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Abstract

A review of the properties of silicon-based two-dimensional (2D) photonic crystals is given, essentially infinite 2D photonic
crystals made from macroporous silicon and photonic crystal slabs based on silicon-on-insulator basis. We discuss the bulk
photonic crystal properties with particular attention to the light cone and its impact on the band structure. The application for
wave guiding is discussed for both material systems, and compared to classical waveguides based on index-guiding. Losses of
resonant waveguide modes above the light line are discussed in detail.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In the last decades strong effort has been carried
out to investigate and control the optical properties of
materials, to confine light in specified areas, to pro-
hibit its propagation or to allow it to propagate only
in certain directions and at certain frequencies. The
introduction of components based on total internal
reflection for light guidance, such as optical fibers or
integrated ridge waveguides, has already enabled a
revolution in the telecommunication and optical indus-
try. In parallel to that, another way of controlling light
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based on Bragg diffraction has already been used in
many devices like dielectric mirrors. In 1987, the prin-
ciple of dielectric mirrors leading to one-dimensional
(1D) light reflection was generalized to two and three
dimensions[1,2] founding a new class of materials:
photonic crystals. Since then, this new field has gained
continuously increasing interest[3]. Photonic crystals
are materials with a periodic dielectric constant. If
the wavelength of light incident on the crystal is of
the same order of magnitude as the periodicity, the
multiple-scattered waves at the dielectric interfaces
interfere, leading to a band structure for photons. If the
difference between the dielectric constants of the ma-
terials composing the photonic crystal is high enough,
a photonic band gap—i.e. a forbidden frequency range
in a certain direction for a certain polarization—can
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occur. However, a complete photonic band gap—i.e.
a forbidden frequency range in all directions for all
polarizations—can occur only in three-dimensional
(3D) photonic crystals. Although these 3D photonic
crystals look very promising and have been theoreti-
cally widely studied, their experimental fabrication is
still a challenge[4–8]. Therefore, 2D photonic crys-
tals, which are much easier to fabricate and which still
offer most of the interesting properties of their 3D
counterparts, have been investigated intensively. In the
ideal case, 2D photonic crystals are infinitely-extended
structures with a dielectric constant which is periodic
in a plane and homogeneous in the third dimension.
However, experimental structures are always finite,
leading to scattering losses in the third dimension[9].
More recently the concept of photonic crystal slabs
consisting of a thin 2D photonic crystal surrounded by
a lower-index material has emerged and is now widely
studied, because it offers a compromise between 2D
and 3D concepts. Indeed, combining the index-guiding
in the vertical direction with the presence of the pho-
tonic crystal in the plane of periodicity a 3D control
of light can be achieved[10–12]. Among the several
interesting effects in photonic crystals that can be
used for a multitude of applications, such as modifica-
tion of spontaneous emission[13,14] or effects based
on the particular dispersion properties like birefrin-
gence[15], superprism effect and negative refraction
[16–19], one of the important effects relies on the ex-
istence of the band gap for wave guiding purposes. In
this paper, some properties of 2D photonic crystals are
studied, assuming first an infinite height (Section 2)
and then a finite one (Section 3). Subsequently, the in-
fluence of introducing a line defect into the photonic
crystal lattice to built a waveguide is discussed, first
in the case of infinite 2D photonic crystals (Section 4)
and finally in photonic crystal slabs (Section 5).

2. Infinite 2D photonic crystals

Typically, 2D photonic crystals consist of a lattice
of parallel rods embedded in a substrate of different
dielectric constant. This can be either air pores in a
dielectric or dielectric rods in air ordered in a square
or hexagonal lattice, such that the dielectric constant
is homogeneous in the direction parallel to the rod
axis—generally defined asz-direction—and periodic

in the (x, y)-plane:

ε(�r) = ε(�r + �r) (1)

where�r is any linear combination of the two unit vec-
tors �a1 and�a2 of the 2D photonic crystal lattice:

�r = l�a1 + m�a2 (2)

Due to the periodicity, the eigenfunctions of the
system can be written in the form of Bloch states,
in analogy to solid state physics. In the case that the
magnetic field�H is used as the variable this reads:

�H
n,�k(�r) = ei�k·�r · �u

n,�k(�r) (3)

wheren is the frequency band index,�k the wave vec-
tor, and the function�u

n,�k has the periodicity of the
photonic crystal:

�u
n,�k(�r) = �u

n,�k(�r + �r) (4)

If the materials constituting the photonic crystal are
assumed to be linear, isotropic, non-magnetic and free
of charges, the following wave equation is obtained
by combining Maxwell’s equations:

�∇ ×
(

1

ε(�r)
�∇ × �H(�r)

)
= ω2

c2
�H(�r) (5)

with

�∇ · �H(�r) = 0 (6)

This is an eigenvalue problem where the eigenvec-
tors �H(�r) are called harmonic modes, and the eigenval-
ues(ω/c)2 are proportional to the squared frequency
of these modes,c being the speed of light.

By solving the masterEq. (5) for k-vectors along
the irreducible Brillouin zone of the photonic crystal,
the band structure of the photonic crystal is obtained.
Because the (x, y)-plane of periodicity of the 2D pho-
tonic crystal is a mirror plane of the system, the polar-
izations decouple, i.e. the modes can be separated into
transverse-electric (TE) modes having onlyHz, Ex and
Ey as non-zero components, and transverse-magnetic
(TM) modes with the only non-zero componentsEz,
Hx and Hy. Since TE (resp. TM) modes have their
magnetic (resp. electric) field oriented along the pore
axis, they are often also called H (resp. E) modes.
The band structures for TE and TM polarizations are
usually completely different, because the electric field
(resp. magnetic field) for TE and TM polarizations is
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oriented in different directions relatively to the dielec-
tric interfaces within the photonic crystal. In particu-
lar, band gaps can exist for one polarization and not
for the other, or the position of the band gaps can be
very different. It has turned out that, while for sys-
tems consisting of dielectric cylinders in air a complete
band gap, i.e. a band gap for both polarizations, can be
obtained only in a honeycomb lattice, the hexagonal
lattice of air holes in dielectric opens up a complete
2D photonic band gap for a dielectric contrastn2/n1
larger than 2.6[3,20].

Fig. 1 gives an example of a band structure in the
case of a hexagonal lattice of air pores in silicon with
a relative radiusr/a of 0.43, wherea is the lattice
constant of the photonic crystal. The band structure
calculation was performed using the MIT package, a
block-iterative frequency-domain code[21] with a grid
of 64 points per lattice constant yielding good conver-
gence of the results. For this relative radius value, a
large TE band gap exists from 0.275 to 0.460 in nor-
malized frequencyωa/2πc and a smaller TM band
gap from 0.385 to 0.405 that overlaps with the TE
band gap, leading to a complete 2D band gap in this
frequency range. The variation of the photonic band
gap position with relative pore radius—the so-called
gap map—for a hexagonal lattice of air pores in sil-

Fig. 1. (a) 2D hexagonal lattice and (b) its first Brillouin zone with
the irreducible Brillouin zone delimited by the three high-symmetry
points�, M and K. (c) Band structure for a hexagonal array of air
pores in silicon (ε = 11.6, r/a = 0.43) along thek-path�–M–K–�

for TE (red lines) and TM (blue lines) polarizations. The light
grey region highlights the TE band gap and the dark grey region
the TM (resp. complete) band gap (MIT package calculation).

Fig. 2. 2D gap map (normalized frequencyωa/2πc vs. relative
pore radiusr/a) for a hexagonal lattice of air holes in silicon
(ε = 11.6). The position of the largest gap-midgap ratio is indicated
(MIT package calculation).

icon is shown inFig. 2. In this system, the complete
band gap exists only for a relative radius larger than
0.4, the largest gap–midgap ratio—ratio between band
gap width and midgap frequency—being 16.3% for a
pore radiusr/a = 0.478. However, such very large
relative radius values are quite difficult to achieve ex-
perimentally. Therefore, most of the work based on
the existence of a band gap in 2D photonic crystals
has focussed on the TE band gap only, which is still
quite large for smaller radii, e.g. atr/a = 0.366 the
gap–midgap ratio for TE modes is as large as 42.5%.

From an experimental point of view, the approxima-
tion of infinitely long pores or rods can be applied only
in structures exhibiting high aspect ratios (ratio be-
tween pore/rod length to pore/rod diameter). We have
already verified[22] that aspect ratios larger than 20
are necessary for the band structures of finite-height
silicon-based 2D photonic crystals obtained by 2D nu-
merical simulations to overlap perfectly with full 3D
ones. This is difficult to achieve with conventional dry
etching techniques. However, a good candidate for ex-
perimental study of 2D photonic crystals is macro-
porous silicon, consisting of a periodic array of air
pores in silicon. Indeed, in these structures prepared
by photo-electrochemical dissolution of silicon in hy-
drofluoric acid[23,24], very high aspect ratios up to
500 can be obtained, as illustrated inFig. 3. It has been
recently shown that the optical properties of macrop-
orous silicon can be well described by 2D simulations
[25,26].
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Fig. 3. SEM image of a two-dimensional hexagonal lattice of air
pores in silicon with a lattice constant of 1.5�m. The pore depth
is around 100�m. The bevelled etched part in front reveals the
high uniformity of the structure from the top down to the bottom
of the pores (courtesy of A. Birner, MPI Halle).

Fig. 4ashows the reflectivity of TE-polarized light
incident on a photonic crystal consisting of macrop-
orous silicon in the�–M direction. The photonic crys-
tal has a hexagonal lattice of air pores with a relative
radiusr/a of 0.366, and a lattice constant of 700 nm.
The reflection was measured using a Fourier transfor-

Fig. 4. (a) Reflectivity of TE-polarized light incident onto a 2D
photonic crystal made of a hexagonal lattice of air pores in silicon
with a relative radiusr/a of 0.366 and a lattice constant of 700 nm.
The light beam is parallel to the plane of periodicity of the
crystal in the�–M direction (courtesy of S. Schweizer (sample)
and S. Richter (measurement), MPI Halle). (b) Corresponding
band structure for TE-polarization (MIT package calculation). The
modes are sorted as laterally even (blue) or laterally odd (red)
modes. The regions where no odd mode exists are highlighted in
grey and correspond to the high-reflectivity regions.

Fig. 5.Hz-field distribution of the (a) first and (b) fourth TE bands
at the M-point for a 2D photonic crystal consisting of a hexagonal
array of air pores in silicon withr/a = 0.366 (MIT package
calculation). If we consider the mirror plane defined by the�-M
direction and the direction of the pore axis (dashed line) the first
band has an odd symmetry and the fourth band an even one.

mation infrared spectrometer (FTIR) with attached op-
tical IR microscope and calcium fluoride beam split-
ter covering a spectral region from UV to mid IR.
The light source was a broadband tungsten lamp. The
band structure of the photonic crystal is presented in
Fig. 4b. However, these curves cannot be compared
directly with the band structure, because not all the
bands yield very high transmission. Indeed, for the
main directions�–M and�–K the plane defined by the
wave vector and the pore axis is a mirror plane of the
crystal. Thus, the modes can be separated into laterally
even modes or odd modes. Since always theE‖- or
H⊥-field components have to be considered to define
the mode symmetry, laterally even (odd) symmetry
corresponds to laterally odd (even)Hz-field distribu-
tion. The lateral symmetry of the modes is illustrated
in Fig. 5, taking as examples theHz-field distribution
of the first and fourth bands at the M-point. While cou-
pling from an incident plane-wave into the photonic
crystal, only the odd modes are excited. Therefore, the
zero-transmission (resp. high reflectivity) regions do
not correspond only to band gaps, but to frequency
regions where no laterally odd mode exists. Thus, the
agreement between the measured transmission and the
calculated band structure is very good.

3. Photonic crystals slabs

Since 2D photonic crystals cannot, by definition,
provide light confinement in the direction parallel to
the pore axis, a way to avoid out-of-plane losses is the
use of photonic crystal slabs. Slab structures consist
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Fig. 6. Four examples of photonic crystal slabs (side view): (a)
air-bridge structure with high index contrast between core and
cladding, e.g. Si membrane, (b) low-index contrast heterostructure
(e.g. AlGaAs/GaAs/AlGaAs system), (c) asymmetrical structure
with two different claddings, the upper one usually being air, cur-
rent in SOI-based photonic crystal slabs, and (d) modulated-pores
structure achieved, e.g. in macroporous silicon.

of a thin 2D photonic crystal (core) surrounded by two
layers of lower effective refractive index (claddings)
that provide an index guiding by total internal reflec-
tion in the direction normal to the plane of the crystal,
as in a planar waveguide. Different examples of pho-
tonic crystal slabs are shown inFig. 6. The first one,
the so-called “air-bridge” structure has been already
largely studied[27,28]. It consists of a thin 2D pho-
tonic crystal in a high-index membrane surrounded by
air (Fig. 6a). In this case, the index contrast between
core and cladding is very high and light is strongly
confined within the core. However, this type of struc-
ture is not easily integrable into a chip. The second
example (Fig. 6b) is a photonic crystal slab made in a
heterostructure, usually consisting of III–V semicon-
ductor materials. In this case, the index-contrast be-
tween core and cladding is low, thus the mode profiles
are quite extended, and the pores penetrate deeply into
the cladding layers[29,30]. The third type of structure
(Fig. 6c) is a hybrid case often found in SOI-based sys-
tems[28,31,32]. The lower cladding usually consists
of an oxide layer, not necessarily structured, while in
most cases the upper cladding consists only of air. Al-
though this photonic crystal is easier to integrate into a
chip than a membrane, the asymmetry of the mode pro-
file within the structure leads to additional losses. In
the case of a structured oxide layer, the effective refrac-
tive index in the cladding is close to 1, thus, the struc-

ture offers both advantages of being easily integrable
and almost symmetrical. The ideal case would be a
structure with two structured oxide claddings, leading
to integrability, high light confinement and perfectly
symmetrical mode profiles at the same time. Further-
more, unlike case (b), the presence of two structured
claddings with low index should lead to low scatter-
ing losses from an experimental point of view. Indeed,
even if the modes are theoretically guided and loss-
less, the experimental structures are never perfect and
scattering losses occur due to irregularities, like rough-
ness of the pore walls. These losses are expected to be
smaller for structures with high vertical index contrast
[33]. However, since high-aspect-ratio oxide structur-
ing at a submicron scale is still a challenge, this type
of system with two structured oxide claddings is very
difficult to fabricate. These first three examples have
in common that the effective index contrast between
core and cladding is obtained by taking another mate-
rial as in the slab to build the claddings. In the last case
(Fig. 6d), the effective index contrast is obtained by
modulation of the pore diameter, keeping the same ma-
terial. In the cladding, the air filling fraction is higher,
thus the effective refractive index is lower. This kind
of structure can be obtained for example in macrop-
orous silicon[22] and offers large freedom concerning
the pore modulation and depth.

Because of the finite height of the photonic crystal
slab, polarization mixing occurs and the modes are
not purely TE (resp. TM)-polarized anymore. On the
other hand, if the (x, y)-plane in the middle of the
slab is a mirror plane of the structure, i.e., if both
claddings are identical as in the examples shown in
Fig. 6a, b and d, the modes can be separated into
vertically even (with theHz component having a sym-
metrical field distribution) and odd modes (antisym-
metrical field distribution). However, the first-order
modes, i.e. modes having no node in the vertical di-
rection, have field distributions within the core that
are very similar to the corresponding modes existing
in infinite 2D photonic crystals. Furthermore, in the
(x, y)-mirror plane itself, these modes are purely TE
(resp. TM)-polarized[34]. Thus, for first-order modes
the polarization mixing is quite small and the approxi-
mation even∼ TE-polarized and odd∼ TM-polarized
can be assumed. Therefore, the terminologies TE (or
H) modes and TM (or E) modes are found very often
to refer to even and odd modes, respectively.
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Fig. 7. (a) Photonic crystal slab consisting of a silicon core and two structured silicon oxide claddings (IOSOI structure) with air pores
arranged in a hexagonal lattice. (b) Band structure of such a system having a relative thicknessh/a = 0.4 and a relative radius of 0.366,
even modes only. Above the light line of the cladding system (grey region) the modes are resonant, their lifetime can be very limited.
Only below the light line (white region) the modes are guided and lossless. The position of the lowest second-order mode is highlighted
in blue (2D plane-wave calculation taking as basis the eigenmodes of the corresponding planar waveguide[35]).

Beside the polarization mixing effect, another im-
portant difference between infinite 2D photonic crys-
tals and photonic crystal slabs lies in the role of the
light line, which is the lowest band in the cladding
system. Indeed, the structure supports two kinds of
modes (Fig. 7b) . If the slab thickness is not too small
and the index contrast between core and cladding is
not too low, there exist some states in the slab which
form a photonic gap below the light line. The larger
the index contrast between core and claddings, the
more modes exist below the light line[10,35]. Since
for this (�k, ω)-set no state is allowed in the claddings,
the modes of the slab are totally internally reflected
at the interfaces between core and cladding and con-
fined within the core. These modes are pure Bloch
modes, they are lossless in the case of an ideal struc-
ture where no scattering occurs. Unlike symmetrical
structures, in the case of asymmetrical structures the
fundamental mode has a finite cutoff. The stronger
the asymmetry, the higher the cutoff frequency of the
mode, so that it may happen that the lowest mode lies
entirely above the light line, and no guided mode ex-
ists at all [36]. Above the light line of the cladding
material, the modes lie within the continuum of leaky
modes of the planar waveguide. Therefore, they are
resonant or “quasi-guided”, because they have intrin-
sic radiation losses related to out-of-plane diffraction.
Their lifetime is varying, it can be very long (weak
radiation losses) as well as very limited (strong radi-

ation losses)[37]. A method to estimate the radiation
losses a posteriori consists in including an effective
loss into a 2D model through a dissipation mechanism,
i.e. by inserting an imaginary index in the air holes and
calculating the radiation losses using a first-order per-
turbation approximation. The value of the imaginary
index is determined by fitting of the experimental data.
This very efficient method has been first developed for
a transfer-matrix code[9] and then been extended to
a time-domain method[38].

A lot of theoretical work on photonic crystal slabs
has focussed on guided modes only[10,11]. However,
for practical applications, the modes above the light
line must be considered too, because an incident wave
can couple light to all the modes existing at a given
frequency in a given direction, provided they have
the proper symmetry. Due to the finite height of the
structure, 3D calculations are necessary to determine
the band structure. However, several 3D codes—like
the MIT package—assume a periodicity in all three
dimensions, which is not convenient for a photonic
crystal slab. Due to the fictive periodicity in the ver-
tical direction, some additional coupling between res-
onant modes occurs, which disturbs completely the
band structure. Therefore, only guided modes can be
calculated correctly, because they do not feel the fic-
tive vertical periodicity. There are different methods
to calculate resonant modes. A way is to use a 3D
finite-difference time-domain (FDTD) code with open
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boundary conditions on the top and the bottom of the
structure[39,37]. It is also possible to perform 2D
plane-wave calculations taking as a basis the eigen-
modes of a planar waveguide where each layer has the
same effective refractive index as the photonic crystal
slab structure[35]. This is the method used inFig. 7.

If the slab thickness is increased, the cutoff fre-
quency of the higher-order modes decreases, exactly as
in a planar waveguide. For too thick slabs, higher-order
modes can exist within the first-order band gap of the
photonic crystal slab. Thus, if these modes happen to
have the right symmetry properties to be excited by
an external light beam, they can limit the band gap or
even destroy it completely. Reducing the vertical index
contrast�n, the cutoff frequency of the higher-order
modes increases. A first guess to determine the cutoff
frequency of the lowest second-order mode is to use
the planar waveguide approximation. In this very sim-
ple approximation, we calculate the cutoff frequency
of the second mode in a planar waveguide where each
layer has the same effective refractive index as the
photonic crystal slab, using the relation

h

λ0
= 1

2
√

n2
2 − n2

1

(7)

whereh is the thickness of the core,λ0 the cutoff wave-
length,n1 andn2 the effective indices in the claddings
and in the core, respectively, and for a photonic crys-
tal:
h

λ0
= h

a

a

λ0
(8)

with h/a the relative thickness of the slab anda/λ0 =
ωa/2πc the normalized cutoff frequency of the mode.
There are different methods to determine the effective
refractive index of a photonic crystal. We choose here
to consider the light lines of the 2D systems corre-
sponding to core and claddings and take the inverse of
their tangent at the�-point. For example, for a pho-
tonic crystal slab consisting of a silicon slab (ε = 11.6)
and two structured silicon oxide claddings (ε = 2.1)
with a relative radius of 0.366, the effective refractive
indices are 2.57 in the core and 1.25 in the claddings.
This leads for a relative silicon thickness of 0.4 to
a cutoff frequency of 0.56 for the first second-order
mode. Such a system as well as the corresponding
band structure have already been presented inFig. 7.
It can be seen on the band structure that the lowest

second-order mode has a cutoff frequency around 0.57
that is very close to the value calculated using the
planar waveguide approximation. Therefore, this very
simple method gives already a good guess of the cutoff
frequency of higher-order modes in photonic crystal
slabs.

4. Waveguides in infinite 2D photonic crystals

If a line defect is introduced into the 2D photonic
crystal lattice, e.g. by changing the pore radius of an
entire pore line or removing it completely, some de-
fect states are created. For a convenient design of the
defect, some of these states ought to be located within
the band gap of the photonic crystal. Since light can
not propagate in the photonic crystal at this frequency,
it is localized in the surrounding of the defect, i.e., the
line defect acts as a waveguide.Fig. 8shows some ex-
amples of linear waveguides in 2D photonic crystals.

The introduction of a line defect induces a sym-
metry breaking. Indeed, now the translation symme-
try exists only in the direction parallel to the defect.
Therefore, the new Brillouin zone is 1D, and the band
structure of the 2D photonic crystal has to be projected
onto thek-path�(0)–J(π/a) of the new Brillouin zone
[40]. Fig. 9 shows the band structure for TE modes
of a W1 waveguide consisting of a row of missing
pores in the�–K direction, the photonic crystal con-
sisting of a hexagonal lattice of air pores in silicon
with relative radius 0.43. The band structure for the

Fig. 8. Some examples of waveguides in 2D photonic crystals: (a)
W1 waveguide (i.e. waveguide having a width of one pore row)
consisting of a row of missing pores, (b) W1 waveguide consist-
ing of a row of pores with smaller diameter, (c) coupled-cavity-
waveguide and (d) W3 waveguide (i.e. three pore-rows wide).
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Fig. 9. (a) SEM picture and (b) band structure for the TE polar-
ization of a linear waveguide in a 2D photonic crystal. The pho-
tonic crystal consists of a hexagonal lattice of air pores in silicon
with lattice constant 1.5�m and relative radius 0.43. The linear
defect is made of a row of missing pores in the�–K direction.
The defect modes are sorted into index-guided (dashed lines) and
photonic-band-gap guided modes (solid lines) as well as into lat-
erally odd (red lines) and even modes (blue lines) (MIT package
calculation).

corresponding bulk photonic crystal has already been
presented inFig. 1. The grey regions inFig. 9 corre-
spond to the continuum of projected bands of the bulk
photonic crystal. Comparison withFig. 1 shows that
there is a TE band gap in the frequency region from
0.275 to 0.460 where several defect states are located.
However, not all of these defect states are guided due
to the presence of the photonic band gap. Indeed, in
such a structure two guiding mechanisms coexist. The
first one is based on the existence of the photonic band
gap and the second one is classical index guiding due
to the effective index contrast between the waveguide
and its surrounding.

Since their existence is based on index contrast,
index-guided modes (dashed lines) exist below the
first band of the bulk photonic crystal. When they
reach the J-point at the limit of the first Brillouin zone,
they are folded back into the first Brillouin zone and
continue to increase in direction of the�-point, and
so on.Fig. 10shows a comparison between the field
distributions at the J-point of the two index-guided
modes ofFig. 9 and those of the corresponding 2D
ridge-waveguide having the same width and the same
effective indices in core and cladding as the photonic
crystal waveguide. There is good agreement between
the fields of both systems, taking into account that
the index-guided modes inside the photonic crystal

Fig. 10. Comparison between theHz-field distributions of the
four lowest index-guided modes in the photonic crystal waveguide
presented inFig. 9(right) and in the corresponding ridge waveguide
(left) having the same width and the same effective indices in
the core (3.4 for silicon) and the claddings (1.55 for the system
silicon/air pores withr/a = 0.43). The black lines on the left
demarcate the silicon core of the ridge waveguide while the black
circles on the right indicate the position of the air pores of the
photonic crystal. (MIT package calculation).

waveguide are perturbed by the periodicity of the
pores, which leads to the stop gap between the modes
at the J-point. Considering first the two lowest-order
modes (red dashed lines, having at the J-point the
frequencies 0.190 and 0.193, respectively), it can be
noticed that the first index-guided mode in the W1
waveguide extends more into the photonic crystal
than the second one. This can be explained by the fact
that the wavelength of the lowest mode is larger (the
mode extension for fundamental modes isλ/2). The
same phenomenon occurs in a much stronger way
for the third and fourth bands, corresponding to the
second-order mode in the ridge waveguide. These two
bands (blue dashed lines) have the frequencies 0.228
and 0.285 at the J-point, respectively, band 3 lying
below the region of bulk modes and band 4 within the
band gap. We can explain the stronger energy gap be-
tween the two bands in the following way: in this case,
the mode extension isλ, so that the mode profile of
band 3 is large and has to extend into the surrounding
photonic crystal. Thus, its field intensity is located par-
tially in the air pores. Since the mode extension of band
4 is smaller, this mode can be very well located in the
dielectric. Due to the important difference between the
field distributions of these two second-order modes,
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Fig. 11. Hz-field distributions of the three lowest photonic-band-
gap-guided defect modes of the W1 waveguide presented inFig. 9.
The black circles indicate the position of the air pores of the
photonic crystal. (MIT package calculation).

a much larger energy gap is expected between them
than between the two first ones. As a consequence,
band 4 lies within the band gap of the photonic crystal.

Unlike the index-guided modes, the photonic-band-
gap-guided modes exist only within the band gap
of the photonic crystal (solid lines inFig. 9). Their
guiding mechanism is based on the absence of al-
lowed states in the surrounding photonic crystal, and
therefore presents a metallic-like behavior. Further-
more, contrary to index-guided modes, they exist
also in waveguides where the core has a lower effec-
tive index as the surrounding photonic crystal[40].
Fig. 11shows the field distributions of the three low-
est photonic-band-gap-guided defect modes at the
J-point, having frequencies 0.262, 0.352 and 0.378,
respectively.

Another effect that can be noticed inFig. 9 is
anti-crossing. Indeed, only modes having different
symmetries can cross each other without being dis-
turbed. Modes having the same symmetry interact,
leading to anti-crossing effects, as can be seen for the
two laterally odd modes in the middle of the gap at a
frequency around 0.39. The interaction between these
two modes illustrates the fact that the distinction done
between index- and band-gap guidance is not always
a rigorous one. Moreover, it is possible to combine
both, by inserting a slab waveguide in the middle of
a photonic crystal[40,41].

Fig. 12 shows the transmission through a W1
waveguide consisting one row of missing pores in

Fig. 12. (a) Transmission measurement and (b) FDTD calcula-
tion for the photonic crystal waveguide presented inFig. 9. The
waveguide is 18 lattice constants long. (reprinted from[42]).

macroporous silicon, similar to that presented in
Fig. 9. The line defect is 27�m long (18 lattice con-
stants). The transmission through the waveguide was
measured with a pulsed laser source having a band-
width of 200 nm and tunable over a large frequency
range of the TE band gap (3.1�m < λ < 5.5�m)
[26,42]. The measured spectrum inFig. 12aexhibits
pronounced Fabry–Perot resonances over a large spec-
tral range which are caused by multiple reflections
at the waveguide facets, and is in very good agree-
ment with the corresponding 2D-FDTD transmission
calculation ofFig. 12b. Again, as in the case of bulk
photonic crystals, only the waveguide modes with lat-
erally odd symmetry with respect to the mirror plane
in the middle of the waveguide can be excited by the
laser beam, so that the even modes do not contribute
to the transmission.

Due to the photo-electrochemical fabrication pro-
cess the diameter of the pores in the adjacent rows to
the waveguide is increased, as can be seen inFig. 9a.
This leads to a shift of defect modes to higher fre-
quencies. In the transmission calculation this feature
has been taken into account. Therefore, if the reflec-
tion curves are compared with the band structure of
Fig. 9, the small stopgap observed in the transmission
curves for frequencies around 0.45 corresponds to the
anti-crossing between odd modes in the middle of the
band gap.
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5. Waveguides in photonic crystal slabs

If a line defect is introduced into a photonic crys-
tal slab lattice, the same phenomenon occurs as in the
case of infinite 2D photonic crystals. For an appro-
priate design of the waveguide some defect states are
located within the band gap of the photonic crystal,
so that light is confined along the line defect in the
plane of the crystal in this frequency range. Combin-
ing this in-plane confinement with the vertical confine-
ment due to the index contrast in the vertical direction,
a 3D light confinement is possible within a waveguide
in a photonic crystal slab[27–31,40]. Fig. 13 shows
the band structure of a W1 waveguide made of one
row of missing pores in a photonic crystal slab, cal-
culated using the MIT package. The photonic crystal
consists of a silicon core with relative thickness 0.4
surrounded by two structured silicon oxide claddings
(i.e., the air pores extend into the oxide claddings).
The pores are arranged in a hexagonal lattice and have
a relative radius of 0.366. The corresponding band
structure for the bulk photonic crystal has been shown
in Fig. 7. The lower grey region corresponds to the
continuum of projected bulk bands, and the upper grey
region to the light cone. The defect modes below the

Fig. 13. Left: band structure of a W1 waveguide consisting of one row of missing pores in a photonic crystal slab. The photonic crystal
is fabricated in a silicon core with relative thickness 0.4 surrounded by two structured silicon oxide claddings (MIT package calculation).
The pores are arranged in a hexagonal lattice, and have a relative radius of 0.366. The lower grey region corresponds to the continuum
of projected bulk bands, and the upper grey region to the light cone. The defect modes are sorted into index-guided (dashed lines)
and photonic-band-gap guided modes (solid lines) as well as into laterally odd (red lines) and even modes (blue lines). Right:Hz-field
distributions of the five defect modes which are guided at the boundary of the first Brillouin zone (J-point). The horizontal cross-sections
show the field distributions in the (x, y)-mirror plane in the middle of the silicon slab, the black circles indicating the position of the pores.
The vertical cross sections show the field distributions in the (x, z)-planes containing the intensity maxima, the black lines indicating the
position of the silicon slab.

region of projected bulk modes are index-guided, as
in the case of an infinite 2D photonic crystal. Further-
more, the field distributions (1–3) in the (x,y)-mirror
plane in the middle of the silicon slab shown inFig. 13
are very similar to the corresponding ones presented
in Fig. 10. This is related to the fact that the defect
modes are very well confined within the silicon core,
as can be seen in the vertical cross sections shown in
Fig. 13. Above the projected bulk modes, the defect
modes lie within the band gap of the photonic crystal.
They are vertically confined as long as they are in the
white region below the light line. For in-plane confine-
ment both guiding mechanism coexist as in the case
of infinite 2D waveguide structures: either the modes
are index-guided (like band 5) or they are guided due
to the existence of the photonic band gap (like band
4). Again, comparison between the field distributions
of these two defect modes and the two corresponding
ones presented inFig. 9a and band 4 inFig. 10show
very strong similarities.

Above the light line the defect modes become res-
onant, i.e., they are still guided in the plane along the
line defect but they are lossy in the vertical direction.
Due to the intrinsic radiation losses, the light transmis-
sion through waveguides based on defect modes above
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Fig. 14. (a) Band structure for odd modes of a photonic crys-
tal waveguide having a relative silicon thickness of 0.3 and all
other parameters like inFig. 13 (3D FDTD calculation with open
boundary conditions on the top and the bottom of the structure).
Only the frequency range between 0.32 and 0.44 is shown, cor-
responding to the photonic band gap of the crystal. The grey
regions correspond to the frequency regions within the photonic
band gap where no defect mode exists. (b) Transmission through
the waveguide with 30 (blue line) and 40 (red line) lattice con-
stants length, respectively. The light is coupled in and out through
a ridge waveguide having the same width and the same effective
indices as the photonic crystal waveguide.

the light line can be quite low.Fig. 14ashows the band
structure of a photonic crystal waveguide having a rel-
ative silicon thickness of 0.3, all the other parameters
being the same as inFig. 13. The corresponding trans-
mission through this waveguide with 30a (resp. 40a)
length is presented inFig. 14b. The calculation takes
into account light in- and out-coupling to the photonic
crystal waveguide through a ridge waveguide having
the same width and the same effective indices, leading
to coupling losses of around 50%. The relative fre-
quency range shown (0.32–0.44) corresponds to the
photonic band gap of the crystal. Since laterally odd
modes are of interest only the two odd defect bands
are shown in the band structure, separated by a mini
stop gap around 0.405. The light line of the cladding
system is shown (black line). Thus, the first defect
mode is guided only in the wave vector range 0.4–0.5,
which corresponds to a very small frequency range.
The main part of the lower defect band inFig. 14(for
wave vectors below 0.4), contributing to the transmis-
sion, is resonant. From the difference in transmission
between the two waveguide lengths the attenuation

Fig. 15. (a) Band structure for odd modes of the same photonic
crystal waveguide as inFig. 14 and (b) corresponding intrinsic
losses (2D plane-wave calculation[35,43]). The dashed line in-
dicates the position of the light line. The small frequency shift
observed while comparing withFig. 14 comes from the fact that
the two codes used converged towards slightly different values.

due to radiation losses is estimated to be in the order
of 100 dB/mm for a lattice constant of 500 nm. This
estimation is in good agreement with theoretical pre-
dictions[43] as well as experimental measurements on
W1 waveguides in silicon[44]. Fig. 15shows the con-
formity between the band structure and the intrinsic
losses within the photonic crystal waveguide. It can be
recognized that the losses of the lowest defect mode
are in the order of 100 dB/mm on average, as predicted
from the transmission calculation. When the wave vec-
tor increases towards the J point, the band crosses the
light line and becomes guided. As expected, this corre-
sponds to a very fast decrease of the losses. Above the
light line, at the other band edge, while reaching the
mini-stop gap at the�-point the slowing down of the
group velocity leads to a large increase of the radiation
losses. The same phenomena is observed at the lower
limit of the band gap for frequencies around 0.335.
The upper odd defect mode is entirely resonant, the
corresponding low transmission presented inFig. 14
indicates strong radiation losses (≥200–300 dB/mm).
This is confirmed inFig. 15. Radiation losses for
modes above the light line in a slab waveguide are
expected to be proportional to the square of the ver-
tical index contrast (�ε2) [9]. Thus, in III–V-based
heterostructures intrinsic losses are much lower than
in SOI-based waveguides. However, in silicon-based
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structures some modes exist below the light line, with
correspondingly very small intrinsic losses for guided
modes. Only in the case of periodicity breaking, like
waveguide bends, some intrinsic losses have to be ex-
pected below the light line, that depend on a complex
way on several parameters such as dielectric contrast
and defect design.

For the guided modes to become good candidates
for waveguiding, some modifications of the defect de-
sign are necessary. Indeed, the extreme flatness of the
band under the light line, in the case of the W1 waveg-
uide discussed here, is in most cases not desirable be-
cause it leads to very low transmission. Furthermore,
since in the region of guided modes the defect band is
located very close to the lower edge of the band gap, it
is expected to be not well confined and very sensitive
to fabrication disorder. A way to shift the defect mode
in the middle of the band gap, as well as to increase
the group velocity and the transmission window of the
mode below the light line, is to vary the defect width.
The position of the mode within the band gap can be
also controlled by varying the diameter of the holes
constituting the line defect or of the holes surrounding
the defect[31,45].

6. Conclusion

In summary, 2D photonic crystals offer the exciting
possibility to guide light in two and three dimensions,
by combining two different guiding mechanisms: in-
dex guiding and photonic-band-gap guiding. A line
defect in the plane of the photonic crystal acts as a
waveguide with bounded defect states. Some of these
states exist already below the bulk modes and are
guided by total internal reflection. They see the pho-
tonic crystal as a more or less homogeneous medium
with effective refractive index. These modes are very
similar to ridge waveguide modes. Some other modes
are confined within the line defect due to destructive
interferences with the surrounding photonic crystal.
This second guiding mechanism is based only on the
existence of the photonic band gap and do not exist in
a ridge waveguide. If the photonic crystal is fabricated
in a thin dielectric slab, light can also be confined in
the vertical direction by total internal reflection due
to the index contrast between the slab and its sur-
rounding. Combined with the waveguiding along a

line defect within the plane of the photonic crystal, a
possible 3D light confinement in 2D photonic crystals
can be achieved.
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