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Abstract

We propose a method of gait silhouette transformation

from one speed to another to cope with walking speed

changes in gait identification. When a person changes

his/her walking speed, dynamic features (e.g. stride and

joint angle) are changed while static features (e.g. thigh

and shin lengths) are unchanged. Based on the fact, firstly,

static and dynamic features are separated from gait silhou-

ettes by fitting a human model. Secondly, a factorization-

based speed transformation model for the dynamic features

is created using a training set for multiple persons on multi-

ple speeds. This model can transform the dynamic features

from a reference speed to another arbitrary speed. Finally,

silhouettes are restored by combining the unchanged static

features and the transformed dynamic features. Evalua-

tion by gait identification using silhouette-based frequency-

domain features shows the effectiveness of the proposed

method.

1. Introduction

In modern society, there is a growing need to identify

individuals in many different situations, including surveil-

lance and access control. For personal identification, many

biometric-based authentication methods have been pro-

posed using a wide variety of cues, such as fingerprints, iris,

face, and gait. Of these, gait identification has attracted con-

siderable attention because it offers surveillance systems the

ability to ascertain identity at a distance.

Various approaches of gait identification have been pro-

posed as model-based approaches[20, 19, 16, 15] and

appearance-based approaches[11, 6, 7, 1, 17], and they have

shown the effectiveness of gait as a biometrics by using

common gait databases including various covariates (e.g.

views, shoes, surfaces, clothing, carriages, and walking

speed[13][4][5].

Among these covariates, walking speed is one of the

most important factor because people often change their

walking speed depending on the situation and gait features

such as gait period, arm swing, and stride change largely as

a result. While these changes are useful for gait style clas-

sification (e.g. walking, running, and jogging)[2], they are

just nuisance in the context of gait identification. Hence,

to cope with the speed changes, gait feature transformation

between different speeds or speed-invariant gait feature ex-

traction is needed.

Liu et al.[8] proposed a HMM-based time-normalized

gait feature extraction with standard gait poses and tested

it on the slow and fast walking data in the CMU MoBo

dataset[4] (3.3 km/h and 4.5 km/h on average respectively).

The method does, however, not consider spatial changes

(e.g. stride changes) and moreover the range and the num-

ber of speed changes used in the experiment are not suffi-

cient. Tanawongsuwan et al. [14] proposed a stride normal-

ization of double-support gait silhouettes based on a sta-

tistical relation between the walking speed and the stride.

They used only five silhouette (two single-support images

and three double-support images) for recognition and dis-

card the other still informative images.

Revisiting the other covariates on gait identification, a

factorization-based transformation model on appearance-

based gait features was effectively used to adapt to view

changes[9]. While view changes are regarded just as

appearance changes, speed changes should be treated as

changes of dynamic features (e.g. stride) under the condi-

tion of keeping static features (e.g. thigh and shin lengths)

unchanged.

This paper proposes a method of silhouette transforma-

tion between different speeds for gait identification. Unlike

the appearance-based factorization, the static and dynamic

features are separated by fitting a human model to the sil-

houette sequence at first, and then factorization is applied

only to the dynamic features to transform them from a ref-

erence speed to a target speed, while the static features are

unchanged. Finally, the unchanged static features and the

transformed dynamic features are combined to construct the

silhouette sequence in the target speed. Note that the pro-

posed method can deal with not only temporal change (e.g.

gait period) but also spatial change (e.g. stride) and that a
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(a) 2 km/h (a) 4 km/h (a) 7 km/h

Figure 1. Input image (Red countour: segmentation result by [10])

whole sequence of gait silhouette are available for recog-

nition unlike [8][14]. Moreover, at the recognition phase,

the proposed silhouette transformation enables us to use not

only model-based features but also appearance-based fea-

tures (e.g. frequency-domain feature[9], frieze pattern[6]),

which contain rich information for gait identification.

2. Gait dataset

Because the speed variation of existing gait

databases[13][4][14] is insufficient for extensive analysis,

we constructed our own speed-variation gait database as the

OU-ISIR Gait Database, Treadmill Dataset A[18]. Image

sequences of walking subjects on a speed-controllable

treadmill are captured from side view as shown in Fig. 1.

The image size is 640 pixel × 480 pixel, and the frame

rate is 60 fps. The number of subjects is 34 (26 male and

8 female), and speed variation ranges from 2 km/h to 10

km/h at 1 km/h interval. At each speed, a pair of sequences

of more than three gait periods were captured. Note that the

gait period consists of a pair of left and right steps. In this

paper, we focus on speed changes during walking (from 2

km/h to 7 km/h).

As a preprocessing, gait silhouettes are then extracted by

background subtraction-based graph-cut segmentation[10],

and they are normalized by the height and registered by the

region center so as to keep the aspect ratio. We call a series

of them Gait Silhouette Volume (GSV).

3. Silhouette transformation

3.1. Overview

Silhouette transformation from a reference speed to a tar-

get speed is done by the following three procedures.

1. Static and dynamic features are separately extracted

by fitting a human model to the GSV of the reference

speed

2. The dynamic features of the reference speed are trans-

formed to those of the target speed by using a pre-

trained speed transformation model.

3. The GSV of the target speed is reconstructed by com-

bining the unchanged static features and the trans-

formed dynamic features.

Because speed change makes a large impact on leg mo-

tion, in particular, on stride, we focus on transformation of

the lower body part in this paper. Details of the procedures

are described in the following subsections.

3.2. Separation of static and dynamic features by
human model fitting

Human model fitting has been one of central topics in

computer vision and a variety of human models (e.g. stick,

rectangle, ellipsoid, and generic-cylinder link models) have

been proposed[3]. Among these, we adopt a 2-D trape-

zoidal link model, which can be seen as an approximation of

a projected 3-D generic cylindrical link model. Each leg in

the model consists of two trapezoids (thigh and shin), a cir-

cle (knee joint), and a rectangle (foot). The model is repre-

sented by two types of variables: time-dependent variables

(dynamic features) and time-independent variables (static

feature).

The time-dependent variables of ith leg at tth frame con-

sists of the 2-D waste position W
t
i, a joint angle of thigh

θt
i,thigh and that of shin θt

i,shin. A joint angle between shin

and foot is fixed to be orthogonal in this paper. Thus, the

number of variables per leg and frame is 4. Given the num-

ber of frames in a gait silhouette sequence as Nimg , the total

nubmer of the time-dependent variables is 8Nimg .

On the other hand, the time-independent variables con-

sist of the upper and lower bases, and the height of trape-

zoids. We assume that the foot size changes in proportion

to shin size, in other words, the foot size is dependent vari-

able to the shin size. In addition, note that the lower base

of the thigh, the upper base of the shin, and the diameter

of knee joint circle are the same, thus the number of the

variables per leg is 5 and the total number of them is 10.

Therefore, the total number of the both time-dependent

and time-independent variables is (8Nimg + 10).

Next, the model is fit to the GSV by energy minimization

under certain constraints on joint angle range. The energy

function is defined by data term related to consistency of the

model region and the GSV, and smoothness term to suppress

the rapid change of the waste positions and joint angular

velocities of the thighs and shins. The energy function is

formulated as

S =

Nimg
∑

t=1

(Sdata(t) + Ssmooth(t)) (1)

Sdata(t) = woutCout(t) + winCin(t) (2)

Ssmooth(t) =
∑

i∈{left,right}

{wwaist||W
t+1

i −W
t
i||

+
∑

j∈{thigh,shin}

wangle(θ
t+1

i,j + θt−1

i,j − 2θt
i,j)

2},(3)
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Figure 2. Model fitting results

where Cout(t) and Cint(t) are areas of silhouette outside

the model and non-silhouette inside the model at tth frame

respectively, and wout and win are weights for each term.

In addition, wwaist and wangle are weights for the temporal

changes of the waist positions and those of joint angular

velocities. The energy function is minimized by the steepest

descent method. The result of model fitting is shown in Fig.

2.

3.3. Dynamic feature transformation

In this section, a factorization-based transformation of

the dynamic features is described. Though dynamic fea-

tures contain the waist positions and joint angles, transfor-

mation target is limited to the joint angles for simplicity be-

cause significant stride changes are induced by joint angle

changes

Because the speed S is generally a function of a gait pe-

riod Tperiod and a stride L (S(Tperiod, L) = 2L/Tperiod

in case of a constant gait), the speed change is divided into

the gait period change and the stride change. In addition,

if the gait period is regarded as a unit of a feature vector

in transformation and matching processes, the feature vec-

tor need to be arranged so as that their dimension and gait

pose in each dimension can be the same before transforma-

tion and matching. Based on the facts, we apply two-step

transformation procedures: (1) time normalization and syn-

chronization, and (2) stride transformation.

Time normalization and synchronization First, the gait

period Ngait is detected as the optimal time shift which

maximizes normalized autocorrelation of the GSV for the

temporal axis[9]. Then, in order to synchronize gait pose of

the feature vector, a double support-phase frame is detected

as a key frame where the both legs are the most open, that

is, the second moment of the silhouette around the central

vertical axis is maximized. Then, the double support frame

is set as the first component of the feature vector and then

a pre-defined number Nnrm of frames of dynamic features

are re-sampled from Ngait frames of the original dynamic

features. As a result, we obtain the normalized feature vec-

tor whose components are synchronous in terms of gait pose

and whose dimension is Ndim = 4Nnrm for the four joint

angles.

Formulation of factorization-based stride transforma-

tion First, overview of the factorization-based transfor-

mation is described as follows. In the training phase, the

dynamic features of multiple subjects of multiple strides

are collected and a transformation matrix of the dynamic

features between different strides is learned. In test phase,

given a dynamic feature in a gallery with stride Lref and

that in a probe with a stride L, the dynamic feature in the

gallery is transformed to that with the stride L. Note that

the stride can be estimated from model fitting result for the

double support phase.

Next, the factorization-based transformation is formu-

lated as follows. Let the numbers of training subjects and

training strides be M and I respectively, and the Ndim di-

mensional feature vector of mth subject of ith stride Li be

a
m
Li

. Then, we construct a training matrix whose row and

column indicates stride and subject respectively and decom-

pose it by singular value decomposition as

⎡

⎢

⎣

a
1
L1

· · · a
M
L1

...
. . .

...

a
1
LI

· · · a
M
LI

⎤

⎥

⎦
=USV T=

⎡

⎢

⎣

PL1

...

PLI

⎤

⎥

⎦

[

v
1 · · · v

M,
]

(4)

where U is the INdim × M orthogonal matrix, V is the

M × M orthogonal matrix, S is the M × M diagonal ma-

trix composed of singular values, PLi
is the Ndim × M

submatrix of US, and v
m is the M dimensional column

vector.

The vector v
m is an intrinsic feature vector of the mth

subject and is common to all strides. The submatrix PLi
is
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Figure 3. Silhouette transformation result from 3 km/s to 7 km/s

Figure 4. Silhouette transformation result from 6 km/s to 2 km/s

a projection matrix from the intrinsic vector v to the feature

vector for stride Li, and is common to all subjects. Thus,

the feature vector vm
Li

for the stride Li of the mth subject is

represented as

a
m
Li

= PLi
v

m. (5)

The intrinsic feature vector of the mth subject is estimated

by applying the least square method to eq. (5) as

v̂
m = P+

Li
a

m
Li

, (6)

where P+

Li
is pseudo inverse matrix of PLi

. Thus, feature

vector transformation from a reference stride Lref to a tar-

get stride Ltrg is now easily obtained as

â
m
Ltrg

= PLtrg
P+

Lref
a

m
Lref

, (7)

Note that this transformation can be applied to an identi-

fication target subject as well as the training subjects be-

cause the transformation matrix PLtrg
P+

Lref
does not in-

clude terms related to subjects.

3.4. GSV reconstruction

The GSV is reconstructed by combining the unchanged

static features and the transformed dynamic features. First,

the upper body silhouette region is copied as it is. As for

the lower body, each model part region is translated and ro-

tated by considering joint angle changes by transformation

and silhouette region inside the model region is copied after

the same translation and rotation. The results of the GSV

reconstruction for widening and narrowing stride are shown

in Figs. 3 and 4 respectively.

4. Experiments

4.1. Method

We made experiments of gait identification under speed

variations. In this experiment, the appearance-based

frequency-domain feature[9] is adopted as gait features for

person identification because of its efficiency. An overview

of feature extraction and matching processes is briefly de-

scribed as follows.

First, one dimensional Fourier analysis is applied to a

time series of silhouette signal at each pixel in the GSV and

an amplitude spectra is subsequently calculated for 0-, 1-,

and 2-times frequencies. We can reconstruct an image for

each frequency component for visibility as shown in Fig.

5, and this is treated as a unit of frequency-domain feature.

Then, Euclidean distance between frequency-domain fea-

tures of a gallery and a probe is computed as a matching

measure. If a sequence contains multiple gait periods and

it provides multiple features, we integrate the distances for

all the combinations of the multiple features by minimum

or median to provide a final matching score.

The two types of experimental datasets (call them dataset

1 and dataset 2 respectively) were arranged to see the effect

of the number of subjects for training the transformation

model. The number of training subjects in dataset 1 and 2

are 14 and 9 respectively, and the both datasets have 20 test-

ing subjects in common. The speed variation in the database

is range from 2 km/h to 7 km/h at 1 km/h interval.

As a performance evaluation measure, we adopted Equal

Error Rate (EER) which is defined in the Receiver Op-

erating Characteristic (ROC) curve[12]. The ROC curve

shows a relation between False Rejection Rate (FRR) and

False Acceptance Rate (FAR) when an acceptance thresh-

old changes in the context of a verification scenario. Natu-

rally, the lower FAR, FRR, and EER mean the higher per-

formance.

4.2. Results

First, the matching results of the frequency-domain fea-

tures before and after transformation are shown in Fig. 5.

We can see that the differences of the frequency-domain

features are reduced by the stride transformation in both

cases.

Then, the overall performance is shown by EERs with

and without transformation in Fig. 6 for each probe. In

these figures, the horizontal and vertical axes mean gallery

speed and EER. The averaged EERs on different speed

combinations were reduced from 15.0% without transfor-

mation to 10.9% (4.1% improvement) and 11.0% (4.0% im-

provement) with transformation in dataset 1 and 2 respec-

tively. As a whole, the improvement becomes larger as the

speed difference between the gallery and the probe becomes

larger, and in particular the largest EER improvements for
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4 km/hTrans.

6 km/h

Frq.    0       1      2      0       1      2 
(a) Transformation from 4 km/h (gallery) to 6 km/h (probe)

6 km/hTrans.

2 km/h

Frq.    0       1      2      0       1      2 
(b) Trasnformation from 6 km/h (gallery) to 2 km/h (probe)

Figure 5. Reduction of feature difference by stride transformation.

Red: exist only in gallery/transformed features, green: exist only

in a probe feature, white: exist in both features. Less red and green

regions mean better matching.
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Figure 6. Experimental results

a specific pair of gallery and probe speed in dataset 1 and 2

are 10.0% and 15.0% respectively.

4.3. Comparison with related works

In this section, the proposed method is compared with

the related works by Tanawongsuwan et al.[14] and Liu et
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Figure 7. Comparison with related works. Slower data is used as

a gallery in Set A, and vice versa in Set B. (a) Tanawongsuwan et

al.[14] match between 2.5 km/h and 5.8 km/h, while the proposed

method match between 2 km/h and 6 km/h. (b) Liu et al.[8] match

between 3.3 km/h and 4.5 km/h, while the proposed method match

3 km/h and 4 km/h.

al.[8]. Because the rank 1 identification rate in the Cumu-

lative Match Characteristic (CMC) curve was used in the

related works, we also used the same performance measure

in the comparison experiments.

When the CMC curve is used for performance evalu-

ation, gallery size makes a deep impact on performance,

in more detail, the larger gallery size means more diffi-

cult identification problem setting. Thus, almost the same-

size gallery should be used among the methods in com-

mon for fair comparison. The gallery sizes of the related

works[14][8] are 24 and 25 respectively, and therefore 25

subjects are assigned for testing while the remaining 9 sub-

jects are used for training the transformation model in the

proposed method. Comparison results are shown in Fig. 7.

Speed variations in [14] are 2.5 km/h, 3.6 km/h, 4.7

km/h, and 5.8 km/h. Focused on the largest speed difference

combination (2.5 km/h and 5.8 km/h), the rank 1 identifica-

tion rates are approximately 40% for 2.5 km/h gallery and

30% for 5.8 km/h gallery respectively. On the other hand,

in case of the proposed method, for larger speed difference

of 2 km/h and 6 km/h, the rank 1 identification rate is 64%

for 2 km/h gallery and 52% for 6 km/h gallery respectively.

This is because we use all of the frames for feature extrac-

tion for matching while only five key frames (three double

support frames and two single support frames) are used for

matching in [14].

Speed variations in [8] are 3.3 km/h and 4.5 km/h. Since

the speed difference is almost 1 km/h, we compare with a

combination of 3 km/h and 4 km/h in the proposed method.

While the rank 1 identification rate in [8] is approximately

84%, that in the proposed method is 84% for 3 km/h gallery

and 96% for 4 km/h gallery. This is because we consider

both time normalization and stride transformation, while

only time normalization is considered in [8].
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5. Conclusion

We propose a method of gait silhouette transformation

from one speed to another to cope with walking speed

changes in gait identification. Because dynamic features

are dependent on speed changes while static features are

independent of speed changes, the dynamic and static fea-

tures are separately extracted by human model fitting to the

silhouette sequence. Next the dynamic features are trans-

formed to the target speed by a factorization-based trans-

formation model and then the GSV for the target speed is

reconstructed by combining the unchanged static features

and the transformed dynamic features. Finally, for the per-

formance evaluation with and without transformation, gait

identification using frequency-domain features were made

for speed variation gait dataset ranging from 2 km/h to 7

km/h at 1 km/h interval. As a result, averaged EER for dif-

ferent speed combinations improved from 15.0% to 10.9%.

A future direction is extension of the proposed method to

various gait styles such as running by introducing full body

model fitting, gait style classification, and gait style-specific

stride transformation models. Our faster gait dataset rang-

ing from 8 km/h to 10 km/h at 1 km/h interval can be used

for this purpose.
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