
AB S T R AC T

For dynamic analysis, it is required to provide viscous boundaries in PLAXIS to reduce the boundary e�ects and to prevent 

the re�ection of waves from boundaries. So, a study has been carried out to compare the various methods of providing silent 

boundaries and to see the e�ectiveness of viscous boundaries used in PLAXIS. In this work, three methods of providing 

silent boundaries, which are viscous boundaries, local damping, and extended boundary, are analyzed using a 2D �nite 

element program in FORTRAN by considering the simple problem of a two-dimensional vertical bar. Parameters, such as, 

normal stress at the bottom, vertical displacement at the top, potential energy, kinetic energy, strain energy, and total 

energy of bar are determined with and without using the above three methods of providing silent boundaries. Results 

are compared using graphs. It was observed that standard viscous boundaries are not much e�ective for static analysis 

but most e�ective for dynamic analysis.
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IN T R O D U C T I O N

In many problems of engineering and physics, semi-

in�nite domains exist. However, every numerical model 

must be terminated at some �nite boundary. In numerical 

simulations of problems involving wave propagation, the 

use of �nite boundaries leads to a re�ection of waves upon 

reaching the boundaries of the mesh. These re�ected waves 

get superimposed with progressing waves and distort the 

computed results. This problem can be solved by placing 

the boundary at a larger distance, but this requires the 

introduction of a large number of elements to model 

regions, and take more memory and time for computation. 

In addition, for computational efficiency, it is desirable 

to place the boundary as close as possible to the finite 

structure. Thus, there is a need to create a boundary, which 

is perfectly radiating to outgoing waves and transparent to 

incoming waves, this boundary is called silent boundary. 

Silent boundaries are also called absorbing boundaries or 

transmitting boundaries or non-re�ecting boundaries.

There are various methods developed by many 

researchers which are adopted for providing silent 

boundaries. Al-Kafaji (2013) introduced a damping factor to 

damp out the energy of incident wave and damping force 

is proportional to the out of balance force, for any degree of 

freedom in the considered system.1 Kellezi (2000) proposed 

a cone boundary for transient analysis. This boundary 

condition includes both a dashpot and a spring to simulate 

in�nite boundary condition.2 Kim (2012) performed a study 

to improve the capacity of viscous boundary conditions using 

dashpots. It was found that using the concept of energy ratio 

between the transmitted energy of re�ected and incident 

wave the e�ciency of viscous boundary condition can be 

improved for an arbitrary angle of incidence and materials.3 

Kim (2014) investigated the validity of the silent boundary 

conditions proposed by two researchers. In numerical study, 

boundaries were modeled as semicircles and as rectangles 

with dashpots, to examine the absorbing boundaries for 

waves attacking perpendicularly and having inclined angles 

of incidence respectively. It was found that absorption ratio 

was smaller when wave attacking the boundary with an 

inclination than for the wave perpendicular to the boundary.4 

Li and Xiang Song (2015) proposed a general viscous-spring 

transmitting boundary for numerical analysis of wave 
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propagation in unbounded saturated porous media. It was 

found that proposed boundary is more e�cient and capable 

of solving dynamic problems in saturated porous media.5 

Liu and Jerry (2003) proposed a gradually damped arti�cial 

boundary applied by an exponentially increasing function, 

to simulate a non-re�ecting boundary condition.6 Lysmer 

and Kuhlemeyer (1969) proposed a general method through 

which an in�nite system is approximated by a �nite system 

with a special viscous boundary condition by absorbing the 

striking waves towards the boundary.7 Ross (2004) presented 

four typical methods for applying a silent boundary for an 

in�nite domain. These are plane wave approximation (PWA), 

viscous damping boundary method, perfectly matched 

layers (PML), and in�nite elements. The PWA is a boundary 

element method ideally suited for fluid media. Viscous 

damping method is similar to PWA and is used for elastic 

media. In PML, the boundary layer is made of the same 

elements as computational domain; however, it has slightly 

di�erent properties. In the in�nite elements, the basic idea 

is to place element with special shape function to represent 

the in�nite boundary.8 Shen and Chen (2005) developed a 

simple silent boundary method for dynamic analysis. By using 

this method, dynamic deformation could be simulated in a 

small computational domain.9 Zienkiewicz (1967) introduced 

the use of in�nite elements. In�nite elements are de�ned as 

radiating strips in the exterior regions. The shape functions 

of such elements include an exponential decay term, so that 

they mimic the asymptotic behavior at in�nity.10

AN A LYS I S  O F  EX I S T I N G  ME T H O D S  O F 
PR OV I D I N G  S I L E N T  BO U N DA RY

In this work, following three methods of providing silent 

boundaries will be analyzed using a 2D finite element 

program:

Viscous Boundaries 
While adopting viscous boundaries, a dashpot is used in place 

of applying �xities on the boundaries. The dashpot absorbs 

the increase in stress on the boundary without rebounded. 

In this work, the use of viscous boundaries will be based on 

the method proposed by Lysmer and Khulmeyer (1969). The 

normal and shear stress components absorbed by a damper 

are represented in Eq. (1) and Eq. (2), respectively.7 Negative 

sign shows that these stresses act in the direction opposite 

to the normal and tangential velocities.

                                         (1)

                                        (2)

Where, σ and τ are the normal and shear stresses, 

respectively. ẇ and u  ̇are the normal and tangential velocities 

of the boundary points, respectively.

Where, E and G are Young’s modulus of elasticity and shear 

modulus of material, respectively, in which wave propagates, 

and a and b are dimensionless parameters.

Local Damping
In local damping, a damping factor is introduced to damp 

out the energy of the incident wave, and damping force is 

proportional to the out of balance force. For any degree of 

freedom in the considered system, the local damping can be 

described as follows by Al-Kafaji (2013)1:

                                        (3)

Where,

and

In the Eq. (3), f damp acts opposite to the direction of the 

velocity at the considered degree-of-freedom. The parameter 

α is a dimensionless damping factor and sign (v) is de�ned 

for nonzero values of v.

Extended Boundary
The concept behind this boundary is to introduce a section 

of elements before the �nite element boundary of the �nite 

element model to prevent the re�ections of waves. Damping 

force will be calculated and applied as given in Eq. (3). In this 

work, this type of extended region is provided in two ways: 

• Provide a constant damping factor throughout the 

extended region.

• Provide a linearly varying damping factor, which is zero 

at the junction of the extended region and �nite element 

model and maximum on the other side of the extended 

region.

AN A LYS I S  W I T H  VE R T I C A L  BA R 
PR O B L E M

The above three methods of providing silent boundaries are 

analyzed using a 2D �nite element program in FORTRAN. 

To analyze these methods, a simple problem of a two-

dimensional vertical bar is considered. The vertical bar of 

1-meter length consisting of 50 elements of square size and 

102 nodes is taken into account. The bar is restricted against 

horizontal movement. Hence, velocities and displacements 

at nodes in the horizontal direction are zero. Stresses 

and displacements at the bottom and top of the bar are 

determined in the vertical direction, for di�erent boundary 

conditions (fixed, free, viscous boundary, and extended 

region using local damping) and di�erent types of loads. 

Results are compared using graphs. Properties of the bar 

are given in Table 1.

Under the In�uence of Gravitational 

Acceleration only 
In this case, the bar is subjected to only a gravitational 
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acceleration (gy = -10 m/s2) in a vertically downward direction, 

and the bottom of the bar is �xed (Figure 1).

Firstly, normal stress at the fixed bottom, vertical 

displacement at the top, potential energy, kinetic energy, 

strain energy, and total energy of the bar are determined 

without any damping. Then, local damping, as described 

above, is applied, and again normal stress at the �xed bottom, 

vertical displacement at the top, and all the energies are 

determined.

Under the In�uence of Half Sinusoidal Stress 

Wave
In this case, the bar is subjected to only a half sinusoidal stress 

wave (σ) in a vertically downward direction (Figure 2).

  σ = −100 sin(125t) kPa                     (4)

From the Eq. (4), the frequency of this stress wave is 

50 Hz. This force is applied as a pulse for 0.025 seconds in this 

case. Firstly, with �xed boundary [Figure 3(a)] normal stress 

at the �xed bottom, potential energy, kinetic energy, strain 

energy, and total energy of the bar are determined without 

any damping. Then, viscous boundary condition is applied 

at the bottom [Figure 3(b)], as described above, and again 

normal stress at the �xed bottom and all the energies are 

determined. Then, local damping (α = 0.3) with �xed bottom 

is applied and all the parameters are determined.

Under the In�uence of Full Sinusoidal Stress 

Wave
In this case, the bar is subjected to only a full sinusoidal 

stress wave (σ) in a vertically downward direction (Figure 4). 

Firstly, with �xed boundary normal stress at the �xed bottom, 

potential energy, kinetic energy, strain energy, and total 

energy of the bar are determined without any damping. 

Then, viscous boundary condition is applied at the bottom, as 

described above, and again normal stress at the �xed bottom, 

and all the energies are determined. Then, local damping 

with the �xed bottom is applied, and all the parameters are 

determined. From the Eq. (4), the frequency of this stress 

Figure 4: Full sinusoidal stress pulse

Figure 2: Half sinusoidal stress pulse

Figure 3: Vertical bar with application of normal vertical stress

Figure 1: Vertical bar subjected to gravitational acceleration

Table 1: Properties of bar

Parameter Value

Young’s modulus, E (kPa) 1,000

Density of material, ρ (1t/m3) 1

Cross sectional area, A (m2) 0.02
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Figure 5: Vertical bar with extended region

Figure 9: Energy of the bar with gravitational acceleration only, with 

local damping

Figure 8: Energy of the bar with gravitational acceleration only, 

without damping

Figure 7: Displacement at the top of bar with gravitational 

acceleration only

Figure 6: Stress at �xed bottom of bar with gravitational acceleration 

only

wave is 50 Hz. This force is applied as a pulse for 0.05 seconds 

in this case.

Use of Extended Region as Boundary
In this, an extended region of 1-meter consisting of 50 square 

elements is added at the bottom of the bar. In this region, a 

damping factor is provided (Figure 5).

This damping factor is provided in two ways. Firstly, 

damping factor is provided as constant value through the 

whole extended region. Secondly, a linearly varying damping 

factor is provided. Then, a full stress wave as given in Eq. (4) 

is applied to the bar, and normal stress at the junction of the 

extended region and vertical bar is determined.

RE S U LTS  A N D  D I S C U S S I O N

All results are compared using graphs.

Under the In�uence of Gravitational 

Acceleration only
Figure 6 shows that with local damping stress wave amplitude 

at the �xed bottom reduced, damped out, and reached to 

a constant value. 
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Figure 10: Stress at the bottom of bar with half sinusoidal stress wave 

pulse

Figure 13: Total energy of the vertical bar with full sinusoidal stress 

wave pulse

Figure 12: Stress at the bottom of bar with full sinusoidal  

stress wave pulse

Figure 11: Total energy of the vertical bar with half sinusoidal stress 

wave pulse 

Figure 7 shows that with local damping displacement at 

the top of the bar reduced, damped out, and reached to a 

constant static value. Figure 8 shows that total energy of 

the system is zero because no external force is applied here. 

Figure 9 shows that due the application of local damping 

total energy of the system decreases.

Under the In�uence of Half Sinusoidal Stress 

Wave
Figure 10 shows that due to the �xed boundary re�ection 

of stress wave occur with double amplitude, which can be 

e�ectively reduced with the application of viscous boundary 

in place of the �xed boundary. It can also be noticed that the 

application of local damping also reduced the re�ection of 

waves, but some re�ection may occur, which depends on the 

value of the damping factor.

Figure 11 shows that with �xed boundary total energy of 

system increase during the application of load and become 

constant, but with viscous boundary and local damping, 

the total energy of the system reduces and becomes 

zero. Viscous boundary absorbs the total energy without 

re�ection, while some re�ection occurs in the case of local  

damping.

Under the In�uence of Full Sinusoidal Stress 

Wave
Figs 12 and 13 show similar result as was with half sine 

wave. It can be noticed from Figure 14 that in case of half 

wave displacement at the bottom increases and become 

constant after some time, but with the application of full 

wave, displacement at bottom �rst increases during �rst 

half-cycle and then, decreases during second half-cycle, and 

�nally, becomes zero.

Use of Extended Region as Boundary
When a constant damping factor of value 0.3 is provided 

through the whole extended region and damping forced 

is applied, as given in the Eq. (3), Figure 15 shows that the 

extended region is e�ective in the prevention of re�ection 

of stress wave, but some re�ection occurs at the junction 
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because of change in the properties of the material from bar 

to extended region.

When a linearly varying damping factor is provided in 

the extended region, this factor is zero at the junction of 

extended region and bar, and maximum at the end of the 

extended region. These two cases are taken into account. In 

the �rst case, the maximum value of the damping coe�cient 

is taken 0.5, and in the second case, the maximum value of 

the damping coe�cient is taken 0.9. Figure 16 shows that 

assumed value of damping factor (0.5) is not su�cient in 

preventing the re�ection, so now the maximum value of 

damping factor increased up to 0.9 and stress at the junction 

of extended region and bar is determined. Figure 17 shows 

an increase in the maximum value of the damping coe�cient 

reduced re�ections, but some re�ection is still present. Thus, 

e�ective absorption of re�ected waves may occur with the 

selection of the correct value of the damping factor.

CO N C LU S I O N

From the graphs represented above, it can be concluded 

that when only gravitational acceleration is considered, 

stress varies, like a wave with same maximum and minimum 

amplitude, but when local damping is considered stress 

waves magnitude decreases with time and damped 

gradually. Then, reaches to a constant value and this 

decrease in magnitude increases as local damping coe�cient 

increases. Displacement magnitude at the top of the bar is 

also decreased with time and gradually attain a constant 

value, when local damping is provided.

It was also found that when a stress wave strikes the �xed 

boundary, it gets reversed with a double magnitude, but 

when the standard viscous boundary is considered stress 

wave does not reverse and damped out gradually.

In case when half-wave is applied, i.e., when only 

compressive stress is applied, displacement of the bottom 

point of the bar gets increased with time and never returns 

to its original position. But, when the full sine wave is applied, 

i.e., a dynamic force is applied, then the bottom point of the 

bar moved to a certain distance in the �rst halfcycle, and 

then, back to its original position in the next half-cycle. Thus, 

it can be noticed that standard viscous boundaries are not 

e�ective for static analysis.

Figure 16: Stress at the junction with maximum value of damping 

coe�cient 0.5

Figure 15: Stress at the junction of extended region with constant 

damping factor

Figure 17: Stress at the junction with maximum value of damping 

coe�cient 0.9 

Figure 14: Displacement at the bottom of bar with viscous boundary
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The application of an extended boundary reduced the 

amplitude of the stress wave. This prevention of re�ection 

depends on the provided value of the damping factor. It 

was noticed that despite the high damping factor, some 

re�ections are present; thus, it can be concluded that the 

performance of the extended boundary is not satisfactory.
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