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Abstract

Human action recognition is an important problem in Computer Vision. Although most of

the existing solutions provide good accuracy results, the methods are often overly com-

plex and computationally expensive, hindering practical applications. In this regard, we

introduce the combination of time series representation for the silhouette and Symbolic

Aggregate approXimation (SAX), which we refer to as SAX-Shapes, to address the prob-

lem of human action recognition. Given an action sequence, the extracted silhouettes of

an actor from every frame are transformed into time-series. Each of these time series is

then efficiently converted into the symbolic vector: SAX. The set of all these SAX vectors

(SAX-Shape) represents the action. We propose a rotation invariant distance function to

be used by a random forest algorithm to perform the human action recognition. Requiring

only silhouettes of actors, the proposed method is validated on two public datasets. It has

an accuracy comparable to the related works and it performs well even in varying rotation.

Key words: action recognition; computer vision; Time Series Shapelets; Symbolic

Aggregate approXimation

1 Introduction

Recognizing human action from the videos is one of the most intensively studied

problem in the field of Computer Vision. Application for this can be found in a wide

range of industries: biometrics, sports, medial sciences, search and the structuring

of large video archives, video surveillance, human-computer interaction, gesture
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recognition and video editing. However, despite many efforts by the researchers,

accurate recognition of human actions is still quite a daunting task, this is generally

due to the complexity of the human action, which is dynamic, ambiguous, and

interactive with other objects.

Generally, most of the approaches rely on extracting complex features from the

data. These approaches can be roughly categorized on the basis of representation.

Time evolution of human silhouettes was frequently used as action description. For

example, [1] proposed to capture the history of shape changes using temporal tem-

plates and [2] extends these 2D templates to 3D action templates. Similarly, the

notions of action cylinders [3], and space-time shapes [4,5] have been introduced

based on silhouettes. Recently, space-time approaches analyzing the structure of

local 3D patches in the video have been shown promising in [6,7,8,9]. Almost all

of the works mentioned rely mostly on an effective feature extraction technique.

Which is then combined with machine learning or pattern recognition techniques.

These feature extraction methods can be roughly categorized into: motion-based

[10,11], appearance based [5], space-time volume based [12,4,5], and space-time

interest points or local features based [6,7,8,13]. Motion-based methods generally

compute optical-flow from a given action sequence, followed by appropriate fea-

ture extraction [14]. However, optical-flow based methods are known to be very

susceptible to noise and are easily led to inaccuracies. Appearance based methods

are prone to differences in appearance between the already seen sequences (i.e.

the training dataset) and the new sequences (i.e. the testing sequence). Volume or

shape based methods require highly detailed silhouette extraction, which may not

be possible in given real-world noisy video dataset. In comparison with these ap-

proaches, the space-time interest point (STIP) based methods [6,8] has received

considerable attention and are thus popular. STIP-based methods are more robust

to noise and camera movement and also seem to work quite well with low reso-

lution inputs. However, these methods rely solely on the discriminative power of

individual local space-time descriptors. Information related to the global spatio-

temporal distribution is ignored. Thus due to lack of this temporal information,

smooth motions cannot be captured using STIP methods. In addition, issues like

optimal space-time descriptor selection and codebook clustering algorithm selec-

tion have to be addressed, with fine-tuning various parameters, which is highly data

dependent [15].

Space-time interest point (STIP), 3D trajectories, space-time shapes and other con-

structs described above,however, are computationally complex. And at the same

time, accurate location for these features is also an issue. Extracting trajectories

from action sequences is very noise prone; STIP can be very sparse, and 3D shape

reconstruction requires highly accurate low-level processing. These issues in turn

make the solution impractical for large datasets. Furthermore, these features have

to be stored for performing any kind of recognition, which also leads to storage

issues. Dimensionality reduction helps somewhat, but at the cost of reduced accu-

racy. Most of the above mentioned works assume a fixed camera and the action
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have matching, which is a big assumption in real-world action recognition. In this

regards, a simple, rotation invariant, and an efficient method is desired that scales

well to large datasets, and yet provides comparable or better accuracy than existing

methods.

In this work, given an action sequence, the silhouettes of tracked actors are ex-

tracted from every frame and transformed into a time series. This transformation

is straight forward and efficient, relying only on the silhouette of a detected ac-

tor [16]. We then convert these time series into a new representation: Symbolic

Aggregate approXimation (SAX) [17,18] in order to effectively address the action

recognition problem. SAX tremendously reduces the dimensionality of time series

that represents an action sequence. Moreover, we describe how the representation

can be made rotation invariant. The set of all these SAX vectors (SAX-Shape) rep-

resents the action. We use the random forest algorithm to classify human actions

due to their high accuracy compared to other classifiers as we show in our exper-

iments (cf. Section 6). Other symbolic representations, such as Discrete Fourier

Transform (DCT)[19], and Discrete Wavelet Transform (DWT)[20], may be used

to reduce the memory space required to store the time series but the intrinsic di-

mensionality of the symbolic representation is not reduced [21]. Another desirable

feature of SAX is its lower bounding property. That is, the Euclidean distance be-

tween two time series in the SAX space is guaranteed to be less than or equal to the

distance between them in the original space [21]. Due to the above two features,

SAX symbolic representation is used in this paper to efficiently and effectively rec-

ognize human actions from large sequences of video. Also, we do not extract any

features from SAX representation and rely solely on the Euclidean distance.

The proposed method is illustrated in Fig. 1. A sample from a bend sequence is

shown in Fig. 1[top row] from the Weizmann dataset. Here we show just one frame

from the sequence for clarity of presentation. For each frame, the silhouettes are

first extracted and then converted to a time series, a sample of which is shown in

the second column. For this time-series, we compute the SAX-based representation,

an example is shown in Fig. 1(last column), where the horizontal axis represents

the SAX length segments that map trajectory values into SAX segments and the

vertical axis represents the SAX symbols that quantize the trajectory. This partic-

ular example is only of length 16 and an alphabet size (i.e. distinct values) of only

16. This process thus not only reduces the time series size, but it also makes the

proposed method computationally feasible. Second, once we have the SAX rep-

resentation of the training and the test sequence, we used the machine learning

technique defined in Section 5 for performing action recognition. The method does

not require time or joint correspondences. We show results comparable to the state

of the art methods, and the method is shown to be very fast and rotation invariant

as well.

The paper is organized as follows: Section 2 reviews some of the work relevant to

the action recognition and the time series representation. We introduce the conver-
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Fig. 1. SAX-Shape based action recognition approach: Two samples from the bend (a)

and jumpingjack (b) sequences. The silhouettes are extracted from the actors. These

extracted silhouettes are converted to time series using method in [16], as shown in the

second column. The last column shows the SAX representation of the time series, having

a length length(w) 16, and alphabet size(p) 16. The horizontal axis represents the SAX

breakpoints that map time series values into SAX segments and the vertical axis represents

the SAX symbols that quantize the trajectory (the upper limit of the vertical axis is in fact

16, not shown in the figure above due to scaling effects.

sion to time series in Section 3, followed by SAX representation of human action

recognition in Section 4. We describe our action recognition scheme in Section 5,

along with distance measure used to compare different SAX representations. Fi-

nally, we test the proposed method on a public datasets and demonstrate strong

results in Section 6, followed by conclusion.

2 Related work

The input to our method is the silhouette of an actor performing a action sequence,

which are then converted to time series. Once the silhouette is extracted, most of

the techniques use representations such as chain codes [22], Fourier descriptors

[19], shape moments, and shape context [23]. [24] represent each silhouette by a

planar closed curve corresponding to the contour of the silhouette, and then evolve
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the shapes of these curves during actions and gestures recognition. [25] propose

a local feature called temporal-state shape context (TSSC) to capture local space-

time shape characteristics effectively from a silhouette. This feature uses temporal

states for compensating time warping effects and shape contexts for space-time

shape variations. Space-time shapes or tunnels have been explored by [4,5], where

silhouettes from various frames are stacked together. [26] performs a geometric

manifold embedding based on a tangent bundle obtained from the silhouette frames

from given sample frames.

Treating silhouettes as a time-series data has a close relation to the works [27,28,29,30]

(a full review of all the related work is beyond the scope of the current work). Using

velocity history of (KLT) tracked points, [28] present a generative mixture model

for the video sequences. A log-polar uniform quantization is performed on these

tracks, with 8 bins for direction, and 5 for magnitude. Activity classes are modeled

as weighted mixture of bags of augmented trajectory sequences, where each mix-

ture component models a velocity history feature with a Markov Chain. The model

is trained by using the EM algorithm. In addition to choose the best parameters for

quantization, depending on the number of mixture components, the approach can

be computationally expensive. Employing a probabilistic framework, [27] present

a method for augmenting local features with spatio-temporal relationships. Using

STIP-HOG based and trajectory-based features, probabilities are accumulated in

a Naive-Bayes like fashion into a reduced number of bins, and SVMs are used to

perform the final classification. Using concepts from the theory of chaotic systems

[29], the trajectories of reference points are treated as non-linear dynamical system

that are generating an action. Using delay-embedding scheme, each such refer-

ence trajectory is used to construct a phase space of appropriate dimension. Final

representation of each action is a feature vector, containing dynamical and metric

invariants of the constructed phase space, namely Lyapunov exponent, correlation

integral and correlation dimension. Along the same lines, based on extracted silhou-

ettes, [30] introduces a manifold embedding method, called Local Spatio-Temporal

Discriminant Embedding (LSTDE), that projects points lying in a local neighbor-

hood into the embedding space. The idea is that the points of the same class are

close together in this space and the data points of different classes are far apart.

The authors aim to find an optimal embedding by maximizing the principal an-

gles between temporal subspaces associated with data points of different classes.

However, the embedding is a costly affair, often relying on fine-tuning of many pa-

rameters such an embedding dimension. In this work, we show results comparable

to [29] and a significant improvement over [30], in addition to proposing a simple

and computationally less complex solution that is very efficient.

Typically, since the size of time series is too large to fit in main memory, reduc-

ing the size of time series using an appropriate representation emerged as an issue

of interest in the data mining community. Many representation techniques have

been proposed in the literature, but we will address in this section the most com-

monly used ones. Faloutsos et. al. introduced Discrete Fourier Transform, DFT,
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[19] to reduce the dimensionality of subsequences which are then indexed using

the reduced representation. The indexing was then improved in [20] by using the

Discrete Wavelet Transform, DWT, to reduce the dimensionality of time series;

however, DWT is effective for time series of lengths that are an integer power of

two. The authors of [31] used the Piecewise Aggregate Approximation, PAA, in

efficient data mining techniques. Then, the Singular Value Decomposition, SVD,

was proposed by [32] to improve the accuracy of time series mining however at the

expense of the computational cost. In contrast to the above mentioned techniques,

the SAX representation uniquely has both desirable properties [21]: dimensionality

reduction of time series and lower bounding of Euclidean distance between time

series in the original space. Due to these features, several works have used the SAX

representation in different applications, such as image DB classification [33,34].

Recently, although a different approach altogether, [13] introduces Prototype Trees

to solve action recognition. We thus compare results of the proposed method with

the Prototype Trees approach and demonstrate the effectiveness and efficiency of

our tool.

3 Silhouette to Time Series

To recognize actions in the proposed approach, we extract the silhouettes of actors

performing the actions from every video frame that contains these actions. These

sequences of silhouettes are 2D representations of the performed actions. Each ex-

tracted silhouette is converted into a time series, which is a 1D representation of

the action at a particular frame [16], as shown in Figure 1. Matching shapes in the

1D space has proven to achieve comparable or superior accuracy as compared to

matching in the original 2D space [35,36].

The method of extracting time series from 2D silhouettes does not consider the ro-

tational alignment of these silhouettes and hence the extracted time series might be

misaligned. Such rotational misalignment may greatly degrades recognition accu-

racy. Even a small rotational misalignment in the extracted time series can change

the rotation by as much as 90 degrees [37]. Therefore, in the proposed approach, we

use a rotation invariant distance function to mitigate the brittleness of comparing

1D representations of action silhouettes.

In the literature, several works have tried to minimize the effect of rotation mis-

alignment, or invariance [35]. These works can be divided into three categories:

• Works that employ a landmark on the silhouette to indicate the start of a rotation.

For example, a chin or a nose may be used as the landmark of a face profile [38].

Others have used the major axis of a silhouette as a landmark [39]. However, the

difficulty in these works is in locating these landmarks, which in turn becomes
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the source of recognition inaccuracies.

• Works that extract rotation invariant features such as min curvature, max curva-

ture, circularity, ratio of perimeter to area, elongatedness, etc. These features are

stored in a feature vector to represent the image shape. Although this approach

seems attractive and can easily be extended to represent 3D shapes, it suffers

from poor recognition accuracies [40].

• Works that use exhaustive brute force search over all possible rotations. To find

the best match between two rotated silhouettes represented as time series of

length n, one sequence is fixed and the other is circularly shifted n times. Such

works [41,42] find the best rotation and thus achieve better recognition accura-

cies as compared to the other two approaches, but at the expense of computa-

tional efficiency.

In the proposed approach, we follow the brute force approach since it gives the best

recognition accuracies, however we employ a technique to speed it up by orders of

magnitude and yet maintain identical accuracies.

Given two time series Q and T of length n that are representing two silhouettes,

previous works achieve rotational invariance by fixing one and circularly shifting

the other one n times. The rotation that gives the best match (smallest distance)

is considered to be the true rotation. Such comparison is performed on the raw

time series. In the proposed approach, we first convert both time series into their

SAX representations, QSAX and TSAX , where each time series is represented by

w segments, w ≪ n. That is, w is smaller than n by orders of magnitude and this

results in great computational time savings, compared to computations with raw

time series.

QSAX : sq1, s
q
2, . . . , s

q
w (1)

TSAX : st1, s
t
2, . . . , s

t
w (2)

Our approach fixes QSAX and rotates TSAX w times, as shown in the rotation matrix

below:





















st1 st2 . . . stw−1 stw

st2 st3 . . . stw st1
...

stw st1 . . . stw−2 stw−1





















(3)

Each row T i
SAX in the rotational matrix is matched with time series QSAX and

therefore w distance computations are performed. The proposed approach consid-

ers the minimum distance among the w distances as the best rotational invariance
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Table 1

Symbols used in the paper

Symbol Meaning

T Time series

Q Query time series

n Length of time series

w Number of PAA segments

p Number of alphabets used to represent the time series

βi A breakpoint under a Gaussian curve that divides the curve

into p equi-probable regions.

distance, RID.

RID(QSAX , TSAX) = min1<i<w(distance(QSAX , T
i
SAX)) (4)

RID distance function has a complexity of O(w2), however w is much smaller

than the length of the original time series n. Nevertheless, the proposed approach

produces accuracies identical to those produced by the original time series as shown

in our experiments.

4 SAX - time series representation

We briefly review the SAX (Symbolic Aggregate approXimation) representation

of a time series as presented in [21]. Although there are many representations for

time series in the literature, SAX is the only one that reduces the dimensionality

and lower bounds the Lp norms (distance functions) [43], which guarantees that

the distance between any two vectors in the SAX representation is smaller than,

or equal to, the distance between these two vectors in the original space. Table 1

explains the symbols used in this paper.

We begin by a formal definition of time series:

Definition A time series T = {t1, t2, t3, · · · , tn}, tn is an ordered set of n real-

valued variables.

Before dealing with time series, we have to remove the distortions, namely the off-

set translation and the amplitude scaling, that could greatly affect the results of the

action recognition tasks. Thus, we normalize each time series to have a mean of

zero and a standard deviation of one, since it is well understood that it is meaning-

less to compare two time series with different offsets and amplitudes. Eq (5) is used
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Fig. 2. A time series Ti (smooth curve) is converted to PAA segments and then using the

pre-determined breakpoints the PAA coefficients are mapped into symbols (SAX represen-

tation).

to normalize the time series.

T =
To −mean(To)

std(To)
(5)

where To is the original time series, mean(To) is the mean value of time series

variables, and std(To) is the standard deviation of the time series variable.

4.1 Converting time series to SAX representation

After normalizing the time series, it is converted to a Piecewise Aggregate Approx-

imation (PAA) and then to the symbolic representation SAX (see Figure 2).

The conversion process is performed by the time series to SAX representation al-

gorithm, which takes as input the time series, T , its length, n, the number of PAA
segments, w, and the number of alphabets used to represent the time series, p.

The details of the time series to SAX representation algorithm are explained below:

9



Algorithm: time series to SAX representation

Input: T, n, w, p

Output: SAX representation

(1) Normalize T using Eq (5).

(2) Set the number of PAA segments i.e. w.

(3) Transform T into PAA coefficients using Eq (6).

(4) Convert the PAA coefficients into SAX symbols

• An input time series T of length n is normalized using Eq (5).

• Choose an appropriate value for w.

• Transform T into segments using PAA by dividing the length n of T into w
equal-sized “frames”. The mean value of the data falling within a frame is calcu-

lated using Eq (6) and a vector of these values (PAA coefficients) becomes the

data-reduced representation.

xi =
w

n

n

w
i

∑

j= n

w
(i−1)+1

xj (6)

• Since normalized time series follow the Gaussian distribution [18,21], break-

points are determined so that they produce equal-sized areas under the Gaussian

curve. The Gaussian curve used to compute the breakpoints has been defined to

represent the distribution of the normalized time series and thus it has a mean

of zero and standard deviation of one. Breakpoints are a sorted list of numbers

B = {β1, β2, · · · , βp−1} such that the area under a Gaussian curve from βi to

βi+1 = 1/p (β0 and βp are defined as −∞ and +∞, respectively), see Fig. 2.

These breakpoints can be taken from a breakpoint lookup table [18,21] and they

divide the amplitude values of the time series into p equi-probable regions as

follows:

· Depending on the value of p, the breakpoints are determined.

· All the PAA coefficients that are below the smallest breakpoint are mapped

to the first symbol, say a all coefficients greater than or equal to the smallest

breakpoint and less than the second smallest breakpoint are mapped to the

second symbol, say b, and so on.

• After mapping all PAA coefficients to their corresponding symbols, we get a

SAX representation of the input time series. For example, in Fig. 2 the SAX
representation of the time series Ti is bbcbaacb.
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5 Action Recognition

The outline of the proposed method is given below:

Algorithm: Action Recognition

Input: Action Sequence

Output: class association

(1) perform foreground extraction.

(2) localize the object silhouette per frame.

(3) convert the silhouette to the time series (cf. Section 3).

(4) Convert time series of each frame to SAX representation (cf. Section 4).

(5) perform model training using the random forest method (cf. Section 6).

(6) perform action recognition.

The method first start with acquiring the action sequence and performing the fore-

ground attraction [44]. For the current setup, we use the silhouettes provided by

[4]. Once the silhouettes are extracted, we use the method detailed in Section 3 to

convert it in to the time series, these time series are then converted into their SAX

representation as detailed in Section 4. Figure 3 graphically illustrates this process.

The top left image, from a dataset sequence, is to be matched with the possible ro-

tations of SAX representations of the test sequences (e.g. Figure 3, top right image

shows a few rotations of the test image for illustration purpose). The middle row

shows that a perfect match is obtained when the test SAX vector matches with a

SAX vector of the target sequence. The bottom row shows the votes obtained for

each match.

Based on extensive experiments, the authors of [21,43] show that the parameters

alphabet size, p, and word size, w, are not too critical and a word size in the range

of 5−8 and an alphabet size of 3−10 seem reasonable for the task at hand. However,

the appropriate value of w and p depends on the data. That is, smaller values of w
are more suitable for relatively smooth and slowly changing time series and on the

other hand larger value of w are appropriate for fast changing time series. Also,

smaller values of p would result in clustering time series values in few alphabets

and larger values of p works against the SAX goal to reduce the dimensionality of

time series.
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Target Sample test

Sample Matches

class 5

corresponding votes

class 3 class 7 class 5 class 6 class 2

Fig. 3. Top-left denotes a target frame being matched to rotated versions of it, shown in

the top-right. The middle figure denotes the obtained time series (which are then converted

to the SAX representation) version of the silhouette and it matchings. The bottom figure

shows the class votes attained by the target sequence after matching to all frame.

6 Experiments & Results

In this section we evaluate our approach for the task of human action recognition.

The input to the method is the silhouette of the actor for every frame of the action

sequence. The silhouettes are then converted into time series in the form of xy-

trajectories.

To assess the discriminative power of our method on real video sequences, we

apply it to a standard single-view video Weizmann dataset [4](see Fig. 4) and to

the more advanced IXMAS dataset [45]. The Weizmann dataset consists of videos

of 10 different actions performed by 9 actors. Each video clip contains one subject

performing a single action. The 10 different action categories: walking, running,

jumping, gallop sideways, bending, one-hand-waving, two-hands-waving, jumping

in place, jumping jack, and skipping. Each of the clip lasts about 2 seconds at 25Hz

with image frame size of 180× 144.

We take one sequence from each class (i.e. 10 sequences) and form the test set; this

is about 11.65% of the total data. We report results on the following algorithms:

J48 Decision Trees [46] is a decision tree algorithm that places the attribute having

the highest information gain closer to the root of the tree.

RF is a random forest algorithm that grows many classification trees. To classify

a new action, its SAX vector is inputted down each of the trees in the forest. Each

tree gives a classification, that is the tree “votes” for that class. Then, the forest

12



Table 2

Percentage accuracy obtained by testing on various methods various methods.

SAX params IBK BayesNet J48 RF

w = 64; p = 8 70 30 50 60

w = 64; p = 32 70 50 50 70

w = 64; p = 48 60 30 30 70

chooses the classification having the most votes [47].

IBK is a lazy algorithm based on KNN that supports instance-based learning, which

do not maintain a set of abstractions derived from specific instances. It extends the

nearest neighbor algorithm, which has large storage requirements [48].

BayesNet: Bayes Network learning using various search algorithms and quality

measures. Base class for a Bayes Network classifier. Provides data structures (net-

work structure, conditional probability distributions, etc.) and facilities common to

Bayes Network learning algorithms like K2 and B.

We now report the accuracy in terms of the videos correctly classified by majority

vote in the above set: Table 2 shows the results obtained for the dataset by using

the methods mentioned above for the different SAX parameters. The worst perfor-

mance was noticed with BayesNet and J48. The performance with IBK and and

RF was noticed to be similar. The number of trees used for this experiment for the

RF was 500. We choose RF as our method of preference as its performance im-

proves with increase in number of trees, and it is easier to increase number of trees

than increasing the number of attributes.

Table 3 shows the results while using RF only while using the leave-one-out cross-

validation approach. The first column shows the different SAX parameters used for

the experiment and the corresponding percentage errors are mentioned in column

two. Although not a huge difference, the best result was obtained with the SAX

parameters w = 64; p = 32 to be 11.76%.

Table 3

Error rates for various SAX parameters with RF method.

SAX params Percentage Error

w = 64; p = 8 16.47

w = 64; p = 16 15.29

w = 64; p = 32 11.76

w = 96; p = 8 15.29

w = 96; p = 16 12.94

w = 96; p = 32 15.29
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Fig. 4. Weizman dataset: The top row shows instances from the nine different action

sequences. The bottom row depicts recognition results. The dataset contains ninety-three

action sequences videos of varying lengths, each having a resolution of 180×144. The nine

difference action are: bending down, jumping back, jumping, jumping

in place, galloping sideways, running, walking, waving one

hand and waving two hands.

The accuracy with RF is computed to be around 89% with the number of trees 1500.

The corresponding confusion matrices are illustrated in Fig. 4(bottom). Some errors

occur when jump action is confused with the skip action; with jump and pjump

as the two actions are quite similar generating same SAX representation; or when

the walk is confused with the running action due to the similarity of the action,

as shown in Figure 4. Although the obtained accuracy is not state of the art on this

dataset, it is comparable, if not better, than the methods that treat trajectory data as

time series, i.e. 89.7% for [29] (however, they require joint tracking which is im-

practical), and 80% for [30]. Similarly, [13] recently introduced prototype trees to

solve action recognition and reports an accuracy of 88.89% (when using motion in-

formation only). However, these methods are computationally expensive. Whereas

higher recognition rates on this dataset have been reported, e.g., in [49], the main

strength of our method is the fast and the simple solution making our method suit-

able for various action recognition applications.

IXMAS Dataset
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Table 4

Accuracy recognition rate.

Method Accuracy

Our Method 89%

[30] 80%

[13] 88.89%

camera 0
camera 1

camera 2

camera 3

camera 4

camera 0
camera 1

camera 2
camera 3

camera 4

“check watch” action “pick up” action

camera 0

camera 1

camera 2

camera 3

camera 4

camera 0

camera 1
camera 2

camera 3

camera 4

“punch” action “turn around” action

Fig. 5. Example frames from IXMAS multiview action dataset: for four classes of ac-

tion, the five views at a given instant, of one performance of the action is shown.

Table 5

Comparison of recognition results on IXMAS dataset by alternative methods.

cam 0 cam 1 cam 2 cam 3 cam 4

Our Method 55.2% 61.5% 54.6% 59.7% 50.4%

Weinland [45] 3D 65.4% 70.0% 54.3% 66.0% 33.6%

Weinland [45] 2D 55.2% 63.5% — 60.0% —

IXMAS dataset is publicly available and numerous researchers have reported their

results on this dataset. Without resorting to engineering a different experimental

setup to test view invariance, using this dataset allows for a quick and a fair com-

parison of our method to the other methods. Thus we present results for IXMAS

video dataset [45] with 11 classes of actions performed three times by each of 10
actors and recorded simultaneously from 5 different views. Sample frames for all

cameras and four action classes are illustrated in Fig. 5.

We compare our results with the standard method of Weinland [45], as shown in

Table 5. We show the results on all cameras, and as can be seen, we out perform
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Fig. 6. Confusion matrix for cam 3 for the IXMAS dataset.

on some of the views. Our method is also comparable to the work in Weinland [45]

that is based on extracting 3D shapes from multiple views. The confusion matrix

for the best results obtain in cam 3 is shown in Fig. 6. As mentioned above, this

is a difficult datasets, and there is a great variation in the different instances of

the action and in the way an action is performed by different actors. For example,

cross-watch is confused with the punch action, as both contain moving one

arm forward; scratch-head is confused with check-watch and wave for

similar reasons; sit-down is confused with get-up etc.

7 Conclusion

In conclusion, we have presented a unique action recognition solution, adopted

from the field of data mining and introduced it to the computer vision community.

Silhouettes from the actors are first extracted and are converted to the time series.

We then use an effective and an efficient method to convert this time series to SAX

representation. The SAX representation tremendously reduces the dimensionality

of the time-series, thus reducing the strain on the memory space and computational

power required, and is shown to be fast as well. We believe the proposed method

is very practical and considering the existing solutions, is very suitable for various

action recognition applications. We test on two public datasets and report encour-

aging results. In addition to its simplicity and low computational costs, we have

shown that the results obtained are comparable, if not better, to some of the exist-

ing methods.
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