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Abstract: We report the fabrication of silica microstructured optical fibers

with the core exposed along the whole length, and characterize the stability

of these new fibers when exposed to some typical sensing and storage

environments. We show the fiber loss to be the best achieved to date for

exposed-core fibers, while the deterioration in the transmission properties

is up to ∼2 orders of magnitude better than for the previously reported

exposed-core fibers produced in soft glass. This opens up new opportunities

for optical fiber sensors requiring long term and/or harsh environmental

applications while providing real time analysis anywhere along the fibers

length.
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1. Introduction

Microstructured optical fibers [1] (MOFs) are well-suited for sensing, as characteristic longi-

tudinal air holes used to provide the effective refractive index needed for light confinement [2]

can also act as tiny sample chambers [3]. The portion of guided light located within these holes

can be used to provide the light-matter overlap needed for many fiber optic sensing applica-

tions [4, 5]. Unlike conventional optical fibers, MOFs can be manufactured from a single ma-

terial [6], and with the appropriate cross-sectional design, the structure can provide the broad

range of optical properties demanded by sensors [7].

For MOFs, the portion of guided light (often described as “evanescent field”) protruding

into the holes of the structure is affected by the characteristics of the medium within these

holes [4]. This light-matter overlap provides opportunities for exploiting the interaction of

light with gases and liquids, where the absorption and fluorescence characteristics can be used

to determine the composition and concentration of the analyte [5]. In this regard, the fiber

geometry can provide extremely long interaction lengths without the need for large volumes.

Of particular interest is the suspended-core fiber [8], which can have a significant fraction of

the guided power located within the holes [9], since the geometry has a high air filling fraction

with a small core suspended on a number of thin struts. Unlike glass nano-wires [10], this

design provides a means for obtaining uniform micrometer-nanometer scale suspended ‘wires’

while protecting the highly sensitive core, and long lengths can be fabricated by drawing a

structured preform.

The suspended-core fiber has been demonstrated in soft glasses [11–13], polymer [14] and

silica [15] materials. Chemical [15, 16] and biological [17] suspended-core fiber absorption

spectroscopy sensors, which exploit the absorbance characteristics of the light-matter over-

lap, provide opportunities for both environmental sensing and quantitative chemical analy-

sis. Suspended-core fiber sensors using in-fiber excitation and recapturing [18] of fluorescent

dyes [19] or quantum dots [20], as well as surface-enhanced Raman spectroscopy using nano-

particles [21], have also been shown to provide highly sensitive specificity of the analyte of

interest.

In principle, the suspended-core fiber also offers the potential for easier filling compared

to MOFs with hexagonally arranged cladding holes that provide a small air filling fraction

when the core is small [22]. In practice, the time needed to fill suspended-core fibers depends

on the required interaction length and size of the holes, such as ∼7 hrs for gas diffusion [15]

or ∼100 min for water at standard temperature and pressure [23], along a 1 m length of fiber

with Ø8 µm holes. This makes their use impossible for real time or distributed sensing applica-

tions and difficulty still exists when attempting to ensure stable optical coupling while filling.

To overcome these problems, fabrication techniques which expose the core [24] have been

demonstrated by micro-machining fluidic side-channels at several locations along the fiber

length [25–28], which results in short exposed regions in the order of tens of microns. This

provides access to the core by the analyte, making it useful for real time sensing applications.

However, in applications where kinetic changes of the analyte need to be measured, where emp-
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tying and re-filling is required, or long lengths are needed for distributed sensing applications,

post processing methods to the fiber still remain impractical. Another technique to expose the

core is by creating an opening at the preform stage of fiber fabrication. This provides a means

to fabricate long lengths of exposed-core fiber, and has been demonstrated in polymer [29]

(polymethylmethacrylate) and soft glass [30] (Schott F2) materials, where the geometry was

shown to be practical for real time evanescent field and distributed sensing [31] applications,

with the capacity for fast filling and quick response to kinetic changes of the analyte.

Both polymer and soft glasses have properties which makes them useful for particular

applications [9, 32, 33], and their glass transition temperatures (Tg) are low enough to make

them practical for extruding the structured preform [34]. Nevertheless, these materials are not

transparent at UV wavelengths, where many biological molecules can absorb the light, and

the soft glass exposed-core fiber deteriorated quickly [30, 35], making it impractical for long

term and/or harsh environmental applications. On the other hand, silica is known to be reliable

under a range of processing and use environments, with relatively better mechanical and ther-

mal stability [36]. Highly homogeneous, high purity bulk material is commercially available,

which has led to silica telecom fibers regularly being made with low loss (∼0.2 dB/km at NIR

wavelengths) [37]. Also, silica has a relatively low refractive index, which can improve the sen-

sitivity of evanescent field sensors, since reducing the index contrast (∆n) at the core-cladding

boundary increases the power fraction to the analyte or functionalized surface [19].

In this paper we demonstrate an alternative fabrication technique for glass exposed-core

fibers, where the fabricated geometry is a useful platform for surface analysis of the core. We

report, for the first time to the best of our knowledge, the fabrication of a silica microstructured

fiber with the core exposed along the whole length, and characterize the stability of this new

fiber when exposed to some typical sensing and storage environments.

2. Silica exposed-core fiber fabrication

2.1. Introduction to silica exposed-core fiber fabrication

The aim of this work was to develop silica exposed-core fibers (Fig. 1), which are asymmetric

and therefore needed new fabrication methods to be established. These methods expand on a

combination of work previously shown by Webb et al. [15] for fabricating silica suspended-

core fibers (wagon wheel structure) by machining the preform, and Warren-Smith et al. [30]

for cutting a thin slot into the side of the symmetric preform (soft glass) in order to expose the

core region. High purity fused silica known as Suprasil F300HQ (Heraeus Quarzglas GmbH &

Co.KG) was chosen because it is produced to be free from bubbles and made to tight geometric

tolerances [38]. This material has high transmission in the UV-Vis-NIR spectral range making

it suitable for (bio)chemical sensing applications since it allows for the efficient excitation of a

range of fluorophores; for example quantum dot labeled proteins excited in the visible [20] and

fluorogenic peptide substrates excited in the UV [39].

2.2. The preform

The exposed-core fiber preform was fabricated from Ø12 mm F300HQ silica rod, which was

drilled with three holes, where the centers of the holes form an equilateral triangle. The preform

was sonic cleaned in methanol and Milli-Q water, then etched for 30 minutes in a buffered

hydrofluoric acid solution (BHF), made using 6 volumes of ammonium fluoride (NH4F, 40%

solution) to 1 volume of hydrofluoric acid (HF, 50% solution), which has a well known etch

rate of 100–250 nm/min [40]. After etching, the preform was rinsed with de-ionized water and

then sonic cleaned in methanol and Milli-Q water, after which it was dried with nitrogen. The

only difference between suspended-core fiber and exposed-core fiber preforms, is that for the

exposed-core fiber case a slot was cut along the length of one of the holes, as shown in Fig. 1(a).
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Fig. 1. (a) Cross section of the preform fabricated from Ø12 mm F300HQ silica rod; and,

scanning electron microscope images of (b) the silica exposed-core fiber with (c) the cross

section measured at the maximum to be Ø202 µm; and, (d) an enlarged image of the core

having an effective diameter of 10.0µm.

2.3. Fiber drawing

To draw the preform to fiber a 6m tower with graphite resistance furnace, positive pressur-

ization system and automated diameter control was used. By systematically using a series of

temperatures and pressures, hole expansion and draw characteristics were investigated for the

process of producing suspended-core fibers using the preform described in the previous section.

These investigations showed that the exposed-core fiber could be produced using a temperature

of 2000◦C with pressure at 1.4 kPa, although one should consider that temperature and pressure

profiles can vary between drawing towers and furnace designs [41].

A single 127 m long uncoated exposed-core fiber (Fig. 1(b)) was fabricated and the dimen-

sions of this fiber were measured using cross-sectional images from a scanning electron mi-

croscope (SEM), shown in Figs. 1(b)–1(d), being Ø202 µm (measured at the maximum) with

each hole being Ø66.0 µm, defined as the diameter of a circle whose area is equal to the cross

sectional area of the hole. The central web thickness (between the holes) is 0.85 µm minimum,

while the webs each side of the core are 1.10 µm minimum thickness. The core, shown by the

green box in Fig. 1(c) and enlarged in Fig. 1(d), has an effective diameter of 10.0 µm, defined as

the diameter of a circle whose area is equal to a triangle that fits wholly within the core area [9].

3. Silica exposed-core fiber characterization

3.1. Fiber loss & fluorescence

After fabrication, the exposed-core fiber was stored in the laboratory, exposed to air, on a high

density Polyurethane foam drum with 1 m circumference. While the fiber was on the drum,

cutback fiber loss measurements were performed by coupling the light from a 100 W halogen

light bulb source with power curve of approximately Gaussian distribution and peak power

at 800 nm, into one end of the exposed-core fiber. At the other end, the light from the core

was imaged onto the grating of a Ando AQ6315E Optical Spectrum Analyzer (OSA) such

that the power was maximized before each measurement. The fiber loss measurement results

taken directly after fiber draw, shown by the red spectrum in Fig. 2(a), were 1.12±0.15 dB/m,

1.10±0.08 dB/m and 1.43±0.39 dB/m at 532 nm, 900 nm and 1550 nm respectively. Further

work is required to determine the cause of the increased loss at longer wavelengths. For another

fiber loss measurement taken 26 days after fiber draw, shown by the blue spectrum in Fig. 2(a),

the results were observed to be the same within a 95% confidence interval. As a comparison,

the fiber loss measurement results for a suspended-core fiber produced in the same way, with

material from the same bulk stock, and with similar core, web and hole sizes as for the exposed-

core fiber, is shown by the black spectrum in Fig. 2(a). This suspended-core fiber result, being
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Fig. 2. (a) Loss of silica exposed-core fiber, broadband cutback measurements taken 26

days apart (red and blue) compared to silica suspended-core fiber with similar core size

(black); and, (b) fiber Raman peaks at 532 nm.

∼2 orders of magnitude lower compared to the exposed-core fiber, shows that confinement

loss is negligible in the total loss of the exposed-core fiber, and therefore additional surface

scattering loss, either from the process of cutting the slot or airborne particulates depositing

on the surface of the core [42] before or after fiber drawing, is the most likely cause of the

additional loss. For exposed-core fibers previously produced in Schott F2 lead silicate soft glass

[30] (n ∼1.62) with a core size of ∼ Ø3 µm, the fiber loss measurements taken directly after

fiber draw were 5.54±0.20 dB/m, 2.25±0.26 dB/m and 2.50±0.34 dB/m at 532 nm, 900 nm and

1550 nm respectively. Further work is required to determine the effect that core size has on the

fiber loss of the silica exposed-core fiber.

Another factor which can restrict the detection limit of a fiber optic sensor is the amount

of Raman and fluorescence peaks generated within the glass [19] which depends on the wave-

length and power of the light source. Given enough power and with a sensitive enough detector,

the Raman spectrum corresponding to the energy of the probed vibrational modes of the sil-

ica is expected, whereas fluorescence is an indication of impurities and/or structural defects

within the silica material. In order to detect the Raman and any potential fluorescence peaks,

a 25 mW laser excitation light source at commonly used 532 nm was coupled into a 1 m long

exposed-core fiber using a 60× objective via a dichroic mirror. The signal collected from the

fiber was imaged using the same objective, passed through the dichroic mirror and filtered

using a 532 nm long pass filter, and measured using a Horiba iHR550 Imaging Spectrometer

with Synapse CCD Detector. The peaks observed at 545 nm, 550 nm, 555 nm, 562 nm, 566 nm

and 580 nm, shown in Fig. 2(b), correspond to well known Raman peaks of silica at 490 cm−1,

605 cm−1, 800 cm−1, 1050 cm−1, 1190 cm−1 and 1600 cm−1 respectively, previously used for

sensing applications [43]. The absence of any fluorescence peaks shows that the silica material

has negligible fluorescence at 532 nm for the excitation power and detector sensitivity used.

For fluorescence or Raman spectroscopy sensing applications these peaks generated within the

glass might affect the detection limit, depending on the excitation and emission wavelengths of

interest.
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3.2. Environmental stability

3.2.1. Introduction to environmental stability

Numerous sensing applications in health, the environment, agriculture and national security in-

volve the detection of analyte typically suspended in a bulk liquid or gas; such as water or air.

When preparing the fiber for these applications, solvents such as acetone, isopropanol, methanol

and water are sometimes also used [44] to clean the core of dust or other particulates deposited

on the surface. The silica exposed-core fiber serves as a unique platform for measuring any de-

terioration in the transmission properties when exposed to these typical sensing and processing

environments, providing access to the core for post exposure surface analysis.

In previous studies, for the exposed-core fibers produced in F2 soft glass [30, 35] with a

∼ Ø3 µm core, it was found that the fiber loss increased by 0.4±0.048 dBm−1day−1, even when

stored in a dry nitrogen filled environment. It is thought that this deterioration in the transmis-

sion properties of the fiber occurs due to changes in the properties at the core surface, such as

particulate deposits [42], micro-fracturing [44] and/or increased roughness [45] induced by

exposure to the environment. Since the deterioration found in the F2 soft glass exposed-core

fibers was rapid, it could easily be measured by comparing standard cutback loss measurements

over time. However, as shown in the previous section no loss was observed after 26 days for

the silica exposed-core fiber.

3.2.2. Exposure to air, water & methanol

To measure the exposure induced deterioration in the transmission properties of the silica

exposed-core fiber, a length of fiber was setup as previously described for cutback loss measure-

ments. Instead of performing cutbacks, the transmitted power spectrum, in dBm, was recorded

from 350–1750 nm every two minutes. With the fiber in air, this setup was left long enough so

that the measured power stabilized to within ±0.05 dBm, then used to take time based measures

of the power. Then any changes over time in the transmission characteristics can be fitted to the

equation,

Pλ ,t = Pλ ,010−ξ t/10 (1)

where ξ is the loss in dB/day. An assumption for these measurements is that the deterioration

measured comes from changes along the exposed fiber length, not just the cleaved ends of

the fiber, as the area exposed along the length is much greater than the area at the ends. As a

sanity check, a laboratory-grade patch cord optical fiber assembly was setup in the same way,

to ensure that the measured losses were not coming from the light source or other parts of the

setup; where no deterioration was detected.

The result of ξλ (Eq. (1)) for a 4.2m length of the exposed-core fiber exposed to air for

180hrs is shown in Fig. 3(a), where the 95% confidence interval is also shown in black. This

result shows that there is a sharp loss peak at 515 nm, equivalent to 0.043 dBm−1day−1, and

a broad loss from ∼450 nm to ∼900 nm with a peak of 0.023 dBm−1day−1. At wavelengths

∼900 nm to ∼1340 nm the loss is at ∼0.0043 dBm−1day−1, and drops below the detection limit

of the experiment for wavelengths >∼1340 nm. The air exposure induced deterioration in the

transmission properties of the silica exposed-core fiber is lower than the confidence intervals

for cutback measurements, as shown in Fig. 2(a), and ∼2 orders of magnitude better than for

the previously reported exposed-core fibers produced in F2 soft glass.

This measurement was repeated for a 1m length of the silica exposed-core fiber with a 8cm

centrally located section of the fiber submersed in Milli-Q water, shown in Fig. 3(b), where

we observe that the transmission properties of the fiber is reduced by ∼0.067 dBm−1day−1 for

wavelengths shorter than 1450 nm. When this was repeated with methanol, it was observed that

the transmission properties of the silica exposed-core fiber was significantly affected across all
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Fig. 3. Deterioration in the transmission properties of the silica exposed-core fiber when

exposed to (a) air; and, (b) water.

the measured wavelengths (350–1750 nm), at a rate of 12.8–16.8 dBm−1hr−1.

This deterioration in the transmission properties is expected to come from changes in the

mechanical and/or compositional characteristics at the core surface, causing light scattering ef-

fects. When the core diameter is reduced, these light scattering effects are expected to increase,

as a greater portion of guided light travels outside the core. Further work is required to quantita-

tively determine the effect that core size has on the deterioration in the transmission properties

of the silica exposed-core fiber.

3.2.3. Surface mechanical and compositional characteristics

In order to determine the differences between the mechanical and compositional characteris-

tics of the exposed sample surfaces, nanometer-scale topographical and phase mapping of the

exposed-core fiber core surfaces was performed using a NT-MDT Ntegra Solaris AFM with

Smena head for Tapping Mode Atomic Force Microscopy (AFM).

Figures 4(a)–4(c), 4(d)–4(f) and 4(g)–4(i) show the AFM phase and topology results of a

25 µm2 section across the core for the exposed-core fiber exposed to air for 19 days, Milli-Q wa-

ter for 72 hrs and methanol for 2 hrs respectively. For the core area exposed to air, the nanometer

scale spikes in the topology and phase shift suggest small hardened impurities within the sur-

face structure, while the bulk of the material is homogeneous in composition with nanometer

scale roughness. For the core exposed to water, large peaks measuring > 100 nm in height and

several microns across the surface suggest that impurities from the water have been deposited

onto the core. The darkest areas in the phase image show up on the topology to be slightly

lower than the surrounding bulk, which may also be an indication of surface damage such as

micro-fracturing [44]. The results for the core exposed to methanol shows micron scale areas

with large phase shifts where the topology image indicates a increase in height. The methanol

exposed-core area was further investigated using a ContourGT-K1 coherence scanning inter-

ferometer (CSI), shown in Fig. 4(j), which indicates micrometer scale pitted sections along the

core instead of the increase in height observed by the AFM. It is known that topology height

reversal can occur for AFM images when the tip is strongly affected by the capillary forces and

also by the tip-sample van der Waals attraction [46]. In this interaction regime, the phase shift

shows to be more negative on more hydrophilic regions, and suggests pitting or micro-fracturing

of the methanol exposed sample, which is confirmed by the CSI results. Nevertheless, further

experimental evidence would be needed to confirm these hypothesis.
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Fig. 4. Tapping Mode Atomic Force Microscopy images of the exposed-core fibers exposed

to (a)–(c) air, (d)–(f) water and (g)–(i) methanol with (j) a coherence scanning interferom-

eter image along the methanol exposed core region. (a), (d) and (g) show the phase images

across the core region indicated by the 12 µm area on the x-axis, with [(b), (e) and (h) re-

spectively] enlarged phase images of the area shown by the green box; and, (c), (f) and (i)

showing their respective topologies.

4. Conclusion

A silica exposed-core fiber has been fabricated, for the first time to the best of our knowledge.

We have demonstrated preform drilling as an alternative for fabricating glass exposed-core

fibers, and shown the unique ability to perform surface analysis of the core with the silica

exposed-core fiber geometry produced. We explored and characterized the new silica exposed-

core fiber, showing it to have relatively low loss with deterioration in the transmission proper-

ties being ∼2 orders of magnitude better than for the previously reported exposed-core fibers

produced in soft glass. Although the silica material shows good stability in air and water, the

buildup of contaminates on the surface and micro-fracturing deteriorates the transmission prop-
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erties, while significant degradation occurs with the use of methanol.

With high transmission properties in the UV-Vis-NIR spectral range, the silica material is

suitable for (bio)chemical sensing applications. The exposed-core geometry serves as a versatile

platform for real time evanescent field absorption or fluorescence spectroscopy, with capacity

for fast filling and quick response to kinetic changes of the analyte. This opens up new oppor-

tunities for optical fiber sensors requiring long term and/or harsh environmental applications

while providing long length light interaction with the analyte of interest.

In the future, further practical issues need to be solved, particularly in how to package

the fiber such that it is sensitive to the chosen analyte but protected from the applied sensing

environment.
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