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Inhalation of dust containing crystalline silica is associated with a number of acute and 
chronic diseases including systemic autoimmune diseases. Evidence for the link with 
autoimmune disease comes from epidemiological studies linking occupational exposure 
to crystalline silica dust with the systemic autoimmune diseases systemic lupus erythe-
matosus, systemic sclerosis, and rheumatoid arthritis. Although little is known regard-
ing the mechanism by which silica exposure leads to systemic autoimmune disease, 
there is a voluminous literature on silica exposure and silicosis that may help identify 
immune processes that precede development of autoimmunity. The pathophysiology 
of silicosis consists of deposition of silica particles in the alveoli of the lung. Ingestion of 
these particles by macrophages initiates an inflammatory response, which stimulates 
fibroblasts to proliferate and produce collagen. Silica particles are encased by collagen 
leading to fibrosis and the nodular lesions characteristic of the disease. The steps in 
the development of silicosis, including acute and chronic inflammation and fibrosis, 
have different molecular and cellular requirements, suggesting that silica-induced 
inflammation and fibrosis may be mechanistically separate. Significantly, it is unclear 
whether silica-induced inflammation and fibrosis contribute similarly to the development 
of autoimmunity. Nonetheless, the findings from human and animal model studies are 
consistent with an autoimmune pathogenesis that begins with activation of the innate 
immune system leading to proinflammatory cytokine production, pulmonary inflammation 
leading to activation of adaptive immunity, breaking of tolerance, and autoantibodies and 
tissue damage. The variable frequency of these immunological features following silica 
exposure suggests substantial genetic involvement and gene/environment interaction in 
silica-induced autoimmunity. However, numerous questions remain unanswered.
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iNtrODUctiON

Environmental factors play a significant role in the development of human autoimmunity (1). 
These factors include the food we eat, the fluids we drink, the air we breathe, chemicals (natural 
and synthetic), infections, by-products of manufacturing processes, and radiation (2–4). A recent 
review of the epidemiologic evidence of environmental factors in human autoimmune diseases 
concluded that exposure to crystalline silica contributes to the development of a number of autoim-
mune diseases, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), systemic 
sclerosis (SSc), and antineutrophil cytoplasmic antibody (ANCA)-related vasculitis (5). Despite 
this strong linkage of silica exposure with autoimmune diseases, there is little evidence of the pos-
sible mechanisms underlying this relationship (6, 7). This is due in large part to a lack of accepted 
criteria for diagnosis or classification of environmentally associated autoimmunity (8) as well as a 
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paucity of animal models that mimic features of silica exposure 
in humans (6). In contrast, there is a voluminous literature on 
silica exposure and the development of silicosis in humans and 
animal models (9–11). In this article, I provide a brief overview of 
the immunological consequences of silica exposure and discuss 
how an understanding of identified mechanisms and biological 
markers may contribute to an understanding of silica-induced 
autoimmunity.

siLicA AND iNFLAMMAtiON

Silica (SiO2) is an oxide of silicon and is most commonly found 
in nature as quartz. Silica exists in many crystalline forms (called 
polymorphs) with α-quartz being the most common form (11). 
Exposure to respirable crystalline silica (<10 μm in size) occurs 
most often in occupational settings, where materials containing 
crystalline silica are reduced to dust or when fine particles are 
disturbed. These occupations are often called the dusty trades and 
include abrasive blasting with sand, jack hammering, drilling, 
mining/tunneling operations, and cutting and sawing (10, 12). 
Inhaling crystalline silica dust can lead to silicosis, bronchitis, or 
cancer (10, 11). Silicosis is characterized by chronic inflammation 
and scarring in the upper lobes of the lungs and can be classified 
based on the quantity inhaled, time course, and length of expo-
sure (10, 11, 13). Chronic simple silicosis is the most common 
form, occurring after 15–20 years of moderate to low exposures 
to respirable crystalline silica. The accelerated form occurs after 
5–10 years of high exposures to respirable crystalline silica, and 
acute silicosis, or silicoproteinosis, occurs after a few months or as 
long as 5 years following exposures to extremely high concentra-
tions of respirable crystalline silica. The acute form is the most 
severe form of silicosis. The pathophysiology of silicosis involves 
deposition of particles into alveoli where they cannot be cleared. 
Ingestion of these particles by alveolar macrophages initiates an 
inflammatory response, which stimulates fibroblasts to prolifer-
ate and produce collagen. The silica particles are enveloped by 
collagen leading to fibrosis and nodular lesions characteristic of 
the disease.

ceLL AND MOLecULAr reQUireMeNts 
FOr siLicA-iNDUceD iNFLAMMAtiON/
FiBrOsis

A number of studies in experimental animals have revealed dif-
ferences in silica-induced inflammatory responses and silicosis 
(14–16), arguing that gene–environment interactions are impor-
tant in the severity of disease. Gene deletion studies have identified 
a number of the cellular and molecular requirements for silica-
induced inflammation and fibrosis. The inflammatory response 
following exposure to crystalline silica is mediated by NALP3 
inflammasome-driven IL-1β (17). Inflammasome activation is 
argued to occur following uptake of silica by scavenger recep-
tors, lysosomal rupture, and release of cathepsin B accompanied 
by production of reactive oxygen species (ROS) and potassium 
efflux (10, 17–19) (Figure 1). The binding of silica to scavenger 
receptors also results in apoptosis of macrophages and the release 

of mediators (e.g., proinflammatory cytokines) contributing to 
lung inflammation and fibrosis (20). However, scavenger recep-
tors also play a significant role in clearing silica, and their absence 
enhances inflammation but not fibrosis (21, 22).

Consistent with the differential requirements for scavenger 
receptors, the steps in the development of silicosis, including 
acute and chronic inflammation and fibrosis, have different 
molecular and cellular requirements (Figure 2). Inflammation 
and fibrosis occur independently of T, B, NKT, and NK cells (23), 
although treatment with anti-CD4 antibodies reduces the sever-
ity of fibrosis (24). This may be explained by the presumptive role 
of T regulatory cells in fibrosis (25). Deficiency of IL-1α reduced 
IL-1β production and neutrophil accumulation following silica 
exposure (26), suggesting that release of endogenous IL-1α from 
alveolar macrophages promotes subsequent lung inflammation. 
Pulmonary inflammation is also dependent on IFN-γ (27), but 
not IL-4 or IL-13 (28) or IL-12 (29). In keeping with its anti-
inflammatory potential, IL-10 helps limit the silica-induced 
inflammatory response but amplifies the fibrotic response (30). 
The role of IL-10 in fibrosis appears to be due to exacerbation 
of the Th2 response and the production of profibrotic IL-4 and 
IL-13 (31). Acute inflammation, but not chronic inflammation or 
fibrosis, requires IL-17 (32), conversely, chronic inflammation, 
but not acute inflammation or fibrosis, requires type I IFN and 
IRF7 (33). Additional studies have suggested that presence of 
innate immune response components (particularly IL-1 recep-
tor, IL-1, ASC, NALP3, IL-18 receptor, IL-33 receptor, TRIF, and 
TLR2, 3, and 4) are not required for accumulation of collagen 
in the lung (fibrosis), while inflammation, neutrophil accu-
mulation, IL-1β release, and granuloma formation did require 
MyD88 (25). In contrast, others have suggested that absence of 
NALP3 and ASC reduces collagen deposition (17). While these 
studies may question the role of innate immunity in fibrosis, it 
is becoming clear that silica-induced inflammation and fibrosis 
can be uncoupled as evidenced by the observation that steroid 
treatment reduced lung inflammation and proinflammatory 
cytokine expression (TNF-α, IL-1β) but had no significant effect 
on lung fibrosis or expression of fibrogenic cytokines (TGF-β 
and IL-10) (34).

PrOPerties OF siLicA tHAt 
iNFLUeNce iNFLAMMAtiON

Both amorphous (non-crystalline) silica particles and crystal-
line silica are phagocytosed by, and toxic to, macrophages 
leading to endolysosomal rupture and caspase-3 activation 
(35). Nevertheless, the size of silica particles can dramatically 
affect the inflammatory response. Amorphous silica particles 
of 30–1,000  nm in diameter induce greater inflammatory 
responses, as judged by lysosomal destabilization, proinflam-
matory cytokine expression, and pulmonary inflammation, 
than 3,000–10,000  nm particles (36). However, it is unclear if 
silica-induced lysosome destabilization is essential to NLRP3 
inflammasome activation, IL-1β production, and inflammation. 
The binding of immobilized silica crystals to the cell membrane 
of macrophages was sufficient to induce IL-1β without evidence 
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FiGUre 2 | Molecular and cellular components involved in silica-induced inflammation and fibrosis. Silicosis is marked by inflammation and fibrosis with 
the formation of nodular lesions in the upper lobes of the lungs. The collagen containing silicotic nodules are a specific response to crystalline silica. However, the 
cellular and molecular components responsible for the inflammatory and fibrotic responses are not the same. Components required for inflammation (acute or 
chronic) and fibrosis are highlighted in red, while those not essential have been highlighted in green (see text for details). TNF, tumor necrosis factor; IFN, interferon; 
MyD88, myeloid differentiation primary response gene 88; IL, interleukin; NK, natural killer; NKT, natural killer T cell; IRF, interferon regulatory factor; TGF, 
transforming growth factor.

FiGUre 1 | silica-induced activation of inflammasome and iL-1 production. IL-1α, released from alveolar macrophages following crystalline exposure, results 
in NF-κB activation and transcription and translation of pro-IL-1β. Phagocytosis of crystalline silica leads to phagosomal damage and release of phagosome 
contents into the cytoplasm. This results in the activation of NALP3 and its association with the intracellular adapter protein ASC, which combines with and activates 
pro-caspase-1. The resulting inflammasome cleaves pro-IL-1β to the proinflammatory IL-1β. However, binding of immobilized silica crystals to the cell membrane of 
macrophages is also sufficient to induce IL-1β without evidence of lysosomal damage. Activation of the NALP3 inflammasome by silica also results in efflux of 
intracellular potassium ions, suggesting a possible interaction of silica with a membrane-associated protein, but it is unclear if K+ efflux following binding of 
immobilized silica crystals to the cell membrane results in inflammasome activation. Scavenger receptors have a role in the recognition and uptake of silica. NALP3, 
NACHT, LRR, and PYD domains-containing protein 3; ASC, apoptosis-associated speck-like protein containing a caspase recruitment domain; NF-κB, nuclear 
factor-κB; IL, interleukin.
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of lysosomal damage or a requirement for cathepsin B (18) 
(Figure  1). Blocking K+ efflux from the cell was sufficient to 
reduce IL-1β release although whether potassium efflux is directly 
responsible for NLRP3 activation remains unclear (18). An alter-
native explanation for silica-induced IL-1β expression argues that 

silica exposure results in release of IL-1α into the alveolar space, 
which then drives production of IL-1β and lung inflammation 
(26). This explanation is consistent with the concept that IL-1α 
functions as an alarm molecule and plays a critical role early in 
inflammation (37).
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siLicA-AssOciAteD AUtOiMMUNitY

A number of epidemiological studies support the association 
between occupational exposure to respirable crystalline silica 
dust and development of systemic autoimmune diseases (5, 12). 
Exposure to asbestos, another silicate that occurs in mining and 
construction, may be concurrent with crystalline silica exposure. 
While it can be difficult to assess the role of each separately, 
epidemiological data are too limited to argue for a strong associa-
tion between asbestos exposure and autoimmunity (5). However, 
there is growing evidence that asbestos exposure may be associ-
ated with autoimmunity (e.g., hypergammaglobulinemia and 
autoantibodies) in the absence of confirmed autoimmune disease 
(38, 39). This is an important observation as several studies of 
crystalline silica exposure also point to the appearance of features 
of autoimmunity, especially autoantibodies, in exposed individu-
als in the absence of autoimmune disease (40, 41). This suggests 
that study of larger cohorts of asbestos exposed individuals may 
lead to stronger associations with autoimmune diseases.

For respirable crystalline silica dust, the prevalence of disease 
is increased when compared to the general population and 
shows evidence of strong occupational bias mostly associated 
with males (41). In high-level exposure, SLE is 10 times higher 
than the expected sex-specific prevalence in the general popula-
tion (12, 41), but the strength of this association falls in both 
men and women as exposure is reduced (42). Moreover, there 
is evidence that disease features may differ between those with 
silica-induced systemic autoimmune disease and those with 
idiopathic disease (41, 42). Uranium miners with SLE had con-
siderably less arthritis and also less photosensitivity compared 
to those with idiopathic SLE (41); there was also reduced preva-
lence of discoid lesions although this did not reach statistical sig-
nificance. However, the silica group was all males with late onset 
disease, while the idiopathic disease group was 90% females and 
matched only for geographical location and ethnicity. Thus, it 
is unclear if the differences reflect silica exposure or sex and/or 
age differences. In the second study, demographic characteristics 
were more carefully controlled; however, the silica-exposed SLE 
patients were found to have reduced prevalence of anemia and 
leukopenia (42). Differences in autoantibodies have also been 
reported. Patients with silica-associated SSc had greater preva-
lence of anti-DNA topoisomerase 1 autoantibodies, and both 
silica-associated SSc and SLE had fewer patients with high titer 
antinuclear antibodies (ANA) (>1:1,280) compared to those 
with idiopathic disease (40).

Individual study populations have been found to have increased 
occurrence of different diseases suggesting a common underlying 
pathophysiology (43). This is supported by the observation that 
clinical features and autoantibodies specific to connective tissue 
diseases including anti-DNA, anti-SS-A/Ro, anti-SS-B/La, anti-
centromere, and anti-topoisomerase 1 occur at higher frequency 
in exposed individuals without autoimmune disease compared 
to the general population (12, 40, 42). Although silicosis may be 
associated with immune abnormalities including autoantibodies, 
the association of silica exposure with expression of autoimmune 
disease can occur in the absence of silicosis (12, 41). Furthermore, 
while there is an association between intensity of exposure and 

autoantibodies including an association of high-level exposure 
with SLE, there is no relationship between autoantibodies and 
silicosis (12, 41, 44). This suggests that the development of fibrosis 
and nodular lesions may not be required for development of 
autoimmunity. Whether this reflects the recent suggestion that 
fibrosis is linked to T regulatory cells (25) is uncertain.

The variable frequency of disease features in silica-induced 
autoimmunity suggests significant genetic involvement and 
gene/environment interactions. Silicosis can occur in 47–77% 
of individuals with adequate follow-up after silica exposure 
(45). In patients with silicosis, hypergammaglobulinemia can 
occur in over 65% of patients (46). In silicosis, ANA prevalence 
can be 34% or higher (47). End-stage renal disease due to silica 
exposure occurs in about 5% of exposed individuals (45), and 
development of diagnostically definable systemic autoimmune 
disease is even less frequent (12). These findings are consistent 
with a disease progression that begins with silica-induced activa-
tion of the innate immune system leading to inflammation of the 
lung, activation of adaptive immunity, breaking of tolerance, and 
autoantibodies and tissue damage.

ANiMAL MODeLiNG OF siLicA 
eXPOsUre tO MiMic HUMAN 
AUtOiMMUNitY

Only a small number of animal studies have modeled silica-
induced autoimmunity. Lupus-prone NZM2410 mice exposed 
to crystalline silica exhibit pulmonary inflammation and fibrotic 
lesions, autoantibodies, kidney deposits of IgG and C3, proteinu-
ria, and reduced survival compared to controls (48). A follow-up 
study reported increased TNF-α in bronchoalveolar lavage 
fluid (BALF), B1a B, and CD4+ T cells in lymph node as well as 
alteration in the ratio of CD4+ to CD4+CD25+ T cells (49). A more 
recent study using lupus-prone NZBWF1 mice confirmed the 
exacerbation of SLE-like disease as well as identifying the forma-
tion of inducible bronchus-associated lymphoid tissue (iBALT) 
(50). Exposure to asbestos induces a similar spectrum of autoan-
tibodies, kidney immune deposits, and changes in CD4+CD25+ 
T cells in non-autoimmune prone C57BL/6 mice (51). Eronite, 
an asbestos-like fibrous mineral, induced ANA, IL-17, TNF-α, 
and renal deposits of IgG in C57BL/6 mice (52). Asbestos 
exposure in Lewis rats failed to exacerbate arthritis induced by 
collagen or peptidoglycan–polysaccharide but did induce ANA, 
anti-histidyl tRNA synthetase antibodies, and proteinuria but 
showed no evidence of kidney immune deposits (53, 54). Non-
autoimmune Brown Norway rats given sodium silicate (NaSiO4) 
by subcutaneous injection developed ANA including anti-DNA, 
-Sm, -SS-A, and -SS-B (55). The ANA titers increased with time 
with the majority being positive for anti-RNP (56). These stud-
ies demonstrate that crystalline silica, and asbestos, can elicit 
autoimmunity in mice and rats and that non-crystalline silica can 
induce humoral autoimmunity in non-autoimmune prone rats, 
but they provide little evidence for possible mechanisms.

When mechanism has been examined, the results point to 
a significant role for cell death as a source of immune stimula-
tion. ANA from crystalline silica-exposed NZM2410 mice 
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preferentially bind to alveolar macrophage-like cells undergoing 
silica-induced apoptosis but not if apoptosis was inhibited by a 
caspase inhibitor (57), suggesting that silica-induced autoan-
tibodies are directed against material from dying cells. This is 
supported by the observation that apoptosis induced by asbestos 
exposure results in surface blebs enriched in the autoantigen SSA/
Ro52, which are bound by autoantibodies from asbestos-exposed 
mice (58). Rottlerin, which affects kinase and non-kinase proteins 
as well as activating K+ channels (59), reduced silica-induced 
proteinuria, autoantibodies, and IgG and C3 kidney deposits 
in lupus-prone NZM2410 mice (60). These studies led to the 
hypothesis that silica-induced activation of alveolar macrophages 
leads to apoptosis and inflammation, ingestion of cellular debris, 
migration of activated antigen-presenting cells (APCs) to lymph 
nodes, and activation of T and B cells (61). However, it is unclear 
how this leads to breaking of self-tolerance.

cONcLUsiON

In aggregate, the immunological consequences of silica exposure 
that lead to autoimmunity are consistent with a disease progres-
sion that begins with activation of the innate immune system 
resulting in proinflammatory cytokine production, inflammation 
of the lung leading to activation of adaptive immunity, breaking 
of tolerance, and autoantibodies and renal damage. However, 
numerous questions remain unanswered.

It is unknown if the early events leading to IL-1β expression 
(Figure  1) are required for silica-induced autoimmunity. Are 
there size, shape, surface area, or charge rules for silica-induced 
lysosomal destabilization, K+ efflux, and inflammasome activa-
tion? Does K+ efflux play a role in silica-induced inflammation/
autoimmunity? The contribution of the inflammasome and IL-1 
to systemic autoimmunity remains unclear (62) because while 
caspase 1 is required for pristane-induced autoimmunity (63), 
neither caspase 1 nor NALP3 is required for mercury-induced 
autoimmunity (64). Additional research is also needed to 

determine if nanoparticles and other non-crystalline forms of 
silica lead to autoimmunity.

Many of the genetic requirements for silica-induced inflam-
mation (Figure 2) are also required for systemic autoimmunity. In 
particular, IFN-α/β and/or IFN-γ are required for idiopathic (65) 
and induced systemic autoimmunity (66, 67). Additionally, the 
role of IL-17 in autoimmunity continues to grow (68). Conversely, 
genetic elements required for silica-induced fibrosis may play lit-
tle role in silica-induced autoimmunity. Deficiency of scavenger 
receptors exacerbates autoantibody responses (69). Moreover, 
the protective role of T regulatory cells and their cytokines IL-10 
and TGF-β in systemic autoimmunity (70, 71) argues that the 
fibrotic process elicited by silica exposure may negatively regulate 
the development of autoimmunity. It remains to be determined 
which of the molecular and cellular components that drive silica-
induced inflammation and fibrosis explain the variable frequency 
of immunological features found in silica-induced autoimmunity.

Finally, a significant concern for future research is the paucity of 
animal models of silica-induced autoimmunity (6). Susceptibility 
to silicosis varies among inbred mouse strains (15) and no single 
inbred mouse strain mimics the genetic or disease heterogeneity 
found in humans. Considerable effort will be needed to identify an 
appropriate experimental model so that studies can be “shaped by 
what is observed in humans, not by what is possible in mice” (72).
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