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Abstract The aim of this study consisted on investigating
the influence of silicon substituted hydroxyapatite (Si–HA)

coatings over the human osteoblast-like cell line (SaOS-2)

behaviour. Diatomaceous earth and silica, together with
commercial hydroxyapatite were respectively the silicon

and HA sources used to produce the Si–HA coatings. HA

coatings with 0 wt% of silicon were used as control of the
experiment. Pulsed laser deposition (PLD) was the selected

technique to deposit the coatings. The Si–HA thin films

were characterized by Fourier Transformed Infrared
Spectroscopy (FTIR) demonstrating the efficient transfer of

Si to the HA structure. The in vitro cell culture was

established to assess the cell attachment, proliferation and
osteoblastic activity respectively by, Scanning Electron

Microscopy (SEM), DNA and alkaline phosphatase (ALP)

quantification. The SEM analysis demonstrated a similar
adhesion behaviour of the cells on the tested materials and

the maintenance of the typical osteoblastic morphology

along the time of culture. The Si–HA coatings did not
evidence any type of cytotoxic behaviour when compared

with HA coatings. Moreover, both the proliferation rate
and osteoblastic activity results showed a slightly better

performance on the Si–HA coatings from diatoms than on
the Si–HA from silica.

1 Introduction

A new generation of bioactive coatings has emerged with

the silicon substituted hydroxyapatite thin films (Si–HA).
This hydroxyapatite, modified with the inclusion of small

concentrations of silicon has been demonstrating to

improve the osteoblast proliferation and the bone extra-
cellular matrix production [1]. The important role of silicon

for skeletal and connective tissue development, especially

in the early stage of bone formation, was first supported by
Carlisle [2], who concluded that chicks fed with very low

silicon content on diets showed reduced average mass,

deformities in the comb and skin, and a retarded skeletal
development noticed in the end of bones like tibia, femur

and metatarsus. A recent study that consisted in the com-

parison of dietary silicon intake with bone mineral density
in humans concluded that the bone mineral density was

positively and significantly linked to dietary Si intake in
men and premenopausal women [3].

A recent theory has asserted that the benefits occur

because the Si–HA coatings would release low quantities
of silicon and calcium ions, stimulating the activation of

seven families of genes in osteoblasts, and consequently

increasing osteoblast proliferation and differentiation [1].
Moreover, Si substitution is assumed to increase the solu-

bility, to generate a more electronegative surface and to

create a thinner microstructure resulting in a transformation
of the implant surface into a more biologically equivalent

apatite [3].

Other studies [4–6], have demonstrated that the presence
of high levels of released silicon ions from the coating
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could contribute to extracellular pH changes, causing the

alteration of the potential across the cell membrane and cell
apoptosis. Cells, including osteoblasts, are sensitive to

these possible changes in pH, an issue to consider when

designing osteoinductive biomaterials. Thus, it is important
to take into account the silicon content in the coating, since

that, the content found in mineral bone ranges from trace

levels of 0.1 to 0.5 wt% at the earliest stages of calcifica-
tion [3]. It is also desirable the production of silicon

containing apatites without secondary phases or additional
substitution of ionic groups (apart of silicon) because they

have made difficult in some experiments to determine the

true role of silicon [7].
Silica (silicon dioxide, SiO2) can be obtained syntheti-

cally and, also, it is commonly found in nature from

lithogenic sources as in silica-rich rocks such as obsidian,
granite, diorite, and sandstone. The most significant silicate

minerals are feldspar and quartz; in fact, the most pure sand

is quartz (silica). In respect to the biogenic sources, the
diatomaceous earth constitutes the largest source of bio-

genic amorphous silica and the most abundant form of

silica on earth. It consists of the mineralised exo-skeletons
of diatoms, which are unicellular algae encased by a sili-

cious cell wall, termed frustules. The constant ‘‘rain’’ of

dead diatom frustules to the bottom of the ocean results in
the accumulation in large fossil deposits of amorphous

polymerized silicic acid. This biogenic source has a great

potential because of its abundance and an inexpensive cost
[8–10].

Within the all available techniques to produce the

Si–HA coatings, the pulsed laser deposition (PLD) tech-
nique is very promising to obtain high quality coatings.

This technique offers unique features as the absence of

contamination because of the use of laser light under
vacuum conditions. Moreover, it allows the growth of

materials with high melting point and a good control of the

coatings stoichiometry [11–13].
In this study we have investigated the suitability of the

Si–HA coatings to support the attachment, proliferation

and osteogenic activity of the osteoblast-like cells SaOS-2.
A comparative study of the Si–HA coatings obtained from

two different sources of silicon (diatomaceous earth and

silica) is also discussed.

2 Materials and methods

2.1 Si–HA bioactive coatings

Titanium discs (5 mm of diameter and 1 mm of thickness)

were coated by Si–HA coatings. The experimental system

was an ArF excimer laser (193 nm), operating at 200 mJ
and a pulse repetition rate of 10 Hz which irradiates the

ablation target described elsewhere [11, 12]. Two types of

targets were prepared from mixtures of commercially
available carbonated HA (Plasma Biotal, Captal1 R) and

two different sources of silicon: diatomaceous earth

(92.3 wt% SiO2, 3.6 wt% Fe and 1.5 wt% Al, Mg, Ca, P, K
and Na) and pure silica (99.5 wt% SiO2).

Films were deposited in a low pressure water vapour

atmosphere (0.45 mbar) to improve the quality of the
coatings, and the Ti substrates were maintained at 460"C
during the film growth. Films were grown during 3.5 h of
deposition time which yields a coating with an approximate

thickness of 7 lm. Titanium discs with HA coatings (0% of

Si) were also analyzed.
The thin film properties were evaluated through the IR

active groups by Fourier Transformed Infrared spectros-

copy (FTIR) with a Bruker IFS28 spectrometer.
To the osteoblast-like cells assay, the materials were

sterilized by gamma radiation.

2.2 Cell study

The biological performance of the developed ceramic
coatings was assessed in a direct contact assay with a

human osteoblast-like cell line (SaOS-2). The selection of

these human osteoblasts came favoured because of their
ability to synthesize most of the proteins present in the

extracellular matrix (ECM) and to control its mineraliza-

tion. Thus they regulate the ingrowth of bone to the implant
[14–19].

Samples were placed in 48-well plates and 1 ml of a cell

suspension of SaOS-2 in Dulbecco’s Modified Eagle
Medium (DMEM; Sigma, USA), supplemented with 10%

Foetal Bovine Serum (FBS; Invitrogen, USA) and 1% of

antibiotic/antimycotic solution (A/B Invitrogen, USA) in a
concentration of 3.3 9 104cells/per ml was added in each

well.

Cells were cultured on the ceramic coatings for 1, 3 and
7 days in a humidified atmosphere with 5% CO2 and at

37"C. Medium was changed every 2–3 days. Three discs of

each material were used per experiment. Tissue culture
polystyrene (TCPS) was used as control of the assay.

2.3 Scanning electron microscopy analysis

Cell adhesion and morphology were analyzed by Scanning

Electron Microscopy (SEM). After each incubation time
the seeded discs were washed twice with Phosphate Buffer

Saline (PBS; Sigma, USA) and fixed with 2.5% glutaral-

dehyde in 0.1 M PBS for 30 min at 4"C. Samples were
washed again with PBS and dehydrated in graded ethanol

solutions (50%, 70%, 90% and 100% v/v) twice for 15 min

each concentration. The samples were maintained in 100%
v/v ethanol until being subjected to hexamethyldisilazane
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(HDMS; Electron Microscopy Science, USA) desiccation.

The discs were finally mounted on metal stubs and sputter-
coated with gold prior to their analysis using a Leica

Cambridge S360 Scanning Electron Microscope.

2.4 dsDNA and ALP activity quantification

Cell proliferation was assessed by total dsDNA quantifi-
cation along the time of culture. The osteogenic activity

was followed by determining the activity of alkaline
phosphatase (ALP), a marker of early osteogenic differ-

entiation, throughout the different incubation times. Discs

were carefully rinsed twice with PBS and immersed in
water. Thus, cell lysates were obtained after the osmotic

shock followed by a thermal shock by transferring the

lysates from 37 to -80"C.
The dsDNA content of each sample was measured using

the lysates and the PicoGreen dsDNA Quantification Kit

(Molecular Probes) following manufacturer instructions.
Fluorescence was read in a microplate reader (Bio-Tek,

USA) at 485 ex/525 em.

The same cell lysates were used to quantify the activity
of ALP. ALP activity was measured using a p-nitrophenol
assay. Briefly, p-nitrophenyl phosphate, which is colorless,

is hydrolysed by alkaline phosphatase at pH 10.5 and 37"C
to form free p-nitrophenol, which is yellow. The reaction

was stopped by adding NaOH and the absorbance read at

405 nm in a microplate reader (Bio-Tek, USA). The ALP
activity values were normalized against the amount of

dsDNA.

2.5 Statistical analysis

Data are presented as mean ± standard deviation (n = 3).
Error bars in figures represent standard deviations. Differ-

ences between groups were analyzed according to a

Student’s t-test with P\ 0.05 considered statistically
significant.

3 Results

3.1 Properties of the Si–HA coatings

In previous works [11, 12], a systematic study on the

properties of Si–HA coatings produced by PLD with dif-
ferent proportions has been reported. The Si–HA films

were derived from two different targets using a mixture of

commercial carbonated HA, which presents more resem-
blance with the biological apatite because of the presence

of carbonate ions, and either diatomaceous earth or pure

silica as source of silicon. Taking into account the literature
we have selected Si–HA coatings with high content of

silicon to check their potential to support osteoblast cells in

extreme conditions. Figure 1 summarizes the main results
on the bonding configuration of Si–HA coatings with

7.5 wt% of Si for both approaches (diatomaceous earth and

silica sources). HA coating has been used as control.
The Fourier Transform Infrared Spectroscopy (FTIR)

spectrum of the HA coating (Fig. 1a) shows the main

absorption bands corresponding to carbonated hydroxyap-
atite (A): (i) 1000–1200, 960 and 560 cm-1, respectively,

attributed to asymmetric stretching, symmetric stretching
and asymmetric bending vibrations of PO4

3- groups, (ii)

the 1400–1500 and 875 cm-1 that are assigned to asym-

metric stretching and bending vibration of CO3
2- groups,

respectively. The absorption observed at 3575 cm-1 cor-

responds to the stretching vibration of the OH- groups that

are present in the HA structure.
The comparison of the absorption patterns of the dif-

ferent coatings revealed many differences while the

introduction of Si is carried out. If we take the HA sample
(0 wt% Si) as the reference material (Fig. 1a), there is an

evident diminution of the intensities of the CO3
2-

absorptions as the silicon is incorporated in both series
(Fig. 1b, c). In addition as the silicon source concentration

increases on the targets, the spectrum broadens, which

can be attributed to a decrease of the degree of crystallinity
when silicon is incorporated [11, 12]. This loss of

crystallinity is more intense at the Si–HA diatomaceous

coating compared to the silica if we attend the 1000–
1200 cm-1absorption band attributed to asymmetric

stretching of PO4
3- and also at the 560 cm-1 with a lower

absorbance intensities and wider spectrum broadens.
As it can be observed in the FTIR results the structure and

chemical composition characterization has proved the effi-

cient incorporation of Si to the HA structure in the form of
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Fig. 1 FTIR spectra for HA coating (a), Si–HA silica coating (b) and
Si–HA diatom coating (c)
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SiO4
4- groups. Several differences between the two Si–HA

coatings spectra were identified indicating a slight but clear
improved incorporation of Si into the Si–HA diatomaceous

coating in comparison to the Si–HA silica one.

3.2 Cell morphology

SEM analysis was performed to evaluate the morphology
of cells grown on the two different Si–HA coatings along

the time of culture (1, 3 and 7 days). In Fig. 2 the most
representative images are shown.

The SEM micrographs demonstrated the absence of

cytotoxicity of the Si–HA coatings in direct contact with
osteoblasts-like cells SaOS-2 up to 7 days of culture.

The comparison of the morphologies of the osteoblast-

like cells on the studied surfaces revealed similar results
along the time of culture. Cells attached and spread well on

the coatings, maintaining their typical polygonal mor-

phology although at early time points cells displayed a
more flatten morphology on HA and Si–HA from diatoms.

This effect was softened for longer culture times, which

allowed us to conclude that the effect of the Si–HA

coatings, over cell morphology, did not differ from the

observed on the HA coating.

3.3 Cell proliferation

Cell proliferation on the tested coatings is represented in

Fig. 3 as the variation of the DNA amount of the cells

adhered to both of the different coatings and to the con-
trols, along the time of culture. The DNA measurements

showed a continuous cell growth from day 1 to day 7 on the
tested coatings and also in the control samples although at

Fig. 2 SEM micrographs of
osteoblast-like cells cultured up
to 7 days on HA coating,
a (9500) and b (91000),
Si–HA coating from silica,
c (9500) and d (91000) and
Si–HA coating from
diatomaceous earth, e (9500)
and f (91000)

Fig. 3 dsDNA quantification results presented in lg/ml of osteo-
blastic-like cells (SaOS-2) cultured on Si–HA coatings up to 7 days
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different rates. The comparison between the two different

Si–HA coatings showed a slightly higher proliferation on

the Si–HA coatings from diatoms from day 3 to day 7
(significant difference on day 7, P\ 0.05) than on to the

Si–HA coating from silica. The proliferation was signifi-

cantly higher (P\ 0.05) on the control than to the both
Si–HA coatings and indicates the healthy stage of the cells.

3.4 Osteoblastic activity

The ALP results were normalized against the dsDNA
values obtained for the same samples, as previously

described. Figure 4 indicates the ALP activity evolution

from day 1 to day 7 of culture. The ALP activity per cell
increased in all the tested coatings from 1 to 7 days. The

highest values of ALP activity corresponded to the control

sample at day 7. Although during the first day of cell
culture there were no significant differences (P\ 0.05) in

the osteoblastic activity between both Si–HA coatings, at

the 7 day the ALP activity values for the cells adhered
to the Si–HA from diatomaceous earth was significant

higher (P\ 0.01) than to the Si–HA from silica.

It is important to stress that all the mean values along the
experiment were, in respect to the silica, higher at the Si–HA

diatomaceous coating. This higher osteoblastic activity at

the diatomaceous coating can be probably explained by the
presence of the minority elements at the coating composi-

tion. As previously reported [12], in Table 1 it is shown the

analysis by the Ion Beam technique of the ion traces of the
HA coating and the two Si–HA coatings. The results showed

a higher content of minority compounds as Na, Mg, Al, K

and Fe at the Si–HA coating from diatomaceous earth than

on the Si–HA from silica. Therefore, the Si–HA coatings
from diatomaceous earth presented a composition more

similar to the HA found in the bone what could have

favoured a better biological performance.
It is already proved that silicon improves the osteo-

blastic proliferation and the bone extracellular matrix

production because of the stimulation of specific families
of genes [1]. Recently it was demonstrated, by Weichang

Xue et al. [20], that the presence of strontium stimulates, as
well, cell differentiation to osteoblast and it encourages the

osteoblastic activity. It is well known that the biological

HA is complemented by the presence, in trace levels, of
other ions such as carbonate, magnesium, fluoride, silicon,

strontium. Each one of these ions, by separate, can induce

some beneficial effects, but, in our results we demonstrated
that a mixture of different ions in trace quantities, also with

silicon, promoted a better biological performance of the

osteoblasts cells than with the unique addition of silicon.

4 Conclusions

The study of adhesion and proliferation of osteoblast-like

cells has proved the absence of cytotoxicity of the Si–HA
coatings from diatomaceous earth and silica tested. After

7 days of cell culture the results indicated that Si–HA

coating from diatomaceous earth significantly favoured
(P\ 0.01) osteoblast proliferation and activity in com-

parison to the Si–HA coating from silica.

Acknowledgments This work was supported by the UE-Interreg
IIIA (SP1.P151/03) Proteus project and Xunta de Galicia (Projects:
2006/12 and PGIDITO5PXIC30301PN).

References

1. L.L. Hench, J.R. Jones, Biomaterials, Artificial Organs and
Tissue Engineering (Woodhead Publishing in Materials, Cam-
bridge, 2005)

2. E.M. Carlisle, J. Nutr. 110(5), 1046–1055 (1980)
3. A.M. Pietak, J.W. Reid, M.J. Stott, M. Sayer, Biomaterials

28(28), 4023–4032 (2007). doi:10.1016/j.biomaterials.2007.
05.003

4. J.E. Gough, J.R. Jones, L.L. Hench, Biomaterials 25(11), 2039–
2046 (2004). doi:10.1016/j.biomaterials.2003.07.001

5. E.S. Thian, J. Huang, S.M. Best, Z.H. Barber, W. Bonfield,
Mater. Sci. Eng. C 27(2), 251–256 (2006). doi:10.1016/
j.msec.2006.05.016

6. E.S. Thian, J. Huang, M.E. Vickers, S.M. Best, Z.H. Barber, W.
Bonfield, J. Mater. Sci. 41(3), 709–717 (2006). doi:10.1007/
s10853-006-6489-8

7. N. Patel, S.M. Best, W. Bonfield, J. Mater. Sci-Mater. M 13(12),
1199–1206 (2002). doi:10.1023/A:1021114710076

8. C. Van Den Hoek, D.G. Mann, H.M. Jahns, Algae: An Intro-
duction to Phycology (Cambridge University Press, Cambridge,
1995)

Fig. 4 ALP activity quantification results presented in pNP hydro-
lyzed/cell, of osteoblastic-like cells (SaOS-2) cultured of on Si–HA
coatings up to 7 days

Table 1 Composition of the HA and Si–HA coatings measured by
Ion Beam Technique (from Ref. [12])

Series Si target
(at.%)

Na
(at.%)

Mg
(at.%)

Al
(at.%)

K
(at.%)

Fe
(at.%)

HA 0 0.02 0.2 0.08 0.02 0.02

Si–HA silica 7.5 0.02 0.2 0.1 0 0

Si–HA Diatom 7.5 0.09 0.3 0.5 0.06 0.02

J Mater Sci: Mater Med (2009) 20:1131–1136 1135

123

http://dx.doi.org/10.1016/j.biomaterials.2007.05.003
http://dx.doi.org/10.1016/j.biomaterials.2007.05.003
http://dx.doi.org/10.1016/j.biomaterials.2003.07.001
http://dx.doi.org/10.1016/j.msec.2006.05.016
http://dx.doi.org/10.1016/j.msec.2006.05.016
http://dx.doi.org/10.1007/s10853-006-6489-8
http://dx.doi.org/10.1007/s10853-006-6489-8
http://dx.doi.org/10.1023/A:1021114710076


9. Z. Elias, O. Poirot, I. Fenoglio, M. Ghiazza, M.C. Daniere,
F. Terzetti, C. Dame, C. Coulais, I. Matekovits, B. Fubini, Tox-
icol. Sci. 91(2), 510–520 (2006). doi:10.1093/toxsci/kfj177

10. S.M. Holmel, B.E. Graniel-Garcia, P. Foran, P. Hill, E.P.L.
Roberts, B.H. Sakakini, J.M. Newton, Chem. Commun. Camb.
25, 2662–2663 (2006). doi:10.1039/b600708b

11. E.L. Solla, J.P. Borrajo, P. González, J. Serra, S. Chiussi,
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