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Abstract: The purpose of this study was to clarify the
silicon-germanium dioxide (SiGeO2) and Aluminum In-
dium Gallium Arsenide (AlInGaAs) based acoustic optic
modulators for upgrading transmission performance char-
acteristics. The transient time response of these modula-
tors is analyzed and discussed in detail. The 3-dB modula-
tion signal bandwidth, diffraction signal efficiency, signal
rise time, and signal quality factor with minimum data er-
ror rates are also considered. The proposed models with
silicon-germanium dioxide and Aluminum Indium Gal-
lium Arsenide acoustic optic modulators were compared
to the previous model with silicon acoustic optic modu-
lators. The results confirmed the high-performance effi-
ciency of the proposed models when compared to the pre-
vious model, in both the lowest transient time response
and the highest acoustic optic modulators speed response.

Keywords: Modulation bandwidth, Acoustic modulators,
silicon-germanium dioxide, and Aluminum Indium Gal-
lium Arsenide

1 Introduction
Acoustic, optical devices are used in optical systems for
light beam control and signal processing applications [1–
4]. Acoustic optics has developed into a mature tech-
nology and is deployed in a wide range of optical sys-
tem applications [5–9]. They are used in optical informa-
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tion processing, tunable optical filters, deflectors, broad-
band delay lines, mode-lockers, acoustic optic sensors,
and laser radiation modulators [10–13]. An acousto-optic
modulator (AOM), also called a Bragg cell, uses sound
waves to diffract the frequency of light. As with a perma-
nent Bragg grating, the various wavelengths are spatially
diffracted and separated from each other.When ultrasonic
waves propagate on optical fibers, it causes periodicmicro-
bending of the optical fibers and a change in the refraction
index of the fiber core. This bending is called the elastic-
optic or acousto-optic effect. Although this basic theory of
acousto-optic diffraction in isotropic media was well un-
derstood, there were relatively few practical applications
before the invention of the laser [14–18]. It was the need
for optical devices for laser beam control that stimulated
extensive research on the theory and practice of acousto-
optics. Over the years, the acousto-optic effect has been
exploited for the development of dynamic and reconfig-
urable all-fiber devices. The use of flexural, longitudinal,
or torsional elastic modes led to the development of tun-
able filters, frequency shifters, and switches [19]. Recently,
the acousto-optic effect has also been used as a technique
for the fine characterization of optical fibers [20–22], and
the generation of cylindrical vector beams [23, 24]. In re-
cent years, the development of superior acousto-optic ma-
terials and efficient broadband transducers are the pri-
mary contributors to significant progress in acousto-optic
(AO) devices [25, 26].

Modulating an incoming laser light can be achieved
with an AOM by varying the amplitude and frequency of
acoustic waves traveling through the crystal [27]. Many
characteristics, such as laser beam deflection, intensity
modulation, phase modulation, and frequency shifting,
can all be achieved using the AOM [27]. To describe this
acousto-optic effect in crystals, a plane wave analysis can
be used to determine the frequency and angular charac-
teristics of the acousto-optic interaction [28–31]. In this
approach, the acoustic wave is approximated as a single
plane wave typically propagating to the transducer [17, 18,
32–35]. The frequency or angular dependence is obtained
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from the phasemismatch caused by the change of acoustic
frequency or incident optical wave direction [36–43].

2 Acoustic Optic Modulators
Description with Equations
Analysis

Figure 1 shows a basic schematic view of the acoustic optic
modulators. The incident optical beam is assumed to be
a plane wave propagating near the z-axis in the xz plane
(referred to as the interaction plane).

Figure 1: View of the acoustic optic modulators.

To accommodate the finite size of the transducer, the
acoustic beam ismodeled as an angular spectrum of plane
waves propagating near the x-axis. The AO diffraction only
occurs in the interaction plane where the phase-matching
condition is satisfied. The intensity and distribution of the
diffracted light are proportional to the acoustic power spec-
tra. The angle of diffraction is a function of the acoustic
frequency, and acoustic velocity of the optical device is
[14, 17, 18]:

θ = λ faVa
, (1)

θ is the incident beam laser and the diffracted laser beam.
The diffraction efficiency is [14, 17, 28, 37, 38]:

η = πλ

√︂
M2 Pa W

2H , (2)

Where Pa is the acousto power, M2 is the figure of merit
for the acoustic optic material, W is the modulator width,
H is the modulator length or height. The light beam waist
diameter is expressed by [5, 14, 17, 29, 39]:

d = 1.27 F λ
D , (3)

Where F is the length of the focal lens, D is the beam diam-
eter of the laser, and (τr) is the acoustic optic modulator

rise time [5, 14, 17, 40]:

τr =
0.66 d
Va

, (4)

The 3-dB frequency bandwidth is a function of the acoustic
optic modulator rise time [5, 6, 14, 17, 30, 31, 41]:

f3−dB =
1

2 τr
, (5)

The signal modulation frequency of the acoustic optic
modulators can be utilized as [5, 6, 14, 17, 32, 42]:

fm = 0.29
√
α

τr
, (6)

Where α is the signal loss through the acoustic opticmodu-
lators. The modulator transfer function of the acoustic op-
tic modulators can be modeled as the following [5, 6, 17,
33, 43]:

MTF = exp
(︂
(0.833fcfm

)2
)︂
, (7)

Where the SiGeO2 acoustic optic modulator’s acoustic ve-
locity value is 4.2×106 mm/sec, its loss value is 0.063
dB/GHz.mm, and its figure of merit value is 34.5×10−15

m2/W. While the AlInGaAs acoustic optic modulators ve-
locity value is 6.32×106 mm/sec, its loss value is 0.038
dB/GHz.mm, and its figure of merit value is 44.8×10−15

m2/W. The contrast ratio is a function of both the transfer
function and signalmodulation frequency and is shownas
[6, 14, 17, 34, 35]:

CR (fm) =
1 +MTF (fm)
1 −MTF (fm)

, (8)

CRdB = 10 log CR (fm) (9)

Where the materials-based acoustic optic modulators can
be expressed as the refractive index [6, 14, 17, 35]:

n =
√︃
B1 +

B2λ2
λ2 − B23

(10)

Where the constants for the proposed SiGeO2 and AlIn-
GaAs AOMs are clarified based on Refs. [6, 7, 14, 17]. Where
B1 = 0.6542, B2 = 6.654 (T/T0), B3 = 7.8765 for SiGeO2AOM,
B1 = 1.6543, B2 =0.2136 (T/T0), andB3 =3.6532 forAlInGaAs
AOM [6, 7, 14, 17]. The acoustic optic modulator Q-factor
and its bit error rates are expressed as [5, 6, 14, 17]:

Q = 2π λ L
n Va

(11)

The higher the modulation speed, the smaller the transit
time that can be achieved. So, the transient AOM time and
the modulation speed are expressed as [14, 17, 36, 43]:

Tt =
d
Va

, (12)

MS = 0.25
Tt

(13)
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3 Simulation Results and
Discussions

The selection of AO materials depends on the specific
device application. AlInGaAs is perhaps the best choice
for making wideband AO modulators. High optical trans-
parency over the wavelength range of interest is achiev-
able in large single crystals properties that are specifically
required for AO device applications. The transient time,
modulator Q-factor, modulation contrast ratio, 3-dB fre-
quency bandwidth,modulation frequency, andmodulator
performance are dependent on the variables defined in Ta-
ble 1.

Table 1: Variables for the acoustic optic modulators

Variables Variable Definition Values/units
T = T0 Ambient temperature 300 K-450 K
Λ Laser wavelength 1550 nm
fa Acoustic frequency 5 KHz
F Modulator focal length 10 mm
D diameter of laser beam 0.1 mm-0.5 mm
Pa Acoustic power 100 mW
H Height of modulator H = 10 mm
L Length of interaction 0.35 mm
W Width of the modulator 8 mm

Figure 2 illustrates the variations in modulator rise
time related to laser beam diameter for both previous and
proposed AOMs at room temperature. The modulator rise
time for AlInGaAs AOM is 12 ns with a 0.1 mm beam diam-
eter, 9 ns with a 0.3 mm beam diameter, and 6 ns with a
0.5mmbeamdiameter. Themodulator rise time for SiGeO2
AOM is 15 ns with a 0.1 mm beam diameter, 10.5 ns with a
0.3 mm diameter beam, and 6.565 ns with a 0.5 mm diame-

Figure 2: Variations in modulator rise time in relation to laser beam
diameter for the previous and the proposed AOMs at room tempera-
ture

ter beam. For the previous silicon AOM, themodulator rise
time is 20 ns with a 0.1 mmbeam diameter, 14 ns with a 0.3
mm beam diameter, and 8 ns with a 0.5 mm beam diame-
ter.

Figure 3 shows the variations in modulator frequency
response related to beam diameter for both the previous
and proposed AOMs at room temperature. The modulator
frequency response for AlInGaAs AOM is 3 GHz with a 0.1
mm beam diameter, 9.81 GHz with a 0.3 mm beam diame-
ter, and 36 GHz with a 0.5 mm beam diameter. The modu-
lator frequency response for SiGeO2 AOM is 2 GHz with a
beamdiameter of 0.1mm, 8GHzwith a 0.3mmbeamdiam-
eter, and 32 GHz with a 0.5 mm beam diameter. The mod-
ulator frequency response for the previous silicon AOM is
1.5 GHzwith a 0.1mmbeamdiameter, 6 GHzwith a 0.3mm
beam diameter, and 24 GHz with a 0.5 mm beam diameter.

Figure 3: Variations in modulator frequency response in relation to
laser beam diameter for the previous and the proposed AOMs at
room temperature

Figure 4 shows the variations inmodulation frequency
in relation to the laser beam diameter for both the previ-
ous and proposed AOMs at room temperature. The mod-
ulation frequency for AlInGaAs AOM is 6 GHz with a 0.1
mm beam diameter, 24 GHz with a 0.3 mm beam diame-

Figure 4: Variations in modulation frequency in relation to laser
beam diameter for the previous and proposed AOMs at room tem-
perature
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ter, and 96 GHz with a 0.5 mm beam diameter. The modu-
lation frequency for SiGeO2 AOM is 5 GHz with a 0.1 mm
beam diameter, 20 GHzwith a 0.3 mmbeam diameter, and
80 GHz with a 0.5 mm beam diameter. The modulation fre-
quency for the previous siliconAOM is 4GHzwith a 0.1mm
beam diameter, 16 GHz with a 0.3 mm beam diameter, and
64 GHz with a 0.5 mm beam diameter.

Figure 5 shows the variations in modulator speed re-
sponse in relation to the laser beam diameter for both the
previous and proposed AOMs at room temperature. The
modulator speed response for AlInGaAs AOM is 6.5 GHz
with a 0.1 mm beam diameter, 25 GHz with a 0.3 mm beam
diameter, and 97 GHz with a 0.5 mm beam diameter. The
modulator speed response for SiGeO2 AOM is 5.5 GHz with
a 0.1mmbeamdiameter, 21 GHzwith a 0.3mmbeamdiam-
eter, and 82 GHz with a 0.5 mm beam diameter. The mod-
ulator speed response for the previous silicon AOM is 4.5
GHz with a 0.1 mm beam diameter, 18 GHz with a 0.3 mm
beam diameter, and 66 GHz with a 0.5 mm beam diameter.

Figure 5: Variations in modulator speed response in relation to
laser beam diameter for the previous and proposed AOMs at room
temperature

Figure 6 shows the variations in modulator transient
time response in relation to the laser beamdiameter for the

Figure 6: Variations in modulator transient time response in relation
to laser beam diameter for the previous and proposed AOMs at
room temperature

previous and proposed AOMs at room temperature. The
modulator transient time response for AlInGaAs AOM is
320 ns with a 0.1 mmbeam diameter, 200 ns with a 0.3mm
beam diameter, and 75 ns with a 0.5 mm beam diameter.
The modulator transient time response for SiGeO2 AOM is
350 ns with a 0.1 mm beam diameter, 250 ns with a 0.3
mmbeamdiameter, and 120 nswith a 0.5mmbeamdiame-
ter. Themodulator transient time response for theprevious
silicon AOM is 480 ns with a 0.1 mm beam diameter, 400
ns with 0.3 mm beam diameter, and 275 ns with a 0.5 mm
beam diameter.

Figure 7 shows the variations in the modulation con-
trast ratio in relation to the laser beamdiameter for the pre-
vious and proposed AOMs at room temperature. The mod-
ulation contrast ratio for AlInGaAs AOM is 0.3 dBwith a 0.1
mm beam diameter, 1.2 dB with a 0.3 mm beam diameter,
and 4.8 dB with a 0.5 mm beam diameter. The modulation
contrast ratio for SiGeO2 AOM is 0.2 dBwith a 0.1mmbeam
diameter, 0.8 dB with a 0.3 mm beam diameter, and 3.2 dB
with a 0.5 mm beam diameter. Themodulation contrast ra-
tio for the previous silicon AOM is 0.1 dB with a 0.1 mm
beam diameter, 0.4 dB with a 0.3 mm beam diameter, and
1.6 dB with a 0.5 mm beam diameter.

Figure 7: Variations in modulation contrast ratio in relation to laser
beam diameter for the previous and proposed AOMs at room tem-
perature

Figure 8 illustrates the variation in the signal Q Fac-
tor in relation to ambient temperature for the previous and
proposed AOMs. The Q Factor for AlInGaAs AOM is 15 at
room temperature, 8.5 at 375 K, and 3.65 at 450 K. The Q
Factor for SiGeO2 AOM is 12 at room temperature, 8 at 375
K, and 3 at 450K. TheQFactor for the previous siliconAOM
is 10 at room temperature, 7 at 375 K, and 2 at 450 K.
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Figure 8: Variations in Q Factor in relation to ambient temperature
for the previous and proposed AOMs

4 Conclusion
We have studied the different AlInGaAs and SiGeO2
acousto optic modulators for upgrading fiber optic com-
munication systems. AlInGaAs AOMpresented the highest
Q factor, modulation contrast ratio, modulation speed re-
sponse, and the lowest transient time speed response in
comparison to the previous silicon AOM. Modulation fre-
quency, frequency response, and rise time were also eval-
uated. All of the positive results focused on the proposed
AOMs under the same ambient temperature and diameter
of laser beam variations. Therefore, AlInGaAs is the best
choice for upgrading wideband AOmodulators in fiber op-
tic communications.
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