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Silicon-Based Micro-Fourier Spectrometer
Dietmar Knipp, Member, IEEE, Helmut Stiebig, Sameer R. Bhalotra, Student Member, IEEE, Eerke Bunte,

Helen L. Kung, Student Member, IEEE, and David A. B. Miller, Fellow, IEEE

Abstract—A novel Fourier spectrometer based on a partly trans-
parent thin-film detector in combination with a tunable silicon
micromachined mirror was developed. The operation principle
based on the detection of an intensity profile of a standing-wave by
introducing a partly transparent detector in the standing-wave.
Varying the position of the mirror results in a phase shift of
the standing-wave and thus in a change of the optical intensity
profile within the detector. The photoelectric active region of
the sensor is thinner than the wavelength of the incoming light,
so that the modulation of the intensity leads to the modulation
of the photocurrent. The spectral information of the incoming
light can be determined by the Fourier transform of the sensor
signal. Based on the linear arrangement of the sensor and the
mirror, the spectrometer facilitates the realization of one- and
two-dimensional arrays of spectrometers combining spectral and
spatial resolution. The operation principle of the spectrometer
will be described and the influence of the detector design on
the spectrometer performance will be discussed. A spectral res-
olution of down to 6 nm was achieved under real-time imaging
conditions.

Index Terms—Fourier spectrometer, hyperspectral imaging,
microelectromechanical-systems (MEMS), micromachining, mul-
tispectral imaging, optical sensor, spectrometer, thin films.

I. INTRODUCTION

V
ARIOUS microspectrometers for different applications

have been developed in recent years [1]–[6]. Espe-

cially the progress in optical microelectromechanical systems

(MEMS) technology has initiated a lot of new research ac-

tivities in the field of the optical metrology. The applications

of microspectrometers range from chemical and biological

analysis to inspection and multispectral imaging. The activities

are driven by improvements of size, cost and performance.

Consequently, several spectrometer concepts were transferred

from the macro to the microscale like grating spectrometers

[1], [2], Fabry–Perot spectrometers [1]–[3] and Fourier spec-

trometers [4]–[6].
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For several applications like inspection or multispectral

imaging it is highly desired to acquire the spectral and the spa-

tial information of the object at the same time, which requires

the integration of several hundreds or even thousands of spec-

trometers on a sensor chip. Grating spectrometers and classical

Fourier spectrometer do not allow for the dense integration

of spectrometers on a single chip. Fabry–Perot spectrometers

can be densely integrated on a sensor chip. However, the res-

olution of the spectrometer is determined by the finesse of the

spectrometer, which is limited by the reflectivity of the semi

transparent mirrors.

In the following paper, we will present a new concept of a

spectrometer, which allows for the densely integration of spec-

trometers on a sensor chip. The spectral information is generated

by the sampling of a standing-wave. The key component of this

novel spectrometer is a partly transparent optical detector. The

partly transparent sensor is introduced in a standing-wave cre-

ated in front of a tunable mirror. The detector is very thin so that

the sensor can sample the intensity profile of the standing-wave.

The spectrometer operates in the visible part of the optical spec-

trum so that it can be used for several applications.

The concept of standing-wave based wavelength sensitive

detectors [7], interferometers and spectrometers is known for

many years [8]–[10], [21], [22], but the realization of such

concepts was limited by technological reasons. Sampling of a

standing-wave by a semiconductor device requires 1) a highly

transparent, and 2) a very thin detector with 3) an adequate

photosensitivity which is realized on a transparent substrate.

The high transmittance of the detector is a prerequisite to

create a standing-wave in front of the mirror. On the other hand

sufficient light has to be absorbed to generate an electrical

signal by the sensor. The photocurrent will be modulated as a

consequence of the optical intensity profile. The active region

of the sensor should be thinner than the wavelength of the

incoming light within the material so that the photocurrent

is modulated by the displacement of the mirror. A silicon

based partly transparent detector operating in the visible part

of the spectrum can be realized by using absorber thicknesses

of 30–50 nm [10]–[12]. In the case of a thicker active layer

the photocurrent is still modulated but the amplitude of the

modulated signal is reduced.

Kung and coworkers [10], [11] presented the first Fourier

spectrometer utilizing the effect of sampling a standing-wave in

the visible part of the spectrum. In this case a thin amorphous sil-

icon coplanar photoconductor structure was applied to sample a

standing-wave created in front of a micromachined mirror. The

same concept can be extended to the infrared part of the spec-

trum by using a partly transparent GaAs photodiode [12].

In both cases, the novel spectrometer concept reduces the

number of components to a minimum, simplifies the set-up to a

0018-9383/$20.00 © 2005 IEEE
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linear arrangement of a detector and a mirror and facilitates the

realization of one-dimensional (1-D) or two-dimensional (2-D)

spectrometer arrays.

The performance of the spectrometer is mainly determined

by the accuracy of the thin film processing of the partly trans-

parent sensor, the optoelectronic properties of the active thin

films, the interaction of the standing-wave with the detector, and

the performance of the micromachined mirror. In this paper we

will mainly focus on the description and characterization of the

partly transparent sensors. A partly transparent amorphous sil-

icon photodiode was used to realize the micro-fourier spectrom-

eter. In Section II of this paper we present the operation principle

of a standing-wave spectrometer. The optical properties of the

spectrometer will be discussed in Section III. A detailed descrip-

tion of the experimental results will be given in Section IV. The

implications of partly transparent sensor and the micromachined

mirror with respect to the performance of the spectrometer are

discussed in Section V.

II. FUNDAMENTALS

A. Standing-Wave

The interference of two waves can be described by the super-

position of two optical beams propagating in the same or op-

posite direction. The amplitude and phase of the electric field

determine the intensity at each spatial position of the interfer-

ence pattern. The intensity of the superimposed waves can be

described by (1)

(1)

and are the intensities of the interfering beams and

is the phase difference of the beams. In the case of a

Michelson interferometer the standing-wave in the detector arm

is created by the superposition of two waves propagating into the

same direction and corresponds to the relative displacement

of the reference and measuring mirror. If the intensity of the two

beams is equal, , (1) is simplified to

(2)

As a consequence the signal varies between 0 (destructive inter-

ference) and (constructive interference).

B. Standing-Wave spectrometer

In the case of a standing-wave spectrometer the two super-

imposed waves propagate in opposite directions. The working

principle of an ideal standing-wave spectrometer is schemati-

cally depicted in Fig. 1.

The reflection of the incoming light intensity at the mirror

leads to the creation of a standing-wave in front of the mirror.

By moving the detector or reflector, the optical intensity pro-

file within the detector changes. The intensity profile can be de-

scribed according to (1). The wavelength of the standing-wave

corresponds to twice of the wavelength of the incoming light.

Due to the absorption of a fraction of the incoming light within

the detector and reflection losses at the detector and at the mirror

the light intensity is always smaller than the incident light

Fig. 1. Schematic setup of a standing-wave spectrometer consisting of a party
transparent optoelectronic active absorber and a mirror.

Fig. 2. Schematic sketch of a Fourier spectrometer based on a partly
transparent sensor on a glass substrate and a micromachined mirror.

intensity . Therefore, the ideal case of com-

plete constructive or destructive interference, which is displayed

in Fig. 1, is not reached.

A schematic sketch of a standing-wave spectrometer is shown

in Fig. 2. The spectrometer consists of the partly transparent

sensor on a glass substrate and a micromachined, electrostat-

ically tunable mirror. An actuator frame, which holds the re-

flector and a second driver electrode realized on a subsequent

wafer, forms the MEMS mirror. The fabrication and the proper-

ties of the tunable mirror are described in [10]–[12].

Different partly transparent detector structures can be used

to sample the standing-wave like coplanar photoconductors or

photodiodes. In the following we will focus on nip-photodiodes

based on amorphous silicon (Fig. 3). The amorphous silicon

diode is embedded between two transparent conductive oxide

layers, which form the front and the back electrode of the sensor.

The application of a nip-photodiode has several advantages in

terms of the optical design of the sensor. The individual regions

of the photodiode can be designed nearly independent of each

other like the absorption region, the entire amorphous silicon

based layer thickness of diode and the transparent conductive

front and back contacts, which act as the anti-reflex coating of

the amorphous layer system [13].

III. OPTICAL MODEL

In order to describe the wave propagation within the partly

transparent sensor, an optical model based on the Airy for-

malism [14] was used. The performance of the optical system
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Fig. 3. Schematic sketch of the semi transparent sensor of a standing-wave
Fourier spectrometer. Light reflected by the mirror creates a standing-wave in
front of the mirror, which is detected by the partly transparent detector. The
partly transparent sensor is formed by a sandwich structure.

can be described by a linear function, which directly correlates

the input and the output electric field vector. The details of

the optical model were described elsewhere [15], [16]. Fig. 4

exhibits a universal layer structure, which consists of a partly

transparent detector, an air gap and a mirror.

The component describes the electric field toward the

first interface within positive direction, whereas represents

the reflected electric field (field propagation in negative direc-

tion) of the whole structure and it is defined at the interface

between layer 0 and 1. The component describes the

electric field at the interface between the m- and -layer

and considers the part of the light, which is coupled in the

mirror (layer ). Since no light enters the optical system

from the backside, becomes zero. Layer j denotes

the optoelectronic active layer of the detector and the layer m

corresponds to the air gap between the detector and the mirror.

In order to simplify the description of the optical wave propa-

gation, the layer stack can be divided into a four-layer system

based on the j-layer (active region of the sensor), the two

subsystems (layer 1 to ) and (layer to )

and the m-layer (air gap between the mirror and the detector).

At this point we assume that the mirror has a reflectivity of

100% . Based on this expression the electric

field in the j-layer can be calculated as a superposition of the

electric field in positive and negative directions. Subsequently

the intensity within the layer j (3) can be calculated after a

few transformations [13], [14]

(3)

where is the incident light intensity and corresponds

to the internal transmission of the multilayer system, is

the absorption coefficient of the j-layer ,

and are the real components of the complex refractive

indices of the j-layer and the ambient layer

(typically air), respectively, and and are the absolute

value and the phase of the transmittance of the subsystem .

The first term of (3) originates from the electric

field propagation in positive direction. The positive direction

means the direction of the incident light. The second term

describes the intensity, which propagates

in negative direction. The third term is caused by interference

effects of the two waves.

In order to design the transparent detector the following as-

pects have to be considered. The sensor has to be highly trans-

parent so that a standing-wave can be formed in front of the

mirror. On one hand a sufficient fraction of the light has to be ab-

sorbed to generate a photocurrent. However, it has to be distin-

guished between the overall photocurrent and the photocurrent

generated as a consequence of the modulated standing-wave.

The overall photocurrent corresponds to the dc sensitivity (SEN)

of the sensor, whereas the current generated by the standing-

wave is represented by the differential sensitivity (DS) of the

sensor. As a quantity for the signal to noise ratio the selectivity

(SEL) is used.

We calculated the dc SEN by an integration of the intensity

over the active layer (j-layer). For simplicity we assumed that

the transmission of the layer stack is equal to 1

and the phase information of the subsystem is equal to 0

. Further, we neglected the influence of the interference

effect on the sensitivity. After integration the sensitivity is given

by (4)

(4)

The constant is equal to . In Fig. 5(a) the sensitivity

is plotted as a function of the thickness of the active layer.

We used an amorphous silicon layer for the calculations

assuming the wavelength of the incoming light to 550 nm

(green). The sensitivity increased exponentially with thickness

until nearly all light is absorbed ( –300 nm) and

the sensitivity remains constant. The same parameters were

used for the calculations of Fig. 5(b) and (c). Besides the dc

sensitivity, we are mainly interested in the interdependency of

the standing-wave with the partly transparent sensor. Therefore,

we calculated the DS of the spectrometer corresponding to the

interference term in (3)

DS

(5)

The DS as a function of the j-layer thickness is shown in

Fig. 5(b). It is a measure for the alternating component of the

photocurrent, which is used for the deconvolution. We calcu-

lated the DS (thin solid lines) for two different mirror positions

( and ). The two mirror positions are rela-

tively spaced by , which corresponds to a phase shift

of 90 . The bold solid lines in Fig. 5(b) correspond to the upper

and lower limit of the DS. For thin active layers we observe an
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Fig. 4. Schematic sketch of a spectrometer based on a multilayer system. The layer j represents the optoelectronic active layer of the detector and the layer m
corresponds to the air gap between the mirror and the detector. The system consists of the subsystem S , the optoelectronic active layer j, the subsystem S , the
air gap layer m and the mirror (layer m + 1).

increase of the DS with increasing thickness of the active layer.

In this case, the active layer is distinctly thinner than the wave-

length and the increase of the DS is caused by

the increased absorption of the active layer. The DS reaches its

maximum for an active layer thickness of 30 nm. For thicker

active layers the DS decreases again. Less light is reflected at

the mirror, which contributed to the standing-wave and there-

fore to the DS. The nodes at a multiple of indicates

that the amplitude of the alternating photocurrent is zero when

the j-layer thickness of the device equals the period or a multiple

of the period of the standing-wave.

A further figure of merit is the SEL. We defined the SEL

as the ratio of the DS and the dc sensitivity. The SEL can be

described by the combination of (4) and (5) resulting in (6). It

describes the ratio of the alternating and the direct component

of the photocurrent.

Again, we neglected the effect of the subsystems

on the standing-wave. Therefore, the SEL depends only on the

material properties of the active layer, the wavelength of the

incident light and the air gap between the sensor and the mirror.

The SEL as a function of the thickness of the active film is shown

in Fig. 5(c)

SEL

DS

SEN

(6)

The curves were again determined for the two mirror posi-

tions of and (thin solid lines). The bold

solid lines correspond to the upper and lower limit of the SEL.

For thin active layers most of the light is transmitted through

the sensor and a strong modulation is detected. In this case the

active layer is thinner than the period of the standing-wave. The

SEL reaches its maximum at SEL . The SEL

decreases for an i-layer thickness thicker than 10 nm. With in-

creasing thickness the modulation decreases, because the trans-

mission of the sensor is reduced.

The calculations in Fig. 5(a)–(c) clearly illustrates the relation

between the dc sensitivity, the DS, the active layer thickness

and the position of the mirror. To realize an optimized partly

transparent sensor the DS and the SEL have to be as high as

possible. For the investigated single layer system the highest DS

and a high SEL is reached for layer thicknesses of 30–50 nm.

However, the deduction of an optimized active layer thickness

from the calculations can only be used as a rough estimation,

because only the active layer of the sensor is considered. The

influence of the subsystems and on the optical generation

and the interaction of the whole device with the standing-wave

were neglected.

IV. RESULTS

In the following, we will discuss the experimental results.

The partly transparent detectors were realized by nip-photodi-

odes. The amorphous silicon detectors were deposited in a mul-

tichamber plasma enhanced chemical vapor deposition system

at 210 on glass substrates coated with flat transparent con-

ductive oxide (TCO [18]. p- and n-type doped layers were

realized by adding trimethylboron and phosphine to the deposi-

tion gases silane and hydrogen, respectively [19]. The i-layers

were prepared by using silane, methane, and hydrogen. A small

amount of carbon (5%–10% volume percent) was alloyed to the

silicon to decrease the refractive index of the material slightly.

As a consequence the layer thickness can be slightly increased,

while keeping the optical thickness of the absorber
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Fig. 5. (a) Sensitivity, (b) DS and (c) SEL of a partly transparent amorphous
silicon layer as a function of the thickness of the active layer. We used a
wavelength of 550 nm (green) for the calculations. The amorphous layer is
described by the complex refractive index of the material. The thin lines in (a)
and (b) correspond to a spacing between the sensor and the mirror of d =

and d = . The bold lines correspond to the lower and upper limits of the
DS and SEL.

constant. Moreover, adding carbon leads to a distinct improve-

ment of the device yield. A detailed discussion of the influence

of carbon on the amorphous detector is given in [13]. After

depositing the amorphous silicon films the second TCO-layer

(TCO layer) was prepared. The TCO layers were realized by

RF-magnetron sputtered ZnO, which is doped with aluminum.

To prevent a damage of the amorphous layer system the TCO

layer was prepared at room temperature. The multilayer stacks

on glass were patterned using photolithography and reactive ion

etching. The detectors have an active area of 10 mm .

The influence of the device design, in particular, the influ-

ence of the thickness of the TCO layers and the absorption

layer thickness has already been studied by optical calculations

and experiments. A detailed description is given in [17]. In

this section we concentrate on an optimized device structure

(nip-diodes) with TCO-layers corresponding to a multiple of a

quarter wavelength . The device design was

Fig. 6. Measured quantum efficiency of a partly transparent sensor measured
from the front and the backside.

optimized for a wavelength of 633 nm, so that the performance

can be evaluated using a HeNe laser as a light source.

The amorphous nip-diode has a thickness of , (

, , ). The i-layer thickness of

the diode is 40 nm, which is in agreement with the calculations

in Fig. 5. The transmission of the partly transparent diode was

proven to be 75% for a wavelength of 633 nm. The quantum

efficiency of the detector measured from both sides is shown in

Fig. 6.

Similar values are measured independent of the direction of

light incident. Thus, the glass substrate has only a minor ef-

fect on the measured quantum efficiency. Only the wavelength

range between 400 and 500 nm measured from the TCO -side

shows a higher sensitivity. The behavior can be likely attributed

to the lower absorption losses of the incident light within the

wide bandgap p-layer in comparison with the lower bandgap of

the n-layer. In order to characterize the spectrometer the thin

film sensor was combined with the micromachined mirror. A

cross section of the microspectrometer was given in Fig. 2. It is

very important for the performance of the spectrometer that the

mirror and sensor are parallel aligned. Otherwise the SEL is re-

duced due to a lateral averaging over several periods. A detailed

description of the alignment and the integration of the compo-

nents are given in [10]–[12]. Applying a voltage to the two elec-

trodes actuates the integrated mirror. The parallel plates of the

electrodes have a capacitance of approximately 4 pF. During op-

eration we applied a voltage plus an offset voltage resulting in

a displacement of the mirror of 3.8 and 33 m.

We tested the system by using a red laser with the wavelength

of 633 nm. The optical output of the lasers was 307 W. The

“photocurrent versus mirror displacement” curves were mapped

to “photocurrent versus time” curves accounting for nonlineari-

ties of the mirror motion. Afterwards the signal was transformed

from the time-domain to the frequency domain. The expected

resolution of the spectrometer is defined by the following:

FWHM (7)

The Fourier transform of a sensor signal generated by a single

laser emitting light at 633 nm is shown in Fig. 7.

The full-width at half-maximum (FWHM) of around 6 nm is

in good agreement with (7).
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Fig. 7. Optical spectrum measured by an integrated Fourier spectrometer
according to Fig. 2. A laser beam was used as an input signal. The
micromachined mirror was actuated by 33 �m.

Fig. 8. Optical spectrum measured by an integrated Fourier spectrometer
according to Fig. 2. Two laser beams (545 and 633 nm) were used as an input
signal. The micromachined mirror was actuated by 3.8 �m.

In the next step, we characterized the spectral discrimination

and the linearity (concept of superposition of signals) of the

spectrometer. We superimposed two laser beams with a wave-

length of 543 and 633 nm and an optical output of 166 and

307 W. After accounting for the position of the mirror the mea-

sured photocurrent spectra was transformed from the time do-

main to the frequency domain. The Fourier transform is shown

in Fig. 8. In this case, the mirror was displaced by 3.8 m. We

determined an FWHM of 45 and 60 nm for the wavelengths of

543 and 633 nm, which also exactly fits the predictions of (7).

Fig. 8 exhibits that the spectral resolution of the spectrometer

scales inversely with the scan length of the tunable mirror. Fur-

thermore, the experimental data in Fig. 8 proves that the super-

position principle can be applied.

V. DISCUSSION

A standing-wave spectrometer is a novel device structure,

which facilitates the realization of Fourier spectrometer arrays.

These arrays can open a new field of application where spectral

and spatial sensor signals have to be fused. Other spectrometers

like classical Fourier spectrometers or Grating spectrometers

do not allow for a dense integration of hundreds or thousands

of spectrometers on a single chip. So far imaging spectrome-

ters have been realized by using a monochromator in front of a

sensor array. However, such systems allow only for line scans

because one dimension of the sensor array is used to capture

the spectral information, whereas the other dimension is used to

capture the spatial information.

In terms of the implementation, the Fabry–Perot spectrom-

eter is closest to the novel standing-wave Fourier spectrometer.

However, due to the different detection concepts Fabry–Perot

spectrometers and standing-wave Fourier spectrometer exhibit

different limitations concerning their qualities. The resolution of

a Fabry–Perot spectrometer is limited by the absorption of the

resonator and the reflectivity of the semi transparent mirrors.

If an air resonator is formed the resolution is only limited by

the reflectivity of mirrors. The resolution of the standing-wave

spectrometer is limited by the scan length of the mirror.

Therefore, the standing-wave spectrometers combines

the world of classical Fourier spectrometers with the world

of Fabry–Perot spectrometers. The implementation of the

standing-wave spectrometer is comparable with the realization

of a Fabry–Perot spectrometer. In terms of the systems limi-

tations the standing-wave spectrometer is comparable with a

classical Fourier spectrometer.

The most important component of the novel Fourier spec-

trometer is the partly transparent optical detector. Such a de-

tector can be realized as a coplanar or a sandwich structure.

Throughout the paper we discussed so far the influence of the

detector design on the overall performance of the standing-wave

Fourier spectrometer. The sandwich structure (nip-photodiode)

has the major advantage that the thin-film layer stack and the

incoming optical light can be matched. The sandwich structure

requires transparent conductive electrodes, which can be real-

ized by ITO, ZnO, or SnO . The detector itself can than be real-

ized as a photoconductor structure or a diode structure. In both

cases the fabrication of a sandwich structure requires a high de-

gree of process control. The processing of the ultra thin diode

requires very smooth TCO-layers. In particular the preparation

of the second TCO-layer is crucial. To avoid damage of the un-

derlying amorphous layer the TCO -layer has to be sputtered

at very soft conditions. A more detailed description of the de-

position conditions is given in [15] and [18]. The fabrication of

coplanar structures is simpler, because metal electrodes can be

used to form the coplanar contacts.

Packaging, assembly, and alignment of the individual compo-

nents of the integrated Fourier spectrometer are further impor-

tant aspects, which have to be taken into account. The sandwich

structure is beneficial with respect to the alignment of the beam

and the individual components of the spectrometer. The sand-

wich structure is less sensitive to sensor misalignments. Due to

a vertical device design the sensor is independent of the spot size

of the incoming light beams. In the case of the coplanar struc-

ture the spot size has to be larger than the gap of the electrodes.

Otherwise, the photoconductivity is limited by the position of

the lowest illumination intensity. The coplanar detector design

can be improved by using interdigitated contacts. On the other

hand more light is reflected at the interdigitated metal contacts,

so that an optimized design of the contacts is required. Further,

light is diffracted by the interdigitated contacts, which affects

the sensor signal.

Another important aspect of the thin film sensors are interface

states, which negatively affect the sensor signal. This problem
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applies to both sensor concepts since both device structures are

very thin. For such thin devices the electronic transport is in-

fluenced by interface states. Experimental results show that this

mainly applies for coplanar structures. As a consequence the

sensor exhibits nonlinearities with respect to the electric field

dependence and the light intensity dependence of the photocur-

rent response.

The transient behavior of the sensor is another important

parameter to characterize the partly transparent sensor. The

geometric capacitance of the sandwich structure is high since

the diodes are very thin and an i-layer thickness of only 40 nm

was used. The resistance of the detector is mainly determined

by the resistance of the TCO layers, which exhibit a resistivity

of 25–62 /square. Therefore, the RC constant of the sensor

leads to a limitation of the transient behavior. First experimental

results exhibit cutoff frequencies in the range of 100–200 kHz.

The nip-diode can be combined with active matrix addressing

to realize 1-D and 2-D arrays. An active matrix addressing is ad-

vantages because it facilitates the integration of pixel processing

electronics. Advanced pixel electronics allows preprocessing of

the sensor signal like data compression or filtering of the sensor

signal. An example of an adaptive filter concept in combination

with a standing-wave spectrometer is given in [20].

VI. SUMMARY

The optical design of a novel spectrometer based on sampling

a standing-wave was presented. The spectrometer consists of a

partly transparent sensor and a tunable micromachined mirror.

Amorphous silicon nip-photodiodes were fabricated and in-

tegrated together with a micromachined mirror. Amorphous

silicon is a perfect material for optoelectronic applications

in the visible part of the spectrum, because the sensitivity

matches excellent with the sensitivity of the human eye. The

spectral resolution fits with the expectation so that the res-

olution inversely scales with the displacement of the mirror.

The presented novel Fourier spectrometer reduces the number

of components to a minimum, simplifies the setup to a linear

arrangement of a detector and a mirror and facilitates the

realization of spectrometer arrays. In terms of the resolution

the novel standing-wave spectrometer is comparable with a

classical Fourier spectrometer, whereas the realization of the

device is closer to the realization a Fabry–Perot spectrometer.
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