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Abstract

In this paper we present a new approach to high quality 3D

object reconstruction. Starting from a calibrated sequence

of color images, the algorithm is able to reconstruct both

the 3D geometry and the texture. The core of the method is

based on a deformable model, which defines the framework

where texture and silhouette information can be fused. This

is achieved by defining two external forces based on the im-

ages: a texture driven force and a silhouette driven force.

The texture force is computed in two steps: a multi-stereo

correlation voting approach and a gradient vector flow dif-

fusion. Due to the high resolution of the voting approach,

a multi-grid version of the gradient vector flow has been

developed. Concerning the silhouette force, a new formu-

lation of the silhouette constraint is derived. It provides a

robust way to integrate the silhouettes in the evolution algo-

rithm. As a consequence, we are able to recover the appar-

ent contours of the model at the end of the iteration process.

Finally, a texture map is computed from the original images

for the reconstructed 3D model.

1. Introduction

As computer graphics and technology become more

powerful, attention is being focused on the creation or ac-

quisition of high quality 3D models. As a result, a great ef-

fort is being made to exploit the biggest source of 3D mod-

els: the real world. Among all the possible techniques of

3D acquisition, there is one which is specially attractive:

the image-based modeling. In this kind of approach, the

only input data to the algorithm are a set of images, possi-

bly calibrated. Its main advantages are the low cost of the

system and the possibility of immediate color. The main

disadvantage is the quality of the reconstructions compared

to the quality of more active techniques (range scanning

or encoded-light techniques). We present in this paper an

image-based modeling approach that offers the possibility

of high quality reconstructions by mixing two orthogonal

image data into a same framework: silhouette information

and texture information. Our two main contributions are a

new approach to the silhouette constraint definition and the

high quality of the overall system (see Fig.1).

2. Related Work

Acquiring 3D models is not an easy task and abun-

dant literature exists on this subject. There are three

main approaches to the problem of 3D acquisition: pure

image-based rendering techniques, hybrid image-based

techniques, and 3D scanning techniques. Pure image-based

rendering techniques as [2, 20] try to generate synthetic

views from a given set of original images. They do not es-

timate the real 3D structure behind the images, they only

interpolate the given set of images to generate a synthetic

view. Hybrid methods as [5, 19] make a rough estimation

of the 3D geometry and mix it with a traditional image-

based rendering algorithm in order to obtain more accurate

results. In both types of methods, the goal is to generate

coherent views of the real scene, not to obtain metric mea-

sures of it. In opposition to these techniques, the third class

of algorithms try to recover the full 3D structure. Among

the 3D scanning techniques, we can distinguish two main

groups: active methods and passive methods. Active meth-

ods use a controlled source of light such as a laser or a coded

light in order to recover the 3D information [25, 4, 14]. Pas-

sive methods use only the information contained in the im-

ages of the scene and are commonly known as shape from

X methods. They can be classified according to the type

of information they use. A first class consists of the shape

from silhouette methods [1, 23, 28, 22, 18]. They obtain

an initial estimation of the 3D model known as visual hull.

They are robust and fast, but because of the type of infor-

mation used, they are limited to simple shaped objects. We

can find commercial products based on this technique. A

second class corresponds to the shape from shading meth-

ods. They are based on the diffusing properties of Lam-

bertian surfaces. They mainly work for 2.5D surfaces and

are very dependent on the light conditions. A third class

of methods uses color consistency to carve a voxel volume

[26, 17]. But they only provide an output model composed



of a set of voxels which makes difficult to obtain a good

3D mesh representation. A fourth class of methods are the

shape from stereo approaches. They recover the shape by

maximizing a stereo-based energy [10, 24]. As a special-

ization of this group, there are particular methods that try

to use at the same time another type of information such as

silhouettes or albedo. Although very good results are ob-

tained, the quality is still limited, and the main problem is

the way the fusion of different data is done. Some, such as

[17, 3] use a volume grid for the fusion. Others like [15]

do the fusion in the image domain. Finally, a deformation

model framework can be used as in [8]. The algorithm we

present in this paper can be classified in this last group. We

perform the fusion of both silhouettes and texture informa-

tion by a deformation model evolution. The main difference

with the methods mentioned above is the way the fusion is

accomplished, which allows us to obtain very high quality

reconstructions.

3. Algorithm Overview

The goal of the system is to be able to reconstruct a 3D

object only from a sequence of geometrically calibrated im-

ages. To do so, we dispose of several types of informa-

tion contained in the images. Among all the information

available, shading, silhouettes and features of the object

are the most useful for shape retrieval. Shading informa-

tion needs a calibration of the light sources, which implies

a strongly controlled environment for the acquisition. The

use of the silhouettes requires simply a good extraction of

the object from the background, which, however, is not al-

ways very easy to accomplish. Finally, of all the features

available from an object, such as texture, points, contours,

or more complicated forms, we are mainly interested in tex-

ture. Therefore, the information we try to use consists of

silhouettes and texture. The next step is to decide how to

mix these two types of information to work together. As

we will see, this is not an easy task, because those types of

information are very different, almost orthogonal.

The framework that we have chosen for the fusion of

both data is a classical snake [9]. This deformable model

allows us to define an optimal surface which minimizes a

global energy E . In our case, the minimization problem is

posed as follows: find the surface S of R3 that minimizes

the energy E (S) defined as follows:

E (S) = Etex(S)+Esil(S)+Eint(S), (1)

where Etex is the energy term related to the texture of the

object, Esil the term related to the silhouettes and Eint is a

regularization term of the surface model. Minimizing Eq.1

means finding Sopt such that:

∇E (Sopt)=∇E tex(Sopt)+∇E sil(Sopt)+∇E int(Sopt)= 0,

= Ftex(Sopt) + Fsil(Sopt) + Fint(Sopt) = 0,

(2)

where the gradient vectors Ftex, Fsil and Fint represent the

forces which drive the snake.

Equation 2 establishes the equilibrium condition for the

optimal solution, where the three forces cancel each other

out. A solution to Eq.2 can be found by introducing a time

variable t for the surface S and solving the following differ-

ential equation:

St = Ftex(S)+Fsil(S)+Fint(S). (3)

The discrete version becomes:

Sk+1 = Sk +∆t(Ftex(S
k)+Fsil(S

k)+Fint(S
k)). (4)

Once we have defined the energies that will drive the pro-

cess, we need to make a choice for the representation of the

surface S. This representation defines the way the deforma-

tion of the snake is done at each iteration. We have chosen

the triangular mesh representation, because of its simplicity

and well known properties.

To completely define the deformation framework, we

need an initial value of S, i.e., an initial surface S0 that will

evolve under the different energies until convergence.

In this paper, we describe the snake initialization in Sec-

tion 4, the force driven by the texture of the object in Section

5, the force driven by the silhouettes in Section 6, how we

control the mesh evolution in Section 7. We finally discuss

our results in Section 8.

4. Snake Initialization

The first step in our minimization problem is to find an

initial surface close enough to the optimal surface in order

to guarantee a good convergence of the algorithm. Close

has to be considered in a geometrical and topological sense.

The geometric distance between the initial and optimal sur-

faces has to be reduced in order to limit the number of itera-

tions in the surface mesh evolution process and thereby the

computation time. The topology of the initial surface is also

very important since classical deformable models maintain

the topology of the mesh during its evolution. On the one

hand, this imposes a strong constraint that makes the initial-

ization a very important step since the initial surface must

capture the topology of the object surface. Level-set based

algorithms [27] have the intrinsic capability to overcome

this problem but in practice the topology remains very dif-

ficult to control. On the other hand, the topology-constant

property of a classical snake provides more robustness to

the evolution process.



If we make a list of possible initializations, we can es-

tablish an ordered list, where the first and simplest initial-

ization is the bounding box of the object. The next simplest

surface is the convex hull of the object. Both the bound-

ing box and the convex hull are unable to represent surfaces

with a genus greater than 0. A more refined initialization,

which lies between the convex hull and the real object sur-

face is the visual hull [12]. The visual hull can be defined

as the intersection of all the possible cones containing the

object. In practice, a discrete version is usually obtained by

intersecting the cones generated by back projecting the ob-

ject silhouettes of a given set of views. As a difference with

the convex hull, it can represent surfaces with an arbitrary

number of holes. However, the topology of the visual hull

depends on the discretization of the views, and some real

objects may have holes that cannot be seen as a silhouette

hole from any point of view. In such case, the visual hull

will fail to represent the correct topology of the object.

Computing the visual hull from a sequence of images is a

very well known problem of computer vision and computer

graphics [23, 22, 19]. We are interested in producing good

quality meshes (eulerian, smooth, high aspect ratio) with the

right topology. Volume carving methods are a good choice

because of the high quality output meshes that we can ob-

tain through a marching cube [16] or marching tetrahedron

algorithm. The degree of precision is fixed by the resolution

of the volume grid, which can be adapted according to the

required output resolution. However this adaptability can

also generate additional problems of topology: if the reso-

lution of the grid is low compared to the size of the visual

hull structures, the aliasing produced by the sub-sampling

may produce topological artifacts that the theoretic visual

hull does not have. But they can be avoided by increasing

the precision of the algorithm or by filtering the silhouettes.

5. Texture Driven Force

In this section we define the texture force Ftex appearing

in Eq.2 which contributes to recover the 3D object geome-

try during the snake evolution process. We want this force

to maximize the texture coherence of all the cameras that

see the same part of the object. It is based on the following

projective geometry property: if two cameras see the same

textured surface, then the two images are related by a ge-

ometric relation that depends only on the 3D geometry of

the object. This property is only valid under the common

hypothesis of perfect projective cameras, perfect Lamber-

tian surface and the same lighting conditions. This property

can be used in two different types of applications: i) for

image based rendering by simulating a virtual view from

a set of known views and an estimation of the 3D geome-

try of the object, ii) for 3D recovery from a set of known

views, where we search the surface that maximizes the tex-

ture coherence of the images. Our problem corresponds to

the second type of applications. We define first in section

5.1 a texture coherence measure. In section 5.2 we describe

the voting approach which we propose to recover 3D geom-

etry. In section 5.3 we explain how the texture driven force

is derived from the data collected by the voting approach

using a multi-grid gradient vector flow.

5.1. Texture Coherence Criterion

If we know the 3D geometry, there exist various meth-

ods to measure the texture coherence. The simplest mea-

sure would be the color difference between the two pixels.

But it is too local a measure since it only uses one sam-

ple per texture. It is then very sensitive to noise. More

robust measures use several samples per texture by consid-

ering a neighborhood around the pixels. A usual criterion is

the normalized cross-correlation between the two neighbor-

hoods. This measure compares the intensity distributions

inside the two neighborhoods. It is invariant to changes of

the mean intensity value and of the dynamic range inside

the neighborhoods. This criterion is more robust to failures

in the Lambertian hypothesis for the surfaces.

If we do not know the 3D geometry, we can try to recover

it by maximizing the texture criterion for a given set of

views. Two different types of approaches for this optimiza-

tion have been proposed in the literature. In the first type the

texture similarity is used to evaluate a current model. If the

measure is improved by deforming the model locally, then

the model is updated and the process iterated as in [8, 7] or

as in level-set based methods [10, 24] where a volumic band

is explored around the current model. In this first type of ap-

proaches the exploration remains locally dependent on the

current model. Since the exploration does not test all the

possible configurations, the algorithm can fail because of

local maxima of the texture coherence criterion. The sec-

ond type of approaches consists of testing all the possible

configurations. This allows making a more robust decision.

In order to improve even more the robustness, we can cu-

mulate the criterion values into a 3D grid by using a voting

approach as in [17, 21]. We use this kind of approach since

it is very robust in the presence of highlights (e.g. see details

in Fig.1 left) and it allows us to pass from the image infor-

mation to a more usable information of the sort “probability

of finding a surface”.

5.2. Proposed Voting Approach

The proposed voting approach is based on a multi-stereo

correlation criterion such as the one described in [6]. The

multi-stereo computation is done for all the pixels of all the

images and the resulting 3D estimations are cumulated into

a voxel grid. The problem with this sort of algorithm is the

computation time. For large images as those we are using



(2000x3000), it can reach 16 hours on a fast machine. How-

ever this computation time can be strongly reduced with al-

most no loss by using the computation redundancy. We dis-

tinguish the redundancy between different images and the

redundancy inside an image.

The redundancy between images happens when several

images see a same part of the object surface. If we have

already computed a surface estimation using one image, we

can back project the 3D points into the other images, giving

an initial estimation of the distance to the surface. The prob-

lem is that if the previous image did not correlate well, er-

rors may propagate and prevent the following images from

attenuating it.

The redundancy inside an image is due to the content of

the image. In our case, it is a picture of an object, and we

can expect it to be locally continuous. This implies that, if

the surface is correctly seen and if there is no occlusion, the

depth values for neighboring pixels should not be very dif-

ferent. This can be exploited in order to reduce the depth in-

terval for the correlation criterion. In the greedy algorithm,

for each pixel, we test the entire depth interval defined by

the visual hull without taking into account if its neighbors

have already found a coherent surface. To be able to ben-

efit from already computed correlations, the image can be

partitioned into different resolution layers. Then the greedy

algorithm is run on the lowest resolution pixels, with the

depth interval defined by the visual hull. For consecutive

layers, the depth interval is computed using the results of

the precedent layer. To estimate the depth interval of a pixel

based on the results of the previous layer, a record of the

correlation values is maintained in order to control the reli-

ability of the estimation. Besides the improvement in com-

putation time, an improvement in storage space is obtained

by substituting the 3D volume grid by a more compact oc-

tree structure. The proposed algorithm can be coded as:

For each image in imageList

For each layer in image

For each pixel in layer

If layer = first layer

Compute the depth interval from the visual hull

Else

Compute the depth interval from the previous layer

Compute the correlation curves

Transform all the curves into the same coordinate system

Find the best candidate depth

If correlation value < threshold, continue with next pixel

Compute the 3D position P of the candidate depth

Add the correlation value to the octree

The theoretical maximum improvement that we can reach

with this method in the case of 3 layers is 16 times faster

than the greedy method. The worst case would correspond

to a non textured image where correlations become unre-

liable and the depth interval estimation fails, which leads

to the same computation time than the greedy method. In

practice, the improvement is about 5 or 6 times faster for

well-textured images.

The result of the correlation step is a 3D octree contain-

ing the cumulated hits of all the pixel estimations. This vol-

ume by itself cannot be used as a force to drive the snake. A

possible force could be the gradient of the correlation vol-

ume. The problem is that this is a very local force defined

only in the vicinity of the object surface. The proposed so-

lution to this problem is to use a gradient vector flow (GVF)

field to drive the snake.

5.3. Octree-based Gradient Vector Flow

The GVF field was introduced by [29] as a way to over-

come a difficult problem encountered with traditional ex-

ternal forces: their capture range. This problem is caused

by the local definition of these forces, and the absence of

an information propagation mechanism. To eliminate this

drawback, and for all the forces derived from the gradient

of a scalar field, they proposed to generate a vector field

force that propagates the gradient information. The GVF of

a scalar field f is defined as the vector field v that minimizes

the following energy functional E :

E =
∫

µ||∇v||2 + ||v−∇ f ||2||∇ f ||2,

where µ is the weight of the regularization term.

The GVF can be seen as the original gradient smoothed

by the action of a Laplacian operator. This smoothing ac-

tion allows us at the same time to eliminate strong variations

of the gradient vector field and to produce a propagation of

the gradient. The degree of smoothing/propagation is con-

trolled by µ . If µ is zero, the GVF is the original gradient,

if µ is very large, the GVF is a constant field whose com-

ponents are the mean of the gradient components.

Since our data have been stored in an octree structure,

a multi-resolution version of the GVF algorithm has been

developed.

6. Silhouette Driven Force

The silhouette force is defined as a force that makes the

snake match the original silhouettes of the sequence. If it

is the only force of the snake, the model should converge

towards the visual hull. Since we are only interested in re-

specting silhouettes, the force will depend on the self oc-

clusion of the snake. If there is a part of the snake that

already matches a particular silhouette, the rest of the snake

is no more concerned by that silhouette, since the silhou-

ette is already matched. If we compare a visual hull and

the real object, we see that the entire real object matches

the silhouettes, but not all the points of the object. The ob-

ject concavities do not obey any silhouette because they are



Figure 1. Different steps in the reconstruction process of the Twins model. From left to right: image acquisition (top: some

sequence images, bottom: details), visual hull initialization, shaded final model and textured final model. The reconstructed model

has 83241 vertices.

occluded by a part of the object that already matches the sil-

houettes. The main problem is how to distinguish between

points that have to obey the silhouettes and those that have

not. This is equivalent to finding the apparent contours of

the object. The silhouette force can be in fact decomposed

into two different components: a component that measures

the silhouette fitting, and a component that measures how

strongly the silhouette force should be applied. The first

component is defined as a distance to the visual hull. For a

3D vertex PM on the snake mesh this component can be im-

plemented by computing the smallest signed distance dV H

between the contours of a silhouette Si and the projection

PiPM of the point into the image corresponding to Si:

dV H(PM) = min
i

d(Si,PiPM).

A positive distance means that the projection is inside the

silhouette, and a negative distance that the projection is out-

side the silhouette. Using only this force would make the

snake converge towards the visual hull. The second compo-

nent measures the occlusion degree of a point of the snake

for a given view point. The view point is chosen as the cam-

era that defines the distance to the visual hull:

α(PM) =

{

1 for dV H(PM) ≤ 0
1

(1+d(Scsnake,PcPM))n for dV H(PM) > 0
,

c(PM) = argmini d(Si,PiPM).

In the definition of α(PM), there are two cases. If dV H is

negative, it means that the point is outside the visual hull.

In that case, the force is always the maximum force. For

a point inside the visual hull, c is the camera that actually

defines its distance to the visual hull. Scsnake is the silhou-

ette created by the projection of the snake into the camera

c. The power n controls the decreasing ratio of α . This

function gives the maximum silhouette force to the points

that compose the apparent contours. The rest of the points,

which are considered as concavities, are weighted inversely

to the distance to the silhouette. This allows the points of the

snake to detach themselves from the visual hull. A big value

of n allows an easier detachment, but the force becomes too

local and does not allow smooth transitions between con-

cavities and contours. The value used in practice is n = 2,

which is a compromise between smoothness and concavity

recovery.

The final silhouette force for a given point of the snake is

a vector directed along the normal to the snake surface NM

and its magnitude is the product of both components:

Fsil(PM) = α(PM)dV H(PM)NM(PM)

7. Mesh Control

Having defined the texture and silhouette forces Ftex and

Fsil , i.e. the external forces, the last force to detail is the in-

ternal force Fint . The goal of the internal force is to regular-

ize the effect of the external forces. We define the internal

regularization as a force that tries to move a given point v of

the mesh to the center of gravity of its 1-ring neighborhood:

Fint(v) =

(

1

m

m

∑
i=1

vi −v

)

,



where vi is the ith neighbor of v. If the only force in the

snake is the internal force, the mesh will collapse under the

action of the barycentric filtering.

Since the texture forces Ftex can sometimes be parallel

to the surface of the snake, in the snake evolution we use

as texture force its projection F N
tex over the normal of the

surface:

F
N
tex(v) = (Ftex(v) ·N(v))N(v).

This avoids problems of coherence in the texture force of

neighbor points and helps the internal force to keep a well-

shaped surface. The snake evolution process (Eq.4) at the

kth iteration can then be written as the evolution of all the

points of the mesh vi:

vk+1
i = vk

i +∆t(F N
tex(v

k
i )+βFsil(v

k
i )+ γFint(v

k
i )), (5)

where ∆t is the time step and β and γ are the weights of

the silhouette force and the regularization term, relative to

the texture force. Equation 5 is iterated until steady-state

of all the points of the mesh is achieved. The time step

∆t has to be chosen as a compromise between the stabil-

ity of the process and the convergence time. An additional

step of remeshing is done at the end of each iteration in

order to maintain a minimum and a maximum distance be-

tween neighbor points of the mesh. This is achieved by

a controlled decimation of the mesh based on the edge col-

lapse operator and a controlled refinement based on the
√

3-

subdivision algorithm [11].

8. Results

In this section we present several results obtained with

the proposed approach. We use also a texture mapping

method similar to the one in [13]. But we have further im-

proved the quality of the texture by filtering the highlights.

This is possible thanks to the availability of several images

seeing a given triangle.

All the reconstructions presented in this paper where ob-

tained from a single axis rotation sequence of 36 images,

each image having 2008x3040 pixels. The values of β and

γ are the same for all the reconstructions: β = 0.2, γ = 0.15.

Because the snake iteration is always done in the voxel co-

ordinate system of the GVF octree, the value of β only de-

pends on the ratio between the images size and the octree

size. Typical values of γ are between 0.1 and 0.25, depend-

ing on the required smoothness.

Computation times are dominated by the correlation vot-

ing step: a typical computation time for 36 images of 6

Mpixels is about 3 hours on a P4 1.4GHz machine.

Figure 2 illustrates the influence of the silhouette force.

The support of the object does not provide any texture infor-

mation and cannot be reconstructed using the only texture

force (Fig.2 left). Adding silhouette constraints solves this

Figure 2. Twins model detail after convergence. Left: evolu-

tion under the texture force only. Right: evolution under the

texture force and the silhouette force.

problem and guarantees that the deformable model respects

the visual hull in this region (Fig.2 right).

In Fig.3 we illustrate the different forces used in the de-

formable model. Ten octree levels are used in the voting

approach (top and middle left), which provides a high pre-

cision in the gradient vector flow computation (top and mid-

dle right). At the end of the iterative process, a steady-state

for the entire mesh is achieved, and concavities are auto-

matically detected (bottom).

In Fig.4 a complete reconstruction is presented using

both silhouette and stereo. We are able to recover many

details with high accuracy as can be seen in Fig.4 (bot-

tom): observe for instance the quality of reconstruction of

the bracelet and of the rope.

Another example is shown in Fig.5. We can appreciate

the quality of the tunic folds reconstruction. It shows that

the method is powerful even for the reconstruction of small

concavities. They are correctly detected and detached from

the visual hull.

In Fig.6 we present how the lack of good image correla-

tions is handled by the proposed approach. In Fig.6 top left

we can clearly see parts with a dark brilliant non-textured

material which produces bad correlation results (Fig.6 top

right). The final model will converge to the textured sur-

face whenever it exists and to the visual hull everywhere

else (Fig.6 bottom), producing some surface reconstruction

errors in this area.

In Fig.7 we present a comparison between a laser ac-

quisition method (left) and the proposed method (right).We

have less resolution in our reconstructed model due to the

stereo limitations and the regularization term. However, the

mesh quality is quite good and the main object concavities

are well recovered too.

9. Conclusion and future work

We have presented a new approach to 3D object recon-

struction based on the fusion of texture and silhouette infor-

mation. Our two main contributions are the definition and

the fusion of the silhouette force into the snake framework,



Figure 3. External forces used in the reconstruction of the

African model. Top left: the octree partition used in the com-

putation of the gradient vector flow field. Top right: norm of

the gradient vector flow field. Middle: details. Bottom left:

dV H silhouette component after convergence. Bottom right: α
component of the silhouette force after convergence.

and the full system approach where different known tech-

niques are used and improved in order to obtain high quality

results. The two main limitations of the algorithm are also

its two main sources of robustness: the volume voting ap-

proach and the topology constant snake approach. The vot-

ing approach allows good reconstructions in the presence

of highlights, but the 3D grid used also limits the maximum

resolution of the 3D model. A way to overcome this limita-

tion could be to introduce the final model into another snake

evolution where the texture energy computation would take

into account the current surface (tangent plane or quadric

based cross-correlation). Since the initial model is already

very close to the real surface, only some iterations would

suffice to converge. The second drawback is the topology

constant evolution. It allows a guaranted topology of the

final model but it is also a limitation for some kind of ob-

jects where the topology cannot be captured by the visual

Figure 4. African model after convergence (57639 vertices).

Top left: Gouraud shading. Top right: same view with tex-

ture mapping. Bottom: Detail of the model after convergence.

hull concept. A possible solution would be to detect self

collisions of the snake, and to launch a local level-set based

method in order to recover the correct topology. Further

work includes: i) the self calibration of the image sequence

using both the silhouettes and traditional methods, ii) an im-

proved strategy for the converge of the snake in order to ac-

celerate the evolution in the empty concavitity regions, iii)

the possible use of the surface curvatures to allow a multi-

resolution evolution of the mesh, iv) a more advanced work

in the generation and visualization of the texture mapping.
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