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Salinity stress hinders the growth potential and productivity of crop plants by influencing 

photosynthesis, disturbing the osmotic and ionic concentrations, producing excessive 

oxidants and radicals, regulating endogenous phytohormonal functions, counteracting 

essential metabolic pathways, and manipulating the patterns of gene expression. In 

response, plants adopt counter mechanistic cascades of physio-biochemical and 

molecular signaling to overcome salinity stress; however, continued exposure can 

overwhelm the defense system, resulting in cell death and the collapse of essential 

apparatuses. Improving plant vigor and defense responses can thus increase plant 

stress tolerance and productivity. Alternatively, the quasi-essential element silicon 

(Si)—the second-most abundant element in the Earth’s crust—is utilized by plants and 

applied exogenously to combat salinity stress and improve plant growth by enhancing 

physiological, metabolomic, and molecular responses. In the present review, we elucidate 

the potential role of Si in ameliorating salinity stress in crops and the possible mechanisms 

underlying Si-associated stress tolerance in plants. This review also underlines the need 

for future research to evaluate the role of Si in salinity stress in plants and the identification 

of gaps in the understanding of this process as a whole at a broader field level.
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INTRODUCTION

Soil salinity is one of the major abiotic stress that hinders crop growth and productivity 
worldwide (Ahmad et al., 2019b). It has been reported that approximately 20% of irrigated land is 
salt-affected, which represents one-third of food-producing land (Shrivastava and Kumar, 2015; 
Gregory et al., 2018). Further to this, half of all the fertile land will be affected by salinity by the 
middle of the 21st century (Shahid et al., 2018). �e salt-affected areas are increasing at a rate of 
10% annually for various reasons, including low precipitation, the weathering of native rocks, high 
surface evaporation, poor cultural practices, and irrigation using saline water (Shrivastava and 
Kumar, 2015). �is issue has been further aggravated by the continued trends in global warming 
and climatic changes. �us, enhancing crop plant tolerance to abiotic stresses is an important 
challenge to overcome deteriorating food production system and to meet the demand of food 
supply for ever-increasing world population (Shah and Wu, 2019). To ensure sustainable food 
supply, a considerable 50% increase in the grain yields of major crop plants such as wheat, rice, 
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and maize (Godfray et al., 2010; Shrivastava and Kumar, 2015) 
is required. However, soil, which represents a major ecosystem 
that o�en operates at a subsistence level in the growth of crops, 
is o�en compromised by salinity.

Salinity stress affects the morphological, physiological, and 
biochemical processes of plants (Singh and Chatrath, 2001; 
Ashraf, 2004). High salinity not only decreases plant growth, 
biomass, yield, photosynthesis, and water use efficiency, but 
also leads to physiological drought and ion toxicity in plants, 
thus reducing agricultural productivity and yields (Shahid et al., 
2018). Salinity stress also causes ionic imbalances, the osmotic 
effect, water use insufficiency, and nutrient (e.g. N, Ca, K, P, Fe, 
and Zn) de�ciency, which ultimately leads to oxidative stress in 
plants (Rehman et al., 2019). Reactive oxygen species (ROS) are 
produced in plant cells under normal physiological conditions, 
either in a radical or non-radical form (Winterbourn, 2019). 
However, excessive ROS production leads to oxidative damage 
to the proteins, lipids, nucleic acids, and plasma membrane of 
the cell. During normal cellular metabolism, the plant produces 
several antioxidant enzymes such as superoxide dismutase (SOD), 
catalase (CAT), peroxidase (POD), glutathione peroxidase (GPX), 
glutathione reductase (GR), and ascorbate peroxidase (APX) for 
the detoxi�cation of ROS. In addition to high ROS production, 
salinity stress signi�cantly reduces the uptake of phosphorus (P) 
and potassium (K), while increasing the uptake of toxic elements 
such as sodium (Na+) and chlorine (Cl-), which have negative 
effects on plant growth and productivity. High concentrations of 
Na+ create osmotic stress, which consequently leads to cell death 
(Munns, 2002; Ahanger et al., 2017). Photosynthesis machinery 
is also affected by salinity stress, mainly due to the reduction in 
the leaf area, stomatal conductance, and chlorophyll levels, and 
to a lesser extent by the decrease in photosystem II efficiency 
(Netondo et al., 2004). Any mechanisms that maintain optimal 
K+/Na+ ratios, nutrient concentrations, and ROS production 
in plants are thus likely to provide effective resistance against 
salinity stress (Assaha et al., 2017).

Various mitigation and adaptation approaches have been used 
to overcome these negative impacts of high soil salinity (Wang 
et al., 2019). �e use of different approaches to alleviate the negative 
effects of salinity is likely to ensure the sustainable production of 
food, but salinity stress management is very challenging due to its 
multigenic and quantitative nature (Ahmad and Rasool, 2014). 
Strategies have been reported for the amelioration of the negative 
effects of salinity on plants, such as developing salt-tolerant crops, 
transgenic varieties, plant growth-promoting bacteria, endophytes, 
the leaching of salt from the root zone, and micro-jet irrigation to 
optimize the use of water (Chanchal Malhotra et al., 2016; Ibrahim 
et al., 2016). However, very little knowledge still exist about the 
mineral status and dynamics of plants and their salinity tolerance 
(Manchanda and Garg, 2008).

�e exogenous application of silicon (Si) has been a recent 
eco-friendly approach to enhance the salinity stress response 
in plants (Almeida et al., 2017). Silicon is the second-most 
abundant element on Earth, making up 27.7% of the Earth’s 
crust, second only to oxygen. It occurs naturally in the form of 
complex silicate minerals, either in crystalline, amorphous, or 
poorly crystalline phases (Sommer et al., 2006; Frew et al., 2018). 

Most soils contain an Si concentration ranging from 14 to 20 
mg Si/L (Montpetit et al., 2012; Vivancos et al., 2015). Silicon is 
available in the form of silicic acid (Si(OH)4) in soil solutions in 
a concentration range of 0.1–0.6 mM (Luyckx et al., 2017). Plant 
roots absorb Si in the form of monosilicic acid via aquaporin-
type channels (NOD26-like intrinsic proteins, NIPs; Deshmukh 
et al., 2013). However, the translocation and movement of Si is a 
very slow process, thus amendment with exogenous soluble Si is 
needed in order to ameliorate stress conditions and improve the 
yields of crops. In the early 1900s, Si was recognized as one of 
the 15 most important elements needed for plant life (Debona 
et al., 2017). All plants grown in soil contain a certain level of Si 
in their tissues, as reported for more than 44 angiosperm clades 
that represent over 100 orders or families (Debona et al., 2017). 
Many terrestrial plants accumulate a noticeable concentration 
of Si (Etesami and Jeong, 2018) while, in most dicots, less than 
0.1% Si is found based on dry weight. A large number of grass 
species have the capacity to accumulate up to 10% of Si (Vivancos 
et al., 2015), with rice the most effective Si accumulator (Kaur 
and Greger, 2019). Si is coming to the fore as a true “Cinderella” 
element (Artyszak, 2018), gaining interest among scientists from 
across the world because of its effective role in plant physiology, 
nutrition, and defense response. �e valuable role of exogenous 
Si on plant growth and yield has been well-documented in the 
literature, but its true potential lies in the amelioration of abiotic 
and biotic stresses (Rodrigues and Datnoff, 2015; Khan et al., 
2018; Wu et al., 2019).

�e available literature has clearly described the role of Si in 
combating abiotic and biotic stresses in plants; however, it has 
still not been listed as an essential element for plants because 
no clear evidence has been presented, unlike other essential 
elements. Numerous studies have reported that Si increases plant 
resistance against biotic and biotic stresses (Epstein, 1999; Ma and 
Takahashi, 2002; Ma and Yamaji, 2006), such as salt and drought 
(Zhu and Gong, 2014; Rizwan et al., 2015), extreme temperature 
stress (Ma, 2004), nutrient de�ciency (Marafon and Endres, 
2013), aluminum toxicity (Galvez and Clark, 1991; Shen et al., 
2014; Pontigo et al., 2015; Pontigo et al., 2017), disease resistance 
(Van Bockhaven et al., 2012; Marafon and Endres, 2013), and 
resistance to damage by wild rabbits (Cotterill et al., 2007). It 
also contributes to plant growth in different ways by enhancing 
multiple adaptive responses, such as antioxidant activity, mineral 
uptake, organic acid anion and phenolic compound exudation, 
the photosynthesis rate, the accumulation of compatible solutes, 
water status, and hormonal regulation (Barcelo et al., 1993; 
Cocker et al., 1998; Kidd et al., 2001; Al-Aghabary et al., 2005; 
Shahnaz et al., 2011; Shen et al., 2014; Sivanesan and Jeong, 2014; 
Kim et al., 2016; Kim et al., 2017; Tripathi et al., 2017; Ahanger 
et al., 2018; Ahmad et al., 2019a) and signi�cantly reducing the 
adverse effects of salinity on chlorophyll levels and plant biomass 
(Seal et al., 2018). Despite this, most of these �ndings are scattered 
and need to come up with a comprehensive image of progress 
made on this topic. �ere have been some recent review articles 
published on Si, such as those by Etesami and Jeong (2018) 
and Malhotra and Kapoor (2019), but they do not address the 
crosstalk of physio-molecular functions in response to salinity 
stress. In this review, we focus on studies that have investigated 
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plant metabolism and physiology under salinity stress and have 
elucidated the complex mechanisms and interactions involving Si 
in the amelioration of the detrimental effect of salinity on crops.

PLANT PHYSIOLOGY UNDER SALINITY 
STRESS

High salinity can increase the uptake of Na+ and Cl- from the 
soil, consequently suppressing the transport of other essential 
nutrients such as N, P, K, and Ca (Shrivastava and Kumar, 2015; 
Safdar et al., 2019). �e resulting ionic and secondary stresses, 
such as nutritional imbalances, disturb the overall osmotic 
balance, resulting in physiological drought, i.e. the prevention of 
water uptake (Riaz et al., 2019). In the case of halophytic plants 
that are resistant to sodium toxicity, osmotic stress is a possible 
reason for the inhibition of their growth. Photosynthesis is also 
affected by salinity because of the reduction in chlorophyll content, 
stomatal conductance, and leaf area. Photosystem II is also 
primarily affected by salinity (Najar et al., 2019). Salinity affects 
reproductive development by inhibiting microsporogenesis, 
elongating stamen �laments, accelerating programmed cell 
death, and promoting the senescence of fertilized embryos and 
ovule abortion (Suo et al., 2017). Under saline conditions, the 
absorption of atmospheric carbon dioxide is reduced, leading 
to greater stomatal closure and the lower utilization of NADPH 
via the Calvin cycle (Suo et al., 2017). �ese conditions favor 
the electron acceptor behavior of molecular oxygen, leading to 
the accumulation of ROS. High ROS levels can damage essential 
macromolecules necessary for the normal growth of plants by 
altering their metabolism via oxidative lipids, nucleic acids, and 
protein damage (Figure 1). ROS are produced continuously 
during normal metabolic events in peroxisomes, mitochondria, 

and the cytoplasm (Saini et al., 2018). Other processes that are 
affected by salt stress include stem and root growth, ion transport, 
plant morphology, the enzymatic activity of solutes, cell structure 
maturation, and nutrient uptake. A signi�cant reduction in stem 
height and root length has also been observed for cases of high 
osmotic stress (Shrivastava and Kumar, 2015). In response to 
higher concentrations of NaCl in the soil, sodium uptake by 
the roots is enhanced while phosphorus, nitrogen, magnesium, 
and potassium uptake is lowered signi�cantly, leading to the 
disruption of the intracellular ionic balance (Jayakannan et al., 
2013). Under these circumstances, plant roots cannot absorb 
enough water and signi�cant energy is required to adjust the 
osmotic balance via compatible solute accumulation (Acosta-
Motos et al., 2017).

PLANT CELLULAR MECHANISMS THAT 
IMPROVE TOLERANCE TO SALINITY 
STRESS

The salt tolerance level varies from species to species and 
even different cultivars, whereas the individual plants of the 
same cultivar would show a variation. Some species such as 
redbay, Anemopsis californica, and Quercus geminate are more 
resistant to high levels of salt (Roy et al., 2014), while others, 
such as Schoenus spp., Polypogon viridis, and Juncus spp. are 
sensitive or even hypersensitive to low salinity levels (Gibson 
et al., 1984). The biochemical and physiological mechanisms 
underlying plant salinity tolerance can be divided into those 
that minimize osmotic stress and ion imbalances and those 
that act on secondary effects caused by this stress, such 
as imbalances in plant nutrition and oxidative stress. The 
principle mechanisms are ion homeostasis, ion uptake and 

FIGURE 1 | Higher ROS levels in plants under salinity stress conditions. Toxic levels of ROS stunt plant growth by inhibiting the electron transport chain, and 

photosynthesis in plastids, and by causing mutations in DNA and damaging mitochondria. 
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transport, the biosynthesis of compatible solutes and osmo-
protectants, antioxidant enzyme activation, antioxidant 
and polyamine synthesis, nitric oxide (NO) generation, and 
hormonal alterations. Past research that has elucidated these 
mechanisms is briefly summarized below.

Significance of Ion Homeostasis in Plant 
Tolerance to Salinity
Under salinity stress, plants accumulate high levels of Na+ and 
Cl- compared to other cations like K+ and Ca2+ (Tavakkoli et al., 
2010), creating physiological problems and ion imbalances 
(James et al., 2011; Hasegawa, 2013; Ahmad et al., 2018). Neither 
halophytes nor glycophytes can tolerate high salt concentrations 
in the cytoplasm. H+ pumps (Na+/H+ antiporters) are responsible 
for the transport of Na+ ions from the cytoplasm to the vacuoles. 
�e vacuolar membrane has two types of H+ pump, i.e. vacuolar-
type H+-ATPase (V-ATPase) and vacuolar pyrophosphatase 
(V-PPase; Graus et al., 2018). V-ATPase pumps occur in high 
numbers in plant cells. H+ pumps are responsible not only for 
maintaining solute homeostasis under normal conditions but 
also for facilitating secondary transport and vesicle fusion. 
However, during stress, the survival of plants is determined 
by the action of V-ATPase pumps (Bozza et al., 2019). Otoch 
et al. (2001) reported that V-ATPase pump activity increased 
in Vigna unguiculata seedlings (a hypocotyl) when exposed 
to salinity, while V-PPase pump activity was inhibited under 
similar conditions. In Suaeda salsa (a halophyte), the activity of 
V-ATPase pumps was upregulated while that of V-PPase pumps 
were downregulated (Wang et al., 2001a). Hence, both H+ pumps 
are responsible for maintaining solute homeostasis at the cellular 
level (Graus et al., 2018).

Several studies have reported that salt plays a role in the Salt Overly 
Sensitive (SOS) pathway, which consists of the three proteins SOS1, 
SOS2, and SOS3. �e cytoplasmic membrane Na+/H+ antiporter 
encodes SOS1, which plays an important role in the regulation of 
Na+ efflux at the cellular level (Numan et al., 2018). However, SOS1 is 
also essential for the regulation of the long-distance diffusion of Na+ 
between the roots and shoots (Abbas et al., 2017). In saline conditions, 
the overexpression of SOS1 increase salt tolerance levels (Fan et al., 
2019). �e salinity stress activates the Ca2+ signaling pathway, which 
consequently stimulates the production of threonine/serine kinase 
encoded by the SOS2 gene, which consists of a regulatory domain 
on the C-terminal and a catalytic domain on the N-terminal (Zhu, 
2016). �e third gene SOS3 encodes a myristoylated Ca2+ binding 
protein that contains a myristoylation site on the N-terminus. �is 
site is very important for the conferral of salinity resistance on plants 
(Ishitani et al., 2000). �e SOS2 protein consists of a FISL motif 
on the C-terminal, composed of 21 amino acids, and provides an 
interaction site for the binding of Ca2+ to the SOS3 protein (Köster 
et al., 2019). �e interaction between the SOS2 and SOS3 proteins 
triggers protein kinase activation. �is activated protein kinase is 
responsible for the phosphorylation of SOS1 protein and eventually 
leads to an increase in the efflux of Na+ and a decrease in Na+ ion 
toxicity (Figure 2).

�e role of SOS1 in controlling ion homeostasis has been 
demonstrated through a combination of biochemical, genetic, 
and physiological analyses. Using yeast mutant strains and 
isolated plasma-membrane vesicles, SOS1 was �rst shown 
to be able to speci�cally transport Na+ out of cells under salt 
stress (Qiu et al., 2002; Shi et al., 2002). �ese proteins not only 
regulate ion hemostasis but are also essential for the regulation 
of pH homeostasis, vacuole functions, and membrane vesicle 
trafficking (Oh et al., 2010). In addition to the SOS stress 

FIGURE 2 | SOS pathway under salinity stress. The transport of ions across the membrane is conducted by various carrier proteins, e.g. channel proteins, 

antiporters, and symporters. The ion hemostasis (Na+, K+, and Ca2+) in the cell is crucial for its survival under salt-stress conditions.
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signaling pathway, another method of developing resistance to 
salinity stress has been reported for many plants that maintain 
a minimum ion concentration in the cytosol. During stress 
conditions, membranes and their linked components maintain 
the ion concentration in the cytoplasm by regulating ion 
transport across the membrane (Sairam and Tyagi, 2004).

Role of Antioxidants Under Salinity Stress
Plant salt stress can negatively affect the electron transport 
chain (ETC) in mitochondria and chloroplasts by unbalancing 
or completely distorting the regulation process (Numan et al., 
2018). Molecular oxygen acts as an electron acceptor, which 
can lead to the overproduction of ROS, including hydroxyl 
radicals, singlet oxygen, superoxide radicals, and H2O2. ROS 
are powerful oxidizing compounds that can damage the plasma 
membrane and endomembrane systems (Ahanger and Agarwal, 
2017; Foyer, 2018). However, they also act as signals of stress, 
thus activating the antioxidant enzymes SOD, GPX, APX, CAT, 
and GR and non-enzymatic compounds (e.g. glutathione, non-
protein amino acids, ascorbic acid, and phenolic compounds) to 
sustain a balanced level of ROS in cells under both normal and 
stress conditions (Caverzan et al., 2016; Ahanger et al., 2018). 
�ese enzymes are responsible for removing ROS that have 
accumulated in plants due to salinity stress. Tuteja et al. (2013) 
reported that the proteins DESD-box helicase and OsSUV3 dual 
helicase increase the tolerance to salinity by maintaining or 
improving photosynthesis and antioxidant enzyme machinery. 
�us, understanding the mechanisms that regulate ROS signaling 
at the cellular level during stress can provide a more powerful 
approach for developing resistance to high salt levels.

Role of Nitric Oxide (NO) in Salt Tolerance 
in Plants
Nitric oxide (NO) is small volatile gaseous molecule that is essential 
for the maintenance of various physiological and biochemical 
mechanisms at the cellular level in plants, e.g. root growth, 
stomata closure, respiration, stress signaling, flowering, cell death, 
seed germination, and stress responses (Besson-Bard et al., 2008; 
Zhao et al., 2009). Under stress conditions, NO either directly or 
indirectly regulates many genes involved in developing tolerance 
to salinity stress, including various redox-related and antioxidant 
enzyme genes (e.g. GPX, GR, SOD, CAT, and APX), and suppresses 
lipid peroxidation or malondialdehyde (MDA), consequently 
restoring normal plant growth (Bajguz, 2014). NO increases plasma 
membrane expression and/or tonoplast H+-ATPase and H+-PPase 
to maintain a high K+/Na+ ratio in the cytoplasm in response to 
salinity (Sung and Hong, 2010; Zhang et al., 2017). NO also assists 
the cell in accumulating various compatible solutes, such as proline, 
organic osmolytes, and soluble sugars, to facilitate cell turgor and 
balanced water acquisition (Guo et al., 2005).

Improved Salinity Tolerance via the 
Accumulation of Compatible Solutes
Salinity stress promotes the accumulation of compatible solutes 
or osmolytes, a set of chemically altered organic compounds 

that are polar or uncharged in nature that do not affect the 
biochemical processes of the cell at high concentrations (Ashraf 
et al., 2011; Vyrides and Stuckey, 2017). �ey generally include 
mannitol, proline (Hoque et al., 2007; Nounjan et al., 2012; Tahir 
et al., 2012), glycine betaine (Khan et al., 2000), sugar (Ford, 
1984; Wang and Nii, 2000), raffinose oligosaccharides, and 
N-containing compounds such as amino acids, polyamines, and 
polyols (Saxena et al., 2013). Organic osmolytes are produced in 
variable amounts between different plant species. For example, 
the quaternary ammonium compound beta-alanine is found 
only in a few species belonging to the Plumbaginaceae family 
(Hanson et al., 1994), whereas proline accumulation occurs in a 
diverse range of plants (Saxena et al., 2013). �e concentration 
of compatible solutes is regulated either by irrevocable synthesis 
or by a process of degradation and synthesis. �e rate at which 
compatible solutes accumulate in the cell is determined by 
the external osmolarity, and the current understanding of the 
mode of action of these solutes includes providing osmotic 
adjustment via continuous water influx, stabilizing proteins 
and the cell structure, and scavenging ROS when under salt 
stress (Turkan, 2011).

Of the nitrogen-containing compounds, some amino acids 
accumulate to higher levels under salt stress. �e concentration 
of arginine, cysteine, and methionine decrease under salt stress, 
whilst that of proline increases (El-Shintinawy and El-Shourbagy, 
2001). �ese amino acids play a vital role in the salt stress 
response by instigating K+ homeostasis, leading to a plant’s 
adaptation to salinity by reducing NaCl-induced K+ efflux (Cuin 
and Shabala, 2007). Of these, proline has a substantial role, and 
its concentration rises signi�cantly in many plants. Additionally, 
glycine betaine is another primary osmoprotectant, synthesized 
in response to salinity stress by many plants. It maintains the 
osmotic cell status to improve the response to abiotic stress 
(Kumar et al., 2018). For example, Rahman et al. (2002) reported 
the positive effect of glycine betaine on the ultrastructure of 
Oryza sativa seedlings when exposed to salt stress.

Phytohormone Regulation Under 
Salinity Stress
Phytohormones play an important role in plant growth and 
development under both normal and stressful conditions. In 
the literature, they are o�en regarded as plant growth regulators 
(compounds that derive from plant biosynthetic pathways; 
Peleg and Blumwald, 2011). Several hormones such as abscisic 
acid (ABA), indole acetic acid (IAA), salicylic acid (SA), 
brassinosteroids (BR), cytokinins (CKs), ethylene (ETHY), 
gibberellic acid (GA), and jasmonic acid (JA; Iqbal et al., 2014) 
have been reported to regulate plant growth and development 
in a coordinated fashion by either acting locally or being 
transported to another site within the plant (Fahad et al., 2015). 
Harsh conditions disrupt the production and distribution of 
hormones that may promote speci�c protective mechanisms 
in plants (Eyidogan et al., 2012; Fahad et al., 2015). �us, plant 
stress-related hormones have an important role in mediating 
plant responses to abiotic stress, by which plants attempt to avoid 
or survive stressful conditions and in doing so exhibit reduced 
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growth so that the plant can focus its resources on withstanding 
the stress.

ABA acts as a cellular signaling or stress hormone, and 
exogenous application has been suggested for increasing salt 
tolerance (Sah et al., 2016). Endogenous ABA accumulates in 
various plants, especially in osmotic and salt stress conditions 
(Sah et al., 2016). ABA improves tolerance, partly due to the 
accumulation of ions and compatible solutes (such as proline and 
sugar) in the vacuoles of the root, neutralizing the uptake of Na+ 
and Cl- (Chen et al., 2001; Gurmani et al., 2011; Cho et al., 2018). 
Similarly, the increased production of ABA can ameliorate the 
negative effect of stress on photosynthesis. Fricke et al. (2004) 
reported that the increase in the ability of xylem to uptake 
water under saline conditions is hindered by ABA homeostasis. 
However, the role of ABA in the regulation of important cellular 
signals has been clearly demonstrated, controlling the expression 
of many important water and salt de�cit responsive genes 
such as cinnamyl alcohol dehydrogenase, 9-cisepoxycarotenoid 
dioxygenase, zeaxanthin oxidase, molybdenum cofactor sulfurase, 
and ABA-aldehyde oxidase through a calcium-dependent 
phosphorylation pathway (Dubos and Plomion, 2003; Ryu and 
Cho, 2015).

Another important hormone is GA; GA3 regulates ion uptake 
and the homeostasis of hormones under saline conditions in 
Lycopersicon esculentum and T. aestivum (Maggio et al., 2010). 
Similarly, Maggio et al. (2010) reported that GA3 applied to 
tomato plants reduced stomatal resistance and enhanced the 
water status. Iqbal and Ashraf (2013) reported that GA3 treatment 
under saline conditions modulated ion uptake and partitioning 
and hormone homeostasis in wheat. It has also been reported 
that plant phytohormones such as indole IAA respond to salinity 
stress in crop plants (Fahad et al., 2015). Additionally, IAA 
levels in the root system fall signi�cantly a�er NaCl treatment 
in Triticum aestivum (Sakhabutdinova et al., 2003), Oryzasativa 
(Dunlap and Binzel, 1996), and Esculentum L. (Smirnoff, 1997). 
It has been observed that the activity of JA increased under 
salinity stress (Farhangi-Abriz and Ghassemi-Golezani, 2018). 
For example, JA treatment recovered the negative effect of salt 
on seedling development and photosynthetic activity in several 
cultivar crops (Yoon et al., 2009; Javid et al., 2011). �ese results 
are strongly indicative of the positive role of JA in salt stress 
responses in plants.

Other phytohormones, such as BR and SA, also play an 
important role in plant abiotic stress responses (Wani et al., 
2016). SA controls different features of plant responses to stress 
via widespread signaling with other growth hormones (Horváth 
et al., 2007; Jayakannan et al., 2013). Undesirable salinity effects 
may be alleviated by BR (Ashraf et al., 2010b; El-Mashad and 
Mohamed, 2012). �e application of BR enhances the antioxidant 
activity of SOD, POX, APX, and GPX and the accumulation of 
non-enzymatic antioxidant compounds (tocopherol, ascorbate, 
and reduced glutathione; El-Mashad and Mohamed, 2012; Iqbal 
et al., 2014; Simura et al., 2018) (El-Mashad and Mohamed, 2012). 
Indeed, a stress signal triggers signal transduction cascades 
in plants, with phytohormones acting as baseline transducers 
(Fahad et al., 2015).

SILICON UPTAKE, TRANSPORT, AND 
ASSIMILATION IN PLANTS

�e concentration of Si in soil is similar to that of macronutrients 
assimilated by plants (Sommer et al., 2006), but it cannot be 
directly absorbed (Mitani et al., 2005). Furthermore, Si absorption, 
accumulation, and transport capacity differ signi�cantly between 
species (Ma and Takahashi, 2002). Generally, the concentration 
of monosilicic acid ranges from 0.1 to 0.6 mM in soil solutions 
in which Si is present as an uncharged monomeric molecule at 
pH 9. Many factors, such as temperature, pH, the presence of 
cations, water conditions, and the organic compounds present in 
solution directly in�uence solvable silicic acid formation in the 
soil and indirectly affect the accumulation rate in plants (Liu et al., 
2003). �e lower availability of Si in the soil was reported to be 
the probable reason for decreasing rice yields (Meena et al., 2014). 
Tropical and subtropical soils have low Si levels due to de-silication 
caused by weathering and leaching processes (Epstein, 1999), while 
an estimated 210–224 million tons of Si are taken out annually 
from the world’s arable soils (Meena et al., 2014).

All plants contain Si in considerable amounts in all parts such 
as the roots, shoots, and leaves but various levels are found in 
different species (Takahashi et al., 1990). �e roots take up Si in 
silicic acid form and it is transported to the rest of the plant using 
active, passive, and rejective transport. Based on the take-up 
capacity of Si, plants are categorized as high, intermediate, or 
non-Si accumulators (Marafon and Endres, 2013; Table 1). 
Previously, the active uptake of Si has been demonstrated in 
different plants such as rice (Klotzbucher et al., 2018), wheat 
(Rains et al., 2006), maize (Mitani et al., 2009), and barley (Chiba 
et al., 2009), while tomato limits the transport of Si from the roots 
to shoots (Wang et al., 2015a). Liang et al. (2005a) and Mitani 
and Ma (2005) reported different results for cucumber plants. 
Liang et al. (2006) also reported both active and passive transport 
in rice, maize, sun�ower, and wax gourd. �ese �ndings suggest 
that both the passive diffusion of silicic acid and transporter-
mediated uptake are involved in the radial root transport of 
Si, with transporter-mediated Si uptake an energy-dependent 
process because metabolic inhibitors and low temperatures 
inhibit Si transport (Liang et al., 2006; Feng et al., 2011). 
Furthermore, these results suggest that the occurrence of both 
types of transporters is somehow dependent on the species and 

TABLE 1 | Plant categories based on Si uptake capacity (Bakhat et al., 2018).

> 1.5% Si High 

accumulator

1.5%–0.5% Intermediate 

accumulator

<1.5% of Si 

Non-accumulator

Rice Pumpkins Tomato

Ferns Cucumber Pansy

Horsetail Rose Begonia

Lentils Squash Grapes

Mosses Chrysanthemums Sunflower

Sugarcane Soybean Gerbera

Conifers Zinnia Petunia

Wheat New Guinea Impatiens Snapdragon

Spinach Marigold Geranium

Frontiers in Plant Science | www.frontiersin.org November 2019 | Volume 10 | Article 1429

https://www.frontiersin.org/journals/plant-science/
http://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Silicon in Salinity Stress Tolerance MechanismsKhan et al.

7

concentration of Si in the soil. Hence, the differences in Si uptake 
reported for cucumber plants might be due to the coexistence of 
both active and passive uptake in various cultivars or due to the 
concentration of Si in the soil.

A�er absorption by the roots, Si is transported to other parts 
of the plant via the xylem of the roots (Ma and Yamaji, 2008). 
With the loss of water from a plant, inorganic amorphous oxides 
of silicic acid crystalize and precipitate, forming solid silica 
bodies called opal phytoliths that accumulate in the extracellular 
or intracellular spaces of plants, e.g. in the cell wall and trichomes 
(Ma et al., 2006; Cooke and Leishman, 2011). However, the 
mechanisms that prevent silicic acid polymerizing in the cell wall 
are not clear. Recently, it has been reported that the low silicon 
(Lsi1, Lsi2, and Lsi6) genes are responsible for Si uptake in the 
roots and its distribution to other organs in barley, rice, cucumber, 
and maize (Wang et al., 2015b). �e Lsi2 gene is expressed in the 
root endodermis and is considered a putative anion transporter 
(Ma et al., 2007; Mitani et al., 2011). On the other hand, the Lsi1 
and Lsi6 transporters belong to the aquaporin family and have a 
major role in Si distribution in shoot and root tissue (Mitani et al., 
2011). Furthermore, proton-driven transport activity has been 
reported in the Lsi2 transporter (Ma et al., 2007), and it works as 

an Si/H+ antiport. �e leaf epidermis and cell walls accumulate 
90% of the total absorbed Si, which accounts for 10% of the dry 
weight of grass shoots (Yoshida, 1965; Ma and Takahashi, 2002; 
Raven, 2003). Silica that has accumulated intracellularly in the 
cytoplasm and vacuoles is stable even a�er plant decomposition 
and is abundant in soils (Lins et al., 2002). A schematic model of 
the Si transport system in rice is presented in Figure 3.

SILICON-MEDIATED MECHANISMS 
INVOLVED IN INCREASING SALINITY 
TOLERANCE IN CROPS

Previous studies have reported the signi�cant regulatory role 
of Si in numerous plant physiological processes under salinity 
stress (Rios et al., 2017). In fact, the many different complex 
biological functions reported by different studies suggests that 
the mechanisms by which Si improves the salt tolerance of plants 
have not been well studied. However, an improvement in the 
salt tolerance of different plant species following the exogenous 
application of Si has been reported, including in wheat (T. 
riaestivum L.; Tuna et al., 2008), barley (Hordeum vulgare L.; 

FIGURE 3 | A schematic representation of Si uptake, transport, and accumulation in rice. Silicic acid from the soil solution is absorbed by the roots and 

transported to the root exodermis by the influx transporter (Lsi1) and subsequently released to the apoplast by the efflux transporter (Lsi2). Subsequently, it enters 

the root endodermis via Lsi1 and is released to the stele portion of the root via Lsi2. Finally, silicic acid is translocated by an unknown transporter into the xylem 

and transported to the shoots via the transpiration stream. In the leaves, silicic acid is unloaded by another influx transporter (Lsi6) and localized in the xylem 

parenchyma cells of leaf sheaths and leaf blades. In the shoots and leaves, Si is transformed from an aqueous form (silicic acid) to solid amorphous silica (SiO2–

nH2O) and primarily deposited in the cell walls of different tissues, such as leaf epidermal cells. Modified from Yan et al. (2018).
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Liang et al., 2005a), maize (Zea mays L.), rice (Oryza sativa L.; 
Yeo et al., 1999), soybean (Glycine max; Lee et al., 2010), canola 
(Brassica napus L.; Haddad et al., 2018), spinach (Spinacia oleracea 
L.), cucumber (Cucumis sativus L.; Khoshgo�armanesh et al., 
2014), and tomato (Lycopersicon esculentum L.; Romero-Aranda 
et al., 2006), as summarized in Table 2. �e exogenous application 
of Si improves plant growth either directly, i.e. by blocking the 
transport of Na+ ions into the plant, or indirectly, i.e. by activating 
different physiological processes to ameliorate the effect of 
salinity stress. �e current understanding of the mechanisms 
underlying the Si-based mitigation of salinity-induced stress and 
its interaction with crops is shown in Figure 4.

Exogenous Si Regulation of the 
Antioxidant Machinery to Increase Salinity 
Stress Tolerance in Crops
�e overproduction of ROS under salinity stress poses a threat 
to cells due to lipid peroxidation, protein oxidation, nucleic acid 
damage, enzyme inhibition, and the activation of programmed 
cell death pathways (Gill and Tuteja, 2010; Liang et al., 2018). 
To scavenge ROS, antioxidant enzymes such as CAT, SOD, and 
GPX, enzymes in ascorbate glutathione (AsA-GSH) cycles such as 
GR, MDHAR, APX, and DHAR, and non-enzymatic antioxidant 
molecules (ascorbate, alkaloids, �avonoids, phenolic compounds, 
proline, glutathione, α-tocopherol, and carotenoids) are activated 
(Kim et al., 2011; Wang et al., 2015b; Ahmad et al., 2019a). Several 
researchers have reported enhanced activity of the antioxidant 
machinery in plants to counteract oxidative stress induced by 
salinity (Zaefyzadeh et al., 2009; Chen et al., 2011). In a similar 
context, Si has been reported to alleviate the adverse effect of 
salinity by strengthening the antioxidant defense ability of crops.

�e application of Si restores normal metabolism by reducing 
lipid peroxidation in maize, barley, and grapevine rootstocks 
(Liang et al., 2003; Moussa, 2006; Soylemezoglu et al., 2009; Kim 
et al., 2017). �e reduction in lipid peroxidation under stress 
is thought to be the result of the maintenance of antioxidant 
enzyme production in plants. Hasanuzzaman et al. (2018) 
reported that the exogenous application of Si (1 mM) enhanced 
the activity of APX, MDHAR, GR, GST, DHAR, GPX, and CAT 
and raised AsA and GSH levels in Brassica napus. Similarly, 
higher production of SOD, CAT, and POD has been reported in 
Abelmoschus esculentus under salinity stress (Abbas et al., 2015). 
Recently, Ahmad et al. (2019a) described higher activity levels of 
SOD, CAT, APX, and GR in Si-treated Vigna radiata L. exposed 
to salinity stress. Gong et al. (2005) reported that Si application 
strengthens the antioxidant defense system and maintains 
normal physiological processes. Saqib et al. (2008) explained that 
Si enhanced the activity of antioxidative enzymes and reduced 
plasma membrane permeability.

To date, various studies have described enhanced antioxidant 
machinery in Si-treated plants under salinity stress. In Glycyrrhiza 
uralensis, the addition of Si increased POD and SOD activity 
and condensed MDA concentration (Li et al., 2016). However, 
the effect of Si on the antioxidant system is dependent on time, 
the concentration of Si, the severity of stress, and plant species. 
�is can be illustrated by the results reported for two cultivars 

(‘Jinlu 4’ and ‘Jinyan 4’) of cucumber (Cucumis sativus L.). It was 
found that GPX and SOD activity decreased signi�cantly in both 
cultivars under salt stress. In both varieties, Si did not affect GPX 
activity on the ��h day; however, activity increased signi�cantly 
on the tenth day of treatment. Zhu et al. (2004) thus demonstrated 
that the activity of SOD, GPX, APX, DHAR, and GR increased 
with the application of Si under salt stress, but an increase in 
CAT activity was not observed. Liang et al. (2003) observed that 
CAT enzymatic activity increased in barley on day 2 under salt 
stress compared with the control regardless of whether Si was 
applied or not. On the day 4 and 6 of salt treatment, CAT activity 
reduced, but the addition of Si signi�cantly rescued CAT activity. 
For grapevine plants under salt stress, the addition of Si did not 
affect SOD activity and reduced CAT activity, whereas APX 
activity was unchanged or increased depending on the cultivar 
(Soylemezoglu et al., 2009).

�e studies suggest that Si supplementation can reduce the 
adverse effects of salinity by regulating the antioxidant defense 
system, which consequently decreases lipid peroxidation 
and ultimately maintains membrane integrity and decreases 
plasma membrane permeability. �e literature suggests that 
Si-treated and non-Si treated plants exhibit different responses 
under salinity stress and that Si improves antioxidant activity, 
thus playing a protective role against salinity stress. Although 
important advances have been achieved in recent years, gaps 
still remain in the understanding of the interaction between 
exogenous Si and the plant antioxidant machinery. It should 
be noted that most of these results are from hydroponics 
experiments and require �eld trials. In addition to this, the effect 
of supplemented Si is known to be dependent on plant species, 
time, and organ, but the effect of Si on different isoforms is 
still not clear. Furthermore, most studies describe the effect of 
exogenous Si on antioxidant enzymes at a protein level. Hence, 
there is a need for comprehensive research to clearly demonstrate 
the interaction of exogenous Si with different isoforms of 
antioxidant enzymes at the protein and mRNA levels. If Si plays 
an active role in regulating ROS scavenging, it should be further 
speci�ed when, where, and how this occurs (e.g. by regulating 
stress acclimation proteins and enzymes or by regulating the 
expression of the genes involved in managing ROS levels). 
Plants are affected not by a single stress factor but rather by a 
combination of harsh conditions. Elucidating the combination of 
salinity-induced changes in soil chemistry or in environmental 
contamination such as heavy metals is pivotal to understanding 
the interaction of exogenous Si with the antioxidant system. In 
the future, advanced imaging and ecophysiolomics techniques 
can lead to a better understanding of this interaction. Advanced 
approaches such as functional genomics, live-cell imaging, 
proteomics, and metabolomics will offer detailed insight into Si 
interactions with the antioxidant machinery.

Silicon-Induced Reduction in Salinity 
Toxicity by Hindering the Uptake of Na+ 
From the Roots
Prolonged exposure to a high-salinity environment results in 
higher levels of Na+ and Cl- and lower levels of other cations such 
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TABLE 2 | Effect of exogenous Si on plant stress tolerance mechanisms in various plant species under salinity stress.

Plant name Source of silicon Proposed Si-mediated tolerance mechanisms Reference

Triticumaestivum L. Potassium silicate The results suggest that Si application hinders the uptake of Na+ and reduces the 

accumulation of proline, which could be due to the interaction of Si with Na+ uptake 

and proline accumulation. Hence, Si regulates the uptake of micro- and micronutrients 

under salinity stress.

Ibrahim et al. (2016)

Lycopersicon 

esculentum

Potassium silicate The higher water levels in Si-treated plants could explain the higher plant growth and 

could be related to salt dilution within the plant and the consequent mitigation of salt 

toxicity effects.

Romero-Aranda et 

al. (2006)

Cucumis sativus L. Sodium metasilicate Supplementation of exogenous Si increases the accumulation of polyamines such as 

spermidine and spermine in cucumber plants. The enhanced polyamine accumulation 

with silicon application might play a role in modulating the antioxidant defense system 

and reducing oxidative stress, thus increasing the salt tolerance of cucumber plants.

Yin et al. (2019)

Puccinellia

distans

Sodium metasilicate The results suggest that Si application increases the levels of osmoregulatory organic 

solutes and reduces Na+ in sensitive tissue. Furthermore, Si improves plasma 

membrane activity via lower electrolyte leakage possibly through greater H+-ATPase 

activity, which could assist in Na+ secretion and exclusion from sensitive tissues. Si also 

increases the biosynthesis of lignin and cellulose levels, which could also facilitate Na+ 

secretion and exclusion.

Soleimannejad et al. 

(2019)

Triticum aestivum L. Sodium metasilicate In this study, the authors propose that improved growth in Si-treated plants can 

be attributed to reduced Na+ uptake, its restricted translocation to the shoots, and 

enhanced K+ uptake.

Tahir et al. (2011)

Helianthus Sodium metasilicate To alleviate the negative effects, silicon positively affects the uptake of nitrogen and 

antioxidant enzymes.

Conceição et al. 

(2019)

Foeniculum vulgar 

mill.

Sodium metasilicate Silicon treatment improves the translocation of minerals, and the higher tolerance 

of salinity is believed to be associated with lower sodium concentrations and higher 

potassium concentrations.

Rahimi et al. (2012)

Rosa hybrida Potassium silicate Si increases tolerance by augmenting root hairs, which increase water uptake and 

consequently mitigates the osmotic imbalance. Si also hinders the uptake of Na+. In 

addition, Si boosts the antioxidant machinery, which could also be a reason for the 

increased tolerance in Si-treated plants.

Soundararajan et al. 

(2018)

Triticum aestivum 

cv.

Sodium metasilicate The suppression effect of salinity stress was alleviated by exogenous Si by increasing 

the activity of antioxidant enzymes and by restoring the nutrient balance and osmotic 

potential.

Saleh et al. (2017)

maize Metasilicic acid The author suggests that silicon treatment improves growth mainly because of changes 

in ion accumulation, the enhancement of photosynthesis, and the regulation of 

antioxidant defense systems enzymes.

Khan et al. (2018)

Cicer arietinum L. Potassium silicate Exogenous application of Si hinders the uptake of Na+ and significantly improves the K+/

Na+ ratio.

Garg and Bhandari 

(2016)

Cucumis sativus L. Sodium silicate Silicon improves transpiration rates and leaf water levels by maintaining the water 

balance. The study also suggests that silicon-mediated changes in root morphology 

may also account for the increased water uptake of silicon-treated plants.

Wang et al. (2015b)

Solanum 

lycopersicum

Metasilicic acid Exogenous Si reduces the uptake of Na+ and Cl- and boosts the antioxidant machinery 

in the roots of tomato, which facilitates root growth and hydraulic conductance, and 

thus improves the water status in the leaves.

Li et al. (2015)

Wheat Calcium silicate Si reduces the concentration of Na+ in wheat leaves. Hence, hindering Na+ uptake is a 

good indicator of salt tolerance in plants.

Ali et al. (2009)

Glycine max L. Sodium metasilicate Exogenous Si hinders the uptake of Na ions. Furthermore, the study demonstrates 

the interaction of Si with plant stress-related hormones. In this study, exogenous Si 

enhances the biosynthesis of ABA while reducing jasmonic acid biosynthesis. The 

regulation of these hormones under salinity stress is a possible reason for Si-based 

tolerance.

Glycine max L. Silicic acid The results suggest that Si can increase the level of endogenous gibberellin and 

jasmonic acid while reducing salicylic acid. Hence, it is clear from this study that 

exogenous Si improves the tolerance of plants by regulating the biosynthesis of stress-

related phytohormones.

Hamayun et al. 

(2010)

Poa pratensis L. Sodium metasilicate Silicon enhances leaf erection, which facilitates light penetration and promotes 

photosynthesis by significantly lowering the production of ethylene, which destroys 

chlorophyll and reduces plasma permeability.

Bae et al. (2012)

Abelmoschus 

esculentus L.

Silicic acid Silicon confers salt tolerance on okra, possibly by enhancing the water status, 

improving antioxidant activity, and enhancing nitrogen metabolism.

Abbas et al. (2017)

Triticum

aestivum L.

Calcium silicate. The application of Si helps wheat plants to absorb high amounts of K+ and hinder the 

uptake of Na+ or its translocation.

Tahir et al. (2006)

Oriza Sativa L. Sodium silicate Silicon effectively reduces sodium ion transportation within the plant. It is also found that 

the reduction in silicon occurs not via transpiration but from reduced soil transport.

Yeo et al. (1999)

(Continued)
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as K+ and Ca+2, leading to a shi� in the ion balance (Halperin 
and Lynch, 2003; Ahmad et al., 2019a). �is ultimately results in 
changes to the K+/Na+ ratio in plants (Khan et al., 2000; Wang 
and Han, 2007). High concentrations of Na+ adversely affect 
plant metabolism and growth and lead to the overproduction of 
ROS (Mahajan and Tuteja, 2005). Recently, it has been reported 
that Si can ameliorate ion toxicity arising from salinity stress 
by enhancing K+ and reducing Na+ uptake (Tuna et al., 2008). 
It has been shown in several crops that the application of Si 
signi�cantly reduces the accumulation of Na+ in the roots and 
hinders its translocation to sensitive plant tissues, consequently 
raising the K+/Na+ ratio.

�e regulation of the K+/Na+ ratio is a well-reported mechanism 
by which Si alleviates Na+ ion toxicity (Tuna et al., 2008). Silicon 
accumulates in the form of phytoliths or discrete silica bodies in 
different parts of the plant, e.g. the roots, leaves, and stem (Figure 

5). �is deposition takes place beneath the cell walls of the roots, 
where discrete Si bodies bind with Na+, resulting in the increased 
uptake of K+ and the reduced transport of Na+ to the upper regions 
of the plant. A study by Tahir et al. (2006) on the two wheat 
genotypes Auqab 2000 and SARC-5 found an increase in K+ ion 
concentrations and a decrease in Na+ ion concentrations following 
Si application under salt stress. Silicon has also been shown to play 
a role in Na+ ion detoxi�cation by increasing the binding of Na+ to 
cell walls in both the salt-resistant wheat genotype SARC-1 and the 
salt-sensitive 7-Cerros (Saqib et al., 2008). Similarly, the exogenous 
application of Si decreases Na+ ion levels in alfalfa (Medicago sativa 
L.) roots but not in the shoots, though K+ levels notably increased 
in the shoots (Wang and Han, 2007). In rice, Gong et al. (2006) 

reported a dramatic reduction in Na+ concentrations in the shoots 
of salt-stressed plants following the application of Si. Gunes et al. 
(2007b) reported lower Na+ and Cl- translocation from the roots 
to shoots in tomato plants following the application of Si. �is 
mechanism has been reported by several studies, as shown in 
Table 2. Many nutrients have exhibited synergistic effects in wheat 
(Khan et al., 2015b) and facilitated its uptake within the plant 
body. Similarly, Si has demonstrated a synergistic effect with K+ 
by increasing its concentration within plant cells, such as in maize 
(Khan et al., 2015a) and wheat (Tahir et al., 2012).

The Na+/H+ antiporter is also known to play a vital role 
in maintaining low Na+ concentrations. This occurs with the 
removal of Na+ from the cytosol or its compartmentalization 
in vacuoles (Yue et al., 2012). Gene SOS1 encodes plasma 
membrane Na+/H+ antiporters and has been cloned from 
Arabidopsis (Shi et al., 2000). The plasma membrane uses 
energy from ATP hydrolysis to pump H+ out of the cell, 
thereby generating an electrochemical H+ gradient, which is 
the main force driving Na+/H+ antiporter function. Tonoplast 
Na+/H+ antiporters play a role in Na+ compartmentation and 
are driven by H+-ATPase and H+-PPase in tonoplasts (Shi 
et al., 2000; Yamaguchi et al., 2013). Liang (1999) observed 
lower plasma membrane H+-ATPase activity in salt-stressed 
barley roots, but higher activity was observed following 
the application of Si to plants. Increased H+-ATPase levels 
facilitate Na+ export from the cell. Na+ compartmentation also 
plays an important role in preventing Na+ toxicity (Yamaguchi 
et al., 2013). Liang et al. (2005b) reported that the activity 
of H+-ATPase and H+-PPase in the tonoplast cells of barley 

TABLE 2 | Continued

Plant name Source of silicon Proposed Si-mediated tolerance mechanisms Reference

Physalis peruviana 

L.

Silicic acid Silicon can act by increasing the capture of CO2 and maintaining the photosynthetic 

rate by increasing the stomatal density of the leaf. Silicon promotes the increase of this 

variable, indicating that it contributes to the reestablishment of stomata, reaching a 

number similar to the control.

Rezende et al. 

(2018)

Acacia gerrardii 

Benth

Potassium silicate Silicon application improves the tolerance of Acacia gerrardii to salinity stress by 

improving the activity of both the enzymatic and non-enzymatic antioxidant defense 

systems. Si also reduces lipid peroxidation by enhancing the production of proline and 

glycine betaine.

Al-Huqail et al. 

(2017)

Borago officinalis L. Sodium silicate The addition of Si improves stress tolerance via various mechanisms such as improving 

the water status and efficiency of photosynthesis, increasing the production of proline 

while reducing that of glycine betaine, improving the antioxidant machinery, and 

reducing the uptake, transportation, and accumulation of sodium ions in sensitive 

tissue.

Torabi et al. (2015)

Cucurbita pepo L. Potassium silicate Exogenous Si application improves plant growth parameters by improving net 

photosynthesis by specifically hindering Na+ and Cl- uptake and translocation to 

sensitive plant tissues, hence enhancing tolerance to salinity.

Savvas et al. (2009)

Hordeum vulgare L. Potassium silicate The presence of Si reduces the uptake of Na+ ions from the roots to shoots. Thus, 

Si-enhanced salt tolerance is associated with the selective uptake and transport of 

potassium and sodium by plants.

Zhu and Gong 

(2014)

Ajuga multiflora Silicic acid The addition of Si to the shoot induction medium significantly increases shoot induction. 

Thus, Si appears to promote shoot regeneration by altering the activity of antioxidant 

enzymes.

Sivanesan and 

Jeong (2014)

Oryza sativa L. Sodium silicate Exogenous Si improves tolerance by decreasing the sodium ion concentration in leaves. Gong et al. (2006)

Vicia faba cv. Sodium silicate Si salt enhances stress tolerance by reducing Na+ translocation and decreasing 

transpiration under salinity.

Shahzad et al. 

(2013)

Saccharum 

officinarum L.

Calcium silicate The results conclude that Si selectively interacts with Na+, and thus reduces Na+ uptake 

and translocation from the roots to shoots.

Ashraf et al. (2010a)
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roots was stimulated by the addition of Si under salt stress. 
This facilitates Na+ compartmentalization in vacuoles by 
tonoplast Na+/H+ antiporters. Mali and Aery (2008) reported 
that Si increases K+ uptake by increasing H+-ATPase activity 
in both hydroponics and soil. Recently, Soleimannejad 
et  al. (2019) reported that Si improves plasma membrane 
activity by lowering electrolyte leakage, possibly via greater 
H+-ATPase activity, which could assist in Na+ secretion and 
exclusion from sensitive tissues. Therefore, under salt stress, 
the application of Si may lead to an increase in K+ levels and 
a decrease in Na+ levels in the cytoplasm due to H+-ATPase 

activity in the plasma membrane and tonoplasts and H+-PPase 
activity in tonoplasts. However, whether Si directly regulates 
the transport activity or expression of the Na+/H+ antiporter 
under salt stress remains unclear. In tomato, the addition of 
Si had no significant effect on Na+ and Cl- concentrations 
in leaves, though it improved the storage of water in plants 
(Romero-Aranda et al., 2006). Tuna et al. (2008) reported 
that Si increased water content in wheat plants under saline 
conditions, whereas there was no effect on unstressed plants. 
The hydrophilic nature of Si to some extent may contribute to 
water restoration in salt-stressed plants.

FIGURE 4 | Schematic representation of silicon crosstalk with plants tolerance mechanisms during salinity stress.
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�ese studies suggest that Si might alleviate the adverse effects 
of salinity by preventing Na+ uptake by the roots and subsequent 
movement to the shoots. �e current literature suggests that the 
application of Si can provide protection against salinity stress 
and thus increase the yield and productivity of various crops. 
Silicon hinders Na+ translocation to aerial parts of a plant either 
by depositing Na+ in epidermal cells, creating a barrier to ion 
movement, or forming a complex between freely available Na+ 
and Si ions. However, some studies have linked the Si-mediated 
increase in tolerance to salinity with the activity of tonoplast 
H+-ATPase and H+-PPase in roots and plasma membrane 
H+-ATPase. �e regulation of the K+/Na+ ratio by exogenous Si 
is thought to be a key mechanism in the Si-mediated increase in 
salt tolerance in crops. However, the effect of Si on Na+ dynamics 
across membranes and through extracellular spaces in plants 
needs to explored further. Many determinants have not been 
studied in sufficient detail in salt-stressed plants with or without 
the addition of Si, such as the Na+ signal perception process. 
Moreover, it is unclear whether the reduction in Na+ levels 
with the addition of Si is due to changes in the root structure 
and/or a reduction in the transpiration stream in the xylem, so 
this needs to be studied in more species. Moreover, the current 
literature lacks mRNA-level evidence for the role of Si in the 
regulation of the K+/Na+ ratio. More experiments are required 
to investigate the mechanisms involved in the regulation of this 
ratio in plants following the exogenous application of Si under 
saline conditions.

Salinity Tolerance, Compatible Osmolytes, 
and the Role of Silicon
Of the widely accepted mechanisms for tolerance that have 
evolved to enable a plant to avoid the deleterious effects of 
stress, compatible solute accumulation marks a key position. 
Researchers have long sought to understand the role of 
compatible solutes that accumulate upon exposure of a plant 
to salinity stress, including proline (Kaur and Asthir, 2015), 
polyamines (PAs; Liu et al., 2015), carbohydrates (Negrao 
et al., 2017), glycine betaine (Hussain et al., 2018), and polyols 
(Parida and Das, 2005). �ese solutes are chemically diverse, 
uncharged in neutral pH, water-soluble, and accumulate in 

high concentrations during stress without inhibiting normal 
biochemical reactions (Zhang et al., 2004). �ey interact with 
membrane proteins or other protein complexes due to their 
hydrophilic nature. However, this interaction occurs without 
disturbing the normal structure and role of the protein (Bohnert 
and Shen, 1998). Compatible osmolytes are known to stabilize 
functional proteins, enzymes, protein complexes, and the 
membrane under salinity stress (Rajasheker et al., 2019). Osmotic 
adjustment has been shown to be an important component of 
stress tolerance, and the accumulation of osmoprotectants such 
as proline, glycine betaine, gamma-aminobutyric acid (GABA), 
and sugars has been regularly observed in different plant systems 
(Ashraf and Foolad, 2007; Chen and Jiang, 2010). �e genetic 
engineering of metabolic conduits for a number of compatible 
solutes such as proline, glycine betaine, sorbitol, mannitol, and 
trehalose has led to the successful development of transgenic 
plants that exhibit increased resistance to drought stress, high 
salinity, and the cold (Bhatnagar-Mathur et al., 2008; Reguera 
et al., 2012). Interestingly, various studies have suggested 
that the application of exogenous Si can enhance the salinity 
stress tolerance of various crops by regulating the synthesis 
of compatible osmolytes (Seckin et al., 2009). Al-Huqail et al. 
(2017) reported that the application of Si protects Talh trees 
(Acacia gerrardii Benth) from the negative effects of high 
concentrations of salt by increasing the production of proline 
and glycine betanin, which help the plants to maintain their 
metabolic activity by conserving water levels in their tissues. 
However, several studies have shown that the levels of proline 
are lowered by the addition of Si in various species under salt 
stress, such as grapevine (Soylemezoglu et al., 2009), soybean 
(Lee et al., 2010), wheat (Tuna et al., 2008), barley (Gunes et al., 
2007a), and sorghum (Yin et al., 2013). Lower levels of proline 
in salt-stressed plants following the addition of Si indicates the 
alleviation of stress damage. Yin et al. (2013) reported that the 
short-term application of Si signi�cantly enhanced the levels 
of sucrose and fructose in sorghum plants under salt stress. 
Similarly, Si reversed the lower concentrations of the PAs 
putrescine and spermine in the roots of salt-stressed cucumbers 
(Wang et al., 2015b). Higher glycine accumulation following 
the application of Si illustrates its effect in modifying osmotic 
capacity and antioxidant levels in okra under saline conditions 

FIGURE 5 | Accumulation of Si in different parts of plants. Silicon accumulates in the form of phytoliths or discrete silica bodies in different parts of a plant, e.g. the 

roots, leaves, and stems. This deposition takes place beneath the cell wall of the roots, where the discrete bodies of Si bind with the Na+, resulting in the increased 

uptake of K+ and the reduced transport of Na+ to the upper regions of the plants.
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(Abbas et al., 2015). Recently, Yin et al. (2019) reported that 
the application of Si increases the accumulation of polyamines 
such as spermidine and spermine in cucumber plants. �eir 
study suggested that enhanced polyamine accumulation might 
play a role in modulating the antioxidant defense system and 
reducing oxidative stress, thus increasing the salt tolerance 
of cucumber plants.

Silicon-mediated osmotic adjustment under salinity stress 
to protect subcellular structures has been considered a major 
mechanism underlying Si-based salinity stress tolerance; 
however, it is still debated whether higher osmolyte accumulation 
bene�ts crop yield (Seeraj and Sinclair, 2002). A variety of 
studies have reported con�icting results for the interaction 
between Si and compatible osmolytes such as proline. Some 
studies have concluded that the application of Si reduces the 
accumulation of compatible osmolytes such proline in different 
plants in the presence of salt, claiming that the lower synthesis 
of proline following the addition of Si re�ects the alleviation of 
stress damage. On the other hand, other studies have found a 
higher accumulation of proline due to Si. Hence, more research 
is needed to clarify the relationship between the exogenous 
application of Si and the metabolism of compatible solutes and 
water transport.

Silicon-Induced Improvement in Salinity 
Tolerance in Crops by Restoring the Rate 
of Photosynthesis
Photosynthesis is a fundamental process that takes place in 
the chloroplasts, resulting in the transformation of sunlight 
into energy to fuel a plant’s biochemical activities (Gong et al., 
2010). �e growth and productivity of plants largely depend 
on photosynthesis. From the large volume of data available on 
Si-induced improvement in shoot growth and net photosynthetic 
rate, it is reasonable to speculate that Si may maintain a high 
photosynthetic rate in salt-stressed plants. Previous reports have 
con�rmed that salinity stress adversely disturbs the ultrastructure 
of chloroplasts, e.g. the dilation of thylakoid membranes and 
grana (Parida and Das, 2005), consequently disrupting the 
growth rate and productivity of plants.

Positive effects of Si on chlorophyll biosynthesis and 
photosynthetic machinery under abiotic stress have been widely 
reported. For example, under salinity stress, the exogenous 
application of Si has been found to improve photosynthesis 
in many species. Detmann et al. (2012) described the 
mechanisms behind the positive effect of Si on rice plants by 
analyzing photosynthetic gas exchange parameters alongside 
transcriptomic and metabolomic pro�ling. It was concluded 
that the rate of photosynthesis and the primary metabolism 
of a plant is enhanced by the application of Si. Silicon 
mitigates saline stress by maintaining stomatal conductance, 
transpiration, net photosynthesis, membrane permeability, 
and chlorophyll levels, which is partly due to the higher K+ ion 
concentrations and lower Na+ ion levels induced by the presence 
of Si in salt-stressed environments (Coskun et al., 2016). Tuna 
et al. (2008) reported that the application of Si to salt-stressed 

wheat restored chlorophyll levels. In barley, the application 
of Si increased chlorophyll levels and photosynthetic lead 
cell activity with or without salt stress (Nikolic et al., 2019). 
Advantageous effects of Si on the photosynthetic apparatus 
and pigments have also been observed in Spartina densi�ora 
(Al-Aghabary et al., 2005; Mateos-Naranjo et al., 2013). 
Parveen and Ashraf (2010) studied various photosynthetic 
parameters, such as the net CO2 assimilation rate, stomatal 
conductance, the internal CO2 concentration in leaves, and 
the rate of transpiration in maize cultivars and reported that 
the exogenous application of Si improved all parameters under 
non-saline and saline regimes. Research on barley (Hordeum 
vulgare L.), rice (Oryza sativa L.), sugarcane (Saccharum 
officinarum L.), and wheat (Triticum aestivum L.) crops 
has shown that Si deposited in leaves is able to improve the 
potential and efficiency of photosynthesis by opening the angle 
of the leaves, decreasing self-shading, and keeping the leaf 
erect, thus it plays an important role in increasing the growth 
and yield of crops (Soratto et al., 2012).

The application of Si also improves plant photosynthetic 
machinery under salinity stress either by lowering ion toxicity 
and ROS accumulation to maintain the structure and function 
of the organelles that are responsible for photosynthesis or by 
increasing stomatal conductance, the transpiration rate, and 
the number and size of the stomata. In addition, Zhu et al. 
reported that the application of Si reduces starch and soluble 
sugar levels in cucumber leaves while increasing starch levels 
in the roots. This is because salinity stress increases the 
accumulation of photosynthetic products such as sucrose and 
starch in the leaves by affecting their transport and allocation, 
causing feedback inhibition of the photosynthesis process. 
However, the available literature lacks strong evidence for 
the role of Si in the synthesis, translocation, and allocation 
of photosynthetic products. Thus, advance molecular biology, 
proteomics, and advanced imaging techniques should be 
employed to further explore the mechanisms by which Si 
affects carbohydrate metabolism.

In conclusion, Si modi�es the gas exchange process, decreases 
Na+ accumulation, enhances chlorophyll levels, scavenges ROS, 
and regulates carbohydrate metabolism, all of which ultimately 
enhances the photosynthesis of salt-stressed plants. However, 
this improvement depends on the plant species, salt-stress 
levels, and the application levels of the Si. Further studies are 
required to understand the role of exogenous Si in carbohydrate 
metabolism and its positive effect on photosynthesis under 
salinity stress. In addition, in-depth research is required to collect 
strong evidence for the involvement of Si in the improvement 
of the photosynthetic machinery under both salinity stress and 
combined stress, such as salinity in conjunction with heavy 
metals, drought, or heat.

Silicon and the Regulation of Endogenous 
Phytohormones Under Salinity Stress
�e impact of silicon on endogenous phytohormones in response 
to stress conditions has been widely reported. �e effect of Si on 
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endogenous phytohormones such as GA, ABA, JA, ET, SA, BR, and 
IAA has commonly been studied in the context of the response to 
stress situations (Fahad et al., 2015). Although the protective role of 
these hormones has been studied extensively for a variety of stress 
types, the crosstalk between Si and phytohormones under salinity 
stress is poorly understood. However, studies have reported that 
the application of Si might enhance stress resistance by modifying 
phytohormone homeostasis (Van Bockhaven et al., 2012).

ABA is a stress hormone that affects gene expression 
(Parida and Das, 2005) in response to salt stress (Wang 
et al., 2001b; Dodd and Davies, 2010). The short-term 
application of Si downregulated JA and upregulated ABA 
after 6 and 12 h in rice plants under stress. The application 
of Si in combination with salt stress transiently increased the 
expression of the ABA biosynthesis-related genes zeaxanthin 
epoxidase and 9-cis-epoxicarotenoid oxygenase 1 and 4 (ZEP, 
NCED1, and NCED4) compared to salt stress alone in rice 
(Kim et al., 2014b). The findings of the study conducted by 
Kim et al. (2011) on Oryza sativa suggest that the exogenous 
application of Si can modulate salinity-induced stress by 
regulating the phytohormonal response of plants, e.g. the 
upregulation of ABA (Maillard et al., 2018), with the effects 
dependent on time. However, the link between salt tolerance 
and Si-mediated changes in plant hormones has yet to be 
investigated. Lee et al. (2010) reported that ABA levels 
increase in soybean plants under salt stress but decrease when 
Si is applied. Furthermore, it was concluded that GA levels 
decrease under salt stress but increase with the application of 
Si. In soybean plants, Si alleviates the negative effects of NaCl 
on the growth of plants by enhancing endogenous GA3 and 
lowering ABA levels (Lee et al., 2010). Adverse NaCl effects are 
reduced significantly with the application of Si by increasing 
bioactive gibberellin (GA1 and GA4) levels, but the levels of 
JA, which increase under salinity stress, decline sharply when 
plants are supplemented with Si (Zhang et al., 2018). Another 
report demonstrated that JA and SA concentrations decrease 
and increase, respectively, in Si-treated soybean plants 
under salt stress (Kim et al., 2014a). Thus, the regulatory 
effect of Si on salt tolerance levels in crop plants via the 
regulation of endogenous phytohormone signaling has been 
proposed. However, further research is required to clarify the 
relationship between Si, stress tolerance, and phytohormonal 
signaling, particularly with SA, JA, ETHY, BR, and melatonin.

CONCLUSION AND FUTURE PROSPECTS

Saline environments have adverse effects on plant growth and 
yields worldwide. Plants respond to high-salinity stress using 
various mechanisms, including the regulation of Na+ uptake 
and translocation, the activation of their antioxidant defense 
system, compatible solute accumulation, osmotic regulation, 
the regulation of phytohormone synthesis, and the induction 
of various stress-signaling cascades. All of these responses play 
an important role in plant adaptation to salt stress. Silicon has 
been proven to increase tolerance to salinity stress by regulating 
various biochemical and physiological processes, such as the Na+ 

balance, water status, reactive oxygen species, photosynthesis, 
phytohormone levels, and compatible solutes in plants.

Various studies have shown that Si supplementation bene�ts 
the development of different plant species, speci�cally when they 
are exposed to ecological stresses. Of the various Si-mediated 
salinity stress tolerance mechanisms, the available literature 
suggests that the application of exogenous Si (i.e. foliar and 
root application) improves salinity tolerance in plants either 
by enhancing the activity of antioxidant enzymes or blocking 
Na+ uptake and translocation. Furthermore, we conclude that 
the positive effect of exogenous Si depends on a plant’s stress 
tolerance levels, which vary between species. �is might be due to 
the differences in Si uptake capabilities among different species. 
Despite this, the effect of Si on plant stress tolerance generally 
depends on Si concentration, stress intensity and duration, 
Si application methods, and the cultivation methods used for 
experimental materials (e.g. soil culture or hydroponics).

It is known that approximately 20% of irrigated land is 
salt-affected which is one-third of all food-producing land. 
It has been estimated that about half of all fertile land will 
be affected by salinity by the middle of the 21st century. 
To overcome salinity stress in the future, Si-mediated 
salt tolerance mechanisms will help to enhance salt stress 
tolerance in various crop plants. However, many determinants 
and regulatory mechanisms have not been studied in detail 
and thus need further elucidation. This paper suggests the 
following future research recommendations and prospects for 
Si-mediated salt tolerance in plants:

 1. With the development of advanced omics technologies, more 
detailed research is required to explore Si-mediated salt 
tolerance at the transcriptome, proteome, and metabolome 
levels. 

 2. SOS pathways have a vital role in salinity stress tolerance. 
However, the interaction of exogenous Si with plant SOS 
signaling pathways and other salt stress sensors remains 
obscure.

 3. Most previous research has studied the role of Si in salt stress 
on its own and in the short-term. However, in nature, plants 
are exposed to multiple stresses simultaneously. Establishing 
stress tolerance over a longer period of time would be ideal 
for predicting and reacting to changing global climatic 
conditions, especially where one form of stress leads to 
another. �us, the role of Si in long-term plant responses 
under multiple stresses requires in-depth research.

 4. More work is needed to analyze the regulatory mechanisms 
of Si in salt-induced osmotic stress. Efforts should be made 
to clearly demonstrate how Si regulates osmotic adjustment 
under salinity stress. �e genetic engineering of metabolic 
conduits for a number of compatible solutes, such as proline, 
glycine betaine, and sorbitol, could also be used to produce 
salt-tolerant plants.

In addition, Si-associated molecular and transcriptional 
changes at the plant level are yet to be elucidated, including the 
various metabolomic and proteomic changes in different plant 
organs. Currently, the mechanisms underlying the Si-mediated 
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alleviation of salt stress in plants is poorly understood at the 
molecular and genetic levels. In addition, more focus is needed 
on the effects of Si under �eld conditions rather than greenhouse 
or laboratory studies.
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