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Silicon-Based Photonic Crystals**

By Albert Birner, Ralf B. Wehrspohn,
Ulrich M. Gosele,* and Kurt Busch

Photonic crystals can be thought of as optical analogues of semiconductors. Here
recent advances in photonic crystals based on silicon are reviewed. After summariz-
ing the theory of photonic bandgap materials, the preparation and linear optical
properties of 1D, 2D, and 3D silicon-based photonic crystals are discussed. Laterally

structured porous silicon with a defect line is shown in the Figure.

1. Introduction

In semiconductors electrons propagate in a periodic poten-
tial, which originates from the atomic lattice. This modifies
the dispersion relation of free electrons and a band structure
with a bandgap occurs in the case of semiconductors. The
incorporation of electrically active defects allows the manipu-
lation of the electronic properties, which gave birth to a large
variety of electronic devices. There are distinct electrical and
electro-optical properties of the different semiconductor
materials, the dominant and most studied semiconductor
being silicon.

For more than ten years, the optical analogues to electronic
semiconductors, the so-called photonic crystals, have been the
subject of intense international research efforts. Photonic
crystals are materials with a periodically varying index of
refraction. This allows the control of the propagation of elec-
tromagnetic waves, similar to electrons in a semiconductor
crystal. By analogy with semiconductors, the periodicity of the
underlying lattice structure is of the same order of magnitude
as the wavelength of the electromagnetic radiation.
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Despite the far-reaching analogies between electronic
waves in semiconductors and electromagnetic waves in pho-
tonic crystals, there are pronounced differences between the
two as is noticeable from the corresponding equations of mo-
tion. Electrons are described by a scalar wavefield. In con-
trast, the electromagnetic field is vectorial by nature. Further-
more, the time-independent Schrodinger equation allows
solutions with negative energy eigenvalues, whereas the corre-
sponding wave equation in electrodynamics contains only the
square of the eigenfrequencies, hence negative eigenvalues
are excluded from the outset. It may be inferred from the few
photonic crystals that appear in nature, in contrast to ubiqui-
tous semiconductor materials, that these differences have a
disadvantageous effect on the likelihood of the formation of
photonic bandgaps. From the multitude of the optical phe-
nomena only, for example, the colorful speckles of opals, some
crystallites on the wings of butterflies and the spine of the sea-
mouse!'! can be attributed to photonic crystal effects. Due to
the extreme requirements of miniaturization, substantial
progress in nanotechnology has recently allowed the artificial
manufacturing of photonic crystals for optical frequencies to
be considered in a controlled way. Therefore, photonic crys-
tals may play a key role in the realization of novel integrated
optical devices. Besides important technological aspects, pho-
tonic crystals provide entirely new avenues of basic research
through their potential in controlling the propagation of elec-
tromagnetic waves, in particular in the field of nonlinear and
quantum optics.”!

There are many types of dielectric materials for photonic
crystals under current investigation: group II-VI, III-V, and
IV semiconductors as well as oxides, polymers, and metallo-
dielectric structures. In this review, we will focus on recent
advances in silicon-based photonic crystals, which is the domi-
nant material in semiconductor industry. In Section 2, we will
briefly review the theoretical basis of photonic bandgap mate-
rials. Then we will discuss preparational aspects of 1D, 2D,
and 3D photonic crystals made out of silicon and present
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some linear optical properties of the photonic crystals. Finally, 2, Theory

we give an outlook on dispersion-relation engineering and its

impact on nonlinear and quantum optical properties of these The simplest way to calculate photonic band structures is to
photonic crystals.

apply the methods of electronic band structure calculations.
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However, various adjustments are necessary to take into
account the specific differences between photonic and con-
ventional crystals. First, the electromagnetic field is inherently
vectorial by nature, implying that scalar approximations are
insufficient. Second, the “scattering potentials” of the dielec-
tric atoms are known beforehand and do not have to be deter-
mined self-consistently.

In the following, it is outlined how the widely used plane

wave method (PWM)P! can be applied to the problem of pho-
tonic band structure computation. We consider the wave
equation for a magnetic field A with harmonic time depen-
dence for a 3D periodic array of scatterers. If the materials
differ only in the dielectric but not in the magnetic permeabil-
ity, we obtain the following wave equation by combining Max-
well’s equations.
V x (?‘1 (F)V x FI(?)) ~ 2 AF =0 1)
where w are the eigenfrequencies and c¢ the speed of light.
The information about the structure of the photonic crystal is
fully contained in the dielectric tensor €(7) = €(7 + 13), which
is periodic with respect to the set R = {n1@’y + n@» + n3@’s;
(ny,n2,n3)} of lattice vectors R, which are generated by the pri-
mitive translations @’;, i = 1, 2, 3. We discuss from the outset
the general case of an anisotropic tensor. The special case of
an isotropic medium can be obtained by replacing the dielec-
tric tensor by a scalar times the unit tensor.

The photonic dispersion relation can be obtained straight-
forwardly by considering the wave equation (Eq. 1) in recip-
rocal space, i.e., the dual description of the crystal lattice. To
this end, the periodic inverse dielectric tensor is expanded in a
Fourier series on G the reciprocal (dual) lattice corresponding
to R:

el =ye, & )

Geg NN
where the Fourier coefficients (e_%] = (UV)[ydPre7'(7)e ™ " are
obtained through an integration over the Wigner-Seitz cell
(WSC) whose volume we have designated by V. Using the
Bloch-Flouquet theorem, the magnetic field may be ex-
panded into the eigenfrequencies h% as

HA=H(A =X i W & & FOT 3)
Geg =1
Here, we utilized the fact that V-H (7) =0, so that 1 labels the
two transverse polarizations for any plane wave such that the
polarization unity vectors é%:m, (l? + 5)/ |k + 5| form an
orthogonal triad. Due to the discrete translational symmetry
of the lattice, the wave vector k labeling the solution may be
restricted to lie in the first Brillouin zone (BZ). As a conse-
quence, the dispersion relation in the infinitely extended mo-
mentum space is folded back onto the first BZ, introducing a
discrete band index n. However, care must be exercised in
identifying the irreducible part of the Brillouin zone (IBZ).
The dielectric tensor in Equation 1 may have fewer rotational
symmetries than the underlying lattice and consequently the
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IBZ for a photonic crystal containing anisotropic materials
may be considerably larger than the IBZ for the correspond-
ing isotropic crystal. Rather than dealing with an IBZ that
changes from problem to problem, one can choose to work
with the standard IBZ for the isotropic material and solve
Equation 1 for all inequivalent transformations of the given
dielectric tensor with respect to the rotational symmetries of
the underlying lattice.*!

Inserting Equations 2 and 3 into Equation 1 results in an
infinite matrix eigenvalue problem

M = g 4
Czeg/lzl 6o e T 2 G 4)

where the matrix elements M%ﬁ are given by

M}»l,

- . - ! -
B, =K+ Gl@l xe !, xék, )k+ G| (5)

G

In order to obtain the photonic band and mode structure,
Equation 4 has to be solved for both eigenvalues and eigen-
vectors which for a given wave vector K are labeled by the
band index n. Then, the electric field corresponding to a given
eigenfrequency wn(l? ), can be computed from Maxwell’s
equation

E (A=—i——¢ ' (AVxHF (6)

The photonic dispersion relation gives rise to a photonic
density of states (DOS), which plays a fundamental role in the
understanding of the properties of a photonic crystal. The
photonic DOS N(w) is defined by “counting” all allowed
states of the photonic crystal with a given frequency o, i.e., by
the sum of all bands and the integral over the first BZ of a
Dirac-0 function

Nw) =% | dks(w-o,[) ()
n JBZ

Figure 1 displays the band structure and densities of states
of a hexagonal 2D photonic crystal, which have been com-
puted via the methods outlined above. In 2D photonic crystals
the two polarizations of the electromagnetic field decouple if
we restrict ourselves to the propagation perpendicular to the
axes of the air cylinders. We can thus consider the polariza-
tions of the electric field parallel (E-polarization) and perpen-
dicular (H-polarization) to the cylinder axis separately.’! Fig-
ure 1b shows the corresponding 2D DOS. By analogy with
electronic band structure calculations, flat bands in the band
structure lead to large values of the DOS.

Transmission calculations through finite slabs of photonic
crystalline material are usually based on finite difference time
domain (FD-TD) methods!® and the related transfer matrix
method.I”! While these methods can handle disordered struc-
tures as well as ordered photonic crystals they also require
considerable computational resources. For the special case of
cylindrical® and spherical® geometries an efficient and accu-
rate method based on multiple scattering has recently been
developed, which enables the computation of transmission
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through ordered and disordered slabs of cylinders and also al-
lows a direct determination of the band structure of the infi-
nite periodic system.

3. 1D Photonic Crystals

Dielectric mirrors (Bragg reflector) and interference filters
were actually the first (1D) photonic crystals. However, they
usually are not referred to as crystals because the name crystal
is normally reserved for 2D or 3D structures. Typically, these
1D photonic crystals are prepared by layer-by-layer deposi-
tion of alternating materials. For example, a layered stack of
TiO,/Si0O, deposited by sputtering techniques can be used as
an optical coating for windows. For these 1D structures
today’s coating technology allows thin film stacks to be pre-
pared on substrates larger than 3.2 m x 6 m. A stop gap in a
desired spectral range can then be achieved by appropriately
adjusting the dielectric contrast and the thickness ratios of the
alternating layers. The classical layer-by-layer deposition has,
however, the disadvantage that only discrete values of the
dielectric constant are possible, in the simplest case two val-
ues. In Rugate filtersl'”! the discrete
layer structure is replaced by a con-
tinuous modulation of the refractive
index with depth. This has the bene-
ficial effect that there are fewer
sidelobes in the spectra and that one
has a greater freedom for filter
preparation. Rugate filters are more
difficult to prepare with classical
plasma-deposition systems since a
smooth change from one stoichiom-
etry to the other is technologically
difficult to achieve. It has been
shown that microporous silicon is a
suitable candidate for the fabrica-

a)

tions (b) [13].
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tion of Rugate filters as shown by Berger et al."" Due to the
dependence of the porosity of the porous film (i.e., effective
refractive index) on the anodization current, the dielectric
contrast can be adjusted between 1.5 and 3. However, since
the porous layers are still on the substrate and free-standing
microporous layers are very fragile, this type of Rugate filter
can only be used in reflection mode, i.e., as a Bragg reflector.
There are two problems with simple dielectric filters or mir-
rors for use in micro-optoelectronics. First, for an angle of
incidence greater than a critical angle, light whose frequency
lies in the bandgap of the 1D crystal can penetrate through
the film (except for omnidirectional reflectors, which consist
of very high index material[lzl). Second, there is no guidance
of the light, which lies energetically outside the photonic
bandgap or within a defect band. Recently, an interesting
approach has been pursued by the group of Kimerling!™®! to
create 1D integrated structures. A waveguide with a diameter
of about 0.5 um was structured on a silicon-on-insulator
(SOI) substrate using X-ray lithography to provide a periodic
arrangement of holes (Fig. 2). They omitted one pore in the
center, which acts optically as a resonator having a drastically
increased electromagnetic field at the defect site. At the reso-
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Fig. 2. SEM image of a 1D waveguiding structure made of silicon (a). By incorporating holes at periodic dis-
tances one yields a resonator-like functioning of the waveguide, as was demonstrated by transmission calcula-
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nance frequency, the transmitted intensity was measured to be
about 80 % relative to the transmitted intensity outside the
photonic bandgap (PBG). The volume of the resonant mode,
being proportional to (A/2n)°, was estimated to be V =
0.055 um®. For the resonance at central wavelength i, and
half-width A4, the value of the measured quality factor of the
resonance O = A/AA was about 265, slightly lower than the
theoretical value of 280 obtained by numerical simulations. In
a classical resonator, this quality factor O describes the num-
ber of periods that a resonant wave packet spends within a
cavity. Notice that this simple interpretation does not fully
apply to the present situation, since here the average cavity
length of A./2 allows only the existence of a single (longitudi-
nal) resonator mode.

4. 2D Photonic Crystals

If one retains periodicity in the xy-plane and lets the z-direc-
tion be homogeneous, one can describe the propagation within
the xy-plane in terms of a band structure, which under suitable
circumstances exhibits bandgaps in two dimensions (Fig. 1).
We term such a structure a 2D photonic crystal. As discussed
in Section 2, characteristic of such a 2D photonic crystal is the
decoupling of the electromagnetic vector field into two scalar
fields, one for each polarization. Since the two polarizations
exhibit different behavior each 2D photonic crystal may be
utilized to achieve polarization-dependent effects. 2D photon-
ic crystals are much easier to fabricate than 3D structures,
since well-known methods for the fabrication of columnar
structures!'* may be easily modified for this purpose.

Initially, 2D photonic crystals were constructed either from
macroscopic arrangements of sticks or from bundles of glass
fibers, and subsequently studied in the microwave or infrared
regime. A breakthrough has been achieved by Lehmann’s
group at Siemens Corp.'"” using their self-developed process
of electrochemically growing ordered macropores in silicon.
The structures obtained with this method for the first time
showed a complete 2D bandgap in the near-infrared (near-
IR) at a wavelength of about 4.9 um. A
complete 2D bandgap in this context means
a direction- and polarization-independent
bandgap for propagation that is confined to
the plane of periodicity.” In the following
we discuss exemplarily the optical proper-
ties of 2D photonic crystals based on
macroporous silicon.

4.1. Preparation of Macroporous Silicon

A detailed description of the pore forma-
tion in macroporous silicon can be found
elsewhere.'*'8] Here, we just give a short
summary. First, an n-type silicon wafer with
(100) orientation is prepatterned by photo-
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lithography. Subsequent alkaline etching produces inverted
pyramids acting as pore seeds. Under anodic bias and back-
side illumination the wafer is then etched in hydrofluoric acid.
The electronic holes generated by the illumination near the
back surface diffuse through the whole wafer and promote
the dissolution of silicon mainly at the pore tips. As a result,
pores grow straight along the (100) direction with a very high
aspect ratio. The spatial arrangement of these pores is con-
trolled through the lithographic mask, whereas their diameter
is controlled by the illumination intensity. With suitably
adjusted parameters, variations of pore diameters both
between neighboring pores and with depth may be minimized
to negligible values.

For optical investigations or applications of such structures
the porous silicon has to be processed further. The 2D pho-
tonic crystal has translational symmetry perpendicular to the
pore axes. Therefore, analyzing the band structure requires
the photons also to travel perpendicular to the pore axis.
Investigations of the properties of defects demand access to
the end of, e.g., a waveguide and require parts of the porous
silicon to be removed with a precision of about one lattice
constant, i.e., a precision of about 1 um. To meet these specifi-
cations, a special microstructuring technique has been devel-
oped."” First, the pore walls are passivated by a thermal
oxide and a chemical vapor deposited (CVD) nitride. After-
wards, an aluminum layer is sputtered onto the porous silicon
and structured by conventional photolithography. Although
the feature sizes of this second mask are in the 10 um range,
the precision of the structures and the alignment relative to
the defects is better than 1 um. In the opened window of the
aluminum mask the passivating oxide and nitride are removed
by chemical etching. In a subsequent isotropic plasma etching
process the porous silicon in the areas without passivation is
etched away, leading to the desired bar structure. The quality
of this process is demonstrated in Figure 3, where a bar of
porous silicon is shown that consists of about 22 pore layers.
The transition from air to the 100 um deep pores occurs with-
in only one pore layer. By combining the above techniques,
we obtain free-standing bars of porous silicon on a silicon sub-

Fig. 3. Laterally structured porous silicon sample with a defect line. The H-like structure facilitates the
positioning of a fiber for the coupling in and out of light. The pore separation is 1.5 um and the height
of the porous silicon is 100 pm.
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strate that are 100 um high, 2-200 um wide, and several milli-
meters long. In addition, the bars may be aligned with the
designed defect structures in the porous silicon.

4.2. Bulk Photonic Crystals

The processed macroporous Si samples described above are
extremely well suited to investigating the optical properties of
light traveling perpendicular to the pores. We have performed
transmission measurements on such bars for different pore
diameters, polarizations, and directions. In Figure 4 spectra of
defect-free samples with two different pore diameters each
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Fig. 4. Transmission spectra of two samples of 2D photonic crystals with differ-
ent pore diameter d along the I'-M direction, i.e., along the pore rows. The lat-
tice constant a is 1.5 um, the width of the porous silicon bar is 33 um. The mea-
surement is for H-polarized light, i.e., transverse electric (TE) polarization
where the magnetic field is parallel to the pore axes.

consisting of 22 pore layers are shown for the I'-M direction,
H-polarization, and a lattice constant a of 1.5 um. Depending
on the pore diameter, the center of the stop-band shifts from
1650 cm™ (6 um wavelength) for a pore diameter of 1.06 um
up to 2800 cm™ (3.6 um wavelength) for 1.36 um. Repeating
this measurement for the other directions and for E-polariza-
tion, we find a complete gap centered at 3.2 um for 1.36 um
pore diameter and no overlap of the different stop bands for
the 1.06 um sample. This is in good agreement with theoreti-
cal predictions for such structures.

In Figure 5 we present a map for the bandgaps resulting
from such measurements for a whole set of samples with vary-
ing pore diameters (symbols) for a = 1.5 um. For comparison,
the theoretical predictions from a plane wave expansion
method (see Sec. 2) are shown as solid lines. For the lower fill-
ing factors the agreement between theory and experiment is
excellent. For very high porosities slight deviations occur, due
to the difficulty in preparing and handling these very fragile
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Fig. 5. Dependence of the observed bandgaps on polarization and filling factor

(gap map) for a lattice constant a of 1.5 um. Theoretical (solid lines) and experi-
mental (symbols) values show very good agreement [20].

samples. Therefore, the observed discrepancies are the result
of small differences between the real dimensions of the sam-
ples and the values used in the calculations.””)

To obtain bandgaps in the opto-electronically interesting
region of around 1.3 to 1.55 um downscaling of the above-
described triangular pore lattice is necessary. Recently, we
have shown for the first time that it is possible to fabricate
pores with a pitch of a = 0.5 um (Fig. 6).?!1 The pores fabri-
cated had a radius r = 0.18 um, resulting in an r/a ratio of 0.43
and a pore depth of 100 um. To investigate the 2D bandgaps
in the near-IR, we have performed reflection measurements
similar to those of Rowson et al.’?! The resulting sample spec-
tra are shown in Figure 6. Band structure calculations were
performed using 967 plane waves. The shaded spectral ranges
represent the theoretically expected regions of high reflectiv-
ity. They largely coincide with the bandgaps along the '-M
direction. Figure 6 reveals good agreement between the theo-
retically predicted ranges of total reflection and the experi-
mentally determined high reflectivity regions. From the calcu-
lated band structure a complete bandgap for E- and H-
polarization is expected for the spectral range from 1.22 um
to 1.3 um, thus incorporating the wavelengths of the second
telecommunication window.

14000

E-Pol|_——t—_

7 12000 <1 1>
§ 10000 A .

= 8000 <>

g 6000 3 g
N .

E ey
= 70 05 1T MK T 0.5 0.43
Reflectivity um pm

Fig. 6. Left: Measured reflectivity for the I'-M direction and comparison with
band structure calculations for E-polarization. The light-gray shaded regions
correspond to regions of high reflectivity. The dark-gray shaded region corre-
sponds to the complete 2D photonic bandgap at around 8000 cm™ (1.25 um).
Right: Cross-sectional SEM image of a structure with a lattice constant of
500 nm and r/a of 0.43 [21].
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4.3. Finite Photonic Crystals

For practical purposes finite photonic crystals are impor-
tant. For a thin slab of a photonic crystal the light will no long-
er be totally reflected but a certain amount is transmitted. A
band structure for such a thin crystal cannot be determined
because of the lack of long-range periodicity. However the
bandgap of the bulk crystal has to build up with growing num-
ber of crystal rows. Besides interesting physical properties,
photonic crystals possess a considerable potential for opto-
electronic applications. The incorporation of linearly extended
defects leads to localized photonic states in the bandgap. Light
can be guided through these waveguides, allowing high inte-
gration densities for opto-electronic components. However,
coupling phenomena have to be understood for the defect de-
sign to adjust the minimum distance between two waveguides.

Transmission measurement were performed on 1-4 crystals
rows of macroporous silicon using a tunable pulsed laser set-
up.?! For comparison, calculations of the transmittance using
the Sakoda approach were performed and a very good agree-
ment with the experimental results was observed. Upon plot-
ting the transmittance on a logarithmic scale against the pene-
trated crystal thickness a linear relationship is observed.l*"
This reveals exponential decay of the transmission with
increasing crystal thickness as expected from the case of bulk
photonic crystal. From the slope a decay constant of about
10 dB per pore row can be derived for wavelengths deep with-
in the gap. In summary, the bandgap of the bulk crystal is
already perceptible for one crystal row. This can be ascribed
to the strong refractive index contrast between the air pores
and the silicon pore walls as well as to the high perfection of
the investigated structures. For integrated defect structures, a
minimum distance of about four crystal rows should be con-
sidered to avoid crosstalk between neighboring waveguides.

4.4. Defects in Photonic Crystals

If some etch pits are omitted by using a suitable mask for
the photolithography, the electronic holes that are generated
at the back side through illumination are consumed by the
neighboring pores without influencing their position. The
result of this procedure is a rather perfect structure with some
missing pores at predefined positions, as shown in Figure 7 for

Fig. 7. SEM top view of the region around a missing etch pit after electrochemi-
cal pore growth and subsequent pore widening by oxidation/etching steps. The
distance between the pores is 1.5 um, the pore diameters are 1.15 pum [42].

a single missing pore. These missing pores disturb the transla-
tional symmetry of the periodic lattice and under appropriate
conditions lead to localized states (microcavities) in the for-
bidden spectral region.

Chaining together such defects in, say, a line creates defect
modes with transmission bands inside the photonic bandgap. As
propagation is forbidden in the surrounding medium, according
to theory waveguides with very sharp bends become possible.[!
In the past, we have analyzed different defect structures: lin-
ear® and bent waveguide, Y-branch, and microresonator'?]
(Fig. 8). Here, we will discuss the impact of the linear defect on
the optical properties of the structure in more detail.*"

FD-TD calculations predict the occurrence of additional
states throughout the entire range of the bandgap that are
localized at the defect line. As we are experimentally coupling
in from a plane wave, we may, however, only excite the states
with even symmetry. The theoretical transmission spectrum
for a straight waveguide is depicted in the upper part of Fig-
ure 9. For lower frequencies, single-mode transmission is
expected. In addition, the waveguiding modes are partially
reflected at the in- and the out-coupling facets and, therefore,
lead to Fabry—Perot resonances. At higher frequencies a small
gap is predicted where no states of even symmetry are avail-
able. Above the gap, states become available again, but they
are so numerous that the resonances can no longer be
resolved. The measured spectrum, which is shown in the lower
part of Figure 9, shows remarkably good agreement with
these predictions: While for low frequencies, single-mode res-
onances are observed, there is a well-pronounced stop band

Fig. 8. Different defect structures realized in macroporous silicon with 1.5 um interpore distance [42].
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Fig. 9. Experimental transmission spectrum (bottom) of a linear waveguide
structure compared to theoretical predictions (top). The bulk bandgap for H-
polarization is marked by a gray bar [24].

and a broad transmission band at higher frequencies. Again,
the small discrepancies between theory and experiment in the
values of the finesse and stop band frequency can be ex-
plained by the strong influence of small deviations from the
real dimensions to the values used in the calculation.

The observed high finesse results from the low coupling
efficiency between the strongly localized waveguide modes
and the external plane waves. In a realistic device the wave-
guide facets could be avoided by connecting other optical ele-
ments directly. These linear defects then act as almost ideal
waveguides where the light is very well confined to within a
few pore rows.

5. 3D Photonic Crystals

Band structure computations showed that for a face-cen-
tered cubic (fcc) lattice with a simple basis high dielectric
inclusions in a low dielectric matrix do not yield a complete
3D bandgap, not even for an arbitrarily large dielectric con-
trast. The breakthrough came from the theoretical group at
Towa State University.l®! They discovered a complete photonic
bandgap for an arrangement of photonic atoms in a diamond
structure, an fcc structure with a two-atom basis, which lifts
the polarization degeneracy of the one-atom fcc structure. A
corresponding structure, which was manufactured by the
group of Yablonovitch®! and which is now known as “Yablo-
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novite”, was the first-fabricated photonic crystal that pos-
sessed a complete bandgap, albeit for microwave frequencies.
The biggest disadvantage of a “Yablonovite” was that it could
not be miniaturized easily. For instance, to obtain a complete
photonic bandgap in the optical frequency range it would be
necessary to accurately drill long channels less than 1 um in
diameter into a dielectric in a three-dimensionally ordered
fashion.

One possibility has been proposed by Foll and co-work-
ers.?] They have observed that, in principle, macropores can
also be used to realize 3D photonic crystal structures. In con-
trast to the macropores on (100) n-type substrates, which grow
perpendicular to the substrate surface, pores on (111) sub-
strates grow in the (113) crystalline direction. Since pores
grow equally well in all three equivalent (113) directions a
structure similar to the Yablonovite may be realized. A slight
difference is that in these structures the pores are tilted about
29.5° off the vertical axis whereas in the Yablonovite they
have an angle of about 35°. However, calculations from Klose
and Dichtel®” suggest that these structures should exhibit a
complete 3D bandgap for an appropriate pore diameter. Foll
and co-workers are currently trying to realize these structures
by adjusting prepatterning techniques similar to those of the
2D macropore arrays. A disordered pore array, which does
not exhibit a bandgap, can be seen in Figure 10.

Fig. 10. Disordered 3D macroporous silicon photonic crystal obtained on (111)
n-type Si (“Kielovite”).

Another possibility for creating a 3D photonic crystal arises
form the fact that, according to the established growth model
of Lehmann!"%! for pore formation, the current density at
the pore tips is always equal to the critical current density jps.
Therefore, the porosity p is determined by the ratio of the
total current density to the critical current density. For a regu-
lar arrangements of cells with area A, where all pores have
the same area Apore, the porosity is thus p =Apore/Acenn = Jljps:
The total current is controlled by the illumination intensity.

The scanning electron microscopy (SEM) cross-section im-
age in Figure 11 demonstrates the quality of this etching pro-
cess. The resulting samples have the expected strong asymme-
trically varying pore shapes as defined by the current profile.

Adv. Mater. 2001, 13, No. 6, March 16
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Fig. 11. SEM cross section of a sample etched with 10 periods of modulated
light. The lattice constant [, in the xy-plane is 4.2 um, in the z-direction [, =
7.2 um [29].

In the lateral direction, the sample is homogeneously etched
over the whole exposed area without notable defects. With
increasing pore depth the HF concentration at the pore tips
and therefore also the critical current density j,s as well as the
etching speed v are reduced. If the sawtooth-like current den-
sity is applied on a linear time scale this leads to a strong var-
iation of about 30 % in the length of a period from top to bot-
tom for a 100 um deep porous film. Using the reduction of
growth speed from the homogeneous model of Lehmann!'”
improves this effect dramatically. Up to 25 periods could be
etched without notable deviation of the linear fit, leading to a
total thickness of over 200 yum.””) The transmission spectrum
in the growth direction of the pores for a sample with a period
of [, = 7.2 um is shown in Figure 12. Two strong stop bands
can be observed near 320 cm™ and 610 cm™. As the lateral
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Fig. 12. Transmission spectrum for light travelling parallel to the pore axes (sol-
id line) of the structure depicted in Figure 11 together with the calculated spec-
trum from a 1D Bruggeman approximation (dotted line). The lattice constant
I,y in the xy-plane is 4.2 um, in the z-direction /., = 7.2 um. The porosity varies
from poyin = 0.15 t0 prax = 0.65 [29].

period is significantly smaller than the period in the growth
direction, the optical behavior can, to a first approximation,
be obtained by using an effective medium model. From the
pore diameter, as measured from the SEM cross-section
images, we determined the depth dependence of the porosity
and then the effective refractive index using the Bruggeman
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formalism.*” The calculated transmission spectrum for a mul-
tilayer model®! using ten slabs for each period and eight
periods in total is shown as a dotted line in Figure 12. The
positions of the stop bands are well reproduced by this
simple approximation. The Fabry—Perot-type interference
pattern from the reflections at the front and back surfaces,
which are very strong in the calculated spectrum, were not
resolved in the experiment. The high transmission values
around 550 cm™ and below 180 cm™ are artifacts due to the
low background intensity of the spectrometer.

These samples demonstrate the ability to generate real 3D
photonic crystals by modulating the backside illumination. Al-
though the structures produced so far®?! do not exhibit a com-
plete photonic bandgap, they have strongly nonlinear disper-
sion relations in all directions, behavior that will be very useful
in nonlinear optical experiments. For instance, phase matching
may easily be achieved in these structures, which for applica-
tions such as mixing experiments of beams with different
wavelength may prove useful. In particular, the freedom to
design the third, i.e., the z-direction, independently from the
periodicity in the xy-plane will provide a very high flexibility.

Based on their initial studies of the diamond-like structures,
the Iowa State group discovered another structure that is easi-
er to miniaturize as the “Yablonovite”, the so-called “Lincoln-
log” structure.®® This structure resembles a stack of wooden
logs in parallel orientation to each other in each layer. Within
each layer, SiO, was first deposited, patterned, and etched,
such that two successive layers are oriented perpendicular to
each other. The resulting trenches are then filled by poly-Si
layers and finally the SiO, is removed completely. The sec-
ond-nearest layers are displaced with respect to each other by
half the bar distance within the layers. While the first of these
crystals had a bandgap at a frequency of about 13 GHz (corre-
sponding to a wavelength of about 2.3 cm), the recently fabri-
cated crystals at Sandia National Laboratories™! exhibit a
bandgap at a wavelength of about 1.5 um. However, the verti-
cal extensions that have been achieved until now are rather
small and the effort to produce large-scale 3D crystals will be
substantial. The above-mentioned silicon Lincoln-log crys-
tal,[33] for instance, consists of only five layers, i.e., 1.25 unit
cells in the vertical direction. Instead of depositing each layer,
Noda et al.®* have applied wafer-bonding technology on
III-V semiconductor substrates. This techniques allows multi-
plicative stacking, i.e., the preparation of a log structure simi-
lar to the one at Sandia National Laboratories, bonding two of
these single-layer structures together, removing the substrate
of the upper one, bonding two of those double-layer structures
together, and so on (Fig. 13). Using this technique, a stack of
eight layers has been achieved, corresponding to two units
cells in the vertical direction.

Several research groups are pursuing a different approach
to fabricating 3D photonic crystals: Under appropriate condi-
tions, colloids self-organize into periodic structures that can
extend over several hundred unit cells.® Due to their cubic
symmetry, these crystals cannot possess a complete photonic
bandgap, not even for the highest possible ratios of the indices
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Fig. 13. Left: schematic drawing of one unit cell of the woodpile-structure 3D
photonic crystal. Right: Top view SEM image of 3D photonic crystal prepared
via the Noda approach. The lattice constant a is 0.7 um, resulting in a bandgap
around 1.3 um [34].

of refraction = ny/n; of the constituent materials. However,
the inverse structure, the so-called inverse opal, does have a
complete bandgap in the higher bands.”! A simplified recipe
for the fabrication of inverse opals is as follows: Firstly, an ar-
tificial opal is fabricated, i.e., a close-packed fcc lattice of, for
example, monodispersed SiO, spheres (diameter ranging from
100 to 1000 nm). The spheres are then sintered, making them
shrink slightly and causing neighboring spheres to become
firmly connected by a tube-like connection of SiO,. Next, a
high-index material is deposited into the void regions between
the spheres. In a final step, in order to increase the dielectric
contrast, the 3D network of SiO, spheres is removed by selec-
tive etching. This process may be called 3D templating. Very
recently, the group at the University of Toronto reported the
first successful fabrication of silicon-based inverse opals with
a complete 5 % photonic bandgap relative to its center fre-
quency for center frequencies at the telecommunication win-
dow around 1.5 um.[%] Here, the voids of the artificial opal
were almost completely filled with silicon by CVD. Figure 14

Fig. 14. SEM images of spatially periodic structures that have been obtained by
infiltrating an artificial opal with silicon and subsequent removal of the opal.
The lattice constant is 500 nm [36].
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shows an SEM image of such a photonic crystal with a lattice
constant of about 0.5 pum.

Using PWM (Sec. 1) it has recently been demonstrated the-
oretically® that it is possible to double the size of the inverse
opal PBG by fine tuning the material’s synthesis by, for exam-
ple, careful sintering and control of the infiltration process.
The resulting inverse opal structures (see Fig. 14) then consist
of a high dielectric backbone with a filling ratio of about
25 %, leaving a large empty volume for infiltration by a low
refractive index liquid crystal with strong optical anisotropy.
This large volume of birefringent material makes the resulting
system highly susceptible to electro-optic tuning effects. In
particular, a change in the orientation of the nematic director
field with respect to the inverse opal backbone by an external
electric field can completely open or close the full, 3D PBG,*!
thus providing novel electro-optical ways to realize tunability
of spontaneous emission, wave-guiding effects, and light local-
ization. Recently, we have shown in collaboration with the
University of Toronto for the first time as a proof of principle
the feasibility of such an optical switch by introducing a liquid
crystal into the pores of a 2D macroporous silicon photonic
crystal and switching it thermally."”!

6. Beyond Maxwell

Controlling the light propagation by photonic crystals opens
entirely new avenues to applications outside the realm of clas-
sical electrodynamics, in particular in the fields of nonlinear
optics as well as quantum optics. In order to fit within the
scope of this overview article, we will discuss one example
from each field.

Solitary waves are well known in various fields of physics: So-
litary waves are solutions of nonlinear wave equations and can,
for instance, be observed as step-shaped waves running down
slightly inclined streets during heavy rain. A defining character-
istic of solitary waves is that they do not change their shape dur-
ing propagation—they are free of dispersion. In a nonlinear
dielectric, i.e., a dielectric with an intensity-dependent index of
refraction, it is possible that the dispersion- induced decay of a
wave packet during propagation may be compensated by self-
focussing effects. In this case, a solitary wave forms. The time
stability of this type of wave makes it particularly promising as
an information carrier, since using solitary waves one can send
signals with extremely high pulse rates over long distances
without fearing scrambling of successive pulses.

For some time now a slightly different kind of solitary wave,
the so-called gap soliton, has been studied in 1D photonic
crystals. Here, one starts with a pulse the central frequency of
which lies within the bandgap of a photonic crystal. Due to an
intensity-dependent index of refraction of at least one of the
components of the crystal, an energetic pulse can distort the
local band structure to such an extent that it causes the central
frequency of the pulse to lie outside the bandgap. While it
propagates, a sufficiently energetic pulse forms its own chan-
nel of transmission. In contrast to that, however, the investiga-
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tion of gap solitons in 2D or 3D photonic crystals is still in its
infancy, yet promises to yield a wealth of interesting phenom-
ena. Compared to 1D structures, the photonic band structure
of higher dimensional crystals offers qualitatively new proper-
ties. For instance, the bandgap along one high-symmetry
direction may be slightly shifted and the corresponding modes
of the photonic crystals may have different symmetries. This
leads to quite a number of solitary wave types with various
threshold intensities as well as propagation speeds.DS] Conse-
quently, one might use one solitary wave as a switch for
another one or gate one solitary wave with the other one. In
this respect, one could consider the first solitary wave some
sort of “ice-breaker” for the second one. By modifying the
intensity in the dielectric, the first solitary wave creates a
channel through the “ice” of the photonic bandgap, which the
second solitary wave could not enter before. The direction of
the channel is then determined by the first solitary wave.
Since the ice-channel in this Gedanken experiment freezes on
the timescale of picoseconds, one is dealing here with an ultra-
fast phenomenon.

Quantum optics is another field in which photonic crystals
offer qualitatively new possibilities: In a nutshell, the tailoring
of the photonic density of states by means of photonic crystals
allows far-reaching control of the emission characteristics of
corresponding color centers. In illustration of this we discuss
the qualitative behavior of an idealized two-level atom in a
photonic crystal. If the transition frequency is well within a
complete photonic bandgap, the atom cannot decay to its
ground state via a one-photon process. A bound photon—atom
state is formed instead. Furthermore, calculating the atomic
relaxation via an allowed two-photon process for atomic reso-
nance frequencies within a complete photonic bandgap[39]
yields lifetimes of several days. Due to the idealization typical
of quantum-optical calculations, this lifetime for real systems
is certainly too long. However, it can be assumed that the life-
times of excited atoms or molecules in suitable photonic crys-
tals exceed the corresponding ones in vacuum by several
orders of magnitude. This possibility of controlling the sponta-
neous emission via the tailored density of states alone would
be of paramount importance to the achievement of novel
quantum-optical effects.

Particularly interesting phenomena occur for frequencies
near the edge of a photonic bandgap. In this frequency
range, the dispersion relation decreases remarkably (see
Fig. 1a), which leads to a very low group velocity, causing
the photon—atom interaction to increase. For simplicity, the
discussion is restricted to an atom with an excited and a
ground state, |c) and |g), respectively, as well as to two cor-
responding states of the electromagnetic field mode with no
and one photon, |0y and |1), respectively. By analogy with
the formation of a “binding” as well as an “antibinding”
state for the ammonium molecule, due to the strong
interaction between the atom and the field the “bare”
atomic eigenstates form combined atom-field eigenstates,
which in quantum optics are referred to as “dressed states”.
In order to understand the dynamical behavior of an initial-
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ly excited atom one has to imagine a decomposition of this
initial state into linear combinations of the states that form
the Rabi-duplett, which themselves, due to the splitting of
their energy levels, evolve differently with time. As the
photon remains in an ideal cavity, i.e., in our case the pho-
tonic bandgap, the wavefunction of the photon-atom system
will oscillate between the states of the Rabi-duplett. If the
“bare” atomic transition frequency is in close proximity to a
photonic band edge, but still just within the photonic band-
gap, the Rabi splitting may become so large that one com-
ponent of the Rabi-duplett will be pushed outside the pho-
tonic bandgap into the photonic conduction band. In
contrast to its partner, this state thus acquires a finite life-
time by being coupled with the photonic conduction band.
As the initially excited atom may decay “partially”, so-
called fractional localization occurs.?**] Figure 15 shows
the relaxation behavior of an excited two-level atom as a
function of the position of the bare transition frequency rel-
ative to the photonic band edge. A detailed explanation is
given in the literature.[*]

104,

#p=-10

fit

Fig. 15. Temporal evolution of the occupation ‘bz(t) |2 of the upper level of an
initially excited two-level atom for various values of its transition frequency w,;
= w, + O relative to the band edge at w.. The photonic conduction band lies at
frequencies w > w,.. Characteristic are the damped Rabi oscillations and the
finite oscillator amplitude for long times, which correspond to the “partial”
decay of the excited level. The fractional localization drops from nearly 1 (far
below the band edge in the bandgap) to 0 (in the band).

One may imagine the above situation in terms of an excited
atom which emits a photon that, due to the strong Bragg scat-
tering at frequencies near the band edge, finds its way back to
the atom where it is reabsorbed. This photon feedback effect
makes the atom develop a memory of its previous state. Such
and similar memory effects are not limited to band edges but
occur wherever the photon density of states changes abruptly.

If only one single excited atom exhibits such a peculiar
behavior in a photonic crystal, one is tempted to speculate
about the behavior of multi-level atoms, of atoms resonantly
driven by laser fields and, finally, about the collective behav-
ior of several atoms embedded in a photonic crystal. Cur-
rently, aspects such as the so-called band edge laser are the
subject of intense research efforts and discussing them here
would certainly go beyond the scope of this review article.!*!
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7. Conclusions and Outlook

There exists a strong analogy between electrons in semicon-
ductor crystals and photons (“light particles”) in photonic
crystals: Multiple scattering at periodically positioned “dielec-
tric atoms” leads to the formation of an optical band struc-
ture. Under certain circumstances optical bandgaps form,
which fundamentally alter light propagation as well as emis-
sion processes of active atoms in these artificial structures.
This rather new knowledge gained about one decade ago has
triggered intensive research efforts that initially focused on
fundamental research on how to “make light stand still”. Nov-
el integrated photonic devices have been proposed that,
through their miniaturization and high efficiency, could open
the door to entirely new classes of all-optical devices. Recent
progress in nanofabrication makes it possible that photonic
bandgap devices will be realized in the near future, potentially
signaling the start of a photonic revolution comparable to the
semiconductor revolution, which began half a century ago.

We have reviewed recent progress on 2D photonic crystals
based on macroporous silicon in particular. Transmission mea-
surements on bulk and finite macroporous silicon photonic
crystals show good agreement with theoretical predictions for
a wide range of pore diameters. The lattice constants can be
varied in the range from 8000 down to 500 nm, resulting in
complete bandgaps in a wavelength range between 20 and
1.3 um. Passive devices such as waveguides and microresona-
tors have been fabricated and optically characterized, showing
good agreement between theoretical calculations and mea-
sured transmission spectra. Also first active devices based on
liquid-crystal infiltrated macropores have been produced. Pe-
riodicity in the third direction can be achieved either by mod-
ulating the macropore diameter or by the “Kielovite” tech-
nique. The precision of the achieved samples and the
presented optical data prove the suitability of electrochemi-
cally etched macroporous silicon as a candidate for new opti-
cal devices based on photonic crystals in the near and mid
infrared spectral range.
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