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Abstract

The red palm weevil (RPW, Rhynchophorus ferrugineus), one of the most widespread of all

invasive insect pest species, is a major cause of severe damage to economically important

palm trees. RPW exhibits behaviors very similar to those of its sympatric species, the Asian

palm weevil (R. vulneratus), which is restricted geographically to the southern part of South-

east Asia. Although efficient and sustainable control of these pests remains challenging,

olfactory-system disruption has been proposed as a promising approach for controlling

palm weevils. Here, we report the cloning and sequencing of an olfactory co-receptor (Orco)

from R. ferrugineus (RferOrco) and R. vulneratus (RvulOrco) and examine the effects of

RferOrco silencing (RNAi) on odorant detection. RferOrco and RvulOrco encoding 482

amino acids showing 99.58% identity. The injection of double-stranded RNA (dsRNA) from

RferOrco into R. ferrugineus pupae significantly reduced RferOrco gene expression and led

to the failure of odor-stimulus detection, as confirmed through olfactometer and electroan-

tennography (EAG) assays. These results suggest that olfactory-system disruption leading

to reduced pheromone detection holds great potential for RPW pest-control strategies.

Introduction

The red palm weevil (RPW, Rhynchophorus ferrugineus) and the Asian palm weevil (APW) (R.

vulneratus) are sympatric species known for exhibiting a high degree of invasiveness and for

the damage they do to commercial stands of palms, as well as for the difficulty of their control

[1–5]. R. vulneratus are native to, and only found in, southern Southeast Asia and across Indo-

nesia, whereas, R. ferrugineus, although native to the northern and western parts of continental

Southeast Asia, Sri Lanka and the Philippines, have been spread worldwide [4]. Given its global

invasiveness, RPW has not surprisingly received considerably more scientific attention than

PLOSONE | DOI:10.1371/journal.pone.0162203 September 8, 2016 1 / 19

a11111

OPEN ACCESS

Citation: Soffan A, Antony B, Abdelazim M, Shukla

P, Witjaksono W, Aldosari SA, et al. (2016) Silencing

the Olfactory Co-Receptor RferOrco Reduces the

Response to Pheromones in the Red Palm Weevil,

Rhynchophorus ferrugineus. PLoS ONE 11(9):

e0162203. doi:10.1371/journal.pone.0162203

Editor: Raul Narciso Carvalho Guedes, Universidade

Federal de Vicosa, BRAZIL

Received: May 11, 2016

Accepted: August 18, 2016

Published: September 8, 2016

Copyright: © 2016 Soffan et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are

credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information files.

Funding: BA and SAA are thankful for funds (grant

no. KACST-NSTIP 12-AGR2854-02) provided by the

National Plan for Science, Technology and Innovation

(MAARIFAH) of King Abdul Aziz City for Science and

Technology (KACST), Kingdom of Saudi Arabia. AS

is thankful to the researcher stipend obtained from

12-AGR2854-02 and 12-AGR2554-02 project. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0162203&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0162203&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0162203&domain=pdf
http://creativecommons.org/licenses/by/4.0/


has APW. RPW is considered to be a major pest of date-palm trees in Middle Eastern countries

and the cause of significant economic losses for date producers [5–7].

RPW infestation is mediated primarily by their ability to locate a host, typically achieved by

olfactory detection of the male aggregation pheromones 4-methyl-5-nonanol (Ferrugineol)

and 4-methyl-5-nonanone (Ferrugineone) [2,8,9]; APW displays a similar response to these

compounds [2,10]. How the olfactory systems of different species can detect the same phero-

mone compound is an intriguing question. However, the mechanism in which insect is able to

discriminate the odorants had been revealed. Odorant detection that leads to a specific behav-

ior mainly involves odorant reception at the peripheral areas, processing of signals at the anten-

nal lobes, and further processing in the brain [11,12]. Odorant reception in olfactory systems is

initiated by an odorant binding protein (OBP) that transports the odorant molecules from the

outside of the antenna (through sensillia pores) to the sensory membrane. Further, odorant

molecules must first be transformed into an electrical signal message (signal transduction)

before reaching the brain, which is accomplished by odorant receptor (ORs) and olfactory co-

receptor (Orco) heteromultimer systems. Once the signal is conveyed, the odorant degrading

enzyme (ODE) protein will rapidly degrade and deactivate the odorant molecules [11–17].

Malfunctioning Orco, an essential gene in this complex olfactory system, can lead to the dis-

ablement of odorant sensing in these insects which reflect the essential role of Orco [18].

Currently, there are few means for efficient and sustainable control of palm weevils, mainly

restricted to the use of pheromone traps and insecticide application [7]. Given that Orco plays a

significant role in odorant detection, disruption of the expression of this gene is thought to hold

great potential as a control measure. Gene silencing via RNA interference (RNAi) represents

one of the possible ways in which Orco disruption can be achieved, a technique that is used

widely in crop protection, although still restricted in laboratory scale [19–21]. In principle,

RNAi is a unique gene-expression silencing mechanism that employs double-stranded RNA

(dsRNA) to degrade specific mRNAs [22–24]. Orco silencing through RNAi reduces insect pest

populations by hindering their ability to use olfactory cues to locate hosts and mates [25–33].

In this study, we addressed several important issues relating to palm weevils, including describ-

ing the Orco gene of the two sympatric species R. ferrugineus and R. vulneratus, demonstrating

the dsRNA treatment targeting R. ferrugineus olfactory co-receptor (RferORco) and, finally,

examining RferOrco silencing through olfactometer and electroantennographic (EAG) assays.

Our study of olfactory disruption has important practical applications that could ultimately lead

to the development of novel pest-control strategies for R. ferrugineus and R. vulneratus.

Materials and Methods

Ethics Statement

The original collections were made with the direct permission of a cooperating land owner [Al-

Kharj region (24.1500° N, 47.3000° E) of Saudi Arabia] in the year 2009 and since then red

palm weevil culture was maintained in our laboratory on sugarcane stems as mentioned below.

R. vulneratus were collected directly from a toddy palm field in the Madura region of East Java

Province, Indonesia (6.912330° N, 113.584039° E). We reaffirm that none of the RPW and

APW collections were from National Parks or protected wilderness areas. Besides, these weevils

are definitely not an endangered species. Additionally, we confirm that no field experiments

involved in this study.

Insect rearing and antennal collection

Populations of R. ferrugineus were reared in the laboratory of the Chair of Date Palm Research

(CDPR), as described previously [34]. Weevils were maintained on sugarcane stems in a
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rearing room kept at room temperature. Cocoons were harvested two weeks after pupation,

incubated individually in round plastic jars measuring 70 mm × 90 mm (diameter × height)

covered with a perforated screw cap, and checked daily for adult emergence. Antennae of both

species were kept in a freezer maintained at –20°C. Antennal dissections was performed under

a simple light microscope (MSZ5000, Kruss, Germany), followed by immersion in RNAlater

reagent (Ambion, Life Technologies, NY, USA).

Total RNA extraction and cDNA synthesis

Total RNA collected from the antennae of five individuals R. ferrugineus and R. vulneratus was

isolated using the RNeasy Plus kit (Qiagen, MD, USA) according to the manufacturer’s instruc-

tions. First-strand cDNA was synthesized from the total RNA using an ArrayScript Reverse

transcriptase kit (M-MLV) (Ambion, Life Technologies) in accordance with the manufactur-

er’s instructions. The quantity and quality of the total RNA and cDNA were validated using a

Nanodrop spectrophotometer (Thermos, USA) and PCR with the tubulin gene primer pair

TubulinRfer-F/R (S1 Table), respectively.

Cloning and sequencing of putative Orco from R. ferrugineus and R.
vulneratus

Putative partial Orco sequences taken from both species were amplified using a degenerate

primer strategy. The degenerate primers were designed by aligning the Orco amino acid

sequences of 14 insect species representing three different insect orders (Coleoptera, Lepidop-

tera, and Diptera): (AEE69033.1) Holotrichia oblita; (AEG88961.1)Holotrichia parallela;

(ADM35103.1)Holotrichia plumbea; (AAT71306.1) Drosophila melanogaster; (AAX14774.1)

Anopheles gambiae; (AAX14775.1) Ceratitis capitata; (ACC86853.1) Batrocera dorsalis;

(ACF21677.1) Stomoxys calcitrans; (ACF21678.1) Haematobia irritans; (ADK97803.1) Bactro-

cera cucurbitae; (ADQ13177.1)Helicoverpa armigera; (AFI25169.1) Heliothis viriplaca;

(AAX14773.1) Helicoverpa zea; and (ABU45983.2) Helicoverpa assulta. The degenerate prim-

ers OR34-F and OR701-R (S1 Table) were used to amplify the partial Orco target genes from

both species through polymerase chain reaction (PCR) with AmpliTaq Gold polymerase

(AmpliTaq1, Life Technologies). The touchdown PCR program was performed with an

annealing temperature decrement (1°C) from 60°C to 45°C for 1 cycle, with the exception of

the first and last annealing temperatures, which were reached after 4 cycles and 30 cycles,

respectively. The extension time was 1 min at 72°C, and a final extension was performed for 10

min. The PCR products were run on 2% agarose gels and visualized using ethidium bromide

staining. The amplified PCR products within the expected size range were gel purified with the

Wizard1 SV Gel and PCR Clean-Up System (Promega, WI, USA), followed by ligation into

the pGem-T Easy vector (Promega) and transformation into the JM109 Escherichia coli system.

The plasmid products were isolated and analyzed with an ABI 3500 genetic analyzer (Life

Technologies) using vector primers M13-F/R (S1 Table). BLASTx searches were conducted in

the NCBI database, and partial sequence alignment was carried out using the Clustal W pro-

gram (Bioedit ver. 7.1.9) [35].

Rapid amplification of cDNA ends to obtain full-length Orco and
phylogenetic analysis

The full-length Orco nucleotide sequences of R. ferrugineus (RferOrco) and R. vulneratus (Rvu-

lOrco) were obtained by amplifying both cDNA ends (5´ and 3´ ends) using a rapid amplifica-

tion of cDNA ends technique (SMARTer RACE kit, Clontech, CA, USA). Gene-specific
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primers (GSP) for 5´- and 3´-RACE were designed based on the partial RferOrco and Rvu-

lOrco nucleotide sequences. The RACE GSP primers for the 5´ and 3´ ends were GSPOrco-F/R

(S1 Table). Amplification reactions were carried out as follows: 95°C for 5 min, followed by 30

cycles of 95°C for 1 min, 60°C for 30 s and 72°C for 1 min and, finally, one cycle at 72°C for 10

min. The amplified PCR products were gel purified and cloned into a vector, followed by

sequencing in both directions, as mentioned above. A primer walking step was conducted to

complete the sequence of the 3´ end region. The sequences were identified through BLASTx

searches, and the partial sequences for both ends were aligned and joined to obtain the full-

length cDNA using the Clustal W program [35]. Confirmation of seven transmembrane pro-

teins was carried out using the TMHMM Server ver. 2.0 (for prediction of transmembrane heli-

ces in proteins; http://www.cbs.dtu.dk/services/TMHMM/). MEGA Ver. 6 [36] was used to

generate a phylogenetic tree of the RferOrco and RvulOrco amino acid sequences based on

insect Orco data available from the NCBI database.

RferOrco tissue specificity studies

The tissue specificity of RferOrco was analyzed using different tissues collected from both male

and female R. ferrugineus, including samples of antennae, snout, thorax, abdomen, legs and

wings. Total RNA extraction and cDNA synthesis were performed as described above. The

gene-specific primers (GSPOrco-F/R) indicated above were used to amplify a 204 bp region of

the RferOrco gene, and tubulin was used as an internal standard (TubulinRfer-F/R) (S1 Table).

PCR amplification was performed using the following thermal program: 95°C for 5 min, fol-

lowed by 30 cycles of 95°C for 1 min, 55°C for 30 s and 72°C for 1 min, with a final cycle at

72°C for 10 min. The PCR products were run on 3% agarose gels and visualized via ethidium

bromide staining.

RferOrco silencing by the RNAi technique and qRT-PCR validation

Double-stranded RNA (dsRNA) was synthesized from the plasmid containing the open read-

ing frame (ORF) of the RferOrco sequence. T7 forward primers and ORF reverse primers with

a T7 overhang (T7RferOrco-F/R) (S1 Table) were used to amplify the ORF of RferOrco and

sequencing was performed to confirm the T7 tail on the ORF region. RNA synthesis was car-

ried out following the protocols of the MEGAscript RNAi Kit (Life Technologies). Quantifica-

tion of the resultant dsRNA was performed using a Nanodrop 2000 (Thermo Scientific, DE,

USA). Approximately 10-day-old R. ferrugineus pupae were used for the dsRNA experiments.

Injection of 20 μL of 40 ng/μL dsRNA of RferOrco was performed in the first dorsal segment of

the abdomen, close to the thorax, using a 0.5 mL BDMicro-Fine™ PLUS syringe (Becton, Dick-

inson Co., NJ, USA) at a depth of 0.5 cm. All of the experimental pupae were maintained in

rearing chambers at room temperature; following emergence, adults were transferred to a sepa-

rate box containing a piece of fresh sugarcane until the time of RNA extraction. Twenty-one

days after injection, all adults were exposed to a temperature of –20°C until completely immo-

bilized (approximately 10 min), at which time RNA extraction and cDNA synthesis was carried

out as described above for each experimental group.

To validate the effects of RferOrco dsRNA on RferOrco expression, a qRT-PCR assay was

conducted in the Applied Biosystems1 7500 Fast Real-Time PCR Systems using the SYBR Pre-

mix kit (Life Technologies). The qRT-PCR experimental design was set up into three biological

groups which were dsRNA RferOrco-injected (dsRNA), no-injection (NI) and nuclease free

water-injected (NFW) group. Each groups has three biological replicates where each replicate

was a pooled of five individuals, while the technical replicates was three (each has 20 μL reac-

tion volume). The same gene-specific primers indicated above (GSPOrco-F/R; S1 Table) were
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used to amplify 204 bp of RferOrco. The Tubulin primers (TubulinRfer-F/R; S1 Table) were

used to normalize RferOrco gene expression. The relative expression levels of RferOrco were

measured with the 2-ΔΔCtmethod by normalizing them to tubulin (endogenous genes) and the

control no-injection groups (NI) [37]. PCR amplification was performed using the following

thermal program: holding stage at 50°C; 95°C for 2 or 5 min; then 40 cycles of 95°C for 15 s

and 60°C for 32 s; and finally, a continuous melting curve stage of 95°C for 15 s, 60°C for 1

min, 95°C for 30 s, and 60°C for 15 s. The qRT-PCR products were run on 3% agarose gels and

visualized via ethidium bromide staining.

RferOrco expression pattern across different dsRNA post injection
periods

RferOrco expression in dsRNA-injected RPW was assessed for different post injection periods

after injection using qRT-PCR assay. The procedure for measuring the RferOrco expression

was similar to that mentioned previously. Four different post injection periods (10 days, 21

days, 35 days and 60 days after dsRNA injection) with three biological replicates were assessed,

and each replicate was an individual RPW, while the technical replicates for qRT-PCR was

three. dsRNA RferOrco-injected (dsRNA) RPW- expression level were compared to the con-

trol no-injection RPW groups (NI).

Biological assay to study the effect of RefOrco silencing

Olfactometer assay. The olfactometer assay was conducted with an olfactometer unit

(Volatile Collection System Co, Gainesville, FL) consisting of a Y tube (main-tube length: 47

cm; arm length: 68 cm, diameter: 5 cm; with 40-cm long/2-cm diameter plastic tubes in each

arm connected to the source of the stimulus), an air-delivery system (carbon filter and humidi-

fied air), and the stimulus container (diameter: 8 cm, length: 10 cm). The olfactometer unit was

operated at a pressure of 15 Psi and zero air inlet flow of 1.2 liters per minute [38]. A prelimi-

nary study was set up to evaluate the response of dsRNA, NFW and no-injection (NI) group of

RPW adults to the stimulus [commercial aggregation pheromone (ChemTica Int. Costa Rica),

and ethyl acetate] in one arm, air in another arm or “no response” if the adult failed to move

for the period of 6 minutes (S2 Table). Since the preliminary study shown that NFW and NI

adult RPW had similar responses to the stimulus, further olfactometer assay were carried out

with dsRNA and NI adult RPW group only; each group consisted of 10 adults RPW (10 repli-

cates) of the same age group in a ratio of 1:1 (female:male) [39,40].

Adult RPW were released individually from the base of the Y tube, with the time from

release to when the insect reached the odor source inlet recorded. To avoid bias, each adult was

used three times on different days; in addition, recording was performed randomly by shifting

the dsRNA and NI RPW adults, and by changing the orientations of the Y-branch olfactome-

ter. Adult RPW were starved overnight (or approximately 8 hours) prior to testing [40,41]. The

adult RPW normally locate the point of stimulus within 2 minutes; as such, a run was termi-

nated if the weevil failed to move beyond the first 3 cm of the main tube within 4 min of release

(they were recorded as “no response”), as modified from [39–41]. The number of times (three

times on different days) each individual chose the stimulus, the air, or was “no response” were

recorded and expressed as percentages of the total.

Electroantennography (EAG). To confirm the effect of dsRNA on adult RPW as shown

by the results of both the qRT-PCR and olfactometer assays, the same individuals used in the

olfactometer assay (with additional three individuals, therefore, total replicates was 13) were

tested for their response to specific stimuli using EAG (Syntech, Hilversum, Netherlands) 10

days following the olfactometer assay (except for NFW RPW group which was tested separately
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with six individual replicates). Antennae of dsRNA, NFW, and no-injection (NI) RPW were

exposed to three different stimuli–(4RS,5RS)-4-methylnonan-5-ol, (Pher1), 4(RS)-methylno-

nan-5-one (Pher2), and ethyl acetate (EA) (ChemTica Int., Costa Rica)–at concentrations of

0.01 mg/mL diluted in hexane, with humidified air used as the negative control. Evaluation of

the antennal response to EAG stimuli were initiated by excising RPW antennae at the base

(RPW were demobilized using CO2 for 1–2 min prior to antennal excision) and then attaching

them directly to electrode holders coated with electrode gel SPECTRA 360 (Parker Lab, Inc.

Fairfield, NJ, USA). The stimuli were delivered through a glass Pasteur pipette with paper filter

strips (0.3 cm2) containing 4 μL of the stimulus compound inserted inside. The tip of the

pipette was, in turn, inserted into another glass tube that led to the antennal sample the humid-

ified airflow onto the mounted antennal preparation. Stimuli were delivered via an air-stimulus

controller (Model CS-55 Ver.2.7, Syntech, Hilversum, The Netherlands) fitted with charcoal

filter passed over the antenna. Odor stimulation puffs were given three times at 0.1 s intervals

by applying air from the stimulus controller through the Pasteur pipette into the main airflow

for each stimuli, with 40 s intervals between the delivery of each of the different odor com-

pounds. Antennal response to each stimulus was recorded as voltage waveforms using a Syn-

tech Acquisition IDAC-2 controller (Syntech) connected to a computer. The antennal

response (EAG) data was subtracted to the negative control (air) prior to statistical analysis.

Statistical analysis

qRT-PCR data expressed as fold change 2-ΔΔCt values were calculated using MS Excel following

Livak and Schmittgen [37]. Three groups were set up, consisting of a dsRNA RferOrco-injected

group (dsRNA), nuclease free water-injected (NFW) and no-injection (NI) groups. Each group

was set up in triplicate either for biological and technical replicates. The biological replicates

consisted of five individuals or one individual of R. ferrugineus adult. A parametric one-way

ANOVA was used to test for significant differences among the experimental groups for

qRT-PCR, olfactometer assay and EAG, followed by multiple-comparison testing with the least

significant difference (LSD) test (P< 0.05) (qRT-PCR and EAG) or with Tukey’s HSD test for

olfactometer assay [42], using SAS program ver. 9.2 [43].

Results

Orco cloning and full-length sequencing

The degenerate primers successfully amplified the expected 688-bp partial putative Orco nucle-

otide sequence from both R. ferrugineus (RferOrco) and R. vulneratus (RvulOrco) species. Full-

length Orco sequences were obtained from both species using a SMARTer RACE procedure

involving gene-specific primers (GSP), assisted by applying a primer walking strategy. The

putative RferOrco was confirmed to have a full length of 1961 bp, within which the length of

the open reading frame (ORF) region was 1449 bp (located between bp 168–1616), corre-

sponding to 482 amino acids. RvulOrco exhibited a full-length sequence of 2276 bp, with the

same ORF length and number of amino acids (Fig 1). The full-length nucleotide sequences of

RferOrco and RvulOrco exhibited 82.16% identity, mostly due to different lengths of the 5´

and 3´ untranslated regions (UTR). The ORF regions of RferOrco and RvulOrco shared a high

identity of up to 98.75% and 99.58% for the nucleotide and amino acid sequences, respectively.

Seven transmembrane domains were identified in RferOrco and RvulOrco using the TMHMM

server V.2.0, which is a typical characteristic of Orco proteins (Fig 1 and S1 Fig; RvulOrco was

not presented in this Fig due to high similarity).

The maximum likelihood phylogenetic tree (Fig 2) involving representative insect Orco

(from eight different insect orders) sequences revealed a typical clade that was consistent with
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Fig 1. Amino acid sequence alignment of RferOrco and RvulOrco with other coleopteran Orco proteins.
D. ponderosae [AEE62122.1],M. caryae [McOr1], T. castaneum [XP_008194693.1], A. corpulenta
[AKC58535.1], A. quadriimpressum [AJF94638.2],H. plumbea [ADM35103.1], H. oblita [AEE69033.1], H.
parallela [AEG88961.1], T.molitor [AJO62219.1]. Amino acids that are identical in all sequences are indicated
by dark shading. The locations of the predicted seven transmembrane domains in the amino acid alignment are
indicated with red lines (I-VII) (for RferOrco).

doi:10.1371/journal.pone.0162203.g001
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Fig 2. Maximum likelihood phylogenetic tree of the representative insect Orco sequences (from eight different
orders). The species belonging to each order are indicated with bullets of different colors. RferOrco and RvulOrco are located
with other coleopteran species in red bullet (RferOrco and RvulOrco are underlined in black).

doi:10.1371/journal.pone.0162203.g002
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the organization of the established conventional taxonomic groups for Zygentoma, Phasmato-

dea, Orthoptera, Coleoptera, Diptera, Lepidoptera, Hemiptera and Hymenoptera. As expected,

both RferOrco and RvulOrco were located in the same clade as the coleopteran Orco

sequences, being closely related to Dendroctonus ponderosae (Curculionidae) (Fig 2). The per-

centages of similarity between RferOrco and other coleopteran species were 86% for Tribolium

castaneum, 88% for D. ponderosae andMegacyllene caryae, 78% for Holotrichia plumbea and

H. parallela, and 79% for H. oblita.

RferOrco tissue specificity studies

The possibility of RferOrco expression in other tissues was confirmed by amplifying the spe-

cific RferOrco region using a gene-specific primer (GSPOrco-F/R; S1 Table). It was shown that

RferOrco expression occurred exclusively in the antennae of both males and females, as dem-

onstrated by the single band present in both samples (Fig 3A), whereas in other tissues no

amplification was observed. cDNA quality was confirmed by PCR using primers targeting R.

ferrugineus tubulin (Fig 3B).

RferOrco silencing and qRT-PCR validation

The RferOrco expression pattern due to RNAi silencing in RPW was validated through

qRT-PCR. To meet the requirements of the 2-ΔΔCt calculation method, tubulin was used as an

endogenous gene. Nuclease free water-injected group (NFW) and no-injection group (NI)

were included in the experiment to avoid injected material and injection technique effects

respectively. The qRT-PCR results revealed that there was a 96% reduction in the 2-ΔΔCt value

of RferOrco expression in dsRNA RPW compared to the NI RPW, and a significant difference

to values for NFW RPW (Fig 4A). This result was confirmed visually through RT-PCR gel elec-

trophoresis, which showed reduced amplification of RferOrco in the dsRNA RPW group (Fig

4B, third column). At the same time, the expression of tubulin in all of the groups, including

the dsRNA group (Fig 4B), was comparatively similar, indicating that the injection of dsRNA

did not affect the expression of housekeeping gene (tubulin).

RferOrco expression pattern across different dsRNA post injection
periods

No-injection (NI) RPW had significantly higher level of RferOrco expression compared to the

dsRNA group (Fig 5). RferOrco expression in NI RPW varied across different dsRNA post

injection periods, with expression levels at 21 days and 35 days being significantly higher than

at 10 days and 60 days. Notably, a single injection of 20 μL of 40 ng/mL of dsRNA reduced

RferOrco expression in the RPW for up to 60 days afterward, but RferOrco expression was not

significantly different across the other post dsRNA injection periods (Fig 5).

Effect of dsRNA injection: olfactometer and EAG

Olfactometer assays revealed significantly altered behaviors in dsRNA RPW compared to no-

injection (NI) RPW (Fig 6); most of the control RPW adults (70%) moved towards the stimulus

source, whereas only a small number of dsRNA RPW adults did so (20%). In fact, 56.7% of the

dsRNA RPW were not responsive, compared to only 6.7% of NI RPWs.

To confirm the altered behavior of the dsRNA RPW adults in olfactometer, the antennae

were excised from the same individuals for use in the EAG analysis, and exposed to three olfac-

tory stimuli (Pher1, Pher2, EA). As shown in S2 Fig, the antennae of dsRNA RPW responded

differently than that of NFW and NI RPW antennae. Comparing antennal response to the
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different stimuli (Pher1, Pher2 and EA) for each group (NI, NFW and dsRNA group) revealed

that NI and NFW RPW group response to stimuli was significantly higher than dsRNA group

(EA: F = 63.3; df = 2, P< 0.0001, Pher1: F = 50.29; df = 2; P< 0.0001, Pher2: F = 20.06; df = 2;

P< 0.0001) (Fig 7). In addition, there were no significant differences between males and

females from both groups (dsRNA and NI RPW group) in their response to the Pher2 and EA

stimuli, whereas control (NI) male RPW exhibited a higher response to Pher1 (Ferrugineol)

than did female RPW of the same group, indicating that male RPW are more sensitive to Fer-

rugineol than are females (S3 Table).

Fig 3. Expression of GSPOrco (A) and tubulinRfer (B) determined from cDNAs from different R.
ferrugineus tissues (1. male antenna; 2. female antenna; 3. male snout; 4. female snout; 5. male
thorax; 6. female thorax; 7. male abdomen; 8. female abdomen; 9. male legs; 10. female legs; 11. male
wings; and 12. female wings). Amplification products were analyzed in 3% agarose gels and visualized
under UV illumination after ethidium bromide staining. The amplification size (bp) is indicated on the left side
of the amplified band, which measured 204 bp for GSPOrco and 196 bp for tubulin R. ferrugineus.

doi:10.1371/journal.pone.0162203.g003

Fig 4. A. Normalized fold expression of dsRNA RferOrco-injected group (dsRNA) compared with no-
injection (NI) and nuclease free water-injected (NFW) group. The asterisk (*) above the dsRNA-RferOrco
bar indicates significant differences between selected groups (dsRNA) and other groups (LSD at P<0.05).B.
Representative visual band of the 1. NI, 2. NFW, and 3. dsRNA groups. The first row shows the
expression of GSPOrco in the different experimental groups, and the second row shows tubulin expression in
the different experimental groups.

doi:10.1371/journal.pone.0162203.g004
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Fig 5. RferOrco expression normalized with tubulin between dsRNARferOrco injected (dsRNA) and
no-injection (NI) RPW across the different post injection periods (10 d, 21 d, 35 d and 60 d). Letters
indicate significant differences between control and dsRNA groups at different post injection periods (days)
(LSD at P < 0.05).

doi:10.1371/journal.pone.0162203.g005

Fig 6. Response of dsRNA RferOrco injected (dsRNA) and no-injection (NI) RPW to odor stimulus
(sugarcane, live individual, pheromone and ethylacetate) in Y-tube olfactometer assays. Asterisks (*)
indicate significant differences (LSD at P < 0.05) between NI and dsRNA RPW to stimulus, air or “no
response” groups. ns: non-significant.

doi:10.1371/journal.pone.0162203.g006
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Discussion

Our study identifies the olfactory co-receptor (Orco) in two sympatric species of palm weevils

(R. ferrugineus-RferOrco- and R. vulneratus-RvulOrco-) and successfully demonstrates that

the RferOrco gene can be silenced with RNAi, leading to reduced pheromone detection,

thereby providing a solid baseline for further development of RPWmanagement programs.

Palm weevils, including R. ferrugineus and R. vulneratus, have recently come under greater

scrutiny due to their invasiveness and pest status. Attempts to control these weevils have tradi-

tionally relied on the use of commercial pesticides and pheromone traps [2,7–9]. Both R. ferru-

gineus and R. vulneratus respond to the same aggregation pheromone [2,10] despite most

pheromones being species-specific [44–46], leading to a number of studies of these two insect

pests being undertaken that examine many different aspects [2,4,10,47–49]. However, knowl-

edge about the pheromone response of these insect species at the molecular level is inadequate,

especially in regard to the mechanism of the olfactory system.

An effective olfactory system is key to insect survival, as locating hosts and mates, and

avoiding predators, would be impossible without it [12]. Genes involved in odorant detection

have been identified in many insect species, such as the yellow fever mosquito Aedes aegypti

[50], the codling moth Cydia pomonella, [51], the tobacco hornwormManduca sexta, [52] and

many others, including one recently identified in R. ferrugineus [53]. Among the complex

insect olfactory mechanisms as revealed by olfactory gene characterization, the OR protein,

which must be heterodimerized with olfactory co-receptor (Orco), plays a significant role in

selectivity and sensitivity. Replacing OR can greatly interfere with the normal response of an

insect to the presence of pheromones [11,12,54]. Deleting Orco has been shown to degrade OR

Fig 7. Electroantennographic (EAG) response of dsRNA RferOrco injected (dsRNA), Nuclease free water-injected
(NFW) and no-injection (NI) RPW to (4RS,5RS)-4-methylnonan-5-ol, (Pher1); 4(RS)-methylnonan-5-one (Pher2), and
ethyl acetate (EA). The EAG response to different stimuli was subtracted to negative control (air) before proceeded for
statistical analysis. The standard errors of the means of the 13 biological replicates (NI and dsRNA) or six for NFW are
represented by the error bars. Different letters within each stimulus groups either Pher1, Pher2, or EA signify that the values
were significantly different among NI, NFW and dsRNA treatments (LSD at P < 0.05).

doi:10.1371/journal.pone.0162203.g007
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functioning [18], and thus Orco silencing may have the potential to hinder insect response to

pheromones, which could provide a novel approach for developing insect control methods.

In the present study, the characterization of the Orco protein in both palm weevil species

(RferOrco and RvulOrco) represents the second time this gene has been identified in a member

of the Curculionidae family, following that for D. ponderosae, and reinforces the importance of

the Orco protein in odor detection by weevil species. This information is useful in light of a

recent study demonstrating that the existence of Orco homologs in insects is the exception

rather than the rule; for instance, no Orco sequence was found in one group of Archaeognatha,

represented by the bristletail Lepismachilis y-signata, whereas in the firebrat Thermobia domes-

tica (Zygentoma), more than one Orco sequence was identified [55].

The features of RferOrco and RvulOrco can be confirmed by the unique atypical membrane

topology of insect Orco that was observed in both Rhynchophorus species, wherein the N-ter-

minal ends were located in the cytoplasm and the C-terminal ends were oriented toward the

outside of the cell. These unique features differentiate Orco from the seven transmembrane

protein family or G protein-coupled receptors (GPCRs) found in mammals [56,57]. Moreover,

the conservation of the RferORco and RvulOrco amino acid sequences was homologous to that

of other coleopteran Orco sequences; the alignment of RferOrco and RvulOrco with other cole-

opteran Orco sequences revealed several conserved regions, most apparent in the C-termini

region. This character is a unique feature of the majority of insect Orco proteins [27,58–60],

leading to speculation that the conserved amino acid residues in the C-termini represent evolu-

tionary retention of the primary function of Orco, that of mediating the functional interactions

of OR and Orco proteins [58,60].

The phylogenetic tree of identified insect Orco sequences is interesting because it is in accor-

dance with conventional taxonomic systems (at the Order level). Palm weevil Orco and those

of other coleopteran species are within the same clade, representing the coleopteran clade. In

particular, both RferOrco and RvulOrco are in the same clade as a member of the Curculioni-

dae family, D. ponderosae. The phylogenetic tree also shows evidence of the organization of

insects based on their reproductive systems–all holometabolus insect (ants, bees, beetles,

moths, flies) are located in the same clade, and separated from the hemimetabola (aphids,

bugs, lice, locusts) and more ancient Apterygote insects (T. domestica, Zygentoma). The simi-

larity of Orco organization to the conventional system has given rise to the hypothesis that the

olfactory system is indeed a product of evolution, in which Orco was present before OR [55].

Thus, comparing Orco genes in two sympatric species such as R. ferrugineus and R. vulneratus

is important.

Despite the fact that R. ferrugineus and R. vulneratus exhibit different geographical distribu-

tions and host plant preferences, our results showed that the ORF sequence of the two species

was highly similar (99.58%). The similarity of Orco sequences between species has also been

observed for Lygus hesperus and its sympatric sister species, the tarnished plant bug (L. lineo-

laris), with the two species exhibiting identical ORF nucleotide sequences [61]. This high

degree of ORF similarity could reflect the performance of similar functions by the proteins,

and Orco genes have indeed been experimentally shown to have the same function across

insect species, as demonstrated by research involving Orco-deficient D.melanogaster [62]. The

high level of ORF similarity between R. ferrugineus and R. vulneratus can be explore in the

future work to find the reason for the similarity in response to the same aggregation phero-

mone by these two species [10]. Additionally, the different lengths of the 5´ and 3´ UTRs

between RerOrco and RvulOrco could provide some clues regarding the speciation and adapta-

tion processes of these species, as the UTR determines mRNA transcription, stability and effi-

ciency [63].
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Traditional methods have been proven less than satisfactory for control of R. ferrugineus,

leading to proposals of molecular approaches aimed at disrupting the olfactory system, given

that olfaction interference has the potential to disrupt such critical behaviors as host and mate

location, ultimately disturbing the reproductive process and decreasing R. ferrugineus popula-

tions. Orco has emerged as a promising target candidate, as demonstrated by numerous studies

[25–30,32]. The RNAi technique also shows considerable potential for controlling insect pests

in the field [64,65]. Here, we report the use of RNAi in silencing the olfactory co-receptor gene

(RerOrco) in R. ferrugineus via injection, a convenient dsRNA delivery system that produced

promising results for some insects under laboratory conditions [26–28,31]. In our study,

dsRNA injection to the abdominal dorsal part of RPW pupae resulted in significant diminish-

ment of RferOrco expression compared to no-injected (NI) and NFW RPW. The 96% reduc-

tion in RferOrco expression in dsRNA RPW–along with 2-ΔΔCt values of up to 0.04 –was an

improvement over similar attempts for dsRNA-CquiOR37 of mosquitoes, for which 2-ΔΔCt val-

ues was approximately 0.5 [30], the 2-ΔΔCt of 0.26 reported for dsRNA-LdisOrCo of gypsy

moths [32], or the 73% reduction in RproOrco expression in Rhodnius prolixus [28]. This

result is indicative of the systemic effect of dsRNA, where dsRNA was hypothesized to be trans-

ported to the target tissue (the antennae) and target gene via hemolymph circulation [31]. The

systemic effect is indeed a good indication for the dsRNA delivery in RPW, given the ability of

dsRNA to circulate in tandem with hemolymph to reach the target [65]. However, to make the

RNAi technique more practical for controlling insect pests, dsRNA delivery via feeding would

probably be the most efficient means of application, although determining the precise amount

of dsRNA that must be consumed by the insect would be challenging [31,66]. However,

dsRNA delivery through feeding is not only a non-invasive technique, but it also opens the

door to the development of alternative delivery systems, such as the generation of transgenic

plants that produce dsRNA [64,65], bacteria that express dsRNA [67], chemical synthesis of

siRNA [68] or by coating dsRNA to facilitate its spread in a spray form, as well as modifications

that enhance its uptake by the gut and increase gene-silencing efficiency, an approach that has

been applied in mammalian cells [65,69]. However, dsRNA delivery through feeding can bring

either successful or unsuccessful outcomes, as was made clear in a review by Terenius et al.

[66], but in Lepidoptera it was reported there is no obvious correlation between concentration

of injected dsRNA and the degree of silencing [66]. In Coleoptera, however, and especially in

RPW, this approach is deserving of future research.

Further experimentation validating the persistency of the dsRNA affect across different post

injection periods revealed that reduced RferOrco expression occurred as early as 10 days fol-

lowing injection, similar to results for the western corn rootworm (WCR) Diabrotica virgifera

virgifera LeConte through feeding [64], but in that case, for periods fewer than 10 days, the

dsRNA treatment had little effect [64]. Appropriate dsRNA post injection periods are therefore

critical for successful application of RNAi. Results may vary with different periods, as dsRNA

feeding byM. sexta only occurred within 5 days, after which it was lost [52]. In our study, the

effect of dsRNA in reducing RferOrco expression was shown to persist for 60 days, a length of

time that is in line with many other insects, such as Rhodnius prolixus (RproOrco), for which

effects persist up to 100 days [28]. Moreover, the effects of RNAi are inheritable from one gen-

eration to the next, as has been demonstrated through manipulation experiments of the hemo-

lin gene ofHyalophora cecropia [70].

It has also been shown that reducing the RferOrco expression as a result of RNAi treatment

alters RPW behavior. In R. prolixus, Orco silencing altered feeding, molting, mortality and

reproductive activities and behavior in addition to the olfactory response [28]. In our study,

only 20% of dsRNA RPW adults responded to pheromone stimuli, which was significantly

lower than that of normal RPW adults (70%), and EAG assays demonstrated, on average, an
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80.21% reduction in response to the pheromone stimuli among dsRNA RPW compared to

control RPW. Similar results using the same gene target and delivery method have been

reported forMicroplitis mediator [31] and Apolygus lucorum [29]. In the present study, we

proven experimentally that Orco is an essential component in olfaction in RPW. It acts in con-

cert with select conventional receptors, performing OR-Orco heterodimerization to mediate

responses to all odors; RNAi knockdown of RferOrco leads to defective OR function and a

reduced signal detection. A detailed experiment in which a transgenic Orco mutant was gener-

ated for Drosophila, A. gambiae and A. aegypti resulted in the complete disruption of behav-

ioral and electrophysiological responses to many odorants [18,25]. In our study, it was shown

that stimulus detection remained at a low level, as has been observed in other studies [29,31], a

consequence of using RNAi that provides a knockdown rather than a true knockout effect, but

with the advantage of target specificity [71].

In summary, our study elucidated the characteristics of the Orco gene of two sympatric spe-

cies, R. ferrugineus and R. vulneratus, and provides further evidence that RNAi application

could be an attractive alternative to traditional methods for controlling coleopteran pests, in

particular, RPW. Future research should focus on the most efficient means of dsRNA delivery,

perhaps via feeding followed by the development of transgenic plants, via infection with

dsRNA-expressing bacteria, or through the production of specialized coating materials for

dsRNA that would facilitate its direct application in the field.
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