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ABSTRACT 

SILICON-GERMANIUM NANOWIRE HETEROJUNCTIONS:  
OPTICAL AND ELECTRICAL PROPERTIES 

 

by 

Xiaolu Wang 

 

Semiconductor nanowires are quasi-one-dimensional objects with unique physical 

properties and strong potential in nanophotonics, nanoelectronics, biosensing, and solar 

cell devices. The next challenge in the development of nanowire functional structures is 

the nanowire axial heterojunctions, especially lattice mismatched heterojunctions. Si and 

Ge have a considerable lattice mismatch of ~ 4.2% as well as a mismatch in the 

coefficient of thermal expansion, and the formation of a Si1-xGex transition layer at the 

heterointerface creates a non-uniform strain and modifies the band structures of the 

adjacent Si and Ge nanowire segments. These nanostructures are produced by catalytic 

chemical vapor deposition employing vapor-liquid-solid mechanism on (111) oriented p-

type Si substrate, and  they exhibit unique structural properties including highly localized 

strain, and short-range interdiffusion/intermixing revealed by transmission electron 

microscopy, scanning electron microscopy and energy dispersive x-ray spectroscopy. Our 

studies of the structural properties of axial Si-Ge nanowire heterojunctions show that 

despite the 4.2% lattice mismatch between Si and Ge they can be grown without a 

significant density of structural defects. The lattice mismatch induced strain is partially 

relieved due to spontaneous SiGe intermixing at the heterointerface during growth and 

lateral expansion of the Ge segment of the nanowire, which is in part due to a higher 

solubility of Ge in metal precursors. The mismatch in Ge and Si coefficients of thermal 

expansion and low thermal conductivity of Si/Ge nanowire heterojunctions are proposed 



 

to be responsible for the thermally induced mechanical stress detected under intense laser 

radiation.  

 The performed electrical measurements include current-voltage，conductance-

voltage, transient electrical measurements under various applied voltages at temperatures 

ranging from 20 to 400K. We find that Si-Ge nanowire heterojunctions exhibit strong 

current instabilities associated with flicker noise and damped oscillations with 

frequencies close to 10-30 MHz. Flicker (or 1/f ) noise is characterized and analyzed on 

carrier number fluctuation model and mobility fluctuation model noise mechanism, 

respectively. The proposed explanation is based on a carrier transport mechanism 

involving electron transitions from Ge to Si segments of the NWs, which requires 

momentum scattering, causes electron deceleration at the Ge-Si heterointerface and 

disrupts current flow. Both Si/Ge heterojunctions and NW surface states are 

demonstrated to be the two dominant elements that strongly influence the electrical 

characteristics of nanowires. 
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CHAPTER 1 

INTRODUCTION 

 

Semiconductor nanowires (NWs) are quasi-one-dimensional nanoscale objects with unique 

electronic, photonic, thermal, electrochemical and mechanical properties. Different 

fabrication techniques were demonstrated but the most promising approach is based on 

“bottom-up” growth mechanisms with control of the NW morphology, stoichiometry, and 

crystal structure. This work is focused on NW based heterojunctions (HJs), more 

specifically Si/Ge NW HJ grown on Si substrates. Why Si/Ge NW HJs? Germanium (Ge) 

is a group IV semiconductor with the room temperature fundamental indirect bandgap of 

0.66 eV and a direct bandgap of 0.8 eV (~ 1.55 μm) with only 0.14 eV separation energy. 

These properties make Ge one of the most promising materials for CMOS compatible 

photonic components including near-infra-red photodetectors [1-4] and, possibly, lasers 

[5-7] in the important spectral region of 1.3-1.6 µm. However, it is well known that 

conventional Ge hetero-epitaxy on Silicon (Si) is complicated by the 4.2% difference in 

Ge and Si lattice constants [ 8 , 9 ]. Various techniques for building quality Si/Ge 

heterojunctions (HJs) include multi-step annealing to relax Ge layers and reduce the 

dislocation density [10, 11], growth of ultra-thin Ge films and superlattices using Si1-xGex 

alloy transition layers with graded Ge composition x [8, 11-14] and three-dimensional (3D) 

growth in the form of SiGe clusters and cluster multi-layers using the Stranski-Krastanov 

(S-K) growth mode [15-18]. Another promising approach is to use one-dimensional (1D) 

growth in the form of nanowires (NWs) produced by the Vapor-Liquid-Solid (VLS) growth 

mode or similar techniques [19-22]. These axial Si/Ge NW HJs with the heterointerfaces 



 

 

2 

 

perpendicular to the NW axes have a reduced heterointerface area compared to radial or 

“core-shell” NW HJs, where the Si/Ge heterointerfaces are parallel to the NW axes [22-

24]. Since Ge has a larger lattice constant (5.658 Å) compared to Si (5.431 Å), it was 

theoretically predicted that in axial Ge-Si NW HJs, strain created by the lattice mismatch 

can be partially relieved by a lateral expansion of a Ge segment of the NW and strain 

relaxation can be achieved without formation of structural defects [25, 26]. 

 It is well known, that at the Si/Ge heterointerface electron mobility decreases due 

to the electron deceleration and, possibly, accumulation at the hetero-interface. At the same 

time, electrons and holes have high mobilities in Ge than in Si, so introducing a Si1-xGex 

alloy layer offer an interesting opportunity for the development of novel electron transfer 

devices with a lower value of off-current [27] and faster switching time [28]. Also, there 

are several limiting factors in homogeneous NW devices and planar devices that can be 

mitigated by using NW heterostructures [27]. In addition, Si/Ge NW HJ based devices are 

promising due to the energy barriers built in the Si-Ge heterointerfaces, enhanced carrier 

injection efficiency, and improved carrier mobility due to compressive strain and 

controlled Ge composition [29]. The quality of the junctions between two materials is 

critical for many applications, such as NW resonant tunneling diodes [30] and NW single 

electron transistors [ 31 ], where defect-free tunnel barriers are essential for device 

performance. The NW structure, shape, composition, local strain, and interface states near 

the Si-Ge heterointerface do affect the NW heterojunction physical and chemical properties 

and device performance. 

 The specific aim of this work is fabrication and studies of Si/Ge NW HJs and their 

applications in electron-transfer device (ETD) prototypes. More specifically, it was 
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experimentally demonstrated that Au-assisted VLS growth is capable of producing high 

crystallinity, constant diameter Si/Ge NW HJs with defect free heterointerface, and the 

predicted lateral expansion of the Ge NW segments was found to be as high as 10% [32]. 

This large lateral expansion is, in part, due to a higher solubility of Ge in Au, compared to 

that of Si, and it provides additional relaxation of strain associated with the lattice 

mismatch. Also, the VLS-grown axial Si/Ge NW HJs have less than 10 nm thick 

spontaneously formed Si1-xGex alloy layer. This result is very different compared to 

traditional Ge heteroepitaxy on Si, which requires precisely grown composition-controlled 

Si1-xGex alloy layers with more than 100 times greater thicknesses. These properties make 

Si/Ge axial NW HJs very interesting, if not unique, lattice-mismatched hetero-systems, and 

their structural and optical properties are studied in details. 

 The project has a long history. In 2007, Dr. Tsybeskov’s team started discussions 

with HP Labs and NRC Canada on feasibility of the development of axial Si/Ge NWs. 

From 2007 to 2009, first series of samples are produced. However, Si/Ge NW HJs were 

not well defined, and HJ electronic properties were controlled by structural imperfections. 

In 2009, after modifications in the growth procedure, the Si/Ge NW HJs were successfully 

grown by our collaborators at HP Labs and TEM data confirmed low-defect density and 

abruptness of the Si/Ge NW HJs. From 2009 to 2011, sample fabrication was optimized 

and our team has started systematic investigation of optical and electrical properties of the 

Si/Ge NW HJs. The main motivation of this work is demonstration of a novel ETD 

prototype. Compared to traditional III-V multi-valley semiconductor based ETDs, where 

electron transfer involves transitions between different valleys of the conduction energy 

band, a similar effect involving electron transfer between Si and Ge conduction band 
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minima is expected in the Si/Ge NW HJs. This approach could lead to the development of 

cost efficient compact oscillators. However, the major obstacle is the potentially high 

density of surface/interface trap levels [33, 34]. These surface states are known not only to 

trap charge carriers but also to enhance the surface conductivity in various field effect based 

devices [35, 36]. Therefore, studies of Si/Ge NW HJ based ETD prototypes should involve 

ac and dc electrical measurements at various temperatures and detailed analysis of current 

noise within a broad frequency range. 

 Chapter 2 introduces the fabrication procedure and structure of our Si/Ge NW HJ 

samples. Further discussion about the anticipated physical properties of these structures as 

well as detailed references to previously published results focusing on structural, optical, 

electrical and thermal properties of Si/Ge HJs are presented in this chapter.  

Chapter 3 describes the details of sample characterization techniques used in the 

present work. The experimental methods, optical/electrical characterization setups, and 

details of the measurement procedures are presented.   

 Chapter 4 presents a detailed discussion of the experimental results. The first 

section is focused on structural properties of Si/Ge NW HJs based on Transmission 

Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Energy-

Dispersive X-ray (EDX) spectroscopy measurements. (These measurements are performed 

in collaboration with scientists from National Research Council of Canada in Montreal). 

The result shows that despite the 4.2% lattice mismatch between Si and Ge, the NJI HJs 

can be grown without a significant density of structural defects. Detailed studies of the 

optical properties of axial Si/Ge NW HJs are shown in second section of this chapter. 

Raman scattering and photoluminescence (PL) measurements are performed for Si/Ge 
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NWs using different excitation wavelengths, broad temperature range, and angles of 

excitations. We find that the lattice mismatch induced strain is partially relieved due to 

spontaneous SiGe intermixing at the heterointerface during growth and lateral expansion 

of the Ge segment of the nanowire. The mismatch in Ge and Si coefficients of thermal 

expansion (CsTE) and low thermal conductivity of Si/Ge NW HJs are proposed to be 

responsible for the thermally induced stress detected under intense laser radiation in PL 

and Raman scattering measurements. The last part of Chapter 4 is focused on Si-Ge NW 

HJ electrical properties and explanations of the non-linear current voltage characteristics 

and strong current instabilities associated with flicker noise and damped oscillations with 

frequencies close to 10-30 MHz. The proposed explanation is based on a carrier transport 

mechanism involving electron transitions from Ge to Si segments of the NWs, which 

requires momentum scattering, causes electron deceleration and localization at the Ge-Si 

heterointerface and disrupts current flow. 

 In Chapter 5, this dissertation ends with a summary of the presented research and 

proposed future work.
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CHAPTER 2 

BACKGROUND 

 

Semiconductor NWs usually (but not always) are crystalline quasi-1D nanostructures 

(compared to quantum wells described as two-dimensional (2D) and quantum dots as 3D 

nanostructures). They offer unique access to low dimensional physics and have been 

regarded as important elements of the next-generation technology. NW based devices 

could achieve very high device integration densities compared to conventional devices and 

structures. Silicon based NWs are especially attractive due to the current dominant role of 

Si in the semiconductor industry. Interesting properties and applications of elemental 

semiconductor NW have been widely reported [ 37 ]. Introduction of semiconductor 

heterojunctions within NWs opens additional possibilities compare to the traditional 2D 

semiconductor interfaces formed in thin film quantum wells and superlattices. For 

example, Si/Ge HJ NWs exhibit unique structural, optical, thermal and electrical properties, 

which could be adjusted and improved with control over the materials composition, 

geometry and dimensions. Similar to that in planar Si/Ge heteroepitaxy, the Si/Ge NW 

heterojunction design allows engineering of the energy bandgap, carrier mobility, density 

of states, phonon and electron confinement, and exciton binding energy. Because of these, 

high-performance Si/Ge NW HJs, has become an intriguing and exciting approach in quasi-

one dimensional nanostructures [38]. 
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2.1 Growth of Si/Ge NWs 

Advances are continuously made in synthesis of growth mechanisms for semiconductor 

NWs in the past decade, but there are still many problems to solve. Using the gas phase or 

solution phase synthetic routes is enabled to improve the crystalline and chemical 

properties and control access to a variety of new material systems and morphologies [39]. 

Those NW synthesis methodologies developed during the past decade can be categorized 

into Top-down approach and Bottom-up approach [40]. Top-down approach builds NWs 

from pre-existing substrate materials by techniques such as lithography and etching. The 

bottom-up approach, which will be focus on in this study, allows to grow a semiconductor 

NW on any substrate at low temperatures. However, these techniques constitute serious 

challenges in the location of the nanowires and compatibility with CMOS components [41]. 

Various versions of Si/Ge HJs have been previously studied, and it was demonstrated that 

these nanostructures can be reliable and reproducibly fabricated using annealing to relax 

the Ge layer, two-dimensional (2D) growth (i.e., thin films) using Si1-xGex alloy transition 

buffer layers with graded Ge composition x, 3D growth in the form of Si1-xGex clusters 

using the S-K growth mode [42-46], etc. The most-cited and widely-accepted method for 

NW fabrication is the VLS growth reported in the first generation of 1D nanostructures by 

Wagner and Ellis in 1964 during studies of single-crystalline whiskers [47].  

2.1.1 Vapor Liquid Solid Growth 

VLS growth is a classic 1D structure growth mechanism. The growth rate depending on 

the diameter of the structure, which is several orders of magnitude higher in one direction 

than in others. The synthesis is based on Chemical Vapor Deposition (CVD). In the growth 

of Si and Ge semiconductors, the widely demonstrated efficient catalyst is gold. Although 
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Au remains the most commonly used catalyst for Si and Ge NWs, other metals (e.g., Au, 

Ti, Ga, Pt, Al, Cu, Pd, Mn, and Fe) have been used to catalytically enhance growth of the 

NWs. Furthermore, due to the physical properties of Si and Ge, SiGe NW alloys and SiGe 

NW heterojunctions can be produced with the specific physical properties and applications. 

However, it requires strict control over the SiGe alloy and NW segment compositions.  

 
Figure 2.1 Schematic of the fundamental processes during the vapor-liquid-solid growth 
of element semiconductor NWs. 
Source: [48]. 

 
 The anisotropic crystal growth in the VLS mechanism is promoted by the presence 

of the liquid alloy/solid interface [48, 55]. The VLS mechanism of pure Si NWs is depicted 

in Figure 2.1 and it includes four growth stages: 

I. Sputtering or thermal evaporation is used for depositing a thin metal (Au) film (~1–
10 nm) onto a wafer substrate (Si). 
 

II. Au/Si alloy droplets are created on the wafer surface (the thinner the metal film, the 
smaller the droplets), after the wafer is annealed at temperatures higher than the 
metal-semiconductor (Au/Si) eutectic point. The growth temperature is set in 
between the eutectic point and the melting point of the materials. Si NWs are 
synthesized via the VLS process. Because Si/Au and Ge/Au eutectic temperature is 
~360-370℃ much lower than those of the silicide. 
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III. The liquid Au/Si alloy droplets on the surface of the substrate act as a catalyst and 
preferred locations for the adsorbing and decompensating the gaseous precursor. 
Crystalline Si nanowires grown takes place in a vacuum deposition system by a 
liquid droplet catalyzed CVD process. Metal-semiconductor droplets on the surface 
of the substrate correspond to lower the activation energy of normal vapor-solid 
growth. Furthermore, the increasing surface area-to-volume ratio leading to lower 
melting points considerably in those nanometer-sized metal-semiconductor 
droplets [94].  
 

IV. When the Au/Si alloy droplets are saturated with the Si atoms, the precipitation at 
the liquid/solid interface and the NW formation occur. Because much higher 
melting point of semiconductor compared to that of the eutectic alloy leading to 
saturation and nucleation at the liquid/solid interface for axial crystal growth. At 
the liquid-alloy/solid-semiconductor interface, and the liquid-alloy droplet rises 
from the surface and semiconductor atoms sedimentation. 
 

 VLS growth by CVD can produce epitaxially aligned, highly crystalline wires. The 

diameter of the as-synthesized wires can be controlled by selecting different size drops of 

the catalyst. Although VLS method is the ideal synthetic technique to control NW growth 

[48, 49 ], thin metal films do not provide a good NW diameter control due to the 

randomness of the film breakup at reaction temperatures[50, 51]. Precise growth and 

epitaxial alignment has only been achieved by lithographically defined regions in NWs 

growth by thin film evaporation[52-54]. On the other hand, catalyst material is getting 

incorporated into the NWs. Au in Si and Ge produces deep traps, and it decreases carrier 

mobility and lifetime. Au is also a contamination for CMOS technology [40]. 
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Figure 2.2 Schematic illustration of Si/Ge NWs growth from the reaction of SiH4 and GeH4 
vapor phases. This reaction is catalyzed by Au/Si and Au/Ge droplet. 
 

2.1.2 Samples Fabrication 

In this study, our axial Si/Ge NW HJs samples are grown using the VLS technique (see 

Figure 2.2) and Au nanoparticles as a precursor in a reduced pressure, lamp heated CVD 

reactor using the following growth steps [55]: 

I. The growth of Si/Ge NW is using gold as catalyst. Because the proportions and 
temperatures of the eutectic metal/semiconductor alloy needed are approximately 
the same for Au/Si and Au/Ge (80 and 70% Au, 360°C).  A thin layer of Au (2 nm 
thick) is deposited on a cleaned, p-type (111) Si substrate with a resistivity of 0.01–
0.02 Ω ⋅cm and annealed for 10 min at 670 ℃ at 95 Torr in a H2 ambient to form 
nanometer-size clusters. For details, see Ref. [56].  
 

II. The Si segments of the NWs are grown at 680 ℃ at 30 Torr using the gaseous 
precursors SiH4 and HCl in a H2 ambient. The growth rate for the Si NW segment 
is estimated to be close to 100 nm per minute [same above ref].  
 

III. The reactor is cooled to 350 ℃ at a nominal rate of 75 ℃/min with the SiH4-HCI-
H2 mixture flowing.  
 

IV. The Ge segments of the NWs are grown at 350 ℃ and 90 Torr, using GeH4 and 
HCl as the gaseous precursors in the H2 ambient. The growth rate for the Ge NW 
segment is estimated to be 40 nm per minute[57]. 
 

V. To avoid sample oxidation, before samples are exposed to air the reactor is cooled 
down to room temperature. We find that most of the studied Si/Ge NW HJ samples 
have a NW diameter ranging from 50 to 130 nm. The total NW length is 1500–
2000 nm with the Ge segment as long as 500 nm. 
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 Our grown NW sample is depicted qualitatively in Figure 2.3. Our sample’s 

structural properties have been characterized by TEM, SEM, EDX, PL spectroscopy and 

Raman scattering spectroscopy.  

 

Figure 2.3 Schematic depicting our grown NW sample. 
 

2.2 Properties of Si/Ge NW HJs 

Si and Ge have the same diamond lattice structure and similar lattice constants. These 

properties of Si and Ge physics make it possible to be fully miscible and synthesize a wide 

union of composition alloys as well as a variety of structures using Si1-xGex alloys. Some 

specific electronic and optoelectronic properties of their alloys can be reached by adjusting 

concentration and bandgap engineering, etc. Epitaxial layers of epi-grown Si/Ge crystalline 

material largely improve the applications in optoelectronics and photovoltaics. For 

example, in strained Ge layers on Si lasing at ~1.6um has been reported [5-7]. In unstrained 
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Ge layers on Si, ~1.55 um electroluminescence was found to be due to the direct transition 

[5-7]. Therefore, the structural, electronic, optical, and thermal properties of Si/Ge NW 

HJs are of significant interests and will be reviewed in this section.  

2.2.1 Structural Properties 

Si/Ge NWs offer the possibility to manipulate the physical properties by changing the 

dimension of the system and engineering the geometry of the Si/Ge interface. Fortunately 

due to the lateral relaxation of the strain deriving from the ∼4.2% lattice mismatch, NWs 

with defect-free interfaces can be obtained. But the large value ∼4.2% lattice mismatch 

between Si and Ge made the growth of defect-free 2D-interfaces challenging in previous 

reported synthesized Si/Ge NWs [58]. The interfaces between two materials are expected 

to be as abrupt as possible. However, in all previous reported Si/ Si1-xGex axial junctions 

in nanowires [58, 59], the interfaces were very diffuse with smooth interface from one to 

another, rising serious concerning at the efficiency of the envisioned devices. 
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Figure 2.4 (A) HR-TEM image of a Si/Ge NW HJ. (B) HAADF-STEM image of a similar 
wire grown under the same conditions. The inset shows the intensity profile across the 
interface. (C) false-color STEM EDS elemental maps of Si, (D) Ge, and (E) Au in the 
region of the junction in a nanowire. (F) Line profile of the EDX intensities extracted from 
the elemental maps of Si, Ge, and Au. The intensity is averaged over a 3-nm strip along 
the midpoint of the wire. 
Source: [60]. 
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Figure 2.4 proves that the composition of NWs heterostructure changes along the 

growth direction of the wire. The structural properties and the compositional abruptness of 

the Si/Ge axial NW interface are quantified in Figure 2.4 [60]. A highly crystalline 

structure without obvious structural defects such as dislocations is verified in the high-

resolution TEM (HR-TEM) image of the interface of the Si/Ge NW HJ (Figure 2.4(A)). 

High Angle Annular Dark Field (HAADF) in scanning TEM (HAADF –STEM) in Figure 

2.4(B) confirms a compositionally uniform Ge segment is on the Si nanowire. The inset 

image (Figure 2.4(B), inset) shows a smooth but narrow transition at the interface and the 

width of the Si1-xGex transition layer is 1.3 nm. EDX maps and line profiles (Figure 2.4) 

show that Si and Ge diffuse into each other in the composition transition layer formed in 

less than 2 nm, is consistent with the HAADF analysis.  

The formation of high crystallinity, compositionally abrupt and structurally perfect 

junctions in axial heterostructure NWs are the prerequisite for future transistor applications 

such as tunnel field-effect transistors, photonic and thermoelectric devices. EDX 

spectroscopy is critical for us to completely gauge the possibility sharpness from Si to Ge 

may with small reservoir effect by measuring the widths of the interfaces in the growth 

direction.  

 So in our study, EDX spectroscopy is used as the privileged tool to characterize the 

crystalline structure and the local atomic composition of Si/Ge NWs HJs, apart from the 

above measurement techniques (SEM, TEM). In order to predict and tailor the electronic 

and optical properties for desired applications, structure characterization of Si/Ge NWs HJs 

are further analyzed by other optical techniques such as Raman scattering and PL 

spectroscopy.  
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2.2.2 Heterostructure Interfaces Strain 

The 2-D semiconductor interface is ubiquitous in optoelectronic devices such as diodes, 

lasers, and transistors [61, 62]. The interface is troubled by the formation of structure 

defects such as dislocations (Figure 2.5(a)) due to the 4.2% lattice mismatch between pure 

Si and Ge. For Si/Ge interface, the onset thickness of relaxation must be greater than the 

critical thickness [63-66]. Critical thickness in terms of the mechanical equilibrium of a 

preexisting threading dislocation [65, 66] allows a mismatch between the alloy and the Si 

be accommodated elastically without misfit dislocations formed [ 67 ].  But the 

heterostructure would be considerably strained due to the mismatch if it is accommodated 

elastically [68] and if the thickness of the epitaxial layers is kept below a critical thickness. 

Relaxed, unstrained Si1-xGex layers are only obtained at large layer thicknesses if they are 

deposited directly on a Si substrate. Thinner layers are biaxially strained. Relaxed layers 

with low dislocation densities are obtained by applying graded buffer layers [69, 70]. 
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(a) 

 

(b) 

Figure 2.5 Relationship between lattice mismatch of Si and Ge and misfit dislocations that 
occur beyond the critical thickness (a) in film epitaxial layers. (b) in Si/Ge nanowires. 
Source: [69]. 

 

 However, remarkably defect-free interface can be obtained in nanowires [38, 65, 

66, 71], which is achieved by the lateral relaxation of the strain building up at the junction 

(Figure 2.5(b)). Since Ge has a larger lattice constant (5.658 Å) compared to Si (5.431 Å), 
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the lattice constant increases continuously as the Ge concentration in the Si1-xGex alloy 

increases from a = 0.5431 nm (x=0) to a = 0.5658 nm (x=1) [72]. This is a small, negative 

deviation of the monotonically varying experimental data of the lattice constant from 

Vegard’s law [ 73 ]. Crystalline silicon-germanium is reported to build a continuous 

substitutional solid solution with a cubic diamond structure (space group Fd3m) under 

normal pressure [74]. For silicon-germanium growth on a silicon, when the thickness less 

than the critical thickness this introduces compressive strain in the newly formed Si1-xGex 

layer. (Figure 2.5(b)). For the thickness far exceeds the critical thickness of Ge on Si, the 

Ge is relaxed at growth temperatures. The compressive strain should be introduced to Ge 

part when these two materials are joined together leaving tensile strain in Si1-xGex layer 

below Ge (Figure 2.5(b)). The resulting strain in Si is tensile. It was proposed that in axial 

Si/Ge NW HJs strain created by the lattice mismatch between Si and Ge can partially be 

relieved at the heterointerface by the lateral expansion of a Ge segment of the NW due to 

larger Ge lattice constant compared with Si. This relaxation by Ge atoms is the reason of 

the resulting defect-free interfaces. In addition, strain relaxation in a heteroepitaxial layer 

is also strongly influenced with solid solubility, interdiffusion, segregation, and generation 

of defects [121]. The present strain is induced by the misfit of lattice constant and the 

deference of CTE between Si and Ge when cooling from the growth temperature. 

Independent of the source of thermal effects or lattice mismatch induced strain, the overall 

effects on the band structure are equivalent. 

 Furthermore, since altering the intrinsic interatomic distances leads to modification 

of the energy levels, the band structure, mobility, the effective mass of electrons and holes, 

the valence bands split and ∆ valleys are strongly affected by strain.  For all these reasons 
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the strain would act as a powerful tool to modulate features of NW HJs in the device 

engineering. 

2.2.2.1 Effect of Strain on Band Structure.   Ge forms a covalent bond with Si. Ge is a 

Group IV material as well as Si, and thus avoids the cross contamination issue [75]. One 

property of Ge and Si that is the particular interesting nature of their bandgap. Ge has 3d 

electrons in the core, which is the significant different from Si. So, the main differences in 

the band structure between Si and Ge appear mainly in the conduction band arrangement. 

Si has the Γ15 band lower than the Γ2 band and different lowest conduction bands ordering 

from Ge. Although both for Si and Ge, the maxima of the valence bands and the minimum 

of the conduction band lie at different momenta, the conduction band minimum in Ge 

occurs at the L-point along <111> direction of the Brillion zone, while it is near the X-

point in Si. It means Ge has a direct bandgap Γ1 of 0.80 eV (∼1.55 μm) that is only 140 

meV above its indirect bandgap at room temperature (Figure 2.5 (b)) [76]. Silicon has a 

much larger difference between its minimum bandgap of 1.12 eV at the 𝚫-valley along the 

<100> direction and its direct bandgap of 4.0 eV with another L-valley minimum at 2.06 

eV (Figure 2.6(a)). The equivalent 𝚫-valley in Ge is above its direct bandgap at 0.8 eV. 

The band structure of Ge enables it transform from an indirect gap material to a direct gap 

material by introducing the incorporation of tensile strain (in opposite shift direction of 

Figure 2.6(c)). In addition, the configurations of valence band in both Si and Ge are similar.  
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Figure 2.6 The bulk unstrained band structure of (a) Si, (b) Ge, (c) the shift with 
compressive strain on Ge, (d) the shift with tensile strain on SiGe.  
Source: [77]. 

 

 The strain relaxed Si1-xGex alloy layer induce global strain for tensile strained Si 

and compressive strained Ge. For tensile strain decreases the direct bandgap and raises the 

degeneracy of the light and heavy hole bands with shifting the light hole up and heavy hole 

down in energy. In the opposite, compressive strain increase the direct bandgap and shifting 

the light hole down and heavy hole up. Figure 2.6 illustrates the band structures of Si, Ge 

and Ge/SiGe with and without compressive and tensile strain [77].  
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 However, after cooling to room temperature, tensile strain, can be formed in the Ge 

layers due to the different temperature dependent CsTE of Ge compared with Si [78-80]. 

As the wafer is cooled from the growth temperature, Si has the smaller CTE than Ge 

leaving to a greater expansion than the Ge. Ishikawa et al. reported that 0.2-0.3% tensile 

strain would decrease the Γ-point transition energy by 0.03 eV [81], while Liu et al. 

reported reducing the disparity between the direct and indirect bandgaps of Ge from 136 

to 100 meV makes direct band-gap red-shift from 0.8 down to 0.76eV and from an indirect 

gap to a direct gap material with ~1.8% tensile strain[82, 83].  

 Figure 2.7 illustrates a schematic view of band structure of Ge part of nanowires 

unstrained and shifted by tensile strain. With the increase of tensile strain, the energy 

difference between the direct and indirect bandgaps of Ge weakens transforming Ge from 

an indirect gap material to a direct gap material. With tensile strain, the direct gap shrinks 

faster than the indirect bandgaps. In addition, the light hole band effective mass reduces 

the average density of states in the valence band. Because light hole band determines the 

top of the valence band due to tensile strain. As a result, this small effective mass further 

decreases the threshold for optical transparency and lasing. 
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Figure 2.7 (a) A schematic view of band structure of bulk Ge, (b) tensile strained Ge with 
shifts towards direct bandgaps. 
Source: [83]. 

 

 In general, strain induced two effects are hydrostatic strain shifts the energy 

position of bands and uniaxial/biaxial strain splits degenerate bands. Figure 2.8 shows two 

strain affect both overall energies and shape of the band structure of Si. The hydrostatic 

strain upshift or downshift all conduction and valence bands (tensile lowers conduction 

bands and raise valence bands, and for compressive strain is just the opposite). However, 

the uniaxial stress only breaks the degeneracy of the valence bands but not change the 

conduction bands position as well as the total band energy. The valence band splits in heavy 

hole, light hole, and spin-orbit-split hole bands while the ∆ bands split into four equivalent 

in-plane valleys and two growth direction valleys. The biaxial strain might decrease or 

increase the bandgap energy associated with the ∆ valley due to the combined conduction 
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band structure and the bandgap energy associated with the L or Γ valley (increase with 

compressive and decrease with tensile biaxial strain). 

 

 

 

Figure 2.8 (a) A schematic view of bulk Si energy valleys and (b) the difference between 
the bulk Si and strained Si, (c) the hydrostatic shift and uniaxial splitting of the conduction 
and valence bands for both compressive and tensile strain. 
Source: [84, 85]. 

 

 For Si1-xGex alloys of all compositions x are indirect bandgap semiconductors. 

Figure 2.9 illustrates the bandgap variation of Si1-xGex alloys on Si with different Ge 
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content x. It clearly indicates that the bandgap variation is strongly affected by strain in the 

Si1-xGex crystal. The lower two curves corresponds to the variation of strained Si1-xGex 

alloys. The strain introduces heavy-hole/light-hole splitting of the valence band maximum. 

An example of valence band dispersion under strain along [100] and [110] for Si0.5Ge0.5 on 

Si(001) is depicted in Figure 2.12(b). Besides on the composition, an additional shift of the 

critical point energies is obtained by strain [84, 85].  

 Previous studies [72] show E1 and E1+∆1 interband transitions are most sensitive 

to strain and compostion, where E1 denotes a direct transition between conduction band 

and valence bands, while E1+∆1 is the spin-orbit split. For example, the dependence of E1 

and E1+∆1 on a biaxial (100) strain 𝜀𝑠 is show in shifts [86] [87]: 

          𝛿𝐸1 = 𝐸1(𝜀𝑠) − 𝐸1(0) = ∆12 + 𝐸𝐻 − 12 √∆12 + 4𝐸𝑠2 (2.1) 

𝛿(𝐸1 + ∆1) = [𝐸1 + ∆1](𝜀𝑠) − [𝐸1 + ∆1](0) 

= −∆12 + 𝐸𝐻 + 12 √∆12 + 4𝐸𝑠2 

(2.2) 

 

where E𝐻 is the hydrostatic shift due to hydrostatic strain and E𝑠 is possible splitting due 

to uniaxial shear, respectively.  
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Figure 2.9 Energy bandgap variation of Si1-xGex alloys on Si with different Ge content x.  
Source: [88, 89]. 

 

2.2.2.2 Effect of Strain on Band Discontinuity.  The electrical properties of the Si/Ge 

NW HJs are determined by the energy band alignment at the heterointerface. When Si and 

Ge form a HJ, discontinuities are created in their valence bands as well as conduction bands 

due to the charge distribution near the HJ interface.  

 The Si/SiGe heterointerface exhibits type II energy band alignment where the 

spatial separation of electrons in Si and holes in SiGe (see Figure 2.10) seems to make 

carrier radiative recombination very inefficient. Figure 2.10 shows the band lineups of 

Si/Ge, Si/ Si1-xGex, and Si1-xGex/Ge heterointerface with lower energy L-valley and Δ2, 
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Δ4 included. According to the large lattice mismatch and the conduction-band minima in 

Si and Ge are located at different points away from the Brillouin zone center, band offset 

is depicted in Figure 2.10(a). Figure 2.10(b) illustrates computed qualitatively analyzing 

the type-II staggered band alignment of tensile strained Si on compressive strained Ge [90]. 

However, despite the type-II band alignment, strain makes it still possible to obtain an 

efficient carrier radiative recombination in favorable conditions. A type-II conduction band 

edge alignment in Si/Ge NW HJs is proved [72]. This type II band offset of strained Si on 

relaxed Si1-xGex leads to a potential well in the conduction band. However, the conduction 

band offset in contrast is learned to be relatively small for Si/Si1-xGex interface (Figure 

2.10(c)) [90]. The bandgap difference ∆Eg between the Si part and the Si1-xGex layer 

consists of the valence band discontinuity ∆Ev plus the conduction band discontinuity ∆Ec. 

In case of the Si/Ge HJs, most of the bandgap reduction on account of the shift in the 

valence band-edge since the conduction band edges for Si and SiGe nearly align. The 

valence-band discontinuity determines the capacitance and threshold voltage of 

microelectronic devices. The conduction band discontinuity accounts for a low proportion 

of the total bandgap difference. The calculated value of the conduction band offset ∆EC, 

produced by strain but not including the effects of confinement, is 0.45x [91]. Experimental 

values of ∆EC is few, and are somewhat larger [92]. For example, Stern and Laux [93] 

found ∆EC= 0.18 eV for x = 0.3. The valence-band discontinuity between Si and Si1-xGex 

is reported as ∆Ev = 6.4x meV where x is the Ge percent for 0 < x < 17.5%. A likely linear 

dependence is obtained when combining several research groups in Figure 2.11. 
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(a) 

 

Figure 2.10 Band lineups of (a) Si/Ge heterostructure, (b) Si/Si1-xGex heterostructure, and 
(c) Si1-xGex/Ge heterostructure. 
Source: [90]. 
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Figure 2.11 Valence-band discontinuity versus Ge composition for Si1-xGex on Si. 
Source: [94-96]. 

 

 In sum, strained Si and Ge are attractive candidates from the perspective of 

electronic and optoelectronic devices. The research on this strain and ab initio calculations 

of Si/Ge NWs has been vivid starting from 20 years ago [97-100].  
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Figure 2.12 (a) Heavy hole effective mass density of states vs. energy at different x. (b) 
Valence band dispersion along [100] and [110] for Si0.5Ge0.5 on Si(001). (schematic 
view).(c) Valence and conduction band offsets for strained Si1-xGex layers on (100) Si.  
Source: [101-103]. 

 

2.2.2.3 Effect of Strain on Effective Mass.  According to the above discussion, heavy 

hole effective mass density of states of Si1-xGex decreases with the increase of Ge 

composition x (Figure 2.12(a)). The shift of the L and H bands induced by strain results a 

steep change in the electron effective mass of conduction band [104]. Thus variation of 

effective mass must take changes of m∗ into calculation when interpreting room-

temperature carrier mobility data.  

 The corresponding relationships between effective masses and effective densities 

of states Nc and Nv are inseperate. Angular dependent calculations of effective masses 

under strain in Si/Ge HJs are anisotropic. In the other word, the density of states will be 

different in one crystal orientation than in another. In the calculation of density of states, 
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the effective mass is the geometric mean of a single band minimum described by a 

longitudinal mass and two transverse masses. Because the anisotropic density of states is 

more difficult to visualize and calculate than the isotropic density of states, methods are 

adjusted through calculating the densities of states from particular points or directions, or 

calculating the projected density of states. The strain dependent effective density of states 

in the conduction band Nc for the [110] SiNW is calculated from [105]: 

 

𝑁𝑐 = √2𝑘𝑇𝜋ℏ  ∑ 𝑒𝐸𝑐 𝑚𝑖𝑛−𝐸𝑖/𝑘𝑇√𝑚𝑖∗𝑁
𝑖=1 , (2.3) 

 

where 𝑚𝑖∗ is the effective mass of subband i. 𝐸𝑖 and 𝐸𝑐 𝑚𝑖𝑛 are the bottom of subband i and 

the lowest conduction subband. kT are thermal energy 26 meV at T=300 K and N is the 

number of subbands in the 3kT window from 𝐸𝑐 𝑚𝑖𝑛  [105]. The light conduction bands at 

k=0 primarily contribute to Nc under tensile strain. Hence, Nc is smaller under tensile strain. 

Under small compressive strains, Nc increases because both the heavy and light conduction 

bands contribute to Nc. But at larger compressive strains, Nc curve shows a dip due to 

strains beyond the transition from direct to indirect band. 

 As the conductivity is inversely proportional to the effective masses, the 

conductivity is proportional to the sum of the inverse of each mass multiplied by the density 

of carriers in individual band. Accordingly, due to the large change in effective 

masses/density of states, the change of conductance would be more than three orders of 

magnitude within the 2% strain [105]. 
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2.2.2.4 Effect of Strain on Mobility.  The electron flow exponentially depends on the 

effective bandgap between the Si conduction band and the Ge valence band. The strained 

Si and Ge achieve the effective enhancement of carrier mobility which are proved for future 

CMOS technology [ 106 ]. The mobilities of electrons and holes in non-polar 

semiconductors are determined by the acoustical vibrations of the lattice, impurities 

scattering and other lattice defects. When the concentration of carriers is small in pure 

materials, acoustical vibrations of the lattice is the dominating effect. Semiconductor 

crystals exhibit a strain induced energy shift for the non-degenerate energy levels of the 

conduction/valence band and strain induced conduction/valence band splitting. 

Additionally, there can also be a partially or even complete lifting of degeneracy in 

degenerate bands, caused by the reduction of symmetry. The deformation potential of 

valence bands is different than that of the conduction bands, due to the degeneracy at the 

maximum of the valence bands. Carrier mobilities in strained Si, Ge, and Si1-xGex alloys 

can be able to obtain by the effect of strain on band-structure, effective masses, and with 

uniaxial deformation potentials. The splitting of the degeneracy of the valence bands 

increases the hole mobility in Si and Ge. Both ‘heavy’ hole mass reduction and the band 

splitting enhance high hole carrier mobilities. At high value strain, the latter suppressing 

the elastic scattering and even inelastic non-polar optical scattering (dominates in bulk 

unstrained material) plays the preferential effect. For the investigated case of holes [107-

109], the mobility enhancement is independent of strain type, compressive or tensile 

(Figure 2.13). 

 On the other side, only a moderate enhancement of the electron mobility in strained 

Si has been found based on the splitting band theory. a∥/a0 > 1 means tensile strain in the 
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plane of the layer where a∥ is denoted as the in-plane lattice constant of the strained lay 

(Figure 2.13). In Figure 2.13(a) the in-plane electron mobility μ∥  increases sharply. 

Electrons populate the two lower energy Δ valleys with longitudinal axis along the [001] 

directions. The lower conductivity mass is the obvious main cause of the increased 

mobility. Higher values of the electron mobility at tensile strain can be obtained only by 

invoking intervalley scattering models [110]. Under compressive strain (a∥/a0 > 1), the 

in-plane mobility first decreases, but soon, the reduction of the transverse mass in these 

causes a reduction of the scattering rates, due to a lower density-of-states effective mass, 

and the mobility increases again and remains higher. 
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Figure 2.13 300 K (a) electron and (b) hole low-field mobility in Si under strain in the 
[001] direction. The dots, labeled μ∥, refer to the ‘‘in-plane’’ mobility along the [100] and 
[110] directions, the circles, labeled μ⊥ , refer to the mobility along the [001] direction. 
The results indicated by open triangles and inverted triangles have been obtained using the 
intervalley deformation potentials; (c) electron and (d) hole low-field mobility in Ge under 
strain in the [001] direction.  
Source: [110]. 

 

 In Ge, the situation is qualitatively similar to hole mobility (Figure 2.13(d)). The 

electron mobility (Figure 2.13(c)), however, strain of opposite sign cause the in-plane and 

out-of-plane mobilities to exhibit opposite trends. For tensile in plane strain, a dramatic 

enhancement of the electrons mobility, also due to the decreasing in plane electron 
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effective mass. The larger intervalley scattering causes, in turn, a lower mobility. For a 

larger strain, the electrons settle in the Δ(100) valleys. The mobility now approaches a 

constant value, approximately equal to the Δ -valleys electron mobility in unstrained Ge 

[110]. 

 In unstrained Si1-xGex alloy, hole transport has been degraded by the scattering due 

to the random disorder potential but not affecting electron transport, since the latter occurs 

in pure Si layers. For electrons, strain breaks the six-fold conduction band degeneracy, 

splitting into two groups: two lowered valleys that exhibit a longitudinal mass axis normal 

to the heterointerface, and four raised valleys that have the longitudinal mass axis parallel 

to the interface [111]. Both effects lead to reduced intervalley scattering [112]. Mobility 

enhancements saturate for compositions beyond 20% Ge is found by researchers [113, 114] 

(Figure 2.14). For strained Si1-xGex alloy, alloy scattering mechanisms limits the mobility. 

The mobility of unstrained Si1-xGex decreases more than that of strained Si1-xGex by alloy 

scattering since strain reduces intervalley alloy scattering. As a consequence, both 

mobilities do not show much difference. Carrier mobilities in strained Si1-xGex alloys 

appear to be completely dominated by alloy scattering. All the advantages expected on the 

basis of degeneracy lifting are canceled by this strong scattering process. 
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Figure 2.14 300 K (a) electron and (b) hole low-field mobility in Si1-xGex alloys grown on 
<001> Si substrates; (a) electron and (b) hole low-field mobility in Si1-xGex alloys grown 
on <001> Ge substrates. 
Source: [113, 114]. 

 

2.2.2.5 Effect of Strain on Saturation Velocity. Electrons gain energy and their 

temperature is increased under a strong electric field. The Si electron and hole mobilities 

are proportional to 𝑻−𝟐.𝟒  and 𝑻−𝟐.𝟐 , while the Ge electron and hole mobilities are 

proportional to 𝑻−𝟏.𝟕   and 𝑻−𝟐.𝟑  respectively[ 115 ]. Si and Ge, as non-polar 

semiconductors, their mobilitites are dominated by acoustic phonon interaction. When the 

carrier energy is beyond the optical phonon energy, the probability of emitting an optical 
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phonon increases shortly. This mechanism results in the carrier velocity to saturate with 

increasing electric field (Figure 2.15). Miyata et al. found the mobility for strained Si is 

almost three times larger in low field, 4000 cm2/V s than that of unstrained Si, 1500 cm2/Vs. 

This attributes to the smaller transverse-mass transport. At 300 K (Figure 2.15(a)), While 

in fields larger than 20 kV/cm, the drift velocity strained Si tends to show a larger value. 

However, all curves slow down and reach a similar saturation velocity ~ 1.0×107 cm/s. In 

low temperature at 77 K (Figure 2.15(b)), unstrained Si (17 000 cm2/V s) has higher 

mobility than strained Si (23 000 cm2/V s), and the saturation velocity is reached with fields 

> 5 keV/cm. There is no big difference between strained Si and unstrained Si. The Si 

saturation velocity is estimated to be ~ 1.3 ×107 cm/s at 77 K. 

 

 

Figure 2.15 (a) Velocity-field characteristics of an electron in a strained Si layer for various 
valley splitting values ΔE, where unstrained Si corresponds to ΔE=0; (a) 300K and (b) 77K. ο for ΔE =0, Δ for ΔE =0.l eV, ⊡ for ΔE =0.2 eV, and ⋄ for ΔE =0.4 eV. 
Source: [116]. 

 

 The low-field mobility in Si1−x Ge x is influenced both by the strain and the alloy 

scattering. The mobility enhancement or degradation effect, depends on not only the carrier 

type, i.e., electrons or holes but also the transport direction--parallel or perpendicular to the 
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growth direction of the strained Si1−x Ge x layer. In axial Si/Ge HJs the electron transport 

occurs parallel to the growth direction of the strained Si1−x Ge x layer. This leads to reduced 

electron low-field mobility, compared to Si part. Furthermore the electron saturation 

velocity decreases with increasing Ge concentration x (Figure 2.16(a)). The smaller 

intervalley phonon energies of Ge phonons as well as the strong alloy scattering contribute 

to this large reduction effect because as a general rule, the saturation velocity decreases 

with decreasing phonon energy. 

 The effect associated with the mobility or drift velocity decrease with an increase 

in the electric field/voltage lower the current, the Gunn Effect is expected in Si/Ge NW 

HJs. The Gunn effect has been verified that the transition of electrons from the two-fold 

valley to the four-fold valley can occur in Si1−x Ge x layer. After an electric field in the 

material reaches a threshold level, devices produce negative resistance. With lattice 

temperature, carrier temperature, doping values and mole fraction, an analytical high-field 

mobility model is proved [117, 118]. The negative differential slope of electron velocity 

versus electric field is predicted in Fig 2.16(b). More about Gunn Effect will be discussed 

in Section 2.2.3.a. 
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(a)      (b) 

Figure 2.16 (a) Theoretical results for saturation velocity in Si and Si1-xGex at 300 K as a 
function of Ge content x. (b) Electron mobility in Si1−x Ge x as a function of effective 
driving force for several germanium mole fraction. 
Source: [117, 118]. 

 

2.2.3 Electrical Properties  

The combining Si and Ge provide a strategy to manipulate energy bandgap and electronic 

structure for the specific needs. Meanwhile, strained Si and Ge are also attractive materials 

for the promising electronic and optoelectronic devices (discussed in Section 2.2.2). The 

created a pseudomorphic junction results in band discontinuities and creates energy barriers 

between Si and Ge at the heterointerface. The HJ’s complexity related to the difference in 

bandgaps of the Si/Ge and to the consequent charge transfer and dipole induced [38, 119] 

and hence is thriving area for researching (like bulk HJs) [120-123].  

 Type-II band-offset character with holes and electrons in different momentum is 

demonstrated that the valence band maximum and the conduction band minimum of the 

HJ are located on each side. The value of the offset in consequence controls the very nature 

of the heterostructure. Van de Walle and Martin reported the valence band maximum is on 

the Ge part, while the conduction band minimum is on the Si part [122, 123]. This type-II 

offset formed by the smaller bandgap of Ge compared to that of Si (indirect bandgap Si 
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~1.14 and Ge ~0.67 eV, respectively) results a reduction of the bandgap of the pure HJ. 

This reduction helps to improve the specific function of bandgap engineering (such as 

increasing the devices inherent switching speeds due to the higher Ge mobility). Indeed, 

its magnitude can be strongly modified by strain, geometry of the heterointerface and 

composition of the Ge content. However, the physics nature revealing these phenomena at 

nanoscale Si/Ge strongly changes compare to bulk Si and Ge. When Si and Ge form an 

abrupt interface, their bands line-up in order to compensate their bandgap differences. The 

transition ability of electrons and holes is determined by valence and conduction band 

offsets. Based on ab initio methods, Van de Walle and Martin estimated ΔEv = 0.58 eV 

and ΔEc = 0.28 eV in the unstrained HJ, in consistent with experiment data. They also 

suggested the evaluation of the offset could not be correct without including the strain [122, 

123]. Thus Si/Ge NWs provide a platform in combining the fabrication, size parameter and 

heterostructuring (or alloying) for performing further research to develop desired 

properties. 

 The exciton energy of Si is smaller than that of Ge [124], hence not only strain have 

an influence on the band offset, but also the scaling dimensional parameter of NWs would 

shift the maximum and minimum of the energy band and the band alignment. Moreover, 

NWs compared to large size wire have an advantage to tolerate a relatively higher degree 

of lattice mismatch and resulting strain by expanding or bending without introducing 

significant defects. Analyzing all these conditions at once is too complicated to determinate 

the band offset in Si/Ge NWs. 

 A type-II band offset is confirmed as well as the reduction of the bandgap compared 

to the pure Si and pure Ge NWs by the analysis of wave function localization [125]. Amato 
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et al. revealed that in abrupt NWs (where Ge content is 𝑥𝐺𝑒) the E𝑔 (x) could be expressed 

as the following: 

 E𝑔 = 0.98292 − 1.3508𝑥𝐺𝑒 + 1.3478𝑥𝐺𝑒2  (2.4) 

 

 Besides, at Si/Ge HJs with relatively modest Ge concentrations, interface scattering 

is the dominant mechanism. Consequently, the optimized Ge content could be selected to 

minimize the heat conductivity for thermoelectrics applications. 

 Dyakonov and Shur have discovered that flow of the electron in two-dimensional 

HJs should be unstable. We predict current instability of our sample with a DC due to the 

2D HJs. Another main task of this study is to investigate a possibility of the Gunn 

generation in 2D Si/Ge HJ structure, as well as the high possibility whether the 

consequences of the negative differential in the two-dimensional exist. This case may differ 

substantially from the conventional 3D Gunn Effect since non-exponential diffusion law 

governs the charge relaxation in 2D HJs. 

2.2.3.1 Analogy of Gunn Effect in Si/Ge HJs.   As we mentioned above, shown in Figure 

2.17, the energy-momentum relationship between Si and Ge contains various energy 

valleys with the following properties: 

 a) In the lower valley, electron has a small effective mass but high mobility,  

 b) In the satellite high valley, electron has a large effective mass but low mobility,  

 c) The two valleys are separated by a small energy dispersion. 

Both in Si and Ge, at the 300K equilibrium, they have high mobility (~ 8000 cm2V-1s-1) in 

bottom low valley [126]. If a strong electric field is applied, those electrons are scattered 



 

 

40

 
 

and accelerated (from Si to Ge or from Ge to Si, indicated as blue arrow in Figure 2.17) 

into the satellite valley separating by the energy dispersion of the intervalleys. This effect 

leads to a decrease in the average electron mobility. In Gunn Effect [127], if an electric 

field is raised to a threshold value, the mobility of electrons start to reduce with the increase 

of electric field.  

 

Figure 2.17 The energy momentum transition of band structure from Si to Ge. 
Source: [128, 129]. 

 

 Thus, this Gunn like effect expected in Si/Ge NW HJs would create a negative 

incremental resistance region in V-I relationship with its frequency primarily determined 

by the characteristics of HJs internally not by any external circuit. In this negative 

resistance region, Si/Ge NW HJs is enabled to act as both oscillator and amplifier with 

adding external component. This property of the Gunn like effect along with its timing 

properties cause it to behave as an oscillator through adding RCL filters to provide an 

optimum value of current flows through it. It oscillates as the voltage increases, then the 

resistance will increase. This is because, the negative resistance property of the Si/Ge NW 

HJs balances out the effect of any real resistance existing in the circuit. This results in the 

generation of sustained oscillations under DC bias or damping (resistance in electronic 

http://www.electrical4u.com/what-is-an-oscillator/
http://www.electrical4u.com/electrical-resistance-and-laws-of-resistance/
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circuits preventing the growth of oscillations). Further, the amplitude of the resultant 

oscillations will be limited in the range of the negative resistance region. Till now, although 

some Gunn effects are reported in III-IV compound HJ, barely none in Si/Ge NW HJs is 

found. Our results will be present in Chapter 4.  

2.2.3.2 Double Injection Space-Charge Limited Current.   Under an applied voltage, 

the flowing current is determined by three processes: charge injection, charge transport and 

recombination. At low electric field, electrical contacts to semiconductors are commonly 

non-Ohmic but act as a nearly ohmic contact in most cases. And Ohmic contact will change 

to non-Ohmic or even a nearly blocking contact with the carrier supply limited by 

Schottky-type thermionic emission under certain bias conditions [double]. By applying 

increasing field, they may change again to a nearly ohmic contact. This effect facilitates 

the reduction of the width of the potential barrier to inject carrier by Nordheim-Fowler type 

tunneling [130]. 

 The electrical contacts in semiconductors affect the carrier transport (the I-V curve 

of HJs) for two-carrier current injection. The dominant effect in holes and electron currents 

are Space-Charge Limited Currents (SCLC). At any voltage, there will be some excess 

charges injected into the semiconductor. When the concentration of injected excess 

electron becomes comparable to that of thermally generated free electrons, the SCLC 

becomes noticeable, and the current-voltage characteristics change. A space charge 

develops a potential that impedes the carriers. As a consequence, the slowed carriers 

increase the resulting space charge density and potential. The high density of these charged 

carriers creates a field gradient, which suppresses the current density. When the space 
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charge suppresses the current, the resulting potential developed by the space charge reduces 

the number of carrier emitted [144].  

 One carrier SCLC theory can be simplified, based on the following two 

assumptions that:  

I. Only drift currents are considered, neglecting diffusion currents. 

II. An infinite amount of electrons are available for injection at the cathode.  

 In low electric field, the velocity of the carriers is proportional to the mobility. 

Known as the trap free square law, the Mott-Gurney square law, and Child’s law for solids. 

The current density is proportional to V2, V is the applied voltage. In high electric field, 

the velocity of the carriers become saturated. The current density is proportional to V [131] 

[132]. 

 Double carrier injection in solid between dissimilar contacts are concluded in the 

following five regions [133] (depicted in Figure 2.18): 
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  (a)       (b) 

Figure 2.18 (a) The three conduction regimes: the low-field bulk-limited, the medium-
field contact-limited, and the high-field bulk and contact limited, in J-I characteristics for 
a perfect intrinsic solid with neutral contacts: (A) ohmic region, (B) current saturation in 
the absence of thermionic emission, (C) current saturation due to the limit of thermionic 
emission without the consideration of the image force lowering of the potential barriers, 
(D) field enhanced (Schottky type) thermionic emission current, (E) injected carrier 
densities, (F) the set-in of the tunneling field emission mechanism. (b) The energy band 
diagrams and the J-V characteristics for dissimilar contacts for both the electron and the 
hole injection (the metal for the cathode dissimilar to the metal for the anode)-double 
injection for both the electron and the hole extraction. 
Source: [133]. 

 

V < Ve Contact Limited At low fields, electron extracting contact is blocked. The electron 

density n is higher than the hole density p.  And the electron injection efficiency at one 

contact is also higher than the hole injection efficiency at the other contact. As a result, the 

current is contact limited because of carrier extraction. 

V < Vs Bulk limited For a non-ohmic contact, the height and the width of the potential 

barrier near the contact determine the supply of charge carriers. Thermally generated 

electrons and holes are balanced out by contact extraction, then the current will saturate at 

a value Vs. In physical concept, the neutrality of carriers leads to the linear J-V relation. 
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By expressing J ∝  𝑉𝑚, at very low fields, both electron and hole are contributing to the 

current with m > 2. For large applied voltages, the single injection Mott-Gurney equation 

becomes dominant with m = 2. In other word, at high fields, the current may become SCLC 

mainly due to single electron injection from the cathode. 

Vs < V < Vc With thermionic emission, the contacts continue to supply carriers to the 

semiconductor before reaching the maximum rate of their supply. 

Vc < Vs One thing to note here is that if the threshold voltage for the onset of the field 

emission at the cathode is lower than the threshold voltage Vc, for the onset of the current 

saturation at the anode, no contact-limited regime will be observed. 

Vc < V <Vb Contact limited At V > Vc, the field-assisted thermionic emission current is 

rising slowly with m < 1 for J ∝  𝑉𝑚  as shown in Figure 2.18. In this regime, carrier 

concentration is lower than intrinsic carrier concentration.  

Vb < V Bulk and Contact limited At ever higher V, high-field mechanisms including 

field-enhanced thermionic emission, field emission and thermionic field emission could 

further affect carrier injection processes [134]. Both the potential barrier height and the 

width are much reduced by the high field. The concentrations of n and p injected are now 

larger than intrinsic concentration ni. When the applied voltage reaches the threshold 

voltage Vb, two-carrier transport instead of present one-carrier transport will dominate. 

The important effect here to note is at voltages first reaching Vb, current jumps due to 

previous low homo-space charges near the contacts (Figure 2.18(b)).  

 Impedance spectroscopy is used in our experimental measurements to DC and AC 

currents in one-carrier or two-carrier SCLC, and get the carrier and field distributions 

inside the HJs.  
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2.2.3.3 Electrical Noise.  For a physical quantity, noise and fluctuation, in general, is 

inevitable as a basic element. In the electrical application of nanowires, noise should be 

treat as an important parameter. Every current or voltage within a given electrical circuit 

can be viewed as consisting of a deterministic signal and of noise. Electrical noise is a 

random process, and as such cannot be described in a deterministic sense.  

 The equilibrium Nyquist noise (the white thermal noise) of a NW of resistance R 

at an absolute temperature T can be estimated ≈ 4kBTR, where kB is the Boltzmann 

constant. Its power spectral density is nearly constant everywhere of the frequency 

spectrum. The Nyquist noise occurs in any conductive semiconductor and is caused by the 

random motion of the current carriers.  

 However, in the current of a NW a significant contribution to the electrical noise is 

suggested to arise from the conductance noise [135]. This noise has a spectral power 

inversely proportional to the frequency of the signal ~1/ f α, where f is the frequency of the 

noise signal, α is the Hooge parameter and is known as ‘1/ f noise’. In Hooge’s model, the 

flicker noise is attributed to carrier density or mobility fluctuation mechanisms. A. Bid et 

al. call this model the intrinsic resistance fluctuation model [135], which is given by the 

following phenomenological equation due to Hooge [136]: 

 

𝑆𝐼 = 𝐼 × 𝑒𝛼𝜇𝑉𝑓𝐿2  
(2.5) 

 

where α is the dimensionless Hooge constant, μ the mobility and L the NW length. 

 There is a direct link between 1/f noise and defects. Annealing helps to diminish 

Hooge parameter. The oldest model of 1/f noise is McWhorther’s model of electron 
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random trapping and detrapping in surface states [137]. Modern analyses of the noise of 

complicated devices often reach to the conclusion that the surface generates only a fraction 

of the flicker noise, whereas the greater part is bulk noise, the mobility fluctuation type. 

Thus whether it is a result of the modulation in the number of carriers, or in the mobility 

of the carriers in a given material are associated with Flicker noise from the surface or bulk 

of the semiconductor device.  A wide range of mechanisms including thermal modulation 

effects, diffusivity fluctuations, trapping mechanisms with distributed time constants, and 

variations in surface recombination velocity [138] attribute to Flicker noise. Decades ago, 

an experiment about 1/f noise decreased by one or two orders of magnitude with time was 

reported after applying mechanical stress [139, 140]. This suggests a link between 1/f noise 

and strain. In many devices, flicker noise is attributed to a combination of all these 

mechanisms. 

 Since no single theory explains the cause of flicker noise in every device, estimating 

the actual value of the 1/ f noise should include many different sources [141, 142]. In the 

issue, estimating the noise component must depend on experimental measurement.  

 Kinetic noise is associated with temporal fluctuations in the velocity of carriers 

accruing from scattering [143]. In experimental figures, kinetic noise introduces a peak in 

the noise power spectrum. 

 The last one, shot noise ~ 2qI, where I is the average current created by the electron 

stream, q is the electron charge, results from the time-dependent variation of the electrical 

current due to the quantization of charge. The random arrivals of discrete charge and the 

statistical variation in the arrivals results shot noise. Shot noise is independent of frequency 

at low and intermediate frequencies, frequency-dependent at higher frequencies. In 
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absolute zero temperature, shot noise is the only electrical noise. Terman pointed out shot 

noise is reduced by space charge [144]. As we discussed in Section 2.2.3.b, space charge 

surpresses the carriers by developing a potential and those slowed carriers increases the 

resulting space charge density and potential. In addition, Terman suggested the potential 

developed by the space charge could further eliminate the number of carriers emitted. In 

conclusion, when the space charge surpresses the current, the various arrivals of the carriers 

are reduced; the depressed variation results in less shot noise. 

2.2.4 Thermal Properties  

Since electrons have much shorter mean free paths than phonons, the structure of NWs 

affects heavily more on the thermal conductivity than the electrical conductivity [145]. 

Building with different interfaces or compositions structures, the thermal properties of 

Si/Ge NWs is enhanced. Thermal conductivity in pure Si NWs was demonstrated 100-fold 

smaller than bulk Si while charge transport remains unaltered [146, 147]. This effect is 

mainly caused reduction of thermal conduction due to the strong phonon boundary 

scattering in NWs. Moreover, high crystallinity arrangements of atoms of two different 

materials were demonstrated resulting in higher thermal conductivities than the two 

constituent materials [148]. Although the dimension of our NWs is well beyond the mean 

free path of phonons (Figure 2.19) and confinement effects limit region, we still expected 

that the Si/Ge interface offers the possibility of engineering heat conduction and phonon 

scattering. Because the difference in the mass between Si and Ge influencing the phonon 

dispersion. 

 Si and Ge contribute unequally to the overall thermal conductivity because of the 

large difference in Si and Ge masses. Hu and Poulikakos [149] has reported the more the 
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device is heterostructured, the more the thermal conductivity is reduced. They suggested 

the phonon velocity is significantly reduced in Si/Ge NWs with respect to pure NWs[149] 

due to heat conduction suppressed by the phonon interface and boundary scattering.  

The Si1−x Ge x alloy layers of Si/Ge NW HJs has low thermal conductivity due to 

generally alloying and surface boundaries. Phonon boundary scattering mainly associated 

long-wavelength phonons is frequency independent and, alloy scattering mainly associated 

short-wavelength phonons is frequency dependent. 

 Accounting to Fourier’s law, the standard macroscopic approach to estimate heat 

flux density is expressed in the following formula [150]: 

 𝐽 =  −𝑘𝛻𝑇 (2.6) 

  

the quantity κ is the lattice thermal conductivity of the semiconductor. 

In addition to the critical role of Si and Ge alloy, the thermal conductivity of 

Si1−x Ge x alloy NWs vary with Ge concentration was observed[151]. Thermal conductivity 

reduction in Si/Ge NWs is mainly due to the alloy scattering mechanism in Si1−x Ge x 

regions, while the boundary scattering effects contribute to further decrease κ. 

Then Yin et al. [152] reported the thermal conductivity of Si1−x Ge x alloy region of 

Si/Ge NW has a small dependence from the NW length as well as Si:Ge ratios. In addition 

to boundary and alloy scattering, Martinez et al. suggesting the carrier-phonon scattering 

mechanism is also found in doped Si/Ge NWs [153].  
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Figure 2.19 Phonon mean free path of various scattering mechanisms versus normalized 
phonon frequency. ωD is the Debye frequency.  
Source: [38, 154]. 

 
 At the Si/Ge interface layer, the wavelengths of the particles reduced and 

compressed, which hinders the heat transport largely. The low energy modes at the 

disordered surface or the Si/Ge interface may lower the value of κ with increasing 

temperature. In order to improve the thermoelectric efficiency, Si/Ge HJ structure 

contributes the enhanced phonon scattering to compress the lattice component of the 

thermal conductivity. Figure 2.20 illustrates the thermal conductivity for several NWs 

[156]. It proved that thermal conductivity is reduced due to surface-boundary scattering for 

NWs with diameter over ≃100 nm. For smaller diameters NWs, the alloying scattering 

play a main role in suppressing phonon transport.  

 Shelley and Mostofi confirmed the significant reduction of thermal conductivity 

induced by the axial Si/Ge HJ [155]. They also evaluated by adding a single layer of Ge 
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into a pure Si NWs could decrease the thermal conductivity by five orders of magnitude 

for the ⟨111⟩ direction, four orders for ⟨110⟩ and ⟨112⟩ directions.  

 

Figure 2.20 Thermal conductivities of several Si1-xGex NWs. The inset shows the thermal 
conductivities as function of Ge concentration at 300 K. 
Source: [38, 156]. 
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2.2.5 Optical Properties  

The optical response of Si/Ge NWs depends on intrinsic and extrinsic parameters. Since 

direct bandgaps can be obtained with strong oscillator strengths, Si/Ge NWs have potential 

application in the new generation light emission devices. The visible light absorption and 

the strong charge separation will promote an important position for Si/Ge NWs in the future 

photovoltaics. All effects, such as size, geometry, alloying and strain associated with 

carrier interactions, electron addition, carrier lifetime, or removal energies, even correct 

spectroscopic experimental data analysis, strongly influence the studies of optical 

absorption and emission properties. 

 The dependence of Si and Ge refractive index n and extinction coefficient k on the 

photon energy are depicted in Figure 2.21(a). Si exhibits very typical indirect bandgap 

absorption behavior. The optical absorption coefficients α of Si (Figure 2.21(b)) depends 

linear on the square root of the energy. For Si, the optical processes for absorption and 

emission are very inefficient. While Ge both has the absorption curve part similar to Si and 

other part similar to the direct bandgap III-V compounds. The optical absorption 

coefficients α increases fast according to the fundamental absorption associated with the 

band transition. The rise is large for direct band transitions (𝐸𝑔𝑑𝑖𝑟 = 0.81 𝑒𝑉 at 300K). For 

indirect band transitions, the rise is smaller (Si: 𝐸𝑔𝑑𝑖𝑟 = 1.12 𝑒𝑉  at 300K; Ge: 𝐸𝑔𝑑𝑖𝑟 =3.03 𝑒𝑉 at 300K) [72]. 

 Amato et al. [128] have generated a strong electron−hole separation in Si/Ge NWs 

with the inclusion of many body effects. This Si/Ge NWs have an abrupt heterointerface 

and the type II band offset. Studies [157, 158] have pointed out that adding Ge atoms to Si 

NWs for different types of geometries and different crystallographic directions would red-
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shift the first absorption peak remnant of the direct absorption peak of the bulk Ge. Si/Ge 

NWs is further confirmed their application in high efficiency photovoltaic devices. The 

structure change from pure NWs to Si/Ge HJs NWs is high enough to extend the energy 

edge for covering strong absorption wavelength band. As a result, the small effective mass 

in the new energy level further decreases the threshold for optical transparency and lasing. 

 

 
 

Figure 2.21 Silicon and germanium (a) refractive index n, (b) extinction coefficient k, (c) 
absorption coefficient vs. wavelength.  
Source: [159, 161]. 
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CHAPTER 3 

EXPERIMENTAL METHODS   

3.1 Characterization Techniques 

The NWs’ morphology and dimensions are characterized by SEM. The NWs’ crystalline 

quality and orientation are determined by TEM. The composition x of the Si1-xGex 

intermixing layer of NW is mostly identified using EDX by the Vegard’s law and Raman 

scattering spectroscopy by the shift of the Si-Si Si-Ge Ge-Ge peaks. In order to 

quantitatively understanding the type-II staggered band alignment of tensile strained-Si on 

compressively strained-Ge, the local strain structure is estimated by TEM and Raman 

spectroscopy for relatively high strain and high spatial resolution. The composition 

dependence of the fundamental absorption edge in Si1-xGex is determined by PL. At the 

same time, PL spectra are also used to determine the surface, interface, and crystal defects, 

such as atomic vacancies and substitutions as well as internal strain. The optical constants 

of interband transitions in the IR-UV region are most sensitive to strain and composition. 

The absorption coefficient of strained Si1-xGex layers was also dependent on different Ge 

concentrations. 

3.1.1 TEM, SEM, and EDX  

Electron microscopes using electron beams have much higher resolution compared to that 

in optical microscopes. TEM is the most efficient and versatile microscopy technique for 

structural, compositional, and chemical characterization of materials. As the name 

transmission electron microscope (TEM) implies, an electron beam of uniform current 

density is transmitted through a thin specimen. Schottky, thermionic, or field emitted the 
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electron beam from a small area tip called the electron gun. Before transfer this electron 

beam to the sample, the illumination system, which consists the condenser lenses of 

different apertures manipulates an electron beam with desired diameter. The typical range 

of acceleration voltage is 100 – 200 kV. After the beam interacts with the sample, a 

diffraction pattern is formed by the objective lens in the imaging system of TEM. Two 

imaging modes (bright field and dark field) are achieved by changing the aperture position 

of the objective lens. Bright field means all area with no sample reached the beam will 

appear bright. This is the most common mode of TEM operation formed by occlusion and 

absorption of electrons in the sample. In contrast, no sample-beam interaction area appears 

dark in the dark field image. Because no sample scattering is included in the reflections, 

the setup of SEM, like that of TEM, consists of an electron optical column, a vacuum 

system, electronics, and software. The difference between them is in SEM the electrons is 

focused into a fine spot on the sample surface with shorter column comparing to a 

transmission into the sample in TEM. SEM is based on scattered electrons, while TEM is 

based on transmitted electrons. SEM has much lower resolution (tens of nm) than TEM, 

which has spatial resolution (1nm or less). However, the specimen chamber is larger in 

SEM than in TEM because there is no restriction on sample size. SEM produces accurate 

3D images of the sample surface in the dispersion on the control monitor, while TEM 

generates 2D images interpreting internal composition details, such as crystallinity and 

lattice structure. 

 EDX identifies the elemental composition of samples by X-Ray. EDX performs 

qualitative, semi- quantitative and quantitative elemental analysis and spatial distribution 

of elemental maps inside electron microscope with detection limit ~0.1%. The setup of 
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EDX includes the X-Ray beam excitation source, the X-Ray detector, the pulse processor 

and the analyzer. The X-Ray associated with the elemental composition emitted from 

sample after exciting by electrons beam, the similar beam used in SEM or TEM.  

3.1.2 Raman Scattering 

Although Raman and PL data can be obtained with the same optical arrangement, the 

Raman signal is much weaker in comparison with the PL signal. Moreover, this weak 

signal can be routinely measured by providing orders-of-magnitude larger laser signal. The 

typical Raman shift  
ω𝑝ℎ𝑜𝑛𝑜𝑛 𝜔𝑙𝑎𝑠𝑒𝑟⁄  is very weak only about 10-6. The photon frequency 

shifts during the scattering process because of energy changed by interacting with 

molecular vibrations. This is called Raman scattering process. They gain energy by 

absorbing a phonon (anti-Stokes shifted), or lose energy by emitting one (Stokes shifted), 

according to the energy and momentum conservation rules: 

 

ωs = ωi ± Ω, (3.1) 

qs = qi± Κ, (3.2) 

 

where ωi and ωs are the incoming and scattered photon frequencies, respectively; qs and 

qi are the incoming and scattered photon wavevectors, respectively; and Ω and Κ are the 

phonon frequency and wavevector, respectively. Raman measurements record the Raman 

shift peaks by filtering out the undesired Rayleigh peak. Since the Raman signal is weak 

compared to the excitation, the use of a double monochromator or even triple 

monochromators is necessary to separate the Raman signal from the strong Rayleigh light 

that accompanies it. A resolution Δf = 0.1 cm-1 is typical for a good double monochromator.  



 

 

56 

 

 The orientation of a crystalline sample is characterized in the polarized Raman 

spectra. The polarized Raman system using the exciting polarized light analyze the 

polarization of the scattered light. The angle between the incident light and the sample 

surface must be carefully arranged. The scattered light remaining in the visible region is 

detected by light photomultiplier tubes (PMT). For a low dark count, PMT is cooled to 

further reduce dark count and a cooler is used.  

 Fluorescence overwhelming the Raman signal could be suppressed by operating in 

the infrared region than in the ultraviolet-visible region[162]. 
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Figure 3.1 Micro-Raman spectra from seven batches of crystalline Si1-xGex alloy 
nanowires collected at room temperature with 514.5 nm excitation. The spectra were 
collected from wires remaining on the growth substrate and contain contributions from ∼100 nanowires with random orientation relative to the incident polarization. Three 
prominent bands are observed as the Ge-Ge band (∼300 cm-1), the Si-Ge band (∼400 cm-
1), and the Si-Si band (∼500 cm-1). The dashed vertical lines refer to the position of the k 
= 0 LO-TO Raman band in pure crystalline Ge and Si. 
Source: [163]. 

 

 Raman spectra measured by Lu et al. [163] in crystalline Si1-xGex nanowires 

(80−100 nm) grown along the ⟨111⟩ direction are shown in Figure 3.1. In Raman spectra, 
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the intensity and the position of the Raman peaks strongly depend on the composition are 

shown. Raman spectrum of Si/Ge NWs displays three prominent peaks corresponding to 

the Ge-Ge, Ge-Si, or Si-Si bonds are observed as the Ge-Ge peak (∼300 cm-1), the Si-Ge 

peak (∼400 cm-1), and the Si-Si peak (∼500 cm-1). In this case, the Si−Si band position 

which is the most sensitive to the Ge concentration from the Si1-xGex NW is shifted to the 

left of the Si-Si peak from the substrate. Due to anharmonic and mass substitution effects, 

these vibrational frequencies of the atomic bonds are dependent on the strain state and Ge 

fraction of the Si1-xGex alloy. This shift between the alloy Si-Si Raman peak and the bulk 

Si Raman frequency are used to estimate the Ge fraction in the alloy [40, 164] Additionally, 

another broad band around 75−110 cm−1 has been observed in Lu’s work and identified as 

due to transverse acoustic modes [163].  

 Lattice characteristic corresponded to two vibrational modes either optical or 

acoustical. In the optical mode, atoms of opposite charge vibrate out of phase to give an 

oscillating dipole moment which couples to light. In the acoustical mode, the displacement 

of both atoms has the same amplitude, direction and phase. The acoustic branch frequency 

increases linearly and the slope represents the group velocity of phonons. The group 

velocity of optical phonon modes is negligible and therefore, they do not contribute to the 

heat transport. Each type can be either transverse or longitudinal. Resonant absorption 

occurs when the incoming frequency ω matches transverse optical frequence ωTo. These 

modes also participate in Raman and PL processes, where the two other types of phonons—

transverse and longitudinal acoustic (TA and LA)—may also play a role. Each TO mode 

is usually separately visible in Raman spectra, which gives useful information. In an 

elemental semiconductor like silicon or germanium, where the charge does not alternate 
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sign from atom to atom, the TO and LO modes coincide at Κ = 0 (Figure 3.1). Raman 

scattering is also excited by absorbed visible light. It examines TO, LO , and other phonon 

modes, which reflect the crystalline state of the semiconductor and give alloy information. 

For crystals with the diamond structure, and in the backscattering experimental geometry, 

only LO phonons are seen when a (100) surface is examined; only TO phonons appear 

from (110) surfaces; and both TO and LO modes appear from (111) surfaces. Lattice 

inhomogeneity tends to broaden the Raman peaks [163].  

 Raman modes strengths depend on the count of harmonic oscillators in the lattice 

versus temperature. The temperature affects the number of phonons nK through the phonon 

creation and annihilation, K is the wavevector.  

 Since nK follows the Planck distribution function [163]: 

 nK = 1eℏΩkB−1, (3.3) 

 

the local temperature can be calculated by the relative strength of the lines as: 

 𝑇 = ℏ𝛺𝑘𝐵×𝑙𝑛 (𝐼𝑠𝑡𝑜𝑘𝑒𝑠 𝐼𝑎𝑛𝑡𝑖−𝑠𝑡𝑜𝑘𝑒𝑠⁄ ), (3.4) 

 

 In sum, by studying the vibration of the atoms we can discover the chemical 

composition and other useful information about the material. By studying changes in the 

details of the spectrum (such as the height, width, and position of the Raman bands) and 

http://www.renishaw.com/en/raman-bands-explained--25808
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determine things, including the relative amount of material, layer thickness, crystallinity, 

strain, temperature. 

3.1.3 Photoluminescence 

PL and Raman scattering are both activated by being illuminated by a laser. In most cases, 

Raman scattering setups are suited to the operation of both Raman scattering and PL. 

Occasionally PL bands may be strong and broad, masking Raman information. However, 

PL results may cover the useful information in Raman analysis. By selecting a specific 

laser wavelength, the Raman bands can be staggered from the PL peaks or even avoid 

generation of the PL entirely.  

 PL is the process of absorbing energy and emitting it in the material. PL comprises 

both fluorescence and phosphorescence processes. Fluorescence is fast in the ns time scale 

while phosphorescence is slow up to hours or even days. The type and count of PL depends 

on which laser wavelength is chose and which material is being illuminated. 
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Figure 3.2 The absorption and emission of light in electronic level as fluorescence and 
phosphorescence. 
Source: [165]. 

 
 
 Figure 3.2 illustrates diagram in a broad band emission. Both radiative transition 

and non-radiative transition can help the excited electrons return to the ground state. 

Radiative recombination accompanied by photons emission is consisting of the returning 

electron from a luminescent center. This electron jumps from the lowest vibrational level 

back to the ground state by photon emission.  

 The excited electron is brought into a high vibrational level and later relax to the 

lowest vibrational level by giving up energy to the surroundings. This relaxation is non-

radiative. Non-radiative recombination mechanisms do not involve the creation of a 

photon. The Stokes shift is defined as the difference between the wavelengths of the 
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absorption and emission particles, i.e. the energies between the maximum of the excitation 

and the emission band (Figure 3.3(a)).  

 While non-radiative recombination dominates in indirect bandgap semiconductors 

such as single-crystal Si and Ge due to recombination through phonon assistance for 

conservation of momentum. The number of photons emitted divided by the number of 

photons absorbed is equal to the ratio of the measured lifetime to the radiative lifetime 

[167]. As a result, the radiative recombination lifetime is much longer and indirect bandgap 

semiconductors exhibit poor photoluminescence efficiency [166]. Other non-radiative 

recombination process can be through a defect or trapping level. Strain in semiconductors 

lowers the energy bandgaps of the materials, and as a result, the PL spectra shift toward 

lower photon energies. That is the reason why for semiconductor materials, PL can be used 

to study not only bandgap and crystal defects, such as atomic vacancies and substitutions 

as well as internal strain. 

 By the crossing of the parabolas, electrons jump to the ground state without photon 

emission (Figure 3.3(b) (I)). The energy is dissipated to the lattice of materials. In (Figure 

3.3(b) (II)), the parabolas of ground state and excited state are parallel. If the energy 

difference is equal to or less than four to five times the higher vibrational frequency of the 

surrounding, it can simultaneously excite a few high-energy vibrations, and therefore is 

non-radiative [167]. Both radiative and non-radiative processes are possible in a three-

parabola diagram as shown in Figure 3.3(b) (III). Emission occurs by transporting to the 

upper excited state (dash line) then relaxing to excited state of the second excited parabola 

(solid line). 
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Figure 3.3 (a) Configurational coordinate diagram in a luminescent center and (b) 
Configurational coordinate diagram representing non-radiative transitions. 
Source: [167]. 

 

3.2 Measurement Procedures 

3.2.1 Optical Measurements 

In this research, the SEM images are obtained by using a LEO 1530VP field emission 

scanning electron microscope in the Material Characterization Laboratories at NJIT. The 

microscope operates at high voltage mode with voltages ranging from 0.1keV to 30keV, 

magnification of 20k to 900k times and resolution up to 1 nm. The sample is held in high 

vacuum on a sample stage that is equipped with motorized controller for moving and 

rotating laterally, allowing access to multiple samples. The stage also tilts along a central 

axis with manual control outside the chamber, enabling scans of the sample at angles from 

-15° to 90°. The images shown in this research are taken by collecting the reflection of 

electrons with the in-lens detector at moderate voltages of 1k-10k eV. 

 The chemical composition of the axial Si/Ge NW HJs studied quantitatively by a 

JEOL JEM-2100F field emission source transmission electron microscope (TEM) 

operating at 200 kV equipped with an Oxford INCA EDX with a probe size of 0.2 nm. 
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EDX provides a fast and nondestructive analysis a sample at a single point, along a line or 

over a plane. The EDX spectra of axial Si/Ge NW HJs shown in this dissertation are done 

in NRC, Canada using an Oxford INCA Energy TEM 200 attached to the JEM-2100F and 

electron energy loss spectroscopy (EELS) using a Gatan GIF Tridiem attached to the JEM-

2100F. The EDX spectra are calibrated by probing axial Si/Ge NW HJs interface of known 

germanium composition [17]. 

 Optical measurements were performed in Dr. Tsybeskov’s Lab, NJIT. Raman 

scattering measurements are performed using a Jobin Yvon U1000 double-grating, 1 meter 

focal length monochromator with a thermoelectrically cooled Hamamatsu R943–02 PMT 

and a photon counting system via the backscattering geometry. The Raman system spectral 

resolution is up to 0.25 cm-1. In order to analyze polarized Raman scattering, a rotating 

thin-film polarizer has been used. A continuous-wave (CW) multi-line Ar+ laser has been 

used as an excitation source with the focused laser spot size of 50 x 50 μm2. Ar+ laser 

providing power from the ultraviolet to the green is a good choice in giving flexibility in 

penetration depth, and a limited ability to excite resonance Raman scattering. The laser 

light incident angle is close to Brewster's angle and the measured reflection is ≤ 3%. In 

these experiments, the excitation intensity has been varied from 102 to 103 W/cm2 in a 

spectral range (200-600 cm-1).  

 Figure 3.4 shows the experimental setup for Raman measurements. Raman spectra 

are recorded at room temperature using an Ar+ laser as an excitation source. The used 

excitation wavelengths were 458, 477, and 514 nm. The measurements are performed with 

the incident light at an angle close to ~ 78o (Brewster angle in c-Si), and the laser beam was 

focused to a spot of approximately 10 μm in diameter. The laser power varied from ~1 W 
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(514.5 nm) to ~0.3 W (457.9 nm) and the power on the sample was ~ 200 mW at 458 nm 

excitation wavelength with 30 μm slit width. The scattered light from the sample is focused 

onto the entrance slit of 150 μm of a Jobin Yvon U1000 double monochromator with 1 m 

focal length [168] and detected by a thermoelectrically cooled Hamamatsu R943-02 PMT 

and a photon counting system. The PMT has wavelength range at maximum spectral 

response of 300 – 850 nm and a dark current of 20 counts per second [169]. The Raman 

system spectral resolution is ~ 0.5 cm-1.  

 

 

Figure 3.4 Experimental setup for Raman measurements. 
 

 The PL source can be any laser whose photon energy exceeds the bandgap of the 

material to be examined, and whose power is sufficient to excite an adequate signal. Many 

commercial types of laser including HeNe and Ar + units meet these criteria. But laser 

power cannot be increased indefinitely, since too high an intensity (watts per square 
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centimeter) at the focused spot can damage a sample. It is usually possible to obtain an 

adequate signal-to-noise ratio without damage, by defocusing the laser or reducing its 

output power. The PL signal passes through a single-grating monochromator which selects 

a wavelength to transmit to the detector [162]. The resolution of the system, its ability to 

accurately measure energy, is determined by the focal length of the monochromator, 

whereas the grating spacing sets the wavelength coverage. Even a modest 0.22m 

monochromator with a 1200groove/mm grating covers the visible to the near infrared with 

an energy resolution of approximately lmeV at mid-range. Much higher resolutions are 

available. A standard photocathode tube with the common S-l response is often adequate 

for PL work below 1.1μm (above 1.1eV). At longer wavelengths a photomultiplier tube 

with a GaAs or other composite cathode is useful. Germanium photodiodes are good for 

the near-infrared range (1.1-1.8μm, 0.7-1.1eV). For the best signal-to-noise ratio these 

detectors should be operated cooled, at 0°C for a photomultiplier, and at 77 Κ for a solid-

state photodiode. The best PL spectra come from samples held below room temperature. 

Lower temperatures reduce the thermal broadening of the excited carrier energies, which 

at temperature Γ is roughly kBT, where kB is Boltzmann's constant. This gives a significant 

broadening of 25meV at room temperature, which reduces to 6 meV at 77 Κ, and to < 

1meV at liquid-helium temperatures, for the finest work. Cooling therefore produces 

sharper, more readily identified peaks. It also tends to reduce the role of competing non-

radiative paths for recombination, giving a higher efficiency for the PL process which 

results in improved signal-to-noise ratio. Finally, cooling prevents impurity centers from 

undergoing thermal ionization. 
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 PL measurements are performed at normal incidence with a light spot of 50∗50 μm2 

using a single-grating Acton Research 0.5m focal length monochromator and detected by 

a Ge photodetector or by a thermoelectrically cooled InGaAs photomultiplier operating in 

the 0.9-1.65μm spectral region. The samples are held in a He closed-cycle cryostat, wherein 

the temperature can be controlled in the range of 10 to 300 K. A multi-line Ar+ laser with 

a wavelength selector is used as excitation source with intensity varied from 0.l to 

10W/cm2. The laser is modulated by a mechanical chopper. The PL signal is dispersed 

using a single grating Acton Research 0.5 m focal length monochromator and detected by 

a cooled InGaAs PMT or charged-couple device (CCD) camera in the range of 0.9-l.6pm. 

The dispersed signal is amplified by a lock-in amplifier in reference to the mechanical 

chopper and recorded by Spectra Sense software. 

3.2.2 Electrical Measurements 

For the electro-optical and electrical measurements of the axial Si/Ge NW HJs, the top 

contacts are fabricated through dropping silver paste as droplets on the top of NWs. The 

back contacts are made by affixing the Si substrate on thin Cu tape with silver paste 

connecting normal wires (Figure 3.5). As the most common contact metallization method, 

silver paste have required a unique processing step called “spike firing”. Silver paste needs 

to fire through and etching of the coatings in the top of the NWs. The primary advantage 

of short spike firing in silver contact formation is to prevent over-penetrating the 

underneath Au/Ge and p-Si/Si junctions, which would result in reduction of shunting or 

junction degradation as well as low series resistance [169-171]. Since the length of NW 

sample is 1500-2000nm, Si/Ge heterojunctions is far enough to be shunted. In the 

measurement of noise, a sharp probe touching the NW tips with the Au droplets is used, 



 

 

68 

 

while second contact can be at a heavily doped Si substrate. The problem is that the NWs 

have different heights and a large (compared to NWs) metal needle could easily damage 

the NWs. To avoid this problem, we used a graphite needle with ~ 2-3μm curvature at the 

tip with a spring, which controls the applied pressure. Graphite is more than 7 times softer 

compared to crystalline Si, and there is a very little chance to damage a NW. In addition, 

during the graphite needle move toward the sample with the uneven NW heights, current 

has been continuously monitored to establish a reliable electrical contact. Using this 

technique, we were able to perform reproducible electrical noise measurements at room 

temperature without removing the Ge-Si NWs from the substrate. Analyzing the SEM 

images, we estimate that our graphite probe is contacting ~ 20-30 NWs. In these 

measurements, the Ge-Si NWs are connected in ‘parallel’; thus the resistance of n Si-Ge 

NWs contacted by a probe is  𝑅 =  (∑ 1𝑅𝑖
𝑛𝑖,𝑛 )−1

. Electrical measurements were performed 

at room temperature using Keithley 6517A electrometer-programmable voltage source. 

Time-domain and frequency-domain measurements were performed using a Tektronix 

digital storage MDO4000 Mixed Domain Oscilloscope and a HP 4192A impedance 

analyzer. Two LabVIEW programs developed for HP 4192A impedance analyzer and 

KEITHLEY 6517A electrometer are used for automated system data acquisition and 

measurement control. 
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Figure 3.5 Contacts photo of axial Si/Ge NW HJs samples. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

This chapter presents experimental data and research results of structural, electrical, 

optical, and thermal properties of the VLS grown axial Si/Ge NW HJs. In the first section, 

experimental images of TEM, SEM and EDX will be presented. In the second section of 

this chapter, the experimental results from PL spectroscopy will be presented. The CW 

laser has been used for PL excitation and electron-hole recombination schemes have been 

discussed. In the third section, the quantitative and qualitative analysis of Raman data will 

be discussed based on the Raman spectra. The Raman peaks at various wavelengths and 

polarization angles are determined to explain structural, vibrational, and thermal properties 

of axial Si/Ge NW HJs. The last part of this chapter provides noise, I-V, current oscillation 

discussion obtained at temperature sweep, frequency sweep and voltage sweep with or 

without external components. 

4.1 Structural Properties of Si/Ge NW HJs 

As we mentioned above, scaling of devices is facilitating the tolerance of strain, because 

of the surface-volume ratio. Nanoscale Si/Ge NW HJs can bear more strain by expanding 

or bending. Unlike intrinsic strain induced by Si and Ge lattice mismatch, extrinsic strain 

comes from various reasons, including the temperature difference between room 

temperature and growth or even illumination high temperature, the pressure, the growth 

procedure, the substrate, the contact formation process. We demonstrate in this section that 
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the strain directly modifies structural properties by lateral displacement of Ge without 

forming structure defects or dislocations. 

4.1.1 TEM, SEM and EDX Result 

Figure 4.1 shows a moderate resolution TEM image of a single axial Si/Ge NW HJ with a 

clearly visible Si/Ge heterointerface and smooth NW surface. The diameter of the Si 

segment of the NW is 105 nm, and it is nearly constant. The diameter of the Ge segment 

of the NW gradually increases from 105 to 115 nm within 100–150 nm from the Si/Ge 

heterointerface and then remains constant. The TEM micrograph of a Si/Ge NW HJ shows 

that Ge is strictly sticking with Si. Lateral nanowire expansion in the vicinity of Si/Ge HJ 

is clearly observed and marked by the white arrow.  
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Figure 4.1 TEM image of the axial Si/Ge NW HJ showing an abrupt Si/Ge heterointerface 
and an increase in the NW diameter from 105 nm in the Si segment to 115 nm in the Ge 
segment of the NW. 
Source: [32]. 

 

 Figure 4.2 presents a HR-TEM image of the Si/Ge NW heterointerface close to the 

NW center. The lattice fringe spacing confirms the NW (111) crystallographic direction. 

The inset shows the corresponding lattice fringe spacing fast Fourier transform (FFT) of 

the marked area (circle) attesting to the nearly ideal crystallinity of the NW center.  
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Figure 4.2 HR-TEM image of the Si/Ge NW HJ interface close to the NW center with 
clearly evident (111) lattice fringes. A fast Fourier transform (FFT) of the circle marked 
area is shown in the inset. 
Source: [32]. 

 

 Figure 4.3 shows a HR-TEM micrograph of the same Si/Ge NW HJ with focus on 

the area close to the NW surface where a 1 nm thick amorphous oxide layer can be seen 

(marked by an arrow) and structural imperfections are confirmed by the FFT analysis (see 

area marked by circle and inset). Note that no dislocations are observed in the vicinity of 

the Si/Ge NW HJ. In addition to the observed nanowire lateral expansion, the 4.2% lattice 
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constant mismatch induced strain could be relaxed by other mechanisms shown in Figure 

4.3 including nanowire bending and kinking, formation of structural defects and 

amorphization. Evidence of strain induced Si and Ge diffusion can be observed at the NW 

HJ interface. For the strain relaxation via non-dislocation formation and coherent from 

layer to layer, the critical thickness of Si/Ge is about 5-15 nm depend on the concentration 

of Ge. That is the additional reason that the diameter of Si/Ge NW HJ is more than 100 nm 

to cover enough high crystallized area besides all the structure imperfections. The lattice-

mismatch is also found to be accompanied a mismatch in CTE, which introduces additional 

strain, which will be discussed later. Thus, the theoretically predicted surface morphology 

changes of introduction part near the transition from Si to Ge are confirmed by TEM 

micrographs. 
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Figure 4.3 HR-TEM image of the Si/Ge NW HJ interface close to the NW surface with 
clearly observed distortion of the lattice fringes and the corresponding FFT of the circle 
marked area (inset). An amorphous layer of 1 nm thickness at the NW surface is indicated 
by an arrow.  
Source: [32]. 

 

 Figure 4.4 (a) shows a SEM image of a sample depicting nearly straight NWs with 

a clearly visible interface between the Si and Ge segments (shown by an arrow) and the Au 

droplets at the NW tips (indicated). Figure 4.4 (b) shows a bright field transmission electron 



 

 

76

 
 

microscopy (BF-TEM) image of the Ge-Si heterointerface (Si and Ge segments of the NWs 

are marked).  

 

Figure 4.4 (a) SEM image of NWs; (b) BF-TEM image of a HJ. 
 

 Results of compositional EDX microanalysis of the Si/Ge NW HJs are shown in 

Figure 4.5. Similar results were obtained from other EDX scans across the heterointerface 

near the center and close to the edge of the NW. The Si content is shown in black, while 

the Ge content is shown in red for comparison, and the direction in which the analysis is 

done is along the growth direction. The Ge content is gradually decreasing while the Si 

content is increasing in the measured direction from Ge side to Si side indicating Si/Ge 
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interface is not abrupt but smooth due to the spontaneous SiGe intermixing found in VLS 

grown Si/Ge NW HJs. Pure Si and Ge composed the area ~ 5nm away from the Si/Ge NW 

HJ interface. The Si/Ge NW HJ is comprised of Si and Ge NW segments with a clearly 

observed ~ 8 nm thick Si1-xGex transition layer produced by spontaneous Si1-xGex 

intermixing during growth.   

 

Figure 4.5 Compositional analysis of the NW along the growth direction, showing a 
spontaneously formed Si1-xGex alloy transition layer at the Si/Ge interface. 
Source: [32]. 

 

 Detailed EDX profile performed as a function of wire distance along the NW HJ 

center and the points of intersection where both Si and Ge reached 50 atomic percentage 
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monotonically move into Ge side (Figure 4.5). This shows the Ge atoms pile-up in one end 

of shell towards the other, a phenomenon known as Ge condensation. The concentration 

gradient from Si to Ge within the VLS grown Si/Ge NW HJ is not constant but drops faster 

in the Si side than in Ge side. And the Si1−xGex alloy composition x does not change 

uniformly from 0 to 1. Instead, the EDX data suggests the formation of Si1−xGex alloys 

with preferential compositions of lower x close to the Si part of the Si/Ge NW than x close 

to the Ge part of the Si/Ge NW. This conclusion, supported by our preliminary TEM 

analysis, and Si1-xGex composition measurements in Si/Si1−xGex 3D (i.e., cluster 

morphology) nanostructures where x≈0.2 is a typical composition of the Si1-xGex wetting 

layer and x≈0.5 is a stable composition close to the Si1-xGex cluster core [55]. The EDX 

signal is noisy due to the rather short acquisition time, the atomic Si and Ge concentration 

profiles are therefore also noisy. This EDX profile shows the layer composition and local 

strain relaxation is not uniform from left to right as well as from bottom to top (Figure 4.5), 

because of the inter-diffusion during growth.  

 The EDX data indicate that a 2nm thick Si0.8Ge0.2 layer is formed close to the Si 

segment of the NW, and this is known to be a stable Si1-xGex alloy composition produced 

by spontaneous intermixing [[172, 173]]. This is an interesting observation, because the 

Ge segment of the NW is deposited using a relatively low (350 Co) deposition temperature. 

The concentration gradient from Si to Ge within the VLS grown Si/Ge NW HJ is not 

constant. Most likely, this Si1-xGex transition layer is a result of the presence of residual Si 

atoms in the eutectic Si/Au alloy after switching to Ge deposition and strain-driven 

interdiffusion. 
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4.2 Optical Properties of Si/Ge NW HJs 

Two different measurement techniques (Raman and PL) were used to investigate the 

significant peaks in Si/Ge NW HJs under CW laser excitation. An Ar+ laser (514 nm, 488 

nm, 457.9 nm, and a multi-line), a HeCd laser (325 nm), and high-power light-emitting 

diode with a peak near 365 nm are used. PL dynamics using a Q-switched Nd:YAG pulse 

laser of 355 nm excitation wavelength were studied. The excitation energy density was 

varied from 1.5 to 50 mJ/cm2. We demonstrate in this section that the mismatch in Ge and 

Si CsTE and low thermal conductivity of Si/Ge NW HJs are proposed to be responsible for 

the thermally induced stress detected under intense laser radiation in photoluminescence 

and Raman scattering measurements. 

4.2.1 Photoluminescence  

Figure 4.6 compares the normalized Si/Ge NW PL spectra to the c-Si PL spectrum 

measured at the same (T = 20 K) temperature. The Si/Ge NW PL spectra clearly exhibit at 

least two peaks. A narrower PL peak at ~1.08 eV (PL1) and a broader PL peak at ~1.03 eV 

(PL2) are clearly observed, and only a very weak PL signal with photon energies close to 

the bulk c-Si transverse optical (TO) PL peak at 1.1–1.15 eV is found at T = 20 K (marked 

by an arrow in Figure 4.6). Note that no PL associated with c-Ge at 0.7–0.65 eV has been 

detected. The relative intensities and spectral positions of the two major PL peaks are found 

to be temperature dependent (Figure 4.7). Both PL peaks change their positions 

significantly with temperature. The PL1 peak is detectable even at room temperature and 

exhibits an asymmetric broadening, which (in agreement with Ref.[174]) can be fitted 

using Boltzmann thermal broadening on the high photon energy side of the PL spectrum 

(not shown). The PL peak position temperature dependence is unusual and will be 
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discussed later. Note that a reliable detection of the PL signal at room temperature requires 

an excitation intensity of ~ 600 W/cm2. 
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Figure 4.6 Comparison of PL spectra of the Si/Ge NW HJs and c-Si.  
Source: [32]. 

 
We do not find any significant PL at energies close to the c-Ge energy gap, most 

likely due to the following reasons. Both of the Si and Ge segments of the HJs exhibit high 

crystallinity (Figure 4.2) and, therefore, should have reasonably long carrier diffusion 
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lengths, similar to that in bulk Si and Ge. Also, both segments are covered by a thin 

amorphous oxide layer with visible imperfections near the NW surface (Figure 4.3). Since 

Si and Ge are both indirect bandgap semiconductors with a long carrier radiative lifetime, 

excitons/electron-hole pairs have enough time to diffuse toward the surface and recombine 

at surface defect states, mostly non-radiatively. The GeO2/Ge interface is more defective 

compared to the SiO2/Si interface, and thus no PL associated with the pure Ge segment of 

the NW is observed [57].  
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Figure 4.7 The PL spectra of the Si/Ge NW HJs at various (marked) temperatures. The 
major PL peak shifts with temperature increase are indicated by the dashed lines. 
Source: [32]. 

 

 In the Si segment of the NW, our TEM studies detect a 15-20 nm long strained Si 

region close to the Si/Ge NW heterointerface. The PL1 peak at 1.08 eV, most likely, is 

associated with this strained Si region where the energy gap is slightly narrower compared 
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to that in c-Si [110]. The narrower energy gap Si region of the NW collects excitons (and/or 

electron-hole pairs) quite effectively. This process is even more efficient at the Si/Ge 

heterointerface, where the ~ 8 nm thick Si1-xGex alloy layer is found. In Si1-xGex alloys and 

nanostructures, compositional fluctuation is known to be responsible for low-temperature 

exciton localization [175]; therefore, exciton diffusion toward the surface is suppressed. 

Also, Si1-xGex compositional fluctuation is responsible for the reduction of the exciton 

radiative lifetime [176]. Thus, the low-temperature PL peak at 1.03 eV (PL2) is attributed 

to radiative recombination of excitons localized at the ~ 8 nm thick Si1-xGex NW 

heterointerface [55]. This conclusion is supported by the PL2 peak temperature dependence: 

the PL2 peak disappears at T > 80 K, and this is consistent with a less than 10 meV SiGe 

composition-fluctuation-related exciton localization energy [173,174].  
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Figure 4.8 Temperature dependencies of c-Si energy gap, c-Si PL peak position, and PL1 
peak position in Si/Ge W HJs. 
Source: [32]. 

 

 Considering the PL peak position temperature dependence, the PL peak associated 

with band-to-band radiative recombination should follow the energy bandgap temperature 

dependence EG(T). In bulk c-Si, the PL peak energy position and line-shape temperature 

dependencies are explained by taking into account the exciton binding energy (Eexc ≈ 10 
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meV), the phonon-assisted nature of the band-to-band recombination involving mostly TO 

phonons (Eph ≈ 60 meV) and the temperature dependence of population of energy states in 

the energy bands [32]. Thus, the band-to-band recombination related PL peak photon 

energy is EPL = EG – (Eph+Eexc), and in bulk c-Si at low temperature it is close to 1.1 eV. 

The temperature dependencies of EG(T) and EPL(T) in c-Si are shown in Figure 4.8.  

In Si/Ge NW HJs, the two major PL peaks exhibit a very different dependence on 

temperature. As the temperature increases, the PL1 peak shows an almost continuous shift 

toward higher photon energies (Figure 4.8), and above 170 K it crosses the expected bulk 

c-Si PL peak position. Assuming that this PL is associated with band-to-band 

recombination within the Si NW segment, this behavior indicates the presence of 

significant thermal stress. Note that at elevated temperatures (T > 250 K), the PL intensity 

decreases significantly. Thus, the PL measurements require a high (≥ 600 W/cm2) 

excitation intensity, and laser induced NW heating takes place, which is discussed below. 

Also, at elevated temperatures a broad and weak PL peak appears at 1.2 -1.25 eV, which 

is most likely associated with NW surface defects, and it becomes comparable in intensity 

with the PL1 peak (see the PL spectrum at 300 K in Figure 4.7). 

We find that the PL2 peak (presumably associated with the NW Si/Ge interface 

region) follows the direction of the Si CTE temperature dependence. As temperature 

increases from 20 to 60 K, the Si CTE first decreases and then increases with a minimum 

around 70 K [177], while the Ge CTE monotonically increases (Figure 4.9). We believe 

that the PL2 peak position is affected by temperature dependent strain in Si/Ge NW HJs 

due to the large difference in the Si and Ge CTE temperature dependencies [55].  
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Figure 4.9 Comparison of the temperature dependences of the coefficient of CTE in c-Si 
and c-Ge and the PL2 peak position in Si/Ge NW HJs. Note that the experimentally 
measured temperature is the sample holder temperature. 
Source: [32]. 

 

4.2.2 Raman Scattering  

Figure 4.10 shows first-order Raman spectra in Si/Ge NW sample covering a spectral range 

of 200-600 cm-1 at three excitation wavelengths of 458nm, 477nm and 514nm. Raman 

spectra are normalized and the signal-to-noise ratio is approaching 10,000. We observed 
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three main Ge-Ge (at ~ 300 cm-1), Si-Ge (at ~ 410 cm-1) and Si-Si (at ~ 520 cm-1) Raman 

features and two weak peaks centered near 280 cm-1, 500 cm-1 (Figure 4.10), emerge in the 

highest (514nm) and lowest (458nm) excitation wavelengths we have. The intensity of 

non-resonant Raman scattering is proportional to the scattering volume associated with the 

light penetration depth from the sample surface, and the light penetration depth in our 

samples strongly depends on excitation wavelength. As the excitation wavelength 

increases, the light penetration depth increases, and a low intensity Raman signal is from 

Si-Si mode at 520 cm-1 is observed with excitation at 514 nm compared to 458 nm, while 

a high Raman signal from Ge-Ge mode at 300 cm-1. The low (~ 300 cm-1) and high (~ 520 

cm-1) frequency features connect to the modes of the pure Si and Ge crystals, respectively. 

The intermediate mode is intimately related to a mode observed in Si/Ge superlattice 

structures when the Si/Ge interface is rough. Raman spectra confirm strong SiGe 

intermixing (the peak near 410 cm-1). Interestingly, this Raman peak of Si-Ge mode at 

~410 cm-1 is slightly shifted to higher wavenumbers under 458 nm laser excitation 

compared to that under 514 nm excitation, and which is most likely due to the resonant 

effect in Raman scattering. The softening with respect to Si-Si stretching in the pure Si 

crystal, the shoulder of the 520 cm-1 peak, corresponding to the main Si-Si Raman feature 

in the alloy (~500 cm-1), is attributed to a mode effect due to the quasi inert Ge atoms with 

a large mass. A common feature with previous calculations of Alonso and Winter [178] is 

that, globally, the Si centered units with increasing number of Ge atoms at the vertices tend 

to generate Raman signals at lower frequencies. This broad Raman peak near 500 cm-1 

associated with Si-Si vibration in Si1-xGex indicates a nonuniform strain, while the Raman 

signal associated with the Si substrate is found at 520 cm-1. The vibration pattern of local 
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Ge-Ge stretching (~280 cm-1) close to Si generated by the Si-induced strain is just identical 

to that found for the local Si-Si mode (~500 cm-1) close to an isolated Ge atom in Si. A 

weak feature below 260 cm-1 is attributed to a superposition of 2TA and disorder-induced 

1LA contributions. The latter includes local strain effects by higher-order interatomic force 

constants.  
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Figure 4.10 Raman spectra at room temperature measured using 458nm, 477nm and 
514nm excitation in Si/Ge NW sample. 

 

 Figure 4.11 shows Raman spectra of Si/Ge NW HJs measured using argon laser 

excitation at different wavelengths. Under 514.5 nm excitation, we observe three distinct 

Raman peaks associated with Si-Si (~ 520 cm-1), Si-Ge (~ 400 cm-1) and Ge-Ge (~ 300 cm-

1) vibrations with the main Raman peak at 300 cm-1. Using 458 nm excitation, we find the 

same peaks but with the main Raman peak at ~ 520 cm-1. This difference is due to a strong 
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spectral dependence of the Raman scattering cross-section and well-known Raman 

resonances in Ge at 2.2-2.5 eV associated with E1 and E1+Δ1 optical transition [179]. Note 

that a peak at ~ 280 cm-1 is, most likely, an argon plasma line. A Raman peak at ~ 500 cm-

1 is best observed using 458 nm excitation and is associated with the Si-Si vibration in the 

presence of a neighboring Ge atom or Si-Si(Ge) [179]. The Raman spectra are also 

sensitive to the excitation intensity.  
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Figure 4.11 Raman spectra of Si/Ge NW HJs obtained under different (indicated) 
excitation wavelengths. 
Source: [32]. 
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 Raman spectra are measured using various excitation laser power in the range of 6-

40 kW/cm2 (Figure 4.12) and find significant changes in the relative intensities, FWHMs, 

and positions of Raman peaks associated with the major Si-Si vibration mode and local Si-

Si (in the presence of Ge) mode. As the excitation intensity increases, the major Raman 

peak at ~ 520 cm-1 broadens and shifts toward lower wavenumbers (similar behavior is 

observed for the Raman peaks at 400 and 300 cm-1, not shown). However, with increasing 

excitation intensity the Raman peak at 500 cm-1 shifts in the opposite direction.  

 

Figure 4.12 Background-corrected Raman spectra obtained under 458nm wavelength 
excitation and different (indicated) excitation intensities. 
Source: [32]. 
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 Figure 4.12 shows Raman spectra recorded using three different excitation 

intensities. We curve fitted these two peaks using a Voigt profile to estimate the peak 

positions and FWHMs accurately. The results of fitting including the Raman peak spectral 

position, full width at half maximum (FWHM) and ratio of integrated intensities for Raman 

peaks at 520 and 500 cm-1 as function of excitation intensity are shown in Figure 4.13. 

Fitted data are used to plot Raman peak positions and FWHMs in the function of laser 

powers respectively (Figure 4.13(a) and (b)). Using curve fitting, we find that the peak 

frequency of major Si-Si vibration mode peak shifts considerably from 520.14 to 517.55 

cm-1 when the laser excitation power increases from 30 to 200 mW with the peak FWHM 

from 28.70 to 33.06 cm-1. Since the typical effect of laser irradiation on nanoscale samples 

is heating, this is the result of the effect of heating on the Raman spectra. The usual way to 

increase the temperature of samples during Raman spectroscopy measurements is to 

increase the incident irradiation power. Clearly, the Raman line shape becomes 

increasingly asymmetric as the incident power is increased (Figure 4.12). A shift of the 

peak position towards lower wavenumbers is also clear. This tendency that the Raman band 

downshifts and asymmetrically broadens on the low-frequency side with increasing laser 

illumination can be clearly seen (red lines in the Figure 4.13(a) and (b) and the black line 

in Figure 4.13(b)). Similar to the behavior of the major Si-Si vibration mode peak FWHM 

displayed in Figure 4.13(b), the related strained local Si-Si (in the presence of Ge) mode 

peak FWHM also broadens (from 11.41 to 13.65 cm-1) with the laser power increased from 

6 to 40 kW/cm2. However, the peak position evolution of strained local Si-Si ( in the 

presence of Ge) mode peak is turn out to be the inverse of the main Si-Si vibration mode 

peak, which rises from 496.82 to 501.38 cm-1 when the laser excitation power increases 
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from 6 to 40 kW/cm2. Note that at 458 nm excitation, 102 W/cm2 is the minimum excitation 

intensity allowing the recording of quality Raman spectra (where reasonable fitting is 

possible) and the application of more than 103 W/cm2 produces irreversible changes in the 

spectrum, most likely due to laser damage of the studied samples. 

 

Figure 4.13 Comparison of the Raman signals associated with Si-Si and Si-Si(Ge) 
vibrations in Si/Ge NW HJs: (a) Raman peak position, (b) Raman peak FWHM, and (c) 
ratio of Si-Si to Si-Si(Ge) Raman peak integrated intensities as a function of the 458nm 
excitation intensity. 
Source: [32]. 

 

 Figure 4.14 shows normalized and fitted angular Raman polarization diagrams of 

the major Si-Si vibrational mode at 520 cm-1 for the Si/Ge NW samples under 30mW and 

50mW laser powers, as well as the polarization Raman dependence for the Si–Si vibration 

at 520cm-1 measured in (111) single-crystal Si as a reference. Raman spectra are 

normalized and fitted using sinewave functions for comparison. It is known that the Raman 
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intensity depends on the orientation of polarization vectors of the incident and scattered 

light relative to the crystallographic axes of the sample. The observed angular dependencies 

in the major Si-Si vibration Raman mode of 30mW excitation is nearly identical to that in 

a (111) Si single crystal at room temperature. However, for the samples under 50 mW laser 

power we observe quite different behavior in the Raman polarization dependence for the 

Si–Si vibration at 520 cm-1. The observed lower Raman intensity of samples under 50 mW 

laser power compared to intensity of samples under 30 mW laser power demonstrates that 

heat induced strain emerges by increasing the laser power. This significant localization of 

strain in the Si matrix, because the crystal structure and local environment in Si/Ge NWs 

significantly deviates from the (111) oriented single crystal Si substrate, is consistent with 

our previous work and confirms that an additional temperature dependent strain in Si/Ge 

NW HJs. The explanation and details of the temperature dependent strain during Raman 

scattering measurements in our samples are given in Local Strain and Stress section. The 

intensity of Raman scattering at ~ 500 cm-1 as a function of the polarization angle and 

compares the data with similar measurements using (111)-oriented c-Si. It is clearly 

observed that at the lowest excitation intensity, the Raman signal polarization dependence 

is the same as for (111) c-Si and Si/Ge NW HJs, which is due to their (111) crystallographic 

orientation. However, at higher excitation intensity, the Raman scattering polarization 

dependence in Si/Ge NW HJs becomes considerably weaker. 
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Figure 4.14 Normalized (squares) and fitted (dashed lines) angular polarization 
dependence of the Raman signal in the range of the major Si–Si vibration mode under 514 
nm excitation wavelength with 30mW and 50mW laser powers. The polarization 
dependence of the Raman signal from a (111) single-crystal Si substrate is shown as a 
reference. 
Source: [32]. 

 

The VLS growth mode of Si NWs and Si/Ge NW-based HJs has been intensively 

investigated [59, 180-182]. It was shown that in lattice-mismatched NW HJs, structural 

relaxation can be associated with defects in the form of twin boundaries parallel to the 

growth axis and directly related to the NW kinking [181]. Also, a rough NW surface 

typically indicates a high density of surface defects, and in many cases the NW diameter 

continuously decreases producing so-called “tapered” NWs [183]. It was demonstrated that 

introducing chlorine containing species in the gas phase (e.g., SiH4-HCI-H2 and GeH4 

mixed with HCl) greatly inhibits the uncatalyzed material deposition rate, thus yielding 
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NWs with a smooth surface and uniform diameter along their entire length [184]. These 

results explain why in our samples the majority of NWs have smooth surfaces and nearly 

constant diameters (except for the lateral expansion of the Ge segment of the NW HJ).  

 HR-TEM studies, analyses of lattice fringes, and EDX measurements (Figure 4.1-

4.5) indicate that close to the center of the NW in the vicinity of the Si/Ge HJ the lattice 

mismatch induced strain is partially relaxed via spontaneous intermixing and the formation 

of an 8nm thick Si1-xGex transition layer. Additional structural relaxation occurs by gradual 

(within 100nm from the Si/Ge heterointerface) lateral expansion (i.e., increase in diameter) 

of the Ge segment of the NW (Figure 4.1). Close to the NW surface, we find a distortion 

in the lattice fringe patterns, which is easily detected by TEM-based FFT analysis (Figure 

4.3 inset). These structural imperfections are located within a 2-3nm thick interface layer 

between the NW core and an oxide layer at the NW surface, and they are slightly extended 

(up to 5-6nm) toward the NW core in the vicinity of the Si/Ge NW HJs (Figure 4.3). We 

find that the Si/Ge NW HJs with a diameter approaching 70-100nm can have a nearly 

perfect crystalline core and overall smaller density of structural defects (due to a smaller 

surface-to-volume ratio) compared to thinner NWs. 

 Examination of the spacing between the lattice fringes in different regions of the 

central portion of the NW (Figure 4.2) shows that 15-20nm away from the Si/Ge 

heterointerface the lattice constants are similar to those of the respective bulk materials. 

Starting at the Si-Ge interface, the lattice constant increases from that of Si to that of Ge in 

parallel with the increase in the Ge concentration, and thus the lattice-mismatch strain 

expected between Si and Ge is largely relieved during growth by the smooth alloy 

composition variation in the 8nm thick transition region (Figure 4.5). 
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4.2.2.1 Strain and chemical composition dependence of the Raman spectrum.   First, 

we estimate x using the Raman peak integrated intensity to start our structural properties 

analysis. Assuming random mixing in the Si1−xGex alloy, the relative integrated intensities 

of the Raman modes are expected to vary with the Ge mole fraction (x). In Si/Ge NWs, the 

relative number of bonds comprising the Si-Si, Si-Ge, and Ge-Ge phonon modes are 

estimated as (𝟏 − 𝐱)𝟐  , 2x(1-x), and x2, respectively. The ratio of the integrated peak 

intensities related to the relative number of bonds of the corresponding phonon modes are 

as follows: 

 

ISiSi/ISiGe = A(1-x)/2x (4.1) 

and 

IGeGe/ISiGe = Bx/2(1-x) (4.2) 

 

where coefficients A and B are related to the frequencies of the optical modes in the 

Si1−xGex alloy. 

 A and B are determined experimentally for each wavelength and vary weakly with 

alloy composition. For 458nm excitation, A is found experimentally to be 1.85 and B is 3.2 

[185]. The intensity method for determining the value of x is independent of strain in the 

alloy layer and depends on the integrated intensity of the phonon bands. Thus, proper base 

line correction is required to estimate the intensity with accuracy in Raman spectra. The 

Ge content (x) are calculated as 0.37±0.1 and 0.51±0.1 using Eqs. (4.1) and (4.2) with the 

values of A and B indicated. We have found the intensity ratios calculated from Raman 

data to be in good agreement with EDX data indicating preferential alloy compositions of 
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lower x close to the Si NW part than x close to the Ge NW part. And we discovered in our 

previous work (photoluminescence measures) that preferential alloy compositions of 

x≈0.15–0.2 close to the Si part of the Si/Ge NW and x≈0.5 close to the Ge part of the 

Si/Ge NW [55]. Because the Ge–Ge peak for a Si1−xGex alloy is quite weak, in particular 

for small x≤0.2, in which we can neglect the intensity of Ge–Ge peak [55]. This calculated 

results meets our expectation that x≈0.5 near the Ge part while x ≈ 0.35 (the average of 

0.2 and 0.5) with a non-neglected Ge–Ge peak intensity in x=0.5 and neglected Ge-Ge peak 

intensity in x=0.2 as well as a non-neglected Si-Si peaks intensity averaged both in x=0.2 

and 0.5. 

 Then, we analyze Ge content in a different method: the peak position in 

wavenumbers, by which strain can also be calculated. The Raman spectrum of a strained 

Si1-xGex HJ alloy consists of three distinct peaks whose energies and therefore the peak 

positions depend on the Ge content x and the strain ε. These three first-order Raman lines 

shown in Figure 4.11 in Raman spectra are due to the atomic vibrations of Si–Si(Ge) (at 

~500 cm−1), Si–Ge (at ~410 cm−1) and Ge–Ge (Si) (at ~290 cm−1) bonds in the Si1-xGex 

alloy. We curve fitted the major phonon bands mostly using a Gaussian profile to estimate 

the peak positions accurately.  

 The shift of the Si band relative to the strain-free position is given by [186] 

 

∆𝜔𝑆𝑖−𝑆𝑖 = 𝜔𝑠𝑡𝑟𝑎𝑖𝑛 − 𝜔𝑆𝑖 = ( 1𝜔𝑜) { 𝑝𝑆12(𝑆11+𝑆12) + 𝑞} 𝜀 = 𝑏𝜀 
(4.3) 

 

where 𝑆11 𝑎𝑛𝑑 𝑆12  are elastic compliance constants, p and q are phenomenological 

parameters, and 𝜀  is the in-plane strain. Here, b is the strain-shift coefficient, 𝜔𝑆𝑖  and 
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𝜔𝑠𝑡𝑟𝑎𝑖𝑛  are the frequencies of the Si modes in the strain-free and strained Si layers, 

respectively.  

 For the strained Si1−xGex, Eq. (4.3) can then be rewritten as in the literature 

describing the peak position of Si1-xGex layer under strain. 

 𝜔𝑆𝑖−𝑆𝑖= 𝜔𝑆𝑖 − ax – b𝜀  (4.4) 

 

Where the coefficient a is the so-called composition-shift coefficient, then an important 

parameter to evaluate individual shifts due to Ge composition and strain in a Si1-xGex alloy. 

We adopted 𝜔𝑆𝑖 =520, a=70.5 and b=830 as reported experimentally. With the same 

dependence of the Si–Si, Si-Ge and Ge-Ge band frequency on the Ge composition and 

strain in the Si1−xGex alloys are also examined. The wavenumbers of the three different 

phonon modes are 

 ωSi−Si= 520.7 − 70.5x − 830ε (4.5) ωSi−Ge =  400.5 +  16x −  575ε (4.6) ωGe−Ge =  282.5 +  16x −  384ε (4.7) 

 

 The linear dependence in Si part of the Si1-xGex from Eqs. (4.5) and (4.6), strained 

Ge composition is given by 

 𝑥 = (𝜔𝑆𝑖−𝐺𝑒−400.5)−0.6928(𝜔𝑆𝑖−𝑆𝑖−520)64.84 , (4.8) 
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and strain ε calculation by the following expression 

 𝜀 = 0.23(520−𝜔𝑆𝑖−𝑆𝑖)−(𝜔𝑆𝑖−𝐺𝑒−400.5)766.9 , (4.9) 

 

 From Eqs. (4.5) and (4.6), we obtain the following expressions for Ge part x and ε 

calculations: 

 𝑥 = 1.497(𝜔𝐺𝑒−𝐺𝑒−282.5)−(𝜔𝑆𝑖−𝐺𝑒−400.5)7.96 , (4.10) 

  

𝜀 = (𝜔𝐺𝑒−𝐺𝑒 − 282.5) − (𝜔𝑆𝑖−𝐺𝑒 − 400.5)191 , (4.11) 
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Table 4.1 Estimated Values of Ge Content and Strain for Alloys using Raman Scattering 
Data Collected under 458nm Excitation 
 

  
Equation 
(4.1) 

Equation 
(4.8) 

Equation 
(4.2) 

Equation 
(4.10) 

Equation 
(4.9) 

Equation 
(4.11) 

Ge content, x 

Si 
part 

0.37 
0.37±0.0
1 

- - - 

 
_ 
 

Ge 
part 

- - 0.51 0.5±0.01 - 

 
_ 

Compressive 
strain ε (%) 

Si 
part 

- - - - 0.81±0.02 

 
 
- 

Ge 
part 

- - - - - 

 
 
2.4729 

 

 From the Raman analysis, taking into account the local strain fluctuations in the 

NW HJs, the strain was precisely calculated. The calculated values of x and ε using the 

Raman data are summarized in Table 4.1. We find a reasonably good correlation of Ge 

content value between Raman shifts and intensities data. 

4.2.2.2 Temperature dependence of the Raman spectrum.  The laser beam by itself 

could be a significant source of thermal power delivered to the NWs. In addition to 

Stokes/anti-Stokes Raman peak ratio, Raman peak position and FWHM are also sensitive 

to the sample temperature. As the temperature increase, the pure-Si phonon band gradually 

shifts toward low frequencies and broadens. This temperature behavior of the phonon 

spectrum is typical of single-crystalline silicon and, as a rule, is associated with the 

anharmonic phonon-phonon interaction and the thermal expansion of the crystal as the 
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temperature grows. The temperature dependence of the frequency shift of the Si optical 

band at the Brillouin zone center is described, in the general case, by the relation [187]: 

 At constant pressure: 

 

∆𝜔 = [𝑑𝜔𝑑𝑇]𝑉∆𝑇 + [𝑑𝜔𝑑𝑉]𝑇[𝑑𝑉𝑑𝑇]𝑃∆𝑇 = ∆𝜔1(𝑇) + ∆𝜔2(𝑇) 
(4.12) 

∆ω1(T) =A(1 + 2ex−1) + B (1 + 3ey−1 + 3(ey−1)2) (4.13) 

 

where 𝑥 = ℎω0/2𝑘𝑇 , 𝑦 = ℎω0/3𝑘𝑇 , and A= -3.44 cm-1 and B= -0.0015 cm-1 are 

anharmonicity constants.  

 

∆ω2(T) = ω0(exp (−3γ ∫ α(T)dTT
0 ) − 1) 

(4.14) 

 

where ω0  is the frequency of the phonon band location at T=0K, 𝛾  is the Grüneisen 

parameter and 𝛼(𝑇) is the temperature dependence of CTE. The first term in Eq. (4.13) 

corresponds to the phonon band shift under the action of a phonon vibration anharmonicity 

at elevated temperatures. The second term, in Eq. (4.14) describes the thermal expansion 

effect. 

 Based on Eq. (4.12), the linear dependence of a local temperature in Si, Si1-xGex on 

the power density of the exciting laser radiation is demonstrated and reported earlier [188] 

based on both experimental and theoretical data. With increasing temperature, the Raman 

peaks are shifted to lower wavenumbers and broadened. The linear dependence for Raman 
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peak position ∆𝜔𝑆𝑖−𝑆𝑖 and Raman spectrum FWHM ∆Γ𝑆𝑖−𝑆𝑖 as a function of temperature 

in the major Si-Si vibration mode can be simplified as  

 ∆𝜔𝑆𝑖(𝑇)/𝑐𝑚−1= -0.025(∆𝑇/𝐾), (4.15) 

and  ∆𝛤𝑆𝑖(𝑇)/𝑐𝑚−1= -0.011(∆𝑇/𝐾), (4.16) 

 

 We estimate the local temperature of the pure Si part in the Si/Ge NWs from the 

experimentally measured peak position shifts of the major Si-Si vibration mode Raman 

line in accordance with Eq. (4.12). The temperatures we estimated here are 403.64K for 

200mW excitation laser power, 370.14K for 70mW and 300K for 30mW.  

 However, we expected the temperature growth is accompanied by the thermally 

induced strain resulting from the difference between the temperature dependences of CsTE 

for Si and Ge. The additional temperature-dependent elastic strains mapped shift ∆𝜔3(𝑇) 

is a rather complicated problem which is absent from Eq. (4.12). Before we estimate 

temperature-dependent elastic strains, we need to know the local temperature of strained 

Si-Si Raman mode.  

4.2.2.3 Thermal Transport and Local Temperature Gradient. In our measurements, 

we use an intense and focused laser beam with a short penetration depth and create a hot 

spot close to the sample surface. Heat can dissipate vertically and laterally. Due to the much 

larger Si substrate thermal conductivity compared to Ge and Si1−xGex, it is reasonable to 

assume that in our sample heat dissipation is mostly controlled by a vertical heat flow. As 

we have the pure Si part temperature, the temperature gradient observed between different 
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parts of the sample can be evaluated via the thermal conductivity (𝜿). According to the 

Fourier law of heat conduction, the temperature gradient can be calculated using 

 ∆𝑇 = 𝑃×𝐿𝜅×𝐴, (4.17) 

 

where P is the laser power absorbed by a sample with a thickness (L) in the direction normal 

to a surface of a cross sectional area (A) due to a temperature gradient (∆T). In our 

measurements, we use an intense and focused laser beam with a short penetration depth 

and create a hot spot close to the sample surface. In the case of a Si1−xGex (0.2<x<0.85) 

alloy, the thermal conductivity is depend on Ge content x as following 

 κ = 0.046 + 0.084x (Wcm-1K-1), (4.18) 

 

 At room temperature, the thermal conductivity of the strained Si1−xGex near Si part 

is 0.0628Wcm-1K-1, the thermal conductivity of the strained Si1−xGex near Ge part is 0.088 

Wcm-1K-1. The Si thermal conductivity is 1.3 Wcm-1K-1, the Ge thermal conductivity is 

0.58 Wcm-1K-1, which are both order of magnitude larger than that of the strained Si1−xGex. 

The length of nanowire sample is 1500-2000nm (assume Si length and Ge length are 

800nm for the following estimation), the entire thickness of the strained Si1−xGex is 8nm 

(5nm in Si part, 3nm in Ge part in Figure 4.5). 

 For our specific excitation laser power, temperature over per unit length is  
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∆𝑇𝐿 = 𝑃𝜅×𝐴 
(4.19) 

In Ge part, ( ∆𝑇800𝑛𝑚)Ge : ( ∆𝑇4𝑛𝑚)SiGe ≈ 1: 9 (4.20) 

In Si part, ( ∆𝑇800𝑛𝑚)Si : ( ∆𝑇4𝑛𝑚)SiGe ≈ 1:15 (4.21) 

 

 Thus, the temperature gradient 
dTdL established between the peak 1 (Figure 4.12) 

temperature at the Si1-xGex alloy layer in the main Si mode and the peak 2 temperature of 

the Si1-xGex alloy layer in the strained Si mode is in the order of 10 K and decays with 

increasing temperature from room temperature (proportional to 𝑇𝛼 and α~ -1 to -2), and 

this temperature gradient is dominant representing the NWs for the heating effect and heat-

induced bending effect while temperature gradient over long and pure Si or Ge can be 

neglected compared to that of the strained Si and main Si phonon modes. We use calculated 

local temperatures for our estimations for accuracy. 

 On considering the Raman measurements, we anticipate that under the applied laser 

excitation intensity of 102-103 W/cm2 the sample temperature increases, and such 

temperature increase can be detected by monitoring the Raman peak wavenumber and 

FWHM temperature dependencies [190, 191]. Generally, as temperature increases the 

Raman peak shifts toward lower wavenumber due to thermal expansion and changes in the 

self-energy of the vibrational mode [189]. At the same time, the Raman peak FWHM 

increases, mainly due to energy relaxation processes (i.e., the decay of the Raman phonon 

into various optical/acoustical phonons, etc.) [190]. Thus, by knowing the initial (room 

temperature) Raman peak wavenumber/FWHM and their temperature dependencies [190, 
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191], one can accurately calculate the sample temperature by measuring the shift and 

broadening of the Raman spectra. 

 Compared to the experimental data reported by Hart and Aggarwal, our estimated 

temperatures according to Raman peak shifts are depicted in peak position and peak 

FWHM respectively (in Figure 4.15). Figure 4.15(a) confirms the estimated temperatures 

from frequency shift of the major Si-Si vibration Stokes Raman line set up consistency of 

the former reported experimental data. At these temperatures, the major Si-Si vibration 

Stokes Raman peak FWHM of our samples are found broadened, but after implement of a 

simple linear regression we find the two linear extrapolations are parallel with 7 cm-1 

upshifts (Figure 4.15(b)). With increasing laser illumination, the temperature dependent 

local Si-Si (in the presence of Ge) peak upshifts while temperature dependent major Si-Si 

vibration mode peak downshifts. This downshifting can be due to a laser heating effect of 

the nanowires where the lattice constant increases as the temperature of the sample 

increases and the bonds between atoms become weaken. The asymmetric line shape is due 

to a Fano interference between the k=0 optic phonon scattering and electronic continuum 

scattering from laser-induced electrons in the conduction band [ 191 ]. The unusual 

upshifting of local Si-Si (in the presence of Ge) mode Raman line observed here is 

produced by a change in Si/Ge NW strain due to the large difference in Si and Ge CsTE. 

This mismatch in Si and Ge CsTE creates an additional, temperature dependent strain in 

Si/Ge NW HJs. The explanation and details of the temperature dependent strain during 

Raman scattering measurements in our samples are given in discussion part. 
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 (a)       (b) 

Figure 4.15 (a) Frequency shift of the major Si-Si vibration Stokes Raman line versus 
temperature. (b) Plot of the FWHM for the Stokes component of the major Si-Si vibration 
Stokes Raman line in silicon as a function of temperature. The red squares represent our 
estimated Raman points. The black circles represent the Raman frequency shift as 
calculated based on the theory. The dashed line is a smooth curve drawn through the points 
with linear regression (deviation). 
Source: [32]. 

 

 Figure 4.15 compares the Si-Si Raman peak position and FWHM in Si/Ge NW HJs 

with the theoretically predicted and experimentally confirmed temperature dependencies 

of that in bulk c-Si [190, 191]. The Si-Si Raman peak position in Si/Ge NW HJs is in full 

agreement with the bulk c-Si Raman temperature dependence calculated by using Ref. 190 

(Figure 4.15 (a)), and under 700 W/cm2 excitation the sample temperature is estimated to 

be ~ 410K. This significant laser heating of our samples is due to a reduced thermal 

conductivity of the Si/Ge NW HJs compared to that in c-Si. 
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 The Si-Si Raman peak FWHM temperature dependence in Si/Ge NW HJs follows 

that in bulk c-Si [191] but with an almost four times greater value (Figure 4.15(b)). The 

initial broadening of the Si-Si Raman peak in Si/Ge NW HJs can be attributed to a non-

uniform strain, which is also expected to reduce the sample thermal conductivity. Also, the 

reduced ratio of Si-Si to Si-Si (Ge) Raman peak intensities under higher laser intensity 

(Figure 4.13(c)) is consistent with the assumption that at higher temperature light 

absorption in Si/Ge NW HJs increases and a smaller number of photons reach the c-Si 

substrate. 

4.2.2.4 Local Strain and Stress.   Peak 1 and Peak 2 have opposite Raman shift behaviors 

even though they have the same delta temperature. A relative compressive strain of Peak 1 

is observed in Figure 4.13(a). This relative compressive strain is introduced by the 

mismatch of thermal expansion. Strain due to the 4.2% difference in the lattice constant 

between Ge and Si should be absent beyond the initial stage of the laser power rise [193]. 

However, the increase from the room temperature to the temperature increment causes a 

strain due to the difference in CsTE between Ge and Si. The strained Si-Si (Ge) mode peaks 

red-shift to the left side of the Si bulk peak. The red-shift of Si-Si (Ge) mode indicates it 

has longer wavelengths compared with the Si bulk Si-Si mode. 

 Thermal mismatch strain is given as [192]: 

 εth = ∫ [αSi1−xGex(T) − αSi(T)]T1T0 dT, (4.22) 

 

where 𝛼𝑆𝑖1−𝑥𝐺𝑒𝑥(𝑇) and 𝛼𝑆𝑖(𝑇) are the CsTE of Si1−xGex and Si respectively. 
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𝛼𝑆𝑖(𝑇) = 3.725×10−6[1 − 𝑒5.88×10−3(𝑇 + 149015)] + 5.548×10−10𝑇, (4.23) 𝛼𝐺𝑒(𝑇) = 6.050×10−6 + 3.60×10−9𝑇 − 0.35×10−12𝑇2, (4.24) 

 

 For Si1−xGex, the coefficient can be linearly interpolated between the values for Si 

and Ge given in Eq. (4.23) and (4.24), where T is in Celsius. 𝑇0 and 𝑇1 are the starting and 

ending temperature for the heating process step. At room temperature, the CsTE of Si and 

Ge are 2.7× 10−6 K-1 and 5.9 × 10−6 K-1, respectively. Si1−xGex CTE is determined by 

(2.6+2.55x) × 10−6 K-1 (x<0.85). Strain from heating is due to the volume change that 

occurs when materials have different expansion rates. Because Si1−xGex has a larger 

expansion coefficient, the increase of the lattice constant of the Ge inside Si during heating 

is suppressed by the Si, resulting in a permanent compressive strain of around 0.01-0.02% 

in Si-Si(Ge) vibration mode depending on the temperature difference. The thermoelastic 

stress is given by 

 𝜎𝑡ℎ = 𝑌×𝜀𝑡ℎ, (4.25) 

 

where 𝑌 is Young’s modulus. Young’s modulus decreases as the temperature increases. 

 Similar to estimate strain, the magnitudes of local stress are estimated in Raman 

shifts by a general expression. The relation between the measured Raman shift and uniaxial 

stress is then obtained to be 

 ∆𝜔𝑆𝑖−𝑆𝑖(𝜎) = ( 𝜎𝜔𝑜) {𝑝𝑆12 + 𝑞(𝑆11 + 𝑆12)}, (4.26) 
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where 𝜔𝑜  is the LO-TO phonon band frequency in unstressed Si-Si bond, the elastic 

constants are 𝑆11 = 7.68×10−12𝑃𝑎−1  and 𝑆12 = −2.14×10−12𝑃𝑎−1 , and the phonon 

deformation potentials are 𝑝 = −1.43𝜔02 and 𝑞 = −1.89𝜔02 [193]. Because the frequency 

stress-free Si–Si phonon band is only sensitive to the temperature and Ge content x, 𝜔𝑜 

should be corrected by Eq. (4.4) and (4.15), turning out to be 

 𝜔𝑜 = 520.7 − 70.5𝑥 + ∆𝜔𝑆𝑖(𝑇), (4.27) 

 

 According to Eqs. (4.3) and (4.26), the magnitudes of the compressive elastic strain 

and stress that result in the high-frequency shift of the Si-Si(Ge) phonon band are 

calculated and organized in Table 4.2. 
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Table 4.2 Estimated Values of Local Strain and Stress at Different Temperatures using 
Various Methods 
 

Laser Power (kW/cm2) 6 14 40 

Peak 2 Temperature (K) 300 370.14 403.64 

Peak 1 Temperature (K) 

From Eq.(4.17) 

300 388.14 420.64 

Local Strain 𝛆 (%) Peak 1 0.73 

From Eq.(4.9) 

1.01 

From Eq.(4.3) 

1.26 

From Eq.(4.3) 

Local Stress 𝛔(GPa) 

Peak 1 From 

Eq.(4.26) 

1.47 2.17 2.74 

Peak 1 From 

Eq.(4.25) 

1.32 1.82 2.27 

Thermoelastic 

Strain 𝛆𝒕𝒉(%) 

From Eq.(4.3)  0.28 0.25 

From Eq.(4.22)  0.02 0.01 

Thermoelastic 

Stress 𝛔𝒕𝒉(GPa) 

Peak 1 From 

Eq.(4.25) 

 0.5 0.45 

 

 Due to the calculated local stress is in the order of 1GPa, the Si-Si vibration mode 

peaks have large pressure shifts to higher energy with increasing local pressure. The 

calibration is represented by the quadratic least-squares fit. The equation of this fit is [194]: 
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𝜔𝑆𝑖−𝑆𝑖(𝑃) = 519.5 ± 0.8 + (0.52 ± 0.03)𝑃 + (−0.0007 ± 0.0002)𝑃2 (4.28) 

 

where 𝑃  is the pressure in kbar. We are able to accurately calibrate ∆ω𝑆𝑖−𝑆𝑖(𝑃) using 

14.7kbar, 2.17kbar and 2.74kbar under three different power excitations. After comparing 

with Raman raw data from experiments, we conclude the estimation of stress in Table 4.2 

is reasonable. 

 The estimated strain arises from lattice parameter mismatch is the more significant 

than the difference in CsTE between Si and Ge. Because the lattice constants of Si (aSi) and 

Ge (aGe) at room temperature are 5.431Å and 5.658Å, respectively. The Si1−xGex lattice 

parameters [195] deviate slight from Vegard’s law a(x) = aSi + x(aGe – aSi), which expressed 

as: 

 𝑎(𝑥) = (5.431 + 0.20𝑥 + 0.027𝑥2) Å, (4.29) 

 

 Lattice mismatch between Si and Si1−xGex is approximately 0.7564× 10−2, which 

is consistent with our calculated data from Eq. (4.9). Thus, temperature dependent thermal 

strains in our sample should be about one order of magnitude less than lattice mismatch 

strains. However, in our estimation in Table 4.2, thermoelastic strain is several times larger 

than the estimation from CsTE. It is found that the thickness smaller than about 20nm 

increase dramatically with decreasing size, and is significantly higher than that of bulk 

silicon [196]. The thickness of Si1−xGex in our NWs is very small about 5nm. Thus, CTE 

of Si1−xGex may be implanted by a higher number than we estimate using Eq. (4.22) in 

Table 4.2. Another possibility is due to even larger Ge CTE than Si1−xGex CTE, stress on 
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Ge part is not only horizontal but also vertical. This vertical stress will pass down to 

Si1−xGex part and bend it. Stress on Si1−xGex is no longer evenly distributed over the entire 

cross-section. The non-uniformly distributed stress means that is more than a few times in 

the center than both ends.  

 With the previous estimated data, we split strained Si-Si peak and main Si-Si peak 

from the 40 kW/cm2 laser intensity Raman spectrum shown in Figure 4.16(a) red curves. 

Then we remove shifts induced by strain of thermal expansion, the accumulated Raman 

line shape of strained Si-Si peak and main Si-Si peak in Si/Ge NWs is estimated shown in 

Figure 4.16(b) red curves. The Raman line without thermal strain is supposed to shift to 

left compared with the experimental date we get. We conclude that with increasing 

temperature, the local Si-Si (in the presence of Ge) peak abnormal upshifts is produced by 

a change in Si/Ge NW strain due to the large difference in Si and Ge CsTE. This mismatch 

in Si and Ge CsTE creates an additional, temperature dependent strain in Si/Ge NW HJs. 
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(a)      (b) 

Figure 4.16 (a) The Raman spectra of curve fitted strained Si-Si peak and main Si-Si peak 
(dashed red lines) in Si/Ge NWs from experiments, (b) The accumulated Raman spectra of 
main Si-Si peak combined with strained Si-Si peak in Si/Ge NWs from estimations when 
strain of thermal expansion is removed, at laser intensity 40 kW/cm2 using 458 nm 
radiation compared with the raw Raman line shape (black dots). The blue line is the 
accumulated Raman spectrum. 
Source: [32]. 

 

 While the Si-Si Raman peak shift toward lower wavenumbers in Si/Ge NW HJs 

under increasing laser excitation is explained by the sample temperature increase due to 

absorption of the intense laser radiation, the Si-Si(Ge) Raman peak under the same 

conditions shifts in the opposite direction (Figure 4.13a). Figure 4.16(a) compares the 

experimental Raman spectrum with the Raman spectrum simulated under the assumption 

that both Si-Si and Si-Si(Ge) Raman peaks due to the temperature increase should shift 

toward lower wavenumbers. The discrepancy in the simulated (Figure 4.16(a)) and 
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experimentally (Figure 4.16(b)) observed positions of the Si-Si(Ge) Raman peak is 

~ 15 cm- 1, and it can be associated with a considerable laser heating induced thermal stress 

of the order of 2-3 GPa [197, 198]. Stress is known to affect the Raman polarization 

dependence in Si/SiGe nanostructures [45], and this notion explains the experimental data 

shown in Figure 8. Also, assuming that the PL1 feature is attributed to band-to-band 

radiative carrier recombination in the Si segment close to the Si/Ge NW HJ, the estimated 

value of stress (2-3 GPa) is consistent with the compressive stress required to shift the PL1 

peak toward higher photon energy by ~ 60 meV. Note that at room temperature the PL 

measurements were performed using an excitation intensity approaching 600 W/cm2. 

 Under 600-700 W/cm2 intensity of laser excitation, the sample temperature increase 

of ΔT ≈ 110 K is quite large. Most of the 458 nm laser radiation is absorbed by the top (Ge) 

segment of the Si/Ge NW HJs, and heat flow is directed toward the c-Si substrate, which 

can be considered as a heat sink. The Si and Ge segments of the Si/Ge NW HJs are at least 

500 nm long and the Si1-xGex interface alloy layer is only 8 nm thick, but the difference in 

their thermal conductivity could be more than 50 times; thus, all segments of the NW (Ge, 

Si and Si1-xGex) contribute to the overall thermal conductivity and the observed 

temperature increase. Using bulk c-Si, c-Ge and Si1-xGex alloy parameters (e.g., CTE, 

Young's modulus, etc.), the estimated thermal stress at the Si/Ge heterointerface, due to the 

mismatch in Si and Ge CTEs, is ~ 0.5 GPa. The discrepancy thus found compared with the 

number determined above (2-3 GPa) can be explained by assuming that laser induced 

heating also slightly bends NWs, possibly due to a non-uniform heat flow, and it creates 

additional stress in the vicinity of the Si/Ge HJ where the large mismatch in thermal 

expansion takes place. 
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4.2.2.5 Temperature Dependence of Absorption Coefficient and Bandgaps.  When 

light is absorbed in passing through a medium from the point r1 to another point r2, the 

absorption coefficient 𝛂 of the medium is defined by [199]: 

 𝐼(𝑟2) = 𝐼(𝑟1)𝑒𝑥𝑝 (−𝛼|𝑟2 − 𝑟1|), (4.30) 

 

where I(r) denotes the intensity at r. From Figure 4.17, the relative intensity of Si-Si peak 

related to Si-Si(Ge) peak is decreased with increased temperature. The calculated 

absorption coefficient of Si/Ge NWs in Si part as function of temperature 𝛼(T) is depicted 

by Figure 4.17. 
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Figure 4.17 The absorption coefficient of Si/Ge NWs in Si part vs. different temperatures 
at 2.7eV photon energy 
 

 The theoretical value of 𝛼 in Si1−xGex (x=0.35) alloy is about 1.3×106 𝑐𝑚−1 [200], 

which is consistent with our estimated data 𝛼 = 1.27×106 𝑐𝑚−1. It is clearly seen that 𝛼 
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of the Si/Ge NWs in Si part decreases with increased temperature. This suggests 𝛼 

increases starting at a lower energy position than that in room temperature, indicating a 

shift of absorption edge toward lower energy, i.e., shrinkage of the bandgap. 

 With increasing temperature at constant pressure, the energy bands ( 𝐸𝑔 ) of 

semiconductors, and therefore the various absorption edges and interband critical points, 

exhibit large shifts reported early [201]. These shifts are originated from two sources. The 

first is due to the thermal expansion of the lattice coupled with the change of the electron 

energies with volume. The second contribution is the direct renormalization of band 

energies by electron-phonon interactions. The total shift can be expressed in the following 

derivatives: 

 [𝜕𝐸𝑔𝜕𝑇 ]𝑃=[𝜕𝐸𝑔𝜕𝑇 ]𝑉 + [𝜕𝐸𝑔𝜕𝑇 ]𝑡ℎ𝑒𝑟𝑚 𝑒𝑥𝑝, (4.31) 

 

with 

 [𝜕𝐸𝑔𝜕𝑇 ]𝑡ℎ𝑒𝑟𝑚 𝑒𝑥𝑝 = [𝜕𝑙𝑛𝑉𝜕𝑇 ]𝑃[ 𝜕𝑝𝜕𝑙𝑛𝑉]𝑇[𝜕𝐸𝑔𝜕𝑝 ]𝑇 = −3𝛼𝐵[𝜕𝐸𝑔𝜕𝑝 ]𝑇, (4.32) 

 

where α = 𝐿−1(𝜕𝐿/𝜕𝑇)𝑃  is the CTE and 𝐵 = −𝑉(∂𝑝/ ∂𝑉)𝑇  is the bulk modulus. The 

effect of temperature dependence of energy bandgap is quantified by the linear expansion 

coefficient of a material with the fact that α is strongly dependent on T. 

 For simple estimation, the application of the Varshni’s relation fit to the 

temperature dependence of semiconductor bandgaps is justified on both practical and 

theoretical grounds [202] as a function of the temperature T: 
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 𝐸𝑔(𝑇) = 𝐸𝑔(0) − 𝛼𝑇2𝑇+𝛽 , (4.33) 

 

where E𝑔(0), 𝛼 and β are the fitting parameters. For pure Silicon, the bandgap at 0K is E𝑔(0) = 1.16948𝑒𝑉  with 𝛼 = 4.73×10−4𝑒𝑉/𝐾  and 𝛽 = 636𝐾 . For pure Ge, the 

bandgap at 0K is E𝑔(0) = 0.742𝑒𝑉  with 𝛼 = 4.8×10−4𝑒𝑉/𝐾  and β = 235𝐾 . For 

Si1−xGex, the bandgap is derived as [203]: 

 𝐸𝑔𝑆𝑖𝐺𝑒 = 𝐸𝑔𝑆𝑖(1 − 𝑥) + 𝐸𝑔𝐺𝑒𝑥 + 𝐶𝑔(1 − 𝑥)𝑥, (4.34) 

 

with the temperature dependent bandgaps of the constituents 𝐸𝑔𝑆𝑖 and 𝐸𝑔𝐺𝑒 as well as the 

bowing factor 𝐶𝑔 = −0.4𝑒𝑉. 

 The energy bandgap of semiconductors tends to decrease as the temperature is 

increased, estimated in Table 4.3. This behavior can be better understood because the 

interatomic spacing increases with the intensification of the amplitude of the atomic 

vibrations due to the heating. The potential built by the electrons is reduced by this 

interatomic spacing, making the effect further to shrink the energy bandgap. From previous 

reported experimental data, the bandgap of Si1−xGex (x=0.5) at room temperature is 0.917 

which is larger than our calculated one 0.7925. The reason is due to the special case of the 

technologically strained Si1−xGex grown on Si using one-valley bandgap fit. The tensile 

stress, also causes a decrease of the bandgap. This indicate that the strain-induced bandgap 

varies reversibly with strain and changes the number of free carries at Fermi energy, which 

strongly interact with phonon modes. 
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Table 4.3 Estimated Values of Bandgaps at Different Temperatures using the Varshni’s 

Relation 

 

Temperature (T) 

Bandgaps (eV) 

Si Ge Si1−xGex (x=0.5) Si1−xGex (x=0.2) 

300 1.124 0.661 0.7925 0.9674 

370.14 1.105 0.633 0.7840 0.9466 

403.64 1.095 0.620 0.7575 0.9360 

 

4.2.2.6 Thermal Buckling and Bending of Heated Si/Ge NW HJs.  In order to 

investigate the suitability of the prediction by fitting experimental measurements with 

numerical estimations, analytical approaches have been proposed to incorporate the elastic 

behavior of bending NWs. The expression of critical thermal buckling temperature (CTBT) 

is dependent on effective elastic modulus under bending and axial deformation of NWs 

[204]: 

 

𝜃𝑐𝑟 = 𝑛2𝜋2𝐼𝛼𝑙2𝐴  𝐸𝐵𝑒𝑛𝑑𝑖𝑛𝑔𝐸𝐴𝑥𝑖𝑎𝑙  (4.35) 

 

where 𝐸𝐵𝑒𝑛𝑑𝑖𝑛𝑔 and 𝐸𝐴𝑥𝑖𝑎𝑙 are Young’s moduli under bending and axial deformation, and 

α is the effective CTE of NWs, respectively; I and A are the inertia moment and the cross-
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section area of NWs; 𝑙 the length of NWs; n is a positive integer. The smallest eigen value 

in this case corresponds to n = 1, that is, the first buckling model [205]. 

 For a rough estimation, the local surface elasticity is treated as nonlocal theory. The 

influence of the size-dependent CTE of NWs on their thermal buckling behaviors has 

neglected yet. Thus, the CTBT is  

 

𝜃𝑐𝑟 = 𝑛2𝜋2𝐼𝛼𝑙2𝐴  

 

(4.36) 

 

 After inserting the moment of inertia of a rod with constant cross-section, the CTBT 

becomes 

θcr = d2π24αl2  (4.37) 

 

where d is the diameter of NWs. 

 For uniform temperature change∆T ≤ 𝜃𝑐𝑟, indicating the maximum allowed wire 

length corresponding to ∆T is determined by 

 

𝑙𝑚𝑎𝑥 = √( 𝑑2𝜋24𝛼∆𝑇) (4.38) 

 

 The CTE is highly sensitive to temperature as well as composition, 𝑙𝑚𝑎𝑥~ 5-6 um. 

Based on static mechanics, we deduce the following two equations from Three-Point 

Bending Model:  
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FSi-part + FGe-part = F (4.39) ∑ M =-F*
L2 + Fsi-part*L = 0 (4.40) 

 

where F is the force. M is the moment. 

 For a circular cross section, the flexural stress is [206] 

 

𝜎 = 𝐹𝐿𝜋𝑅3 

 

(4.41) 

 

Combining the polar moment of inertia: 

𝐼 = 𝜋𝑅42  (4.42) 

 

 The bending calculation made from the different material parameters of Si and Ge 

is listed in Table 4.4: 

 

Table 4.4 Estimated Bending Parameters of Si and Ge Part in Si/Ge NW HJs 

Methods Force Deflection Stiffness Strain 

Si part 1.1×10−6 𝑁 1.3𝑛𝑚 846 𝑁/𝑚 0.16% 

Ge part 1.3×10−6 𝑁 1.9𝑛𝑚 684 𝑁/𝑚 0.26% 
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4.3 Electrical Properties of Si/Ge NW HJs 

Studies of electrical properties of axial Si/Ge NW HJs are critically important for 

understanding of carrier transport in 2D device prototypes, however they are less common. 

The main reason is that such electrical measurements are complicated by formation of 

reliable contacts to NWs. Traditional techniques involving NW removal from substrates 

and placing them between pre-fabricated electrical leads were applied to elemental NWs. 

However, for axial NW HJs this technique is less effective because during the removal 

from substrates the NWs often break at the vicinity the HJ, especially in the case of lattice 

mismatching materials like Si and Ge. Alternative techniques are either very complex (e.g., 

growth of bridging NWs between micro-machined vertical walls, use of micro-probes 

inside an electron microscope chamber for in-situ measurements), or not reliable (e.g., use 

of liquid conductors with possible leak between NWs).  

 In this section, we present studies of electrical properties of axial Ge-Si NW HJs 

obtained using a simple, highly reproducible and minimally distractive formation of 

electrical contacts. Performing these measurements, we find that Ge-Si axial NW HJs 

under applied dc forward bias exhibit current instabilities and well-defined damped 

oscillations with frequency of 10-30 MHz. The results are explained assuming that electron 

transitions from Ge to Si NW segments require momentum scattering; this process disrupts 

flow of charge carriers and creates current oscillations with frequencies limited by various 

electrical components (series resistance, parasitic capacitance, HJ inductance, etc.). 

 By Applying effective forward bias (i.e., “+” on a p-type Si substrate), we measure 

current throughout only highly conducting (presumably, higher quality axial Ge-Si NW 

HJs with a good electrical contact), while lower electrical conductivity (presumably 
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defective or higher series resistance NWs) do not contribute to the measured electric 

current. At the same time, under ‘reverse’ bias we mostly measure current leaking 

throughout defective Ge-Si NW HJs. Thus, we discuss only measurements performed 

under ‘forward bias’. 

4.3.1 Results  

Figure 4.18(a) shows current density-voltage (J-V) characteristics measured under the 

described conditions. The J-V characteristics are clearly non-linear, and at voltage greater 

than 1.3V, current instabilities are observed (Figure 4.18 (a)). Current density as function 

of temperature under reverse bias V=0.2V is illustrated in Figure 4.18(b). 
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Figure 4.18 (a) I-V characteristics of NWs, (b) current density as function of temperature 
under reverse bias V=0.2V.  
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Figure 4.19 J-V characteristics of NWs at different temperatures under reverse bias. 
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 Figure 4.20 shows current as function of time at applied voltage of 6 V. We clearly 

see that within the 10-7 – 10-6 s time domain, these instabilities have both stochastic and 

periodic components. 
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Figure 4.20 Current as function of time at applied voltage of 6V. 
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Figure 4.21 (a) Current noise spectral density and (b) power density frequency dependence 
at frequency domain. 
 

 Figure 4.21(a) shows current noise spectral density frequency dependence, which 

has a dominant 1/f frequency component up to f ≈ 106 Hz. At the same time, a peak near 

2.5.107 Hz is observed. Figure 4.21(b) confirms presence of a reasonably narrow peak at 

this frequency with, most likely, harmonics at lower and higher frequencies.  

4.3.2 Discussion   

We found the temperature dependence in the I-T curve from two parts. Those low 

temperature emissions are suggested relating localized states or carriers, while high 

temperatures increase the density of states, and the thermal generated carriers. 

These dependences were fitted the following two formulas: 

For T> 80K, 
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y = A*exp(R0*x)+y0*(x^A0) (4.43) 

 

For T ≤ 80K, 

 

y =y0*(x^A0) (4.44) 

 

where y0, A0, R0, A are fitting parameters, their values are listed in the inset of Figure 4.22. 

Activation energy is estimated to be 170mV. 

 

Figure 4.22 Current dependence on temperature at V= 0.2 V for reverse bias. 
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 Averaging current instabilities 100 or more times, we find almost pure damped 

oscillations with frequency of 25 MHz (Figure 4.23). 

 

Figure 4.23 Time domain current instabilities (red) and circuit simulated pure damped 
oscillations (black) with frequency of 25 MHz biased in 0.5V DC coupling. 
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 Typically, electrical measurements in elemental group IV semiconductor NWs 

show linear, or close to linear, I-V characteristics with resistivity estimated to be close to 

bulk resistance of an undoped Si or Ge.  

 Our Si/Ge NW lengths and diameters are similar to the reported in Ref. [208], but 

the resistance is two-three orders of magnitude higher (Figure 4.18(a)). This could be due 

a higher series resistance at the NW/probe interface (which is unlikely, because similarly 

to Ref. [208] the NW tips are covered by Au) or due to presence of the Ge-Si NW HJs. The 

observed non-linearity in I-V characteristics suggests that a NW Ge-Si HJ, not a series 

resistance, controls electric current. 

 Current noise in semiconductor nanostructures has been studied intensively [209-

212]. Usually, such studies are focused on various noise components. To separate the noise 

contributions to our NW samples. There are four distinctly different sources: NW surface, 

NW bulk NW contact and NW HJ. NW surface has a large number of surface defects. From 

the oldest McWhorther’s model [137], flicker noise is attributed to electron random 

trapping and detrapping in surface states. In Hooge’s model [138, 213], the flicker noise is 

attributed to carrier density and mobility fluctuation mechanisms. Some surface treatments 

also affect carrier mobility. The surface generates only a fraction of the flicker noise. A 

wide range of mechanisms including thermal modulation effects, diffusivity fluctuations, 

trapping mechanisms with distributed time constants, and variations in surface 

recombination velocity. Either white noise or shot noise drive to stochastic component. 

shot noise is depressed by space charge. The potential developed by the space charge could 

further eliminate the number of carriers emitted, the various arrivals of the carriers are 

reduced. 
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  Thermal current noise density is frequency independent, and it can be estimated as 𝑁𝑖 = 4𝑘𝐵𝑇𝑅  , where kB is the Boltzmann constant, T is temperature and R is the sample 

resistance. The estimated at room temperature thermal noise is many orders of magnitude 

lower than the experimentally observed in this study. Current noise spectral density is in 

the frequency range of 103-108 Hz (Figure 4.21(a)), and it can be neglected. Strong flicker 

noise with the 1/f frequency dependence (which is in our measurements the dominant 

current noise component from 103 to 106 Hz) has been observed in many nanostructures 

including carbon nanotubes, semiconductor and metal nanowires and others [214, 215]. 

There are three distinctly different sources of current noise in semiconductor NWs: NW 

surface, NW bulk and NW contacts. In general, semiconductor NW surface has a large 

number of surface defects. Charge carriers are captured on and escaped from these defects, 

and the fluctuating localized charges interfere with mobile carriers within bulk of the NWs. 

A large surface-to-volume ratio in thin (< 30 nm diameter) NWs is responsible for a 

significant impact on electron transport through NWs, and various surface treatments might 

affect the NW carrier mobility and current noise [216]. However, most of the Ge-Si NWs 

in this study have a larger diameter ( ~ 100 nm), and the surface component of current noise 

is expected to be less important. Current noise associated with the NW electrical contact is 

proportional to contact resistance, and in the case of bulk resistance being greater than 

contact resistance can be neglected as well. The observed non-linear current I-V 

characteristics in our measurements (Figure 4.18(a)) suggest that electrical conductivity 

and current noise are mostly controlled by the Ge-Si axial NW HJ. Also, compared to 

elemental Si NWs [208], current noise spectral density in Ge-Si axial NW HJs is 104-105 

times greater. 
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Figure 4.24 Spice simulation circuit biased in 0.5V DC coupling. 
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CHAPTER 5 

CONLUSION AND FUTURE WORK 

5.1 Conclusion 

The axial Si/Ge NW HJs with quality core crystallinity are demonstrated through Au-

catalyzed VLS growth fabrication procedure. Spontaneous intermixing at the Si/Ge 

heterointerface and lateral expansion of the Ge segment of the nanowire partially relieves 

the lattice mismatch induced strain. The Raman and PL spectra confirmed the existence of 

this Si/Ge nanowire heterointerface and the lattice mismatch induced strain.  With a Si/Ge 

NW diameter in the range 70–120nm, surface-related structural defects and imperfections 

do not fully control carrier recombination in the Si/Ge NW HJs, and the PL signal 

associated with band-to-band electron-hole recombination at the Si/Ge NW HJ has been 

measured and attributed to the Si1-xGex alloy composition revealed by EDX. The PL 

associated with the Si segment of the Si/Ge NW HJ exhibits a peak shift toward higher 

photon energy as the temperature increases from 20K to above room temperature, 

indicating compressive stress due to the mismatch in Si and Ge CTEs and, possibly, NW 

bending. Raman scattering measurements performed under laser excitation varying from 

100 to 700W/cm2 clearly show that Si/ Ge NW temperature can increase by as much as 

110K. The effect of heating induced by this laser irradiation results in an additional shift 

of the Raman peak position and asymmetric broadening. In particular, the observed 

asymmetric line shape of the first order phonon Raman peak is associated with the 

formation of high excitation power densities create a high density of free carriers, which 

can interfere with the phonon scattering. This temperature increase produces an unexpected 



 

 

132

 
 

shift of the Raman peak associated with Si-Si (Ge) vibration mode toward higher 

wavenumbers indicating strong (2–3 GPa) compressive strain. This conclusion is 

supported by the Raman polarization dependence in Si/Ge axial NW HJs. 

 Performed electrical measurements demonstrate the predicted strong current 

instabilities and quasi-periodic oscillations in Si/Ge NW HJs. The noise power spectra are 

consistent with flicker noise with an additional high-frequency component at ~ 25 MHz. 

Flicker noise is attributed to carrier capture on and release from NW surface states. The 

proposed explanation of high frequency oscillations involves electron transitions from Ge 

to Si segments of the NWs, which requires momentum scattering and leads to electron 

deceleration and current flow disruption at the Ge/Si heterointerface. 

5.2 Future Work 

The following issues have to be resolved to further understand the properties of VLS grown 

axial Si/Ge NW HJs.  

I. Additional measurements on Raman scattering with different diameter of Si/Ge 
NW HJs samples can be performed. Because the smaller diameter wires are 
proposed to be resonantly selected by shorter-wavelength excitation, thus they 
exhibit a larger downshift of the Raman band. 
 

II. Additional measurements on modulation spectroscopy can be performed using 
NWs of different diameters.  
 

III. More measurements of Raman scattering polarization dependence in Si/Ge NW 
HJs samples can be used to identify the disorder and associated structural defects. 
These measurements can be combined with studies of resonant Raman scattering 
in Si/Ge NW HJs samples. 
 

IV. Additional measurements on the expected and weak observed negative 
photoconductivity in Si/Ge NW HJs samples (e.g., as function of temperature, light 
intensity, etc.) and model the obtained experimental results. Because the 
photoconductivity has been the parameter most often used to characterize the 
quality of material. 
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V. Developments in the growth technology can be developed in concurrent 
improvements in the photoconductivity and some of the other optoelectronic 
properties of the nanowire. 

  

 Our results show the used VLS growth method provides limited control over the 

compositional modulation and properties of the SiGe transition layer at the hetero-

interface. The key to improve this control is to find a catalyst which could lead to a lower 

solubility of Si and Ge; thus, the reservoir effect that accounts for the smearing of 

compositional changes could be avoided. We believe that this can be done using VLS as 

well as Vapor-Solid-Solid (VSS) techniques. We think that a solid catalyst could be 

similarly advantageous in forming abrupt doping profiles, such as are required for the high-

subthreshold slope devices such as tunnel and avalanche field-effect transistors and high-

speed ETDs. Also, Si and Ge device fabrication that requires sophisticated control of 

composition at low temperature can be addressed using this approach.  
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