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Silicon deposition in roots minimizes the cadmium accumulation
and oxidative stress in leaves of cowpea plants

Talitha Soares Pereira1 • Thaı́s Soares Pereira1 • Carla Leticia Figueredo de Carvalho

Souza1 • Emilly Juliane Alvino Lima1 • Bruno Lemos Batista2 • Allan Klynger da

Silva Lobato1

Received: 1 June 2017 / Revised: 15 November 2017 / Accepted: 7 December 2017 / Published online: 19 December 2017

� Prof. H.S. Srivastava Foundation for Science and Society 2017

Abstract Silicon (Si) frequently accumulates in plants

tissues, mainly in roots of dicotyledons, such as cowpea.

By contrast, Cadmium (Cd) is a metal that is extremely

toxic to plant metabolism. This research aims to investigate

if the deposition of Si in root can reduce Cd contents and

minimize its negative effects on leaves, measuring gas

exchange, chlorophyll fluorescence, antioxidant metabo-

lism, photosynthetic pigments and growth, which may

explain the possible role of Si in the attenuation of Cd

toxicity in cowpea. This study had a factorial design, with

all factors completely randomized and two Cd concentra-

tions (0 and 500 lM Cd, termed as – Cd and ? Cd,

respectively) and three Si concentrations (0, 1.25 and

2.50 mM Si). Si reduced Cd contents in the roots and in

other plant organs, such as stems and leaves. The Si con-

tents were highest in roots, followed by stems and leaves,

which was explained by the passive absorption of Si. The

application of Si promoted increase in both the macro- and

micronutrient contents in all tissues, suggesting that Si

mitigates the effect of Cd on nutrient uptake. Si attenuated

Cd-mediated effects on light absorption of photosystem II

(PSII), increasing the effective quantum yield of PSII

photochemistry and the electron transport rate. Addition-

ally, toxic effects induced by Cd on gas exchange were

mitigated by the action of Si. Plants treated with Cd ? Si

showed increase in the activities of antioxidant enzymes

and reductions in oxidant compounds; these modifications

were promoted by Si via detoxification mechanisms.

Increases in the photosynthetic pigments and growth of

plants treated with Si and exposed to Cd stress were

detected and were due to the reduced deterioration of cell

membranes and maintenance of chloroplasts, which had

positive repercussions on growth and development. This

study validated the hypothesis that the accumulation of Si

in roots induces benefits on metabolism and alleviates the

toxic effects caused by Cd in leaves of cowpea.
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Introduction

Cowpea [Vigna unguiculata (L.) Walp.] is an important

high protein food legume that is used in human and live-

stock diets (Agbicodo et al. 2009). This crop is moderately

tolerant to drought and largely cultivated in semi-arid

tropical regions covering Asia, Africa, Central and South

America. Cowpea also has a high capacity to fix atmo-

spheric nitrogen and shows adequate growth, even on soils

with low fertility (Ehlers and Hall 1997; Singh et al. 2003).

Cadmium (Cd) is a highly toxic heavy metal that can

reach high concentrations in agricultural soils, and it is

easily assimilated (Krantev et al. 2008). Cd can be found in

high amounts in mining areas or in areas that have received

large amounts of herbicides and/or fertilizers, mainly

phosphate fertilizers (Tran and Popova 2013). Organic

matter, temperature, pH, the concentration of other min-

erals in the soil and the redox potential are factors that can

favour Cd absorption by plants (Benavides et al. 2005).
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When in excess, Cd causes phytotoxicity and interferes

negatively with diverse metabolic processes, such as the

decreased absorption of essential nutrients, leading to

nutritional deficiency (Irfan et al. 2013), damage to the

photosynthetic apparatus (Chen et al. 2011; Dias et al.

2013), reduction of the growth rate (Gill et al. 2012),

increase of lipid peroxidation (Hassan et al. 2005), and

induction of oxidative stress due to the production of

reactive oxygen species (Cho and Seo 2005; Gill and

Tuteja 2010). The accumulation of Cd in plant tissues may

also represent a risk to the health of humans and animals

feeding on these plants (Vecchia et al. 2005).

Silicon (Si) is the second most abundant element in soil

(Vaculı́ková et al. 2016). Plants can assimilate Si using

their roots in the form of silicic acid [Si(OH)4], in both

passive and active forms. Si is translocated to shoot via the

xylem (Ma and Yamaji 2006). Si is not recognized as an

essential element, but its beneficial effects on biotic and

abiotic stress have been found in several species (Côté-

Beaulieu et al. 2009; Farooq et al. 2013).

The action of Si on the attenuation of the negative

effects caused by Cd has been described in the literature,

including the improvement of antioxidant responses in

Arachis hypogaea (Shi et al. 2010), maintenance of

membrane integrity in Echium amoenum (Amiri et al.

2012), increase in biomass of Zea mays (Dresler et al.

2015), maximization of growth by Vicia faba (Abu-Mur-

iefah 2015), Cucumis sativus and Solanum lycopersicum

(Wu et al. 2015), higher photosynthetic performance of

Cucumis sativus (Harizanova et al. 2014), and reduction of

Cd content in Triticum turgidum (Rizwan et al. 2012).

However, there are no studies on Vigna unguiculata.

There are different tolerance mechanisms to metal

induced by Si in higher plants, being described as com-

partmentation (Jesus et al. 2017), coprecipitation (Neu-

mann and Nieden 2001) and/or chelation of heavy metals

in different plant parts, mainly root and stem (Wu et al.

2013; Adrees et al. 2015). In relation to soil, studies con-

ducted by Treder and Cieslinski (2005) and da Cunha et al.

(2008) showed that Si immobilizes Cd and Zn. Specifically

to cowpea plants, the probable strategy used to avoid the

Cd toxicity is currently unknown.

Si frequently accumulates in plants tissues, mainly in the

roots of dicotyledons, such as cowpea. By contrast, Cd is a

metal that is extremely toxic to plant metabolism. This

study, therefore, aimed to investigate whether Si deposition

in roots could reduce Cd contents and minimize its nega-

tive effects on leaves, evaluating gas exchange, chlorophyll

fluorescence, antioxidant metabolism, photosynthetic pig-

ments and growth, demonstrating the possible roles of Si

related to the attenuation of Cd toxicity in cowpea plants.

Materials and methods

Location and growth conditions

The experiment was performed at the Campus of

Paragominas of the Universidade Federal Rural da Ama-

zônia, Paragominas, Brazil (2�550S, 47�340W). The study

was conducted in a greenhouse with controlled temperature

and humidity. The minimum, maximum, and median

temperatures were 23, 32 and 26.5 �C, respectively. The

relative humidity during the experimental period varied

between 60 and 80%.

Plants, containers and acclimation

Vigna unguiculata L. cv. BR3-Tracuateua seeds were

germinated and grown in 1.2-L pots (0.15 m in height and

0.10 m in diameter) filled with a mixed substrate of sand

and vermiculite at a ratio of 3:1. Plants were cultivated

under semi-hydroponic conditions, and the pots had one

hole in the bottom covered with mesh to maintain the

substrate and aerate the roots. Solution absorption was by

capillarity, with these pots placed into other containers

(0.15 m in height and 0.15 m in diameter) containing

500 mL of distilled water for five days. A modified

Hoagland and Arnon (1950) solution was used for nutri-

ents, and the ionic strength began at 50% and was modified

to 100% after one day. After one day, the nutritive solution

remained at total ionic strength.

Experimental design

The experiment had factorial design with the two factors

completely randomized, being two Cd concentrations (0

and 500 lM Cd, described as - Cd and ? Cd, respec-

tively) and three Si concentrations (0, 1.25 and 2.50 mM

Si). With five replicates for each of the six treatments, a

total of 30 experimental units were used in the experiment,

with one plant in each unit.

Plant growth and treatments with Si and Al

Six-day-old plants received the following macro- and

micronutrients from the nutritive solution: 8.75 mM

KNO3, 7.5 mMCa(NO3)2�4H2O, 3.25 mM NH4H2PO4, 1.5

mM MgSO4�7 H2O, 62.50 lM KCl, 31.25 lM H3BO3,

2.50 lM MnSO4�H2O, 2.50 lM ZnSO4�7H2O, 0.63 lM

CuSO4�5H2O, 0.63 lM NaMoO4�5H2O, and 250.0 lM

NaEDTAFe�3H2O. One plant per pot was used during plant

conduction. For Si treatment, Na2SiO3�9H2O was used at

concentrations of 0, 1.25 and 2.50 mM Si and applied for

18 days (days 7–25 after the initiation of the experiment).
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To simulate Cd exposure, CdCl2 was used at concentra-

tions of 0 and 500 lM Cd, which was applied over 10 days

(days 15–25 after the initiation of the experiment). During

the study, the solutions were changed at 07:00 h at 3-day

intervals, with the pH adjusted to 5.0 using HCl or NaOH.

All reagents used in this study were obtained from Sigma-

AldrichTM. On day 25 of the experiment, the physiological

and morphological parameters were measured for all

plants, and leaf tissues were harvested for nutritional and

biochemical analyses.

Measurement of chlorophyll fluorescence

The effective quantum yield of PSII photochemistry

(UPSII), photochemical quenching coefficient (qP), non-

photochemical quenching (NPQ), electron transport rate

(ETR), relative energy excess at the PSII level (EXC) and

ratio between the electron transport rate and net photo-

synthetic rate (ETR/PN) were determined using a modu-

lated chlorophyll fluorometer (model OS5p; Opti-

Sciences). The chlorophyll fluorescence was measured in

fully expanded leaves under light. Preliminary tests deter-

mined the location of the leaf, part of the leaf and time

required to obtain the greatest Fv/Fm ratio. Therefore, the

acropetal third of leaves that was in the middle third of the

plant and adapted to the dark for 30 min was used in the

evaluation. The intensity and duration of the saturation

light pulse were 7500 lmol m-2 s-1 and 0.7 s,

respectively.

Evaluation of gas exchange

The net photosynthetic rate (PN), transpiration rate (E),

stomatal conductance (gs), and intercellular CO2 concen-

tration (Ci) were evaluated using an infrared gas analyser

(model LCPro?; ADC BioScientific). These parameters

were measured at the adaxial surface of fully expanded

leaves that were collected from the middle region of the

plant. The water-use efficiency (WUE) was estimated

according to Ma et al. (2004a), and the instantaneous car-

boxylation efficiency (PN/Ci) was calculated using the

formula described by Aragão et al. (2012). Gas exchange

was evaluated in all plants under a constant CO2 concen-

tration, photosynthetically active radiation, air-flow rate

and temperature conditions in the chamber of

360 lmol mol-1 CO2, 800 lmol photons m-2 s-1,

300 lmol s-1 and 28 �C, respectively, between 10:00 and

12:00 h.

Extraction of antioxidant enzymes, superoxide

and soluble proteins

Antioxidant enzymes (SOD, CAT, APX and POX),

superoxide and soluble proteins were extracted from leaf

tissues according to the method of Badawi et al. (2004).

The extraction mixture was prepared by homogenizing

500 mg of fresh plant material in 5 ml of extraction buffer,

which consisted of 50 mM phosphate buffer (pH 7.6),

1.0 mM ascorbate and 1.0 mM EDTA. Samples were

centrifuged at 14,000 9 g for 4 min at 3 �C, and the

supernatant was collected. Quantification of the total sol-

uble proteins was performed using the method described by

Bradford (1976). Absorbance was measured at 595 nm,

using bovine albumin as a standard.

Superoxide dismutase assay

For the SOD assay (EC 1.15.1.1), 2.8 ml of a reaction

mixture containing 50 mM phosphate buffer (pH 7.6),

0.1 mM EDTA, 13 mM methionine (pH 7.6), 75 lM NBT,

and 4 lM riboflavin was mixed with 0.2 ml of supernatant.

The absorbance was then measured at 560 nm (Giannop-

olitis and Ries 1977). One SOD unit was defined as the

amount of enzyme required to inhibit 50% of the NBT

photoreduction. The SOD activity was expressed in unit

mg-1 protein.

Catalase assay

For the CAT assay (EC 1.11.1.6), 0.2 ml of supernatant

and 1.8 ml of a reaction mixture containing 50 mM phos-

phate buffer (pH 7.0) and 12.5 mM hydrogen peroxide

were mixed, and the absorbance was measured at 240 nm

(Havir and McHale 1987). The CAT activity was expressed

in lmol H2O2 mg-1 protein min-1.

Ascorbate peroxidase assay

For the APX assay (EC 1.11.1.11), 1.8 ml of a reaction

mixture containing 50 mM phosphate buffer (pH 7.0),

0.5 mM ascorbate, 0.1 mM EDTA, and 1.0 mM hydrogen

peroxide was mixed with 0.2 ml of supernatant, and the

absorbance was measured at 290 nm (Nakano and Asada

1981). The APX activity was expressed in lmol AsA mg-1

protein min-1.

Peroxidase assay

For the POX assay (EC 1.11.1.7), 1.78 ml of a reaction

mixture containing 50 mM phosphate buffer (pH 7.0) and

0.05% guaiacol was mixed with 0.2 ml of supernatant,

followed by addition of 20 lL of 10 mM hydrogen
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peroxide. The absorbance was then measured at 470 nm

(Cakmak and Marschner 1992). The POX activity was

expressed in lmol tetraguaiacol mg-1 protein min-1.

Determination of superoxide concentration

For the determination of O2
-, 1 ml of extract was incu-

bated with 30 mM phosphate buffer [pH 7.6] and 0.51 mM

hydroxylamine hydrochloride for 20 min at 25 �C. Then,

17 mM sulphanilamide and 7 mM a-naphthylamine were

added to the incubation mixture for 20 min at 25 �C. After

the reaction, ethyl ether was added in the identical volume

and centrifuged at 3000 9 g for 5 min. The absorbance

was measured at 530 nm (Elstner and Heupel 1976).

Extraction of nonenzymatic compounds

Nonenzymatic compounds (H2O2 and MDA) were extrac-

ted as described by Wu et al. (2006). Briefly, a mixture

designed to extract H2O2 and MDA was prepared by

homogenizing 500 mg of fresh leaf material in 5 mL of 5%

(w/v) trichloroacetic acid. Then, samples were centrifuged

at 15,000 9 g for 15 min at 3 �C to collect the supernatant.

Determination of hydrogen peroxide concentration

To measure H2O2, 200 lL of supernatant and 1800 lL of

reaction mixture (2.5 mM potassium phosphate buffer [pH

7.0] and 500 mM potassium iodide) were mixed, and the

absorbance was measured at 390 nm (Velikova et al.

2000).

Quantification of malondialdehyde concentration

MDA was determined by mixing 500 lL of supernatant

with 1 mL of the reaction mixture, which contained 0.5%

(w/v) thiobarbituric acid in 20% trichloroacetic acid. The

mixture was incubated in boiling water at 95 �C for

20 min, with the reaction terminated by placing the reac-

tion container in an ice bath. The samples were centrifuged

at 10,000 9 g for 10 min, and the absorbance was mea-

sured at 532 nm. The nonspecific absorption at 600 nm

was subtracted from the absorbance data. The amount of

MDA–TBA complex (red pigment) was calculated based

on the method of Cakmak and Horst (1991), with minor

modifications and using an extinction coefficient of

155 mM-1 cm-1.

Determination of electrolyte leakage

Electrolyte leakage was measured according to the method

of Gong et al. (1998) with minor modifications. Fresh tis-

sue (200 mg) was cut into pieces 1 cm in length and placed

in containers with 8 mL of distilled deionized water. The

containers were incubated in a water bath at 40 �C for

30 min, and the initial electrical conductivity of the med-

ium (EC1) was measured. Then, the samples were boiled at

95 �C for 20 min to release the electrolytes. After cooling,

the final electrical conductivity (EC2) was measured. The

percentage of electrolyte leakage was calculated using the

formula EL (%) = (EC1/EC2) 9 100.

Determination of photosynthetic pigments

Determinations of the chlorophyll and carotenoid levels

were performed with 40 mg of leaf tissue. The samples

were homogenized in the dark with 8 mL of 90% metha-

nol. The homogenate was centrifuged at 6000 9 g for

10 min at 5 �C. The supernatant was removed, and the

chlorophyll a (Chl a) and b (Chl b), carotenoid (Car) and

total chlorophyll (total Chl) levels were quantified using a

spectrophotometer (model UV-M51; Bel Photonics)

according to the methodology of (Lichtenthaler and

Buschmann 2001).

Measurements of morphological parameters

The growth of roots, stems and leaves was measured based

on constant dry weights (g) after drying in a forced-air

ventilation oven at 65 �C.

Extraction and Si determination

Samples containing 100 mg of dry matter were placed in a

muffle furnace and maintained for 3 h at 500 �C. The

material was removed and mixed in 10 mL of 1% NaOH.

For the determination of Si, 200 lL of supernatant and

1720 lL of the reaction mixture (0.078 N HCl, 3.45 mM

NH4Mo7O24, 54 mM tartaric acid) were mixed with 80 lL

of a reducing agent. The reducing agent was prepared with

40 mM Na2SO3, 10.5 mM 1-amino-2-naphthol-4-sulfonic

acid, and 1.45 mM NaHSO3. The absorbance was mea-

sured at 600 nm (Ma et al. 2004b).

Determination of Cd and nutrients

Samples with 100 mg of milled samples were weighed in

50 ml conical tubes (FalconR, Corning, Mexico) and pre-

digested (48 h) with 2 ml of sub boiled HNO3 (DST 1000,

Savillex, USA). Thereafter, 8 ml of a solution containing

4 ml of H2O2 (30% v/v, Synth, Brasil) and 4 ml of ultra-

pure water (Milli-Q System, Millipore, USA) were added

and the mixture was transferred to a Teflon digestion

vessel, closed and heated in a block digester (EasyDigest�,

Analab, France) according to the following program: (1)

100 �C for 30 min; (2) 150 �C for 30 min; (3) 130 �C for
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10 min; (4) 100 �C for 30 min and, (5) left to cool. The

volume was made up to 50 mL with ultra-pure water and

iridium was used as internal standard at 10 lg l-1, in

agreement with Batista et al. (2014). The determinations of

Cd, P, K, Ca, Mg, S, Zn, Cu, Fe, Mn, and Mo were carried

out by using an inductively coupled plasma mass spec-

trometer (ICP-MS 7900, Agilent, USA). Certified reference

materials (NIST 1570a and NIST 1577c) were run in each

batch for quality control purposes. All found values were in

agreement with certified values.

Bioconcentration factor

The bioconcentration factor (BCF) was calculated by the

equation BCF = Ept/Ens as described by Yoon et al.

(2006), where Ept represents the element concentration in

plant tissue and Ens represents the element concentration in

the nutritive solution.

Data analysis

The data were subjected to two-way ANOVA, and signif-

icant differences between the means were determined by

the Scott–Knott test at a probability level of 5% (Steel et al.

2006). Standard deviations were calculated for each treat-

ment. The statistical analyses were performed with Assistat

software.

Results

Si reduces Cd contents

The application of 2.50 mM Si to Vigna unguiculata plants

exposed to Cd, contributed to significant reductions in the

contents of this metal. We observed 23, 37 and 44%

reductions in roots, stems and leaves (Table 1),

respectively, compared to the 500 lM Cd ? 0 mM Si

treatment. The action of Si also induced significant

reductions in Cd BCF in plants subjected to treatment with

500 lM Cd ? 2.50 mM Si compared to control plants

(0 mM Si) and plants treated with Cd.

Si accumulation in tissues

Plants treated with Si had increased (P\ 0.05) Si contents

for all tissues studied in both conditions (with or without

Cd), and the contents in the root were highest, followed by

the stem and leaf (Table 2). In relation to Si BCF, plants

without Cd showed higher values at a 1.25 mM Si con-

centration, whereas plants subjected to metal toxicity suf-

fered reductions in Si BCF in the root and stem compared

to plants treated under the same Si concentration without

Cd.

Si mitigates the effects of Cd on macro-

and micronutrients

Cd reduced the contents of macronutrients (P, K, Ca, Mg

and S) (Table 3). However, the 500 lM Cd ? 2.50 mM Si

treatment resulted in significant increases in P, K, Ca, Mg

and S of 46, 17, 51, 22 and 20% (root); 25, 36, 70, 14 and

44% (stem); and 14, 27, 22, 23 and 22% (leaf), respec-

tively, compared to the treatment with 500 lM

Cd ? 0 mM Si. The micronutrient (Zn, Cu, Fe, Mn and

Mo) contents were reduced when plants were treated with

Cd (Table 4). However, treatment with 500 lM

Cd ? 2.50 mM Si promoted increases in Zn, Cu, Fe, Mn

and Mo of 23, 29, 30, 22 and 10% (root); 51, 55, 37, 151

and 20% (stem); and 25, 31, 36, 33 and 35% (leaf),

respectively, compared to the treatment with 500 lM

Cd ? 0 mM Si.

Table 1 Cd contents and bioconcentration factor in cowpea plants treated with Si and exposed to Cd toxicity

Cd (lM) Si (mM) Cd content (lg g-1) Cd BCF

Root Stem Leaf Root Stem Leaf

0 0 0.38 ± 0.03Ab 0.02 ± 0.01Ab 0.01 ± 0.01Ab – – –

0 1.25 0.08 ± 0.01Ab 0.02 ± 0.01Ab 0.01 ± 0.01Ab – – –

0 2.50 0.07 ± 0.01Ab 0.03 ± 0.01Ab 0.01 ± 0.01Ab – – –

500 0 1036.74 ± 61.08Aa 42.76 ± 3.21Aa 100.40 ± 9.60Aa 18.45 ± 1.09Aa 0.76 ± 0.06Aa 1.79 ± 0.17Aa

500 1.25 855.74 ± 67.34Ba 29.41 ± 1.89Ba 58.56 ± 2.85Ba 15.23 ± 1.20Ba 0.52 ± 0.03Ba 1.04 ± 0.05Ba

500 2.50 794.80 ± 70.56Ba 27.00 ± 2.11Ca 56.31 ± 3.18Ba 14.14 ± 1.26Ba 0.48 ± 0.04Ca 1.00 ± 0.06Ba

Cd BCF Bioconcentration factor of Cd. Columns with different uppercase letters between Si treatments (0, 1.25 and 2.50 mM Si under equal Cd

concentration) and lowercase letters between Cd treatments (0 and 500 lM Cd under equal Si concentration) indicate significant differences from

the Scott-Knott test (P\ 0.05). Values described corresponding to means from five repetitions and SD
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Si improves the chlorophyll fluorescence

Although Cd induced reductions in UPSII, qP and ETR, the

concentration of 2.50 mM Si attenuated the negative

effects by inducing increases of 37, 61 and 55%, respec-

tively, compared with the treatment with 500 lM Cd ? Si

0 mM (Table 5). In the absence of Cd, UPSII, qP and ETR

showed the highest values at 1.25 mM Si. For NPQ, EXC

and ETR/PN, Cd resulted in increases, whereas the treat-

ment with 2.50 mM Si significantly reduced these values

by 27, 8 and 18%, respectively, compared to the treatment

with 500 lM Cd ? 0 mM Si (Table 5).

Table 2 Si contents and bioconcentration factor in cowpea plants treated with Si and exposed to Cd toxicity

Cd (lM) Si (mM) Si content (lg g-1) Si BCF

Root Stem Leaf Root Stem Leaf

0 0 56.7 ± 5.4Ca 32.4 ± 2.3Ca 15.3 ± 1.2Ca – – –

0 1.25 2423.0 ± 151.0Ba 614.4 ± 26.5Ba 518.3 ± 26.3Aa 69.0 ± 4.3Aa 17.5 ± 0.3Aa 14.8 ± 0.7Aa

0 2.50 3613.8 ± 208.8Aa 767.8 ± 55.5Aa 365.1 ± 27.6Bb 51.4 ± 3.4Ba 10.9 ± 0.5Ba 5.2 ± 0.4Bb

500 0 44.1 ± 9.9Ca 23.4 ± 1.4Cb 14.4 ± 1.3Ca – – –

500 1.25 2294.9 ± 228.3Ba 565.9 ± 48.0Ba 190.7 ± 11.2Bb 65.3 ± 5.5Aa 16.1 ± 0.4Ab 5.4 ± 0.3Bb

500 2.50 2958.4 ± 304.3Ab 720.6 ± 50.1Aa 432.5 ± 17.4Aa 42.1 ± 4.0Bb 10.3 ± 0.3Ba 6.2 ± 0.2Aa

Si BCF Bioconcentration factor of Si. Columns with different uppercase letters between Si treatments (0, 1.25 and 2.50 mM Si under equal Cd

concentration) and lowercase letters between Cd treatments (0 and 500 lM Cd under equal Si concentration) indicate significant differences from

the Scott-Knott test (P\ 0.05). Values described corresponding to means from five repetitions and SD

Table 3 Macronutrient contents in cowpea plants treated with Si and exposed to Cd toxicity

Cd (lM) Si (mM) P (mg g DM-1) K (mg g DM-1) Ca (mg g DM-1) Mg (mg g DM-1) S (mg g DM-1)

Contents in root

0 0 4.48 ± 0.27Aa 5.90 ± 0.17Aa 0.50 ± 0.04Ba 12.74 ± 0.97Aa 42.74 ± 1.82Aa

0 1.25 4.61 ± 0.39Aa 6.06 ± 0.16Aa 0.80 ± 0.13Aa 12.26 ± 0.70Aa 44.21 ± 1.69Aa

0 2.50 4.52 ± 0.33Aa 6.06 ± 0.19Aa 0.85 ± 0.09Aa 12.00 ± 1.01Aa 43.06 ± 1.31Aa

500 0 2.54 ± 0.18Cb 3.12 ± 0.11Bb 0.40 ± 0.03Cb 5.00 ± 0.37Cb 31.93 ± 0.56Bb

500 1.25 3.20 ± 0.11Bb 3.32 ± 0.13Bb 0.50 ± 0.04Bb 7.81 ± 0.70Ab 33.03 ± 1.53Bb

500 2.50 3.71 ± 0.16Ab 3.66 ± 0.15Ab 0.60 ± 0.03Ab 6.09 ± 0.26Bb 38.51 ± 1.09Ab

Contents in stem

0 0 5.19 ± 0.24Aa 4.06 ± 0.17Aa 0.45 ± 0.04Ba 3.00 ± 0.04Ba 17.52 ± 0.62Aa

0 1.25 5.29 ± 0.23Aa 4.24 ± 0.18Aa 0.45 ± 0.02Ba 3.01 ± 0.08Ba 18.67 ± 0.71Aa

0 2.50 5.21 ± 0.30Aa 4.12 ± 0.20Aa 0.60 ± 0.05Aa 3.40 ± 0.24Aa 17.97 ± 0.85Aa

500 0 3.21 ± 0.29Bb 2.30 ± 0.09Bb 0.30 ± 0.03Cb 2.19 ± 0.13Bb 10.09 ± 0.47Cb

500 1.25 3.73 ± 0.30Ab 3.16 ± 0.05Ab 0.40 ± 0.02Bb 2.39 ± 0.12Ab 13.13 ± 1.14Bb

500 2.50 4.01 ± 0.33Ab 3.14 ± 0.14Ab 0.50 ± 0.03Ab 2.51 ± 0.21Ab 14.57 ± 1.14Ab

Contents in leaf

0 0 8.61 ± 0.42Aa 4.20 ± 0.15Aa 1.60 ± 0.01Ca 3.14 ± 0.18Ba 22.93 ± 1.42Aa

0 1.25 8.44 ± 0.38Aa 4.32 ± 0.14Aa 1.70 ± 0.02Ba 3.59 ± 0.19Aa 23.33 ± 1.77Aa

0 2.50 8.39 ± 0.81Aa 4.22 ± 0.10Aa 2.01 ± 0.03Aa 3.22 ± 0.17Ba 23.08 ± 1.30Aa

500 0 6.84 ± 0.18Bb 2.82 ± 0.09Bb 1.15 ± 0.02Cb 2.35 ± 0.21Bb 17.00 ± 1.06Bb

500 1.25 7.20 ± 0.10Bb 3.26 ± 0.12Ab 1.30 ± 0.01Bb 2.47 ± 0.11Bb 19.75 ± 0.80Ab

500 2.50 7.77 ± 0.35Ab 3.58 ± 0.29Ab 1.40 ± 0.01Ab 2.89 ± 0.16Ab 20.77 ± 0.95Ab

P Phosphorus, K Potassium, Ca Calcium, Mg Magnesium, S Sulfur. Columns with different uppercase letters between Si treatments (0, 1.25 and

2.50 mM Si under equal Cd concentration) and lowercase letters between Cd treatments (0 and 500 lM Cd under equal Si concentration)

indicate significant differences from the Scott-Knott test (P\ 0.05). Values described corresponding to means from five repetitions and SD
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Si improves gas exchange in plants affected by Cd

Plants exposed to Cd suffered reductions (P\ 0.05) in PN,

E, gs, WUE and PN/Ci. However application of Si at a

concentration of 2.50 mM resulted in a 90, 31, 214, 112

and 147% increase, respectively, compared to the treatment

with 500 lM Cd ? Si 0 mM (Table 6). Cd promoted an

increase in Ci, whereas applying 2.50 mM Si led to a

reduction of 20% compared to the treatment with 500 lM

Cd ? 0 mM Si. In treatments without the addition of Cd,

applying 1.25 mM Si induced a significant increase in PN,

WUE and PN/Ci (Table 6).

Table 4 Micronutrient contents in cowpea plants treated with Si and exposed to Cd toxicity

Cd (lM) Si (mM) Zn (lg g DM-1) Cu (lg g DM-1) Fe (lg g DM-1) Mn (lg g DM-1) Mo (lg g DM-1)

Contents in root

0 0 49.92 ± 2.57Aa 10.70 ± 0.71Ba 2465.45 ± 123.34Aa 408.15 ± 25.35Aa 21.08 ± 1.35Ba

0 1.25 51.03 ± 2.96Aa 12.03 ± 0.93Aa 2680.28 ± 221.92Aa 411.04 ± 20.00Aa 23.26 ± 2.08Aa

0 2.50 50.52 ± 3.46Aa 11.73 ± 0.98Aa 2585.81 ± 242.36Aa 410.38 ± 15.08Aa 23.02 ± 1.00Aa

500 0 35.09 ± 0.34Bb 7.42 ± 0.70Bb 1760.94 ± 166.22Bb 296.71 ± 5.58Bb 12.81 ± 1.27Ab

500 1.25 41.35 ± 3.69Ab 9.37 ± 0.71Ab 2116.48 ± 116.60Ab 338.84 ± 32.86Ab 13.72 ± 0.27Ab

500 2.50 43.35 ± 3.04Ab 9.60 ± 0.51Ab 2285.84 ± 70.07Ab 362.35 ± 15.62Ab 14.05 ± 0.23Ab

Contents in stem

0 0 14.92 ± 0.16Ba 1.75 ± 0.06Aa 8.85 ± 0.86Ba 130.03 ± 2.71Ba 9.74 ± 0.87Aa

0 1.25 17.35 ± 1.51Aa 1.85 ± 0.13Aa 9.69 ± 0.57Ba 132.01 ± 5.08Ba 9.78 ± 0.63Aa

0 2.50 17.15 ± 1.41Aa 1.78 ± 0.07Aa 11.71 ± 0.93Aa 140.56 ± 11.75Aa 9.89 ± 0.75Aa

500 0 7.75 ± 0.27Bb 0.96 ± 0.05Cb 7.03 ± 0.68Cb 30.40 ± 2.76Bb 7.56 ± 0.46Bb

500 1.25 11.22 ± 1.12Ab 1.35 ± 0.08Bb 8.37 ± 0.72Bb 76.28 ± 6.86Ab 8.89 ± 0.67Ab

500 2.50 11.70 ± 0.51Ab 1.49 ± 0.11Ab 9.63 ± 0.91Ab 76.39 ± 4.43Ab 9.08 ± 0.30Aa

Contents in leaf

0 0 33.37 ± 1.55Aa 2.45 ± 0.09Aa 24.70 ± 1.48Aa 242.32 ± 10.73Aa 3.37 ± 0.24Aa

0 1.25 35.23 ± 2.52Aa 2.46 ± 0.12Aa 25.66 ± 2.16Aa 249.24 ± 11.67Aa 3.37 ± 0.26Aa

0 2.50 34.79 ± 2.53Aa 2.35 ± 0.06Aa 24.78 ± 0.05Aa 247.88 ± 9.96Aa 3.15 ± 0.19Aa

500 0 23.16 ± 2.07Bb 1.43 ± 0.07Bb 13.26 ± 1.05Cb 131.57 ± 12.89Cb 1.10 ± 0.07Bb

500 1.25 25.66 ± 1.82Bb 1.83 ± 0.11Ab 15.82 ± 1.39Bb 151.20 ± 12.73Bb 1.34 ± 0.12Ab

500 2.50 28.99 ± 1.25Ab 1.87 ± 0.17Ab 18.09 ± 0.62Ab 174.88 ± 12.60Ab 1.49 ± 0.09Ab

Zn Zinc, Cu Copper, Fe Iron, Mn Manganese, Mo Molybdenum. Columns with different uppercase letters between Si treatments (0, 1.25 and

2.50 mM Si under equal Cd concentration) and lowercase letters between Cd treatments (0 and 500 lM Cd under equal Si concentration)

indicate significant differences from the Scott-Knott test (P\ 0.05). Values described corresponding to means from five repetitions and SD

Table 5 Chlorophyll fluorescence in cowpea plants treated with Si and exposed to Cd toxicity

Cd (lM) Si (mM) UPSII qP NPQ ETR (lmol m-2 s-1) EXC (lmol m-2 s-1) ETR/PN

0 0 0.78 ± 0.01Ca 0.61 ± 0.08Ba 0.36 ± 0.02Ab 62.32 ± 2.0Ba 0.46 ± 0.03Ab 3.81 ± 0.27Ab

0 1.25 0.84 ± 0.01Aa 0.88 ± 0.09Aa 0.30 ± 0.01Bb 67.62 ± 1.0Aa 0.45 ± 0.01Ab 3.66 ± 0.15Ab

0 2.50 0.81 ± 0.01Ba 0.64 ± 0.05Ba 0.33 ± 0.01Ab 64.38 ± 1.4Ba 0.45 ± 0.02Ab 3.79 ± 0.25Ab

500 0 0.56 ± 0.02Cb 0.34 ± 0.03Cb 0.60 ± 0.04Aa 34.39 ± 1.7Bb 0.58 ± 0.02Aa 6.97 ± 0.31Aa

500 1.25 0.74 ± 0.01Bb 0.44 ± 0.04Bb 0.51 ± 0.04Ba 49.39 ± 4.9Ab 0.55 ± 0.04Ba 6.15 ± 0.45Ba

500 2.50 0.77 ± 0.01Ab 0.55 ± 0.01Ab 0.44 ± 0.02Ca 53.21 ± 3.9Ab 0.53 ± 0.03Ba 5.68 ± 0.49Ba

UPSII Effective quantum yield of PSII photochemistry, qP Photochemical quenching coefficient, NPQ Nonphotochemical quenching, ETR

Electron transport rate, EXC Relative energy excess at the PSII level, ETR/PN Ratio between the electron transport rate and net photosynthetic

rate. Columns with different uppercase letters between Si treatments (0, 1.25 and 2.50 mM Si under equal Cd concentration) and lowercase

letters between Cd treatments (0 and 500 lM Cd under equal Si concentration) indicate significant differences from the Scott-Knott test

(P\ 0.05). Values described corresponding to means from five repetitions and SD
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Si increases the enzymatic activity of plants

suffering Cd toxicity

The stress caused by Cd increased the activity of SOD,

CAT, APX and POX. We also detected increases in the

enzymatic activity as the Si concentrations increased

(Fig. 1). Compared to treatment with the 500 lM

Cd ? 0 mM Si, the treatment with 500 lM

Cd ? 2.50 mM Si caused increases of 28, 79, 44 and 56%

in the SOD, CAT, APX and POX activities, respectively.

Si contributes to the detoxification of ROS

Significant increases were observed in O2
-, H2O2, MDA

and EL in plants subjected to Cd (Fig. 2). However, the

addition of 2.50 mM Si caused significant reductions of

Table 6 Gas exchange in cowpea plants treated with Si and exposed to Cd toxicity

Cd

(lM)

Si

(mM)

PN (lmol m-2

s-1)

E (mmol m-2

s-1)

gs (mol m-2

s-1)

Ci

(lmol mol-1)

WUE

(lmol mmol-1)

PN/Ci (lmol m-2 s-1

Pa-1)

0 0 16.38 ± 0.5Ba 3.24 ± 0.07Aa 0.44 ± 0.01Aa 242 ± 18Ab 5.04 ± 0.19Ba 0.067 ± 0.005Ba

0 1.25 18.45 ± 0.4Aa 3.14 ± 0.08Aa 0.40 ± 0.02Ba 230 ± 14Ab 5.88 ± 0.12Aa 0.080 ± 0.003Aa

0 2.50 17.02 ± 0.6Ba 3.14 ± 0.09Aa 0.39 ± 0.03Ba 242 ± 15Aa 5.42 ± 0.23Ba 0.070 ± 0.005Ba

500 0 4.95 ± 0.2Cb 1.34 ± 0.03Cb 0.07 ± 0.01Cb 315 ± 13Aa 2.51 ± 0.09Cb 0.015 ± 0.001Cb

500 1.25 8.06 ± 0.4Bb 1.48 ± 0.09Bb 0.10 ± 0.01Bb 270 ± 23Ba 4.78 ± 0.20Bb 0.029 ± 0.003Bb

500 2.50 9.39 ± 0.3Ab 1.76 ± 0.05Ab 0.22 ± 0.02Ab 251 ± 15Ba 5.33 ± 0.46Aa 0.037 ± 0.003Ab

PN Net photosynthetic rate, E Transpiration rate, gs Stomatal conductance, Ci Intercellular CO2 concentration, WUE Water-use efficiency, PN/Ci

Carboxylation instantaneous efficiency. Columns with different uppercase letters between Si treatments (0, 1.25 and 2.50 mM Si under equal Cd

concentration) and lowercase letters between Cd treatments (0 and 500 lM Cd under equal Si concentration) indicate significant differences from

the Scott-Knott test (P\ 0.05). Values described corresponding to means from five repetitions and SD

Fig. 1 Activities of superoxide

dismutase (SOD), catalase

(CAT), ascorbate peroxidase

(APX) and peroxidase (POX) in

cowpea plants treated with Si

and exposed to Cd toxicity.

Different uppercase letters

between Si treatments (0, 1.25

and 2.50 mM Si under equal Cd

concentration) and lowercase

letters between Cd treatments (0

and 500 lM Cd under equal Si

concentration) indicate

significant differences from the

Scott-Knott test (P\ 0.05).

Columns described

corresponding to means from

five repetitions and SD

106 Physiol Mol Biol Plants (January–February 2018) 24(1):99–114

123



ROS (26, 39, 41 and 21%, respectively) compared to the

control (500 lM Cd ? 0 mM Si). In treatments without

Cd, the addition of Si did not cause significant changes in

these variables.

Si maximizes the photosynthetic pigments in plants

exposed to Cd stress

Plants administered Cd showed significant decreases in the

levels of Chl a, Chl b, Chl Total, and CAR as well as the

Chl a/Chl b ratio, whereas treatment with 500 lM

Cd ? 2.50 mM Si resulted in increases of 93, 59, 90 and

54%, respectively, compared with the 500 lM

Cd ? 0 mM Si treatment (Fig. 3). Additionally, Cd caused

an increase in the Chl total/Car ratio (P\ 0.05). In plants

without Cd, we found that 1.25 mM Si promoted the

highest values for Chl a, Chl b, Chl Total and Car.

Si attenuates the toxic effects on growth promoted

by Cd

The treatment with 0 lM Cd ? 1.25 mM Si promoted

increases of 7, 21, 4 and 29% in the values of Leaf dry

matter (LDM), Stem dry matter (SDM), Total dry matter

(TDM) and the Shoot dry matter/Root dry matter (ShDM/

RDM) Ratio, respectively, compared to the control treat-

ment (Table 7). In plants treated with 500 lM

Cd ? 2.50 mM Si, the LDM, SDM, RDM and TDM

variables showed increases of 12, 9, 48 and 20%, respec-

tively, compared to those planted with 500 lM

Cd ? 0 mM Si (Table 7).

Discussion

Cd contents were reduced in all tissues after the application

of Si, suggesting that Si interfered with Cd assimilation in

cowpea. These decreases in Cd contents can be explained

by the reduction in Cd BCF obtained in this study and by

the deposition of silicon in the root endoderm (Ma and Guo

2014), which inhibits the transport of this metal to stems

and leaves due to a physical blockade of the passage of Cd

by the root system apoplast, preventing its translocation to

other plant organs (da Cunha and Nascimento 2009). The

results found in this study corroborate findings by Liang

et al. (2005b) and Shi et al. (2005b), who investigated the

effect of Si on Zea mays and Oryza sativa, respectively.

Both studies found that in soil contaminated with Cd, Cd

Fig. 2 Superoxide (O2
-),

hydrogen peroxide (H2O2),

malondialdehyde (MDA) and

electrolyte leakage (EL) in

cowpea plants treated with Si

and exposed to Cd toxicity.

Different uppercase letters

between Si treatments (0, 1.25

and 2.50 mM Si under equal Cd

concentration) and lowercase

letters between Cd treatments (0

and 500 lM Cd under equal Si

concentration) indicate

significant differences from the

Scott-Knott test (P\ 0.05).

Columns described

corresponding to means from

five repetitions and SD
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transport from the root system to the shoot was inhibited

due to the complexation of metal in the root apoplast.

The Si contents were highest in the root, followed by the

stem and leaf tissues, which can be explained by Si passive

absorption. Cowpea is a species that absorbs Si in a passive

way through mass flow, which has direct influence of the

E rate(Liang et al. 2005a; Imtiaz et al. 2016). There are

species of the Poaceae family, such as Zea mays (Mitani

et al. 2009), Triticum aestivum(Rains et al. 2006), and

Oryza sativa (Köster et al. 2009), that perform Si uptake

and transport by an active process, and they accumulate

larger amounts of Si in the shoot (Epstein 1999; Fuhrs et al.

2012). Mitani and Ma (2005) compared Si uptake and

transport in Cucumis sativus, Lycopersicon esculentum and

Oryza sativa. In their study, it was observed that Cucumis

sativus and Lycopersicon esculentum were unable to

accumulate Si in the shoot, whereas Oryza sativa showed

greater accumulation of Si in the leaf and stem. Wu et al.

(2015) analysed the physiological responses of Cucumis

sativus and Solanum lycopersicum under Cd stress and

treated them with Si, leading to the observation that there

was no statistically significant difference in the Si content

when the Si and Si ? Cd treatments were compared.

Cd caused reductions in the macro- and micronutrient

contents; these results are related to the interference in the

assimilation of the elements. Cd is a bivalent cation that

Fig. 3 Chlorophyll a (Chl a),

chlorophyll b (Chl b), total

chlorophyll (total Chl),

carotenoids (Car) Chl a/Chl

b ratio and Chl Total/Car ratio

in cowpea plants treated with Si

and exposed to Cd toxicity.

Different uppercase letters

between Si treatments (0, 1.25

and 2.50 mM Si under equal Cd

concentration) and lowercase

letters between Cd treatments (0

and 500 lM Cd under equal Si

concentration) indicate

significant differences from the

Scott-Knott test (P\ 0.05).

Columns described

corresponding to means from

five repetitions and SD
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frequently competes with Ca, Fe, Mg, Mn and Zn during

transport across membranes (Llamas et al. 2000; Sarwar

et al. 2010; Nocito et al. 2011) because the metal trans-

porters are non-selective and can absorb nutrients that are

toxic metals, such as Cd (Clemens et al. 1998; Maria et al.

2011). However, inhibition of Cd transport caused by the

application of Si promoted increases in the macro- and

micronutrient contents in leaf, stem, and root tissues. These

results suggest that Si mitigates the Cd effect on nutrient

uptake and transport mechanisms, providing better devel-

opment for plants.

Plants require P, K Ca, Mg, and S in large quantities

([ 0.1% of dry matter), and each one of these macronu-

trients is essential for the plant to complete its life cycle

(Maathuis 2009). K availability is important for stomatal

regulation and osmotic adjustment by controlling the turgor

pressure of guard cells (Oosterhuis et al. 2013). Ca is

essential for several structural roles, improving the integ-

rity of the cell wall and membranes (Mali and Aery 2008;

Maathuis 2009). Mg is largely related to protein synthesis

and photosynthesis since this element is the central atom of

the chlorophyll molecule (Shaul 2002; Karley and White

2009).

Micronutrients (Zn, Cu, Fe, Mn and Mo), although

required in only small amounts, are essential components

of enzymes and play important roles, such as in photo-

synthesis, respiration and antioxidant defence (Ducic and

Polle 2005; Kaiser et al. 2005; Broadley et al. 2007;

Hänsch and Mendel 2009). Fe, for example, plays funda-

mental roles in electron transport, maintenance of PSI

levels, and photosystem II (PSII) quantum yield (Yadavalli

et al. 2012). Mn is a constituent of the enzyme that breaks

water molecules in PSII via manganese superoxide dis-

mutase (MnSOD) (Allen et al. 2007), whereas Mo is used

by nitrate and nitrogenase reductase (Mendel and Hänsch

2002).

Nano-silicon application in Oryza sativa seedlings

alleviated the toxicity caused by Cd, in which the Mg, Fe

and Zn contents increased in plants treated with Si (Wang

et al. 2015). Tripathi et al. (2012) evaluated the impact of

Si in Oryza sativa exposed to Cr stress and observed that

the macro—(Mg, Ca and K) and micronutrients (Zn and

Fe) contents in leaves and roots decreased in plants treated

with Cr, whereas the Si ? Cr treatment prevented the

reduction of these contents. These results corroborate the

affirmation that Si mitigates the oxidative effect of metals.

Si utilization increased UPSII, qP and ETR values, these

responses being related to Si absorption and essential

nutrients to the proper functioning of the photosynthetic

apparatus, such as Mn and Fe (Hänsch and Mendel 2009).

In relation to EXC and ETR/PN, plants subjected to Si

presented reductions and were associated with a Si-medi-

ated photoprotective mechanism, with the aim of allowing

the photosystem II electron acceptors to work because

there was a reduction in damage caused by Cd in chloro-

plasts, as confirmed by the reduction in NPQ. Silveira et al.

(2015) working with Elephantopus mollis subjected to 10,

50 and 100 lM Cd and found that there was interference in

the photochemical phase of photosynthesis, leading to

significant reductions in the ETR of plants at concentra-

tions of 50 and 100 lM Cd. López-Millán et al. (2009)

studied Lycopersicon esculentum under hydroponic culti-

vation and subjected them to 10 and 100 lM Cd, which led

to a significant increase in NPQ under 100 lM Cd toxicity.

Nwugo and Huerta (2008) evaluated the relationship

among concentrations of 0.0, 0.2, or 0.6 mM Si and 0.0 or

2.5 lM Cd and reported that the addition of 0.2 mM Si

induced a significant increase in qP in Oryza sativa plants

under Cd stress.

Si indirectly attenuated the toxic Cd effects on PN,

because this element caused increases in ETR and UPSII,

detected in this research. The increase in energy absorption

in photosystem II and consequent higher electron flow

Table 7 Growth in cowpea plants treated with Si and exposed to Cd toxicity

Cd (lM) Si (mM) LDM(g) SDM(g) RDM (g) TDM (g) Ratio ShDM/RDM

0 0 3.28 ± 0.05Ba 2.30 ± 0.16Ca 2.23 ± 0.11Aa 7.80 ± 0.08Ca 2.51 ± 0.17Bb

0 1.25 3.51 ± 0.09Aa 2.78 ± 0.07Aa 1.94 ± 0.04Ba 8.23 ± 0.13Aa 3.24 ± 0.07Aa

0 2.50 3.50 ± 0.13Aa 2.61 ± 0.05Ba 1.90 ± 0.07Ba 8.02 ± 0.05Ba 3.21 ± 0.15Aa

500 0 1.16 ± 0.05Bb 1.00 ± 0.01Ab 0.75 ± 0.05Bb 2.91 ± 0.07Bb 2.87 ± 0.08Aa

500 1.25 1.21 ± 0.04Bb 1.00 ± 0.05Ab 1.10 ± 0.06Ab 3.31 ± 0.15Ab 2.00 ± 0.14Bb

500 2.50 1.30 ± 0.07Ab 1.09 ± 0.03Ab 1.11 ± 0.08Ab 3.50 ± 0.11Ab 2.17 ± 0.17Bb

LDM Leaf dry matter, SDM Stem dry matter, RDM Root dry matter, TDM Total dry matter, ShDM/RDM Ratio Shoot dry matter/Root dry matter.

Columns with different uppercase letters between Si treatments (0, 1.25 and 2.50 mM Si under equal Cd concentration) and lowercase letters

between Cd treatments (0 and 500 lM Cd under equal Si concentration) indicate significant differences from the Scott-Knott test (P\ 0.05).

Values described corresponding to means from five repetitions and SD
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carried out by ferredoxins resulted in an increase in PN (-

Baker and Rosenqvist 2004; Bodek and Blum 2013). Ali

et al. (2013) investigated the influence of three Si con-

centrations (0, 1 and 2 mM) on Hordeum vulgare stressed

by 100 lM Cr and observed that Si alleviated Cr toxicity,

which was reflected by a significant increase in PN, with

better results for 2 mM Si. In addition, Ali et al. (2016)

studied Gossypium hirsutum under stress by three different

Cu concentrations (0, 25 and 50 lM) and found that the

application (1 mM) of Si alleviated the toxic effect of this

metal, optimizing the PN performance, reaffirming that Si

can mitigate the effects of heavy metal toxicity.

In plants subjected to Cd ? Si, the variables E and

g increased, whereas Ci was reduced. This decrease in Ci

may be related to the higher performance of the RUBISCO

enzyme during CO2 fixation, an effect that is possibly due

to the addition of Si in plants exposed to metal toxicity

(Nwugo and Huerta 2011). In studies conducted by Feng

et al. (2010) with Cucumis sativus, it was found that

1.5 mM Si alleviated the negative effects caused by the

toxicity of Cd on gas exchange; a significant increase of

E and gs, as well as a considerable reduction of Ci were

observed after 10 and 15 days of treatment.

Si provided increases in WUE and PN/Ci in plants

exposed to Cd ? Si. The higher performance of WUE is

explained by the benefits promoted by Si over PN, whereas

the increase observed in PN/Ci occurred due to the decrease

obtained in Ci. Li et al. (2015) studied the Cd effect on

Elsholtzia argyi in hydroponic cultivation over 21 days and

observed a reduction of 47.1% in WUE in plants subjected

to 100 lmol Cd compared to the control treatment (0 lmol

Cd). Farooq et al. (2013) found reductions in the gas

exchange parameters in Gossypium hirsutum subjected to

0.1 and 5 lM Cd. However, the application of Si prevented

the stress conditions, improving WUE.

Plants treated with Cd ? Si showed increases in SOD,

CAT, APX and POX enzyme activities. These detected

increases are related to ROS detoxification, produced

during the intoxication process by Cd (Mohamed et al.

2012; Irfan et al. 2014). Si also caused a reduction in EXC

and increases in ETR and DF/Fm’ by attenuating oxidation

on photosystems and membranes. Farooq et al. (2013)

observed increases in the activities of the antioxidant

enzymes SOD, POX, APX, and CAT in Gossypium hir-

sutum under Cd toxicity, indicating that the addition of Si

can significantly increase its defensive capability against

oxidative damage. Song et al. (2009) also observed

increases in the SOD, CAT and APX activities in Brassica

chinensis treated with Si and subjected to stress by Cd.

Tang et al. (2015) found an increase of 42.4% in SOD

activity in Boehmeria nivea treated with Si ? Cd, com-

pared to treatment with Cd alone, corroborating the results

found in our study. Lukačová et al. (2013) studied the

action of Si in Zea mays and observed increases in POX

activity, suggesting the mitigation of Cd toxicity.

Si significantly decreased the O2
- and H2O2 concen-

trations in plants under stress by Cd, and this result showed

that Si interfered positively in the antioxidant metabolism

(Song et al. 2009) and was supported by the increase in the

activity of SOD, CAT and APX in plants treated with Si.

SOD is the enzyme responsible for converting O2
- radicals

into H2O2. CAT and APX are responsible for the dismu-

tation of H2O2 to the formation of H2O and O2 (Zhang

et al. 2009). Lin et al. (2012) studied Oryza sativa plants

grown under hydroponic conditions and found that Cd

utilization for the period of 5–15 days also promoted

increases (60–71%) in O2
- values. Wu et al. (2015) in a

study with Cucumis sativus, obtained a reduction of H2O2

with the addition of Si in plants under Cd toxicity, a

behaviour that these authors described was based on

increased enzymatic activities. Shi et al. (2005a) also

identified the increase of H2O2 in Cucumis sativus under a

high Mn concentration and a decrease in the concentration

of this compound when Si was applied. Tripathi et al.

(2013) evaluated the defence mechanisms after Si appli-

cation in two cultivars of Oryza sativa and found reduc-

tions of 16 and 11% in O2
- concentrations of As tolerant

and As sensitive cultivars, respectively.

The decreases in MDA and EL in the Cd ? Si treatment

occurred due to lower lipid peroxidation and increased

antioxidant enzyme activities, indicating that Si contributes

to the improvement of the cell membrane structure and

integrity (Shahnaz et al. 2011; Lukačová et al. 2013). Shen

et al. (2014) worked with Arachis hypogaea under stress by

Al and found increases of 37 and 34% in the MDA and EL

levels, but Si exposition caused decreases of 26 and 15%,

respectively, confirming the results obtained in this

research. Shi et al. (2010) evaluated the effect of Si on Cd

toxicity in leaves of two cultivars of Arachis hypogaea and

observed that Cd significantly increased (40 and 11%) the

MDA levels. However treatment with Si reduced MDA in

the cultivar tolerant to Cd. Liu et al. 2013 studied Solanum

nigrum seedlings and detected that EL and H2O2 were

significantly reduced in the Cd ? Si treatment compared to

the Cd treatment.

The increase in Chl a, Chl b, total Chl and Car levels in

plants treated with Si and exposed to Cd stress can be

attributed to increases in the activities of antioxidant

enzymes (CAT, APX and POX), combined with the greater

accumulation of Mn (Benavides et al. 2005). In agreement

with Gunes et al. (2008), increases in antioxidant enzymes

promote higher tolerance to abiotic stresses. The negative

effects were attenuated by Si, a fact that Hossain et al.

(2007) stated was related to the preservation of the cell

membrane, increased plant extensibility and resistance to

damage because accumulation of Mn facilitates the transfer
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of electrons to photosystem II. López-Millán et al. (2009)

observed a reduction of 40 and 35% for Chl a and 46 and

23% for Chl b in Lycopersicon esculentum in a hydroponic

culture subjected to concentrations of 10 and 100 lM Cd,

respectively. Vaculı́k et al. (2015) investigated the effect of

Si on the photosynthetic process in Zea mays exposed to

two Cd concentrations (5 lM and 50 lM) and detected

reductions in the levels of total Chl, and Car as well as the

Chl a/Chl b ratio in plants under Cd stress. However this

negative effect was mitigated by Si, supporting the results

described in our study. In addition, Feng et al. (2010)

described that the exposure of Cd for 10 and 15 days in

Cucumis sativus caused significant reductions in Chl a, Chl

b, total Chl and Car. However, when Si was added, the

pigment values increased.

The addition of Si attenuated the negative effects linked

to Cd on LDM, SDM, RDM and TDM, as these results are

related to lower lipid peroxidation and reduced ROS

accumulation. These compounds are responsible for caus-

ing damage to cell membranes, reducing cell expansion,

and consequently reducing vegetative growth (Shah et al.

2001; Nwugo and Huerta 2008). Additionally, Si promotes

the greater accumulation of dry matter (Amiri et al. 2012)

because it inhibits the deterioration of cell membranes and

improves rates of growth and development. Farooq et al.

(2016), studied how Si can reverse the effects caused by Cd

toxicity in Oryza sativa plants and reported an increase in

the dry biomass of shoots and roots after treatment with Si.

Vaculı́k et al. (2009) also found similar results when

studying the influence of Si on the growth of Zea mays

cultivated under hydroponic conditions in the presence of

Cd, noting an increase of approximately 11% in root dry

matter and approximately 20% for shoot. Our results cor-

roborate these studies related to the benefits of Si on the

vegetative growth of plants under Cd stress.

Si reduced Cd contents in roots and other plant organs,

such as stems and leaves. The Si contents in roots were

highest, followed by stems and leaves, which can be

explained by the passive absorption of Si. The application

of Si promoted increases in the macro- and micronutrient

contents in all tissues, suggesting that Si mitigates the Cd

effect on nutrient uptake. Si attenuates the Cd effects on

light absorption of photosystem II (PSII), increasing the

effective quantum yield of PSII photochemistry and the

electron transport rate. Toxic effects induced by Cd on gas

exchange were mitigated by the action of Si. Plants treated

with Cd ? Si showed increases in the activities of

antioxidant enzymes and reductions in oxidant compounds,

with these modifications promoted by Si via a detoxifica-

tion mechanism. Increases in photosynthetic pigments and

the growth of plants treated with Si and exposed to Cd

stress were observed and were explained by the reduced

deterioration of cell membranes and maintenance of

chloroplast, which led to positive effects on growth and

development. This study validated the hypothesis that Si

accumulation in roots induces benefits on metabolism and

alleviates the toxic effects caused by Cd in leaves of

cowpea plants.
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Conselho Nacional de Desenvolvimento Cientı́fico e Tecnológico

(CNPq/Brazil) and Universidade Federal Rural da Amazônia (UFRA/
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