAP8 exerted its role in the progression and development of
LUAD through targeting miR-26b-5p. In summary, our results elucidated that that DUXAP8
promoted tumor progression in LUAD by targeting miR-26b-5p, which provide a novel ther-
apeutic target for diagnosis and therapy of LUAD.

Introduction

Lung cancer is known to be a leading contributor of tumor-related deaths around the word, for which the
5-year survival rate is still ~16.6% [1-5]. In this disease, 90% is divided into the non-small cell lung cancer
(NSCLC), including lung adenocarcinoma (LUAD), lung squamous cell carcinoma and large cell lung
cancer [6,7]. LUAD, a common type of lung cancer, has become a popularly aggressive cancer [8-10]. It is
difficult to diagnose LUAD at an early stage; most patients are diagnosed at the advanced stage [11-14].
Although the therapeutic treatment for LUAD has progressed in recent years, the prognosis of LUAD
patients is tremendously poor. Hence, there is an exigent necessity to probe novel targets and improve the
understanding of mechanisms behind tumor progression for LUAD.

It has been found that cancer progression and tumorigenesis is related to genetic and epigenetic changes,
including LUAD [15-21]. Long non-coding RNAs (LncRNAs) are a type of transcript, with more than 200
nucleotides in length, proved to be widely involved in various physiological and pathological processes
[22-25]. Further, a growing number of studies have revealed that IncRNAs exerted their regulatory roles in
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Table 1 Association of DUXAPS8 expression with clinicopathological features of patients with LUAD

Characteristics Number Low (n=22) High (n=23) P-value
Sex 0.38
Male 29 20

Female 16 10

Age 0.35
<60 28 ihl 17

>60 17 5 12

Tumor size, cm 0.026
<4 35 17 18

>4 10 3 7

Pathological staging 0.016
[+ 11 31 15 16

I+ 1v 14 6 8

Metastasis 0.039
Yes 28 13 15

No 17 8 9

Double homeobox A pseudogene 8 (DUXAPS) is located on chromosome 22q11 with 2268 bp in length [33,34].
Increasing evidences have demonstrated that DUXAPS plays a regulatory role in many cancers, including NSCLC,
gastric cancer etc [35]. Chen et al. have found that DUXAP8 promoted cell growth in renal carcinoma [36]. Moreover,
DUXAPS could regulate the proliferation and invasion of esophageal squamous cell cancer [37]. Previous study has
proved that knockdown of DUXAP8 expression suppressed cell proliferation in glioma [38].

Growing evidences have demonstrated that IncRNAs could interact with miRNA to affect tumorigenesis. For
example, Inc NTF3-5 promoted osteogenic differentiation of maxillary sinus membrane stem cells via sponging
miR-93-3p [39]. Furthermore, IncRNA SNHG20 is involved in breast cancer cell proliferation, invasion and mi-
gration via miR-495 [40]. Pan et al. reported that IncRNA JPX regulates lung cancer tumorigenesis by activating
Wnt/3-catenin signaling [41]. It is noteworthy that miR-26b-5p has been identified to be closely related to tumor
growth and serves as the target of IncRNAs [42-44].

However, it is almost unknown whether DUXAP8 was a functional IncRNA in LUAD and the effect of DUXAPS8
on LUAD and its underlying mechanism remains unclear. Therefore, focus of the present study is to unravel the
functional mechanism of DUXAP8 in LUAD progression. First, the present study showed that the expression level of
DUXAPS was remarkably increased in LUAD tissues compared with that in adjacent tissues. Functionally, we deter-
mined functional analysis that indicated that IncRNA DUXAPS facilitates cell proliferation and inhibited apoptosis
by targeting miR-26b-5p in LUAD. Our study provides a potentially useful target for LUAD therapy.

Materials and methods

Tissue samples

A total of 45 tumor tissues and adjacent normal tissues were collected between June 2018 and March 2019 at the First
People’s Hospital of Lianyungang. None of the patients received chemotherapy before sampling. The samples were
stored in liquid nitrogen at —80°C for following experiments. The research was approved by the Ethics Committee
of the First People’s Hospital of Lianyungang and informed consent was obtained from the patients. The clinical
information of patients is shown in Table 1.

Cell culture and cell transfection

Human LUAD cell lines (A549, H1299, H1975) and normal epithelial cell line (16HBE) were purchased from Amer-
ican Type Culture Collection (ATCC, Manassas, VA, U.S.A.). The cell lines were cultured in DMEM complemented
with 10% FBS at 37°C under a moist atmosphere of 5% CO,. Cells were collected after 48 h for further analysis.
Sh-DUXAPS and sh-NC were obtained from GenePharma (Shanghai, China). Transfection was performed by using
Lipofectamine 2000 (Invitrogen, Shanghai, China) according to the manufacturer’s instructions.

(© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Real-time PCR

Total RNA was isolated from tissue samples and cells with TRIzol reagent (Invitrogen), cDNA was synthesized by
TaqMan Reverse Transcription Kit (Applied Biosystems). Real-time PCR (RT-PCR) was implemented on Applied
Biosystems 7500 Real-Time PCR system (Applied Biosystems, Foster City, U.S.A.) utilizing SYBR Premix ExTaq"™
(Life Technologies). Relative gene expression levels were calculated by the 2724¢T method and U6 were employed as
internal controls for normalization.

Western blot

Total protein was extracted from cells with RIPA buffer (Beyotime Biotechnology, Beijing, China) and the concen-
tration of total protein was determined using the BCA Protein Assay Kit (Thermo Fisher Scientific). Proteins were
separated by SDS/PAGE and transferred to PVDF membranes. Following blocked with 5% skim milk in TBST at room
temperature for 1 h, probed with primary antibodies and then incubated with HRP-conjugated secondary antibodies
at room temperature for 2 h. The enhanced chemiluminescence detection kit (Thermo Fisher Scientific) was used to
visualize the blots. GAPDH worked as the inherent control and immunoreactive bands were quantified using Image].

Cell proliferation assay

Cell-counting kit-8 (CCK-8) and colony formation analysis were carried out to determine the effects of DUXAP8
on the proliferation of H1975 and A549 cells. In briefly, H1975 and A549 cells were seeded into 96-well plates at the
density of 1 x 10° per well and incubated at 37°C for 0, 24, 48 or 72 h. Then, each well was treated with 10 pl of
CCK-8 and maintained at 37°C for 2 h. The optical density (OD) values were tested at a wavelength of 450 nm by
the microplate reader (Bio-Tek, Winooski, U.S.A.). For colony formation assay, H1975 and A549 cells were seeded
in six-well plates and grown in DMEM containing 10% FBS. The medium was replaced every 3 days. Two weeks
later, the medium was discarded and then cells were fixed in 4% paraformaldehyde, stained with 0.5% Crystal Violet.
Colonies were counted and photographed with a light microscope (Olympus, Tokyo, Japan).

Flow cytometry
Cell apoptosis was determined by Annexin V-FITC kit (Beyotime Biotechnology, Shanghai, China). Cells were har-
vested with trypsin, washed with PBS and treated with 5 pl of annexin V-FITC and 5 pl of PI in the dark for 15 min at

room temperature in the dark. Finally, cells were analyzed with an FACScan flow cytometer (BD Biosciences, Detroit,
MIL US.A.).

Luciferase reporter assay

Both H1975 and A549 cells were transfected with either DUXAPS wild-type (WT) or mutated-type (Mut) pro-
moter reporters in combination with miR-26b-5p mimic. After 48-h transfection, luciferase activity was detected
by dual-luciferase reporter assay system (Promega) and luciferase intensity normalized to Renilla luciferase activity.

RNA pull-down assay

Pierce™ Magnetic RNA-Protein Pull-Down Kit was used for the RNA pull-down assays. Briefly, the DUXAP8-WT,
DUXAPS8-Mut and NC were biotin labeled into Biotin DUXAP8-WT, DUXAP8-Mut and Biotin NC, severally. Next,
cells were lysates and cultured with the biotinylated probe and M-280 streptavidin magnetic beads (Sigma-Aldrich).
At last, RT-qPCR assay was used for assessing the expression of miR-26b-5p.

Statistical analysis

Statistical analyses were performed by GraphPad Prism 5.0 and data were presented as mean + standard deviation
(SD). The differences between groups were calculated by one-way ANOVA followed by Tukey’s poc host analysis. At
least three independent experiments were performed and P<0.05 was indicated as statistically significant.

Results

DUXAPS is up-regulated in LUAD tissues and cell lines

To explore the expression levels of DUXAP8 in LUAD, RT-PCR was performed to assess the expression levels of
DUXAPS in tissues and cell lines. We identified that DUX AP8 was remarkably increased in cancer samples compared
with their corresponding normal samples (Figure 1A). In addition, compared with 16HBE cells, DUXAP8 expression
levels was significantly up-regulated in cancer cells (A549, H1299, H1975) (Figure 1B). Based on these results, we
inferred that DUXAP8 might serve as an oncogene in LUAD.

(© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution 3
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Figure 1. DUXAPS is up-regulated in LUAD tissues and cell lines
(A) The expression levels of DUXAPS in tissue samples. **P<0.01 vs. normal tissues. (B) The expression levels of DUXAP8 in LUAD
cell lines and normal epithelial cells. *P<0.05, **P<0.01 vs. MCF-10A cells. **P<0.01 vs. NC mimic group.
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Figure 2. Silencing of DUXAPS inhibited LUAD cell proliferation
(A) Transfection efficiency of sh-NC and si-DUXAP8 in H1299 and A549 cells was detected by RT-PCR. (B) The influence of DUXAP8
on cell viability of H1299 and A549 cells was detected by CCK-8. (C) The influence of DUXAP8 on cell proliferation of H1299 and
A549 cells was detected by colony formation assay. **P<0.01 vs. si-NC.
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Silencing of DUXAPS8 inhibited LUAD cell proliferation

In order to identify the effect of DUXAPS8 in LUAD, we transfected indicated cells with sh-NC, si-DUXAPS8 and the
efficiency of DUXAPS expression was certified by RT-PCR. We observed that si-DUXAPS transfection significantly
decreased the mRNA levels of DUXAPS8 in H1975 and A549 cells (Figure 2A). Next, we investigated the influence
of DUXAPS on cell proliferation using CCK-8 and colony formation assays. Our observations showed that silenced
DUXAPS expression caused the diminution of H1975 and A549 cell viability (Figure 2B). Consistently, the colony
formation assay indicated that si-DUXAPS8 restricted cell proliferation in H1975 and A549 cells (Figure 2C). Collec-
tively, down-regulation expression of DUXAPS8 could inhibit cell proliferation in LUAD.

Silencing of DUXAP8 promoted cell apoptosis

Flow cytometric analyses elucidated that the percentage of apoptotic cells was enhanced by si-DUXAP8 compared
with si-NC group (Figure 3A). Consistently, the expression levels of pro-apoptotic proteins (Bax, Cleaved-caspase-3
and Cleaved-caspase-9) were all increased, whereas Bcl-2, the anti-apoptotic gene was memorably down-regulated in
si-DUXAPS group (Figure 3B). Collectively, down-regulation of DUXAP8 expression could facilitate cell apoptosis
in LUAD.

MiR-26b-5p was a downstream target of DUXAPS8

MiR-26b-5p was predicted as the putative target of DUXAP8 according to bioinformatics analysis (Figure 4A). We
first verified the level of miR-26b-5p in tissues and cell lines. In contrast with DUXAP8 expression, miR-26b-5p
expression level was dramatically decreased in LUAD tissues and cells (Figure 4B,C). As a result, we intended to
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Figure 3. Silencing of DUXAP8 promoted cell apoptosis
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(A) Cell apoptosis was detected by flow cytometry. (B) Western blot assay was used to detect the expression levels of Bax, Bcl-2,
Cleaved-caspase-3 and Cleaved-caspase-9. GAPDH was used as the normalized control. **P<0.01 vs. si-NC.
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Figure 4. MiR-26b-5p was a downstream target of DUXAP8
(A) The target relationship between DUXAP8 and miR-26b-5p was predicted by TargetScan website. (B,C) The expression of
miR-26b-5p in LUAD tissues and cells was detected by RT-PCR. (D) The targeting relationship between DUXAP8 and miR-26b-5p
was verified through dual luciferase reporter gene assay. (E) RNA pull-down assay was utilized to verify the relationship between

DUXAP8 and miR-26b-5p. **P<0.01 vs. si-NC.
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Figure 5. The role of miR-26b-5p in LUAD carcinogenesis was mediated by DUXAP8

(A) The expression levels of miR-26b-5p were measured in H1975 and A549 cells. (B) Cell viability was measured by CCK-8. (C) EdU
assay was performed to assess the proliferation of H1975 and A549 cells. (D) Cell apoptosis were explored via flow cytometry. All
results were presented as mean + SD from at least three independent assays. *P<0.05, **P<0.01, ***P<0.001 vs. si-NC. ¥P<0.05,
#P<0.01 vs. si-DUXAPS.

explore the association between DUXAP8 and miR-26b-5p. The luciferase reporter assay showed that miR-26b-5p
mimic repressed the relative luciferase activities containing the DUX AP8-WT, while no obvious alteration was viewed
in the mutant form of DUXAP8 (Figure 4D). Moreover, pull-down assay was conducted and result showed that
miR-26b-5p expression was more enriched by biotinylated DUXAP8-WT than DUXAP8-Mut or NC groups (Figure
4E). These data revealed that DUXAP8 negatively regulated miR-26b-5p expression by directly targeting the 3'-UTR
of miR-26b-5p.

DUXAPS facilitated cell progression via targeting miR-26b-5p

Based on the above findings, we performed the rescue assays to certify whether DUXAPS8 exerted its oncogenic func-
tion by modulation of miR-26b-5p. MiR-26b-5p expression levels were observably elevated in H1975 and A549 cells
after transfected with si-NC, si-DUXAP8, miR-26b-5p inhibitor or si-DUXAP8+miR-26b-5p inhibitor (Figure 5A).
CCK-8 assay illustrated that cell viability was depressed by down-regulation of DUXAPS8 expression and subsequently
recovered by miR-26b-5p inhibitor (Figure 5B). Concordant with CCK-8 assay, colony formation assay demonstrated

6 (© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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that inhibition of miR-26b-5p expression abrogated the anti-proliferative effects of si-DUXAP8 (Figure 5C). As ex-
pected, the anti-apoptotic functions of DUXAP8 in H1975 and A549 cells were partially reversed by miR-26b-5p
(Figure 5D). To this end, these results provided strong evidence that DUXAPS functioned as a tumor promoter in
LUAD progression via suppression of miR-26b-5p.

Discussion

Lung cancer is a malignant cancer in the world with high morbidity and high mortality. LUAD is a common subtype
of lung cancer with stagnant improvement in prognosis during past decades despite the treatment progress [45].
Despite some progress in related treatments in recent years, the overall 5-year survival rate of advanced lung cancer
is still less than 15%. Accordingly, elucidating the underlying mechanism of LUAD to discover effective diagnostic
and prognostic biomarkers is conducive to the improvement of LUAD therapy.

Over the past decades, mounting studies have reported that IncRNAs play important roles in human cancers pro-
gression, including LUAD. Peng et al. showed that IncRNA CRNDE promotes colorectal cancer cell proliferation and
chemoresistance via miR-181a-5p-mediated regulation of Wnt/{3-catenin signaling [46]. In addition, IncRNA NO-
RAD has been reported that contributes to colorectal cancer progression by inhibition of miR-202-5p [47]. Moreover,
IncRNA XIST promotes human LUAD cells to cisplatin resistance via let-7i/BAG-1 axis [48].

Nevertheless, there are still numerous IncRNAs that need to be elucidated. In the present study, we focused on the
biological function of DUXAPS8 in the development of LUAD. In the current study, we first prospected the expression
of DUXAPS8 in LUAD tissues and cells. In contrast with normal tissues and cells, DUXAP8 was highly expressed
in LUAD cells. These data were consistent with previous findings showing DUXAPS exerted its effect as a tumor
promoter in regulating cancer progress [49,50]. Thereafter, DUXAP8 was silenced in H1975 and A549 cells to carry
out loss-of-function experiments. Our results expounded that depletion of DUXAPS suppressed cell proliferation
and promoted apoptosis. However, the mechanism about how DUXAPS is involved in progression of LUAD remains
unclear.

Accumulating researches suggested that IncRNAs regulated cell functions through interacting with miRNA [51].
Furthermore, growing studies emphasize that miRNAs are regarded as core mediators in progression and develop-
ment of multiple malignant tumors via functioning as oncogenes or tumor suppressors [52,53]. By utilization of bioin-
formatics tool miR-26b-5p was found to own binding sites with DUXAPS. In addition, we carried out luciferase re-
porter assay to identify the correlation between miR-26b-5p and DUXAPS8 in LUAD cells, discovered that miR-26b-5p
was negatively regulated by DUXAP8. Moreover, rescue experiments unveiled that depletion of miR-26b-5p blocked
the inhibitory effects of miR-26b-5p down-expression on cell proliferation and apoptosis of LUAD.

In summary, we unraveled that silencing DUXAP8 expression suppresses cell proliferation and enhanced apoptosis
by targeting miR-26b-5p, which serves as a cancer facilitator in LUAD. To the best of our knowledge, this is the first
investigation to shed light on the potential and molecular mechanism of DUXAP8 in LUAD. Our findings represent
a potential therapeutic target for the treatment of LUAD, whether it involves more complicated regulation is still to
be explored by us and other researchers. We will further make deeper and more detailed studies about regulation
mechanism of DUXAP8 on LUAD in the future work.
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1; NORAD, non-coding RNA activated by DNA damage; NSCLC, non-small cell lung cancer; PI, propidium iodide; RT-qPCR,
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