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Silicon increases the phosphorus 
availability of Arctic soils
Jörg Schaller  1, Samuel Faucherre2, Hanna Joss1, Martin Obst3, Mathias Goeckede  4, 

Britta Planer-Friedrich1, Stefan Peiffer5, Benjamin Gilfedder6 & Bo Elberling  2

Phosphorus availability in soils is an important parameter influencing primary production in terrestrial 
ecosystems. Phosphorus limitation exists in many soils since a high proportion of soil phosphorus is 

stored in unavailable forms for plants, such as bound to iron minerals or stabilized organic matter. This 

is in spite of soils having a high amount of total soil phosphorus. The feasibility of silicon to mobilize 

phosphorus from strong binding sites of iron minerals has been shown for marine sediments but is less 

well studied in soils. Here we tested the effect of silicon on phosphorus mobilization for 143 Artic soils 
(representing contrasting soil characteristics), which have not been affected by agriculture or other 
anthropogenic management practices. In agreement with marine studies, silicon availabilities were 

significantly positive correlated to phosphorus mobilization in these soils. Laboratory experiments 
confirmed that silicon addition significantly increases phosphorus mobilization, by mobilizing Fe(II)-P 
phases from mineral surfaces. Silicon addition increased also soil respiration in phosphorus deficient 
soils. We conclude that silicon is a key component regulating mobilization of phosphorous in Arctic soils, 

suggesting that this may also be important for sustainable management of phosphorus availability in 

soils in general.

Phosphorus (P) is a key element for metabolic pathways and carbon (C) turnover on Earth. All organisms need 
P for their primary functioning. Some examples include energy turnover and cellular integrity (phospholipids) 
or genetic information (~9% of DNA and RNA are P atoms) as discussed by Westheimer1. However, bioavailable 
P is o�en scarce in ecosystems2. Accordingly, P is one of the elements mostly limiting primary production and 
yield of crop plants3, which has led to massive amounts of P fertilisation in agriculture at the global scale2. Due 
to the strong demand of agricultural systems for P, the sustainability of mineable P for fertilizer production is a 
matter of debate2.

A main in�uence on the content and availability of P in soils is the biogeochemical conditions in terms of 
mineral composition4. �e P content of soils is not necessarily low, however a high proportion of this P is stored in 
plant unavailable forms such as organic P5, or is bound/adsorbed as inorganic P to e.g. aluminum (Al), iron (Fe)
oxides, or calcium (Ca) minerals, depending on soil pH6, soil diagenesis stage7 and mineral composition. At soil 
pH >6.5 inorganic P is predominately immobilised as calcium phosphate minerals, whereas at lower pH values P 
tends to be bound/adsorbed by soluble Fe, manganese (Mn), Al, or their hydrous oxides8. At neutral pH inorganic 
P reacts with silicate minerals (adsorption to weathered silicates like clay minerals)9. Hence, the distribution of 
inorganic P between Ca, Fe, Al or Si fractions is highly dependent on soil pH in combination with the mineral 
composition depending on parent material and soil diagenesis stage.

�e P binding to soil minerals is lowest when it is associated with silicate minerals (e.g. clay minerals with high 
silicon availability)8,9. �e Si fractions in soils are composed of dissolved Si (free in soil solution or adsorbed to 
Fe or Al oxides/hydroxides), amorphous forms (e.g. the biogenic phytoliths or the minerogenic silica nodules), 
poorly crystalline forms (e.g. secondary quartz), and crystalline forms (the primary silicates like mica, feldspars 
or quartz and the secondary silicates e.g. clay minerals)10. Silicon concentration in soil solution in terrestrial eco-
systems varies over at least two orders of magnitude in soils and sediments (0.01 to 2.0 mM L−1)11, and is mainly 
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controlled by vegetation type, parent material, and soil diagenesis stage12,13. When analysing soils from di�erent 
climate regions, di�erent parent material and di�erent vegetation forms, Saccone, et al.14 found a large range of Si 
availability from 1.8 to 58 mg g−1, using alkaline extraction by Na2CO3. However, Si availability in terrestrial soils 
(especially those used by agriculture) is potentially declining due to e�ects of ecosystem management15–17 and the 
yearly withdrawal by crop harvest, since many crop plants are Si accumulators11.

For marine ecosystems, Si is known to interfere with Fe mineralogy competing with P for binding sites, 
increasing P mobilization and availability18,19. �ese marine studies clearly showed the importance of Si for P 
availability for di�erent time periods in Earth’s history. Another element that is important for marine P turnover 
is Ca, which binds P at high pH by co-precipitation of less soluble Ca-phosphates together with Ca-carbonates. 
�is is initiated at a pH of ~720,21 at elevated Ca availability in soils. Calcium availability in soils is commonly in 
the range of 0 to ~40 mg g−1 (Mehlich-3 extractable)22.

�ere is however little information about Si availability in terrestrial soil systems in regard to interactions 
with P availability. It has been suggested that in terrestrial systems Si fertilization is able to increase the P content 
of plants by potentially increasing P availability23,24. However, except of a few sorption experiments using pure 
minerals25–27 and a few studies about the Si e�ects on P mobilization in soils28–31, less is known so far on how Si is 
interfering with P mobilization in soils. Another important link of Si and Ca in marine ecosystems is an intricate 
coupling with the C cycle. Silicon availability increases C �xation by diatoms, while Ca increases C �xation by 
coccolithophores32. For grass dominated environments recent studies have shown a relation to plant lignin syn-
thesis33 and a positive correlation between organic matter Si content and organic matter decomposition rates34,35, 
suggesting an interdependence. It was also recently shown that increasing Si availability mobilizes P and organic 
matter from binding to peat and accelerates formation of CO2 and CH4 in peat porewaters36. However, the under-
lying mechanisms are not well understood. For Ca a negative e�ect on soil respiration is known due to a reduction 
in P availability (at least at high soil pH) and by �occulation of organic matter through Ca2+ cation bridges which 
stabilizes the organic matter37,38.

�e aim of this study is to determine the importance of soil Si in competition with Ca availability for P mobi-
lization, analyzing the results in the contexts of potential e�ects on soil C turnover. We collected 143 soil samples 
from four Arctic locations representing contrasting Arctic environments in terms of climate, landscape history, 
vegetation and expected soil organic C content/age. �ese soils were chosen as they were not a�ected by agri-
culture or other anthropogenic management practices, and exhibit considerable variation in soil types and soil 
properties across the Arctic39. Additionally, we chose two of the Greenlandic soils, which di�ered in P, Si and Ca 
availability as well in pH. �ese samples were used for further laboratory incubation experiments where the Si 
and Ca availability of the soils were modi�ed without changing soil pH. Our hypothesis was that Si is positively 
related to P mobilization, mobilizing inorganic P from formerly unavailable pools (strongly bound to mineral 
surfaces), whereas Ca decreases P mobilization at high soil pH. In addition we expected positive e�ects of Si (via 
P mobilization and organic C mobilization) and negative e�ects of Ca (via P mobilization and organic C stabili-
zation) on soil respiration.

Results
Silicon and calcium affect soil phosphorus mobilization. For about 150 soils Arctic soils, covering 
contrasting soil types and soil properties from di�erent landscapes units across the Arctic, we found a substantial 
correlation (R2 = 0.5, p < 0.001) between P and Si availability, but no signi�cance between P and Ca availability 
(Fig. 1). �e laboratory experiments revealed a signi�cant increase in P mobilization for both soils upon addition 
of Si (Fig. 2, Table S1), while the addition of Ca resulted in decreasing P mobilization for high soil pH values in 
Peary Land (Fig. 2a). �e observation of Ca availability decreasing P mobilization appears to be pH controlled, as 
the negative relationship was only found for Peary Land soil with its high pH values.

Silicon and calcium controls on phosphorus binding. To unravel the underlying mechanisms of 
Si and Ca a�ecting P mobilization, we analyzed the Fe phases in detail, as they tend to be the major binding 
sites for phosphate in soils and may be in�uence by the presence of Si and Ca. Quantitative NEXAFS spectra 
were extracted from the spatially resolved Fe2p spectromicroscopy datasets of soil particles (Peary Land, end of 
incubation experiment) and averaged over speci�c thickness ranges of the particles for the soil a�er Si addition 
(Fig. 3A), the original soil (Fig. 3B), and the soil a�er Ca addition (Fig. 3C). Figure 3D shows one dataset for 
each thickness range of the original soil (dark colours) and a�er highest Si addition (bright colours). In thin 
regions (especially average ODs between 0.1 and 0.3), we observed a strong decrease in both the overall spectral 
signature and in the dominant peak at ~707.7 eV which is speci�c for Fe(II) (Fig. 3D). �e spectral signature 
was �tted best using the reference spectrum of an Fe(II)-phosphate phase (here vivianite, Fig. 3E) in contrast to 
an Fe(II)-carbonate phase. In contrast, for thick regions (average ODs between 0.7 and 0.9), this decrease in the 
Fe(II)-phase was not signi�cant (Fig. 3D). Hence, we found a decrease in an Fe(II)-phosphate phase a�er Si addi-
tion, indicating a mobilization of P from the mineral phase. �is is likely by Si competition for sorption sites at the 
surface of soil particles. Figure 3F �nally shows the quantitative results of all �ts (i.e. two datasets of each original 
soil, a�er Si and a�er Ca addition, with �ve increasing cumulative thickness ranges each, i.e. showing a gradient 
from surface-dominated towards bulk-dominated spectra). Here, the addition of both Si and Ca resulted in the 
reduction of an Fe(II)-phase that was interpreted as Fe(II)-phosphate, again restricted to the outermost surface 
(~5 nm cumulative thickness) of the soil particles(Fig. 3F). In summary, NEXAFS measurements indicated a 
mobilization of P from mineral surface-bound Fe(II)-phosphate phases by Si and Ca.

Interdependencies of silicon, calcium and phosphorus potentially affecting soil respira-
tion. Our results indicate that the pronounced e�ect of Si and Ca on P mobilization and availability is also 
related to soil respiration (Fig. 4). �us respiration in the soils studied here is potentially P limited, and an increase 
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in P availability is promoting microbial respiration of soil organic matter. �e soil respiration was signi�cantly 
positively related to Si availability for Peary Land and Disko (Fig. 4, Table S1). A signi�cant interaction was also 
seen between Si and Ca availability for Peary Land and Disko, and Ca availability alone had a negative e�ect on 
soil respiration for Peary Land and for Disko (Fig. 4). For Peary Land (low original Si availability) the Si fertiliza-
tion had a stronger e�ect on CO2 release compared to Disko (higher original Si availability).

To demonstrate that the positive Si e�ect on respiration is caused by the Si-induced increase of P availa-
bility, we conducted an additional treatment where P as NaH2PO4 was added in concentrations equivalent to 
the amount mobilized by the highest Si treatment. �e results showed a comparable (no signi�cant di�erence) 
increase in CO2 release for the highest Si addition treatment and the P addition treatment (as NaH2PO4) for both 
soils, Peary Land (Si addition: 85 ± 23 µmol d−1 kg−1 DW−1 and P addition treatment 87 ± 10 µmol d−1 kg−1 
DW−1) and Disko (Si addition: 154 ± 12 µmol d−1 kg−1 DW−1 and P addition treatment 172 ± 21 µmol d−1 kg−1 
DW−1).

Discussion
�e pronounced correlation of Si and P availability for the 143 soil samples from the Arctic (Fig. 1) and the strong 
mobilization of P from soils by Si addition (Fig. 2) is supporting our hypothesis that Si is positively related to P 
availability and is important for mobilizing P from previously unavailable phases. �is could be explained by 
a decrease in surface-bound Fe-P phase under elevated Si availability (Fig. 3), as shown previously for Fe(III) 
minerals25. Such processes have also been demonstrated by Schwertmann and Fechter40 and Sigg and Stumm41 
and form the chemical mechanism for explaining the Si e�ect on P availability for marine systems. Schwertmann 
and Fechter40 as well as Kingston et al.42 showed that Si (as silicic acid) interferes with the surface charge of Fe 
minerals. Sigg and Stumm41 found that Si (as silicic acid) is deprotonated at the surface of Fe minerals due to 
the surface charge of the Fe minerals. �is reaction changes the Fe mineralogy to colloidal iron silicates or iron 
hydroxyl silicates (in the region close to the mineral surface by Si adsorption). �e same studies clearly showed 
that Si (as silicic acid) is strongly competing with P (as H2PO4

−) for binding sites at the Fe minerals, with slightly 
lower binding a�nity of silicic acid compared to P. However, soil pore water concentrations of silicic acid in 

Figure 1. Soil phosphorus (Mehlich-3 extraction) availability in relation to silicon (alkaline extraction) and 
calcium(Mehlich-3 extraction) availability. Data from 143 soil samples of mineral soils (permafrost and mineral 
active layer) from the transects (Lena Delta, Abisko and Svalbard) and from three sites from Greenland (Peary 
Land, Zackenberg and Disko Island).
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natural soils/sediments can be very high13, potentially shi�ing the competition between silicic acid and P towards 
Si. �e e�ect of Si modifying Fe mineralogy to at least Si coated Fe minerals has been con�rmed by several studies 
(e.g.26,27,43,44). �e interaction of Si with the surface of the Fe minerals explains the occurrence of the strongest Si 
e�ects on Fe-P minerals in thin regions at the end of the three months incubation experiment (reduction of Fe-P 
phases by Si directly at the mineral surface during soil respiration experiment) (Fig. 3). Silicon as a primary factor 
interfering with P mobility and binding is well known for marine systems but mostly neglected in soil science, 
despite being potentially important due to the strong plant demand for P and declining mineable P resources2. 
�e positive Si e�ect on P mobilization may be not restricted to Fe minerals as Koski-Vähälä, et al.45 suggested 
that Si may also be able to decrease P binding to Al-oxides, thereby increasing P availability. At soil pH levels in 
the range of those from Peary Land (pH 8.4), precipitation of carbonates and co-precipitation of calcium phos-
phate may occur, as shown by46, supporting our hypothesis of Ca decreasing P mobilization. In the case of Ca 
mobilizing P from Fe minerals (Fig. 3), we assume that free P was subsequently bound to Ca and precipitates as 
calcium phosphate minerals resulting in a decrease in P mobility, as shown by47.

�e possitive e�ects of Si on soil respiration (Fig. 4) con�m our hypothesis that Si is positively related to 
repiration, and may be explained in two ways. First (primary e�ect), Si increases P availability, which is promotes 
soil respiration in P-de�cient systems48,49. Secondly, as a minor e�ect, Si has also been shown to desorb organic 
C from mineral binding sites (e.g. goethite) as suggested above for P50. Phosphorus with its high binding a�nity 
to soil minerals mobilizes organic C and thus potentially increasing C mineralization, as shown previously for 
amorphous Al hydroxide (am-Al(OH)3)

51. Such a competition of P and C for mineral sorption sites was also 
shown for goethite52. Silicon, with strong bonding a�nity to soil minerals comparable with C and P, may mobilize 
both elements, and may also a�ect the respiration of soil organic matter directly. �e negative e�ect of Ca on soil 
respiration con�rms our hypothesis and could be explained by reducing P availability (at least at soil pH >8)6 and 
by �occulation of organic matter through Ca2+ cation bridges which stabilizes the organic matter37,38. �at may 

Figure 2. Phosphorus concentrations in pore waters with increasing Si and Ca additions. Phosphorus 
concentrations in porewaters for two di�erent soils (Peary Land (A) with pH 8.4 and Disko (B) with pH of 5.6) 
related to Si and Ca availabilities a�er 3 months of incubation (note that Si and Ca availability units are in mg 
g−1 soil). Values are from blue (low concentration) to red (high concentration).
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Figure 3. Soil P binding a�ected by Si and Ca measured by XAS. So� X-ray NEXAFS study on Fe-speciation 
at the surface of soil particles. Linear absorbance images and respective thickness masks based on the optical 
density (OD), that were used to extract spectra of two samples of the Peary Land soils each of the soil a�er Si 
addition (A), the original soil (B), and the soil a�er Ca addition (C), at the end of the three months incubation 
experiments. Scale bars 2 µm. (D) Exemplary Fe 2p spectra of the original soil (dark colours) and a�er Si 
addition (bright colours) for three thickness ranges. (E) spectra of pure reference compounds ferrihydrite 
(FH), goethite (G), siderite (S), and vivianite (V), that were used for the linear decomposition of the measured 
spectra. (F) Fe(II)-phosphate/Fetot ratios plotted against the respective cumulative thickness of Fetot, based on 
the quantitative �ts of all acquired datasets.



www.nature.com/scientificreports/

6SCIENTIFIC REPORTS |           (2019) 9:449  | DOI:10.1038/s41598-018-37104-6

also explain why we �nd no interdependency between Ca and P in soils from the highly di�erent soil types and 
soil properties from di�erent landscapes39.

Our data on the interdependency of Si and P availability in soils are based on highly di�erent soil types and 
soil properties from di�erent landscapes39. �ese results are consistent with the �ndings for marine studies18,19 
and thus indicate a general applicability of the described mechanism. �e relation of Si and Ca availability to soil 
respiration has some limitations as the positive e�ect of Si via increasing P availability may only be important 
for P-limited systems. However, as Si also mobilizes organic C from soil particles36, making it more available for 
microbial decomposition, a slight increase of soil respiration by Si may also occur in non P limited systems. �e 
negative e�ect of Ca on both P mobility at high soil pH6 and on soil respiration by stabilization of organic matter 
was already shown by37,38 to be important for soil systems in general.

In conclusion, the signi�cant e�ect of Si mobilizing inorganic P from strong binding sites, i.e. biologically 
unavailable fractions, highlights the importance of including Si in studies focusing on biogeochemical cycles of P. 
We suggest that in soils with high Si availability and high porewater Si concentration the unavailable fraction of 
soil inorganic P might be reduced by competition of Si and inorganic P for sorption at Fe-minerals. Furthermore, 
the P mobility in soils with high Si availability will be elevated as long as the e�ect of Si competing with inorganic 
P for binding sites at Fe-minerals is proceeding from the mineral surface to the core of the mineral particles. �e 
Si e�ect on inorganic P sorption at the surface of Fe-minerals is fast but it may require a signi�cant time until this 
process reaches the core of the mineral particles of large minerals. Hence, Si may be important for inorganic P 
availability in terrestrial soils in general (Fig. 5), as has already been proven for marine ecosystems. Our results 
improve the understanding of soil inorganic P availability and mobilization mechanisms with potential implica-
tion for C turnover (at least under P de�ciency), but also by Si36 and P51 mobilizing organic C from soil particles. 
�e described mechanism of Si mobilizing P may be particularly important for agricultural systems, where a 
high demand of P fertilizer exists to maintain proper plant nutrition2. A large portion of inorganic P in soils is 
strongly bound/adsorbed to Fe-oxides and Al-oxides6. Silicon may be able to mobilize P from these mineral sur-
faces, increasing P availability for plants. �is may be very important for tropical soils (e.g. oxisols) as the Fe and 

Figure 4. CO2 release a�ected by Si and Ca. Soil CO2 production for two di�erent soils (Peary Land (A) with 
pH 8.4 and Disko (B) with pH of 5.6) related to Si and Ca availabilities a�er 3 months of incubation (note 
that Si and Ca availability units are in mg g−1 soil). Values are from blue (low concentration) to red (high 
concentration).
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Al content dominate soil mineralogy, leading to low P availability despite high total P content53,54. Agricultural 
systems with a high yearly Si export due to crop harvest leading to a decrease of Si availability16,17 may need much 
less P fertilizer when increasing Si availability in soils resulting in a mobilization of P from former unavailable 
fractions. �is increase in P mobility by Si, however, may also lead to an enhanced mineralization of soil organic 
matter and the release of CO2 in P limited soils. Furthermore, the e�ect of Si increasing P mobilization from soil 
may also be an important factor controlling eutrophication of aquatic ecosystem downstream. In contrast to Si, 
Ca decreases P mobility by precipitating P as calcium phosphate (but only at soil pH >~7) and is reducing soil 
respiration and CO2 release due to �occulating organic matter by cation bridges. Hence, for soil in the pH range 
<~7 an increase of Si availability may result in increased P availability (Si e�ect). An additional increase in Ca 
availability may have no e�ect on P availability in this pH range but leads to a decrease in the e�ect of Si enhance-
ment on CO2 emissions (Ca e�ect).

Methods
Soil sampling and element analysis. Soil samples were retrieved from the upper 1 m of soil at di�erent 
locations in four Arctic regions (Lena Delta, Abisko, Svalbard, and Greenland) using an auger or spade (Fig. 6). 
�e four Arctic regions were chosen to represent contrasting Arctic environments in terms of climate, landscape 
history, vegetation and expected soil organic C content/age. For the current study, we focused only on min-
eral soils excluding the highly organic samples from the pro�le surface. �e soils from Lena Delta, Abisko and 
Svalbard were collected along 1–2 km transect that crossed all major landscape types within the respective areas. 
�e coring locations were strictly equidistant at 100 or 200 m intervals. All samples were retrieved in frozen con-
ditions, and subsequently transported and stored frozen. �is sampling procedure was followed to avoid any sub-
jective choice of pro�le location. Detailed sampling site description can be found in the supporting information.

Samples were gently crushed in their frozen state using a steel mortar. �e frozen material was split and sieved 
in a −10 °C room through an 8 mm sieve until all particles passed through the sieve.

Measurements of Si availability was made by extraction in a 0.1 M Na2CO3 solution at 85 °C for �ve hours 
according to Struyf, et al.55 and DeMaster56, as this method determines the Si pool potentially cycled within the 
ecosystem15. Phosphorus and Ca availability was analysed using the Mehlich-3 extract57 as this is the only method 
for available P extraction which extracts Ca, too. Si was measured by ICP-OES, whereas P and Ca where measured 
by ICP-MS. All measurements were done a�er sample �ltration (0.2 µm cellulose acetate).

Laboratory experiments. To study the in�uence of Ca and Si on P availability, two representative soil sam-
ples with di�erent Si, P, and Ca availability as well as soil pH were selected for incubation experiments. �e �rst 
soil (from Peary Land) had low Si (1.4 mg g−1 alkaline extractable Si)56, high initial Ca availability (15.6 mg g−1 
Mehlich-3 extractable Ca)57, and a high pH varying around ~8.4. �e second soil (from Disko Island) had elevated 
Si (5.2 mg g−1), low initial Ca availability (1.7 mg g−1), and a pH of ~5.6. �e initial P availability (Mehlich-3)57 was 
low for both soils (0.01 mg g−1 for Peary Land and 0.13 mg g−1 for Disko), whereas total P was 0.6 mg g−1 for Peary 
Land and 1.5 mg g−1 for Disko. Both soils (each with control) were incubated with Si addition of 0 (ambient), 3, 
6, or 10 mg g−1 and Ca addition of 0 (ambient), 10, 20 or 30 mg g−1 to cover the range of soil Si and Ca availability 
found in the literature14,22. About 5 g soil were incubated in 25 mL glass vials together with 2 mL of pure water 
and di�erent levels of Si as Si nano fertilizer Aerosil-300 (Evonik, Germany) and Ca (as CaO, pH adapted to 
solution or each soil by using HCl) at 5 °C. Two control treatments were analysed. �e �rst was without any Si or 
Ca addition to check for the e�ect of the water addition on P mobilisation and C respiration, which in all cases 
was comparable (no signi�cant di�erences, data not shown). �e second control experiment we added chloride 

Figure 5. Suggested Si e�ects on P mobilization and soil respiration. Overview on the overall suggested e�ects 
of Si on soil P availability and potential e�ects on C turnover by increased P mobility and organic matter (OM) 
mobilization due to increased Si and P availability.
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as NaCl to determine if the HCl added to stabilize Ca solution to initial soil pH e�ected P mobilisation and C 
respiration. �e latter was also comparable (no signi�cant di�erences, data not shown). To demonstrate that the 
positive Si e�ect on respiration is caused by the Si-induced increase of P availability, we conducted an additional 
treatment where P as NaH2PO4 was added in concentrations equivalent to the amount mobilized by the highest 
Si treatment. �e vials were closed by Para�lm for two weeks to allow for gas exchange. A�erwards, Para�lm was 
replaced by butyl-rubber septa and aluminium crimp caps and purged with air. A�er four days the headspace gas 
of the vials was sampled using a 3 mL gas tight syringe with a gas tight three-way valve. �ese incubation exper-
iments were run until quasi-constant soil respiration was achieved (three months) to focus on long-term e�ects 
of Si and Ca availability on P availability and potential e�ects on soil respiration. At the end of the experiment 
soil porewater samples were taken, �ltered (0.2 µm cellulose acetate), and acidi�ed using nitric acid. Si, P and Ca 
analysis for the porewater samples was done by ICP-MS and ICP-OES.

CO2 Analysis. Gas samples were injected into a gas chromatograph (SRI Instruments 8610, SRI Germany). 
�e sampling and analysis was repeated monthly until constant soil respiration was achieved. �e CO2values were 
calculated as follows:

nCO2 (mol) = CO2 values (ppm, from instrument 10−6 101325 kg m−1 s−2) * V (m3) (R (8.3144 kg m2 s−2 mol−1 
K−1)−1 (T (K))−1. A�er three months, a constant CO2 release was observed (same values as one month before, 
data not shown).

X-ray spectromicroscopy. To identify the chemical mechanism of the observed P-release by Si, spatially 
resolved speciation analysis was done for the Peary Land soil a�er three months of incubation (laboratory experi-
ments) using so� X-ray spectromicroscopy. As sorption processes were likely to be involved in P binding, we used 
a transmission approach that allows for the quantitative speci�c mapping of Fe-bearing phases with sub-particle 
spatial resolution. We used synchrotron-based scanning transmission X-ray microscopy (STXM), a spatially 
resolved spectromicroscopy approach that combines near edge X-ray absorption �ne structure (NEXAFS) spec-
troscopy with a spatial resolution of tens of nm. We selected this approach because we expected a “surface”-related 
sorption or complexation process in the uppermost tens of nanometers to be responsible for the Si-binding / 
P-release. �is range is di�cult to target with bulks spectroscopic approaches such as bulk NEXAFS spectroscopy 
where the high concentrations of the respective chemical species that are not changed by the process, would 
completely cover potential spectral changes that originate solely from close to the surface. P1s spectroscopy with 
�uorescence detection for example would probe the uppermost micrometers of the sample and thus it would 
very unlikely be able to pick up the expected subtle spectral changes at the P1s absorption edge and it would not 
be possible get valuable synchrotron-beamtime allocated for a project that is unlikely to obtain results. Spatially 
resolved NEXAFS spectroscopy in an energy range of so� X-rays that are readily absorbed by tens of nm of mate-
rial, however, appeared to be most promising according to our absorbance simulations with aXis200058 based on 
the atomic scattering factors59. �erefore, we considered absorption edges between 200–1000 eV of elements that 

Figure 6. Overview on sampling locations within the Arctic. Map on distribution of permafrost soils was taken 
from https://ipa.arcticportal.org/publications/occasional-publications/what-is-permafrost 64 accessed on May 
24th 2018. Purple shading refers to continuous, discontinuous, sporadic to isolated permafrost (from high to 
lower colour intensity).

https://ipa.arcticportal.org/publications/occasional-publications/what-is-permafrost
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are likely involved in the process and decided on the Fe2p absorption edges at 706.8 and 719.9 eV as Fe-minerals 
are the most likely binding sites for inorganic P in soils. STXM allows to derive local NEXAFS spectra from edges 
of individual particles where it would probe the previously mentioned uppermost tens of nm at the required 
sensitivity. Soil particles were suspended in deionized water and wet-deposited onto Formvar coated, 300 mesh 
Cu TEM grids (Plano GmbH, Wetzlar, Germany) and instantly dried. Randomly selected areas on the grid were 
analysed using the STXM at beamline 10ID-1 of the Canadian Light Source60. Image-stacks were recorded across 
the Fe 2p absorption edges from 699 eV to 740 eV with an energy resolution of 0.18 eV in the energy region of 
interest. �e resulting datasets were analysed using aXis200058. �e stacks were aligned and converted from trans-
mission to linear absorbance using the following formula:

= −OD ln(I/I )0

where OD is the optical density, I is the intensity at a speci�c pixel, I0 is the intensity of the X-ray beam in an empty 
region adjacent to the sample. �e resulting image stack was averaged across the entire energy range to obtain the 
best quality image in the region of interest. Masks were then extracted from the average image based on the fol-
lowing OD-ranges: 0.01–0.1, 0.1–0.3, 0.4–0.6, 0.7–0.9, 1.0–1.2 (Fig. 3A–C); average spectra for these OD-ranges 
were extracted from the image stacks using these masks (examples in Fig. 3D for the original soil (dark colours) 
and a�er Si addition (bright colours)). �icker regions were omitted from the analysis to avoid potential problems 
with absorption saturation that may a�ect the quality (non-linearity) of the extracted spectra61.

�e resulting spectra were analyzed by linear combination �tting using various combinations of two spectra of 
known reference compounds and a sloped background representing non-speci�c absorption of non-Fe elements 
at the Fe2p edge. �e following phases were used: Fe(III)-minerals ferrihydrite, goethite, Fe(II)-minerals siderite 
and vivianite (Fig. 3E)62,63. �e lowest standard deviations of the individual �ts were obtained by a combination of 
the spectra of ferrihydrite and vivianite. �e spectra were previously normalized to a 1 nm layer of the respective 
compound to obtain quantitative maps representing cumulative thickness [nm] of the respective compounds. 
Two independent datasets of each sample type were analysed, shown in Fig. 3. For each dataset and each thickness 
range, based on the masks, the fraction of an Fe(II)-phase and the total Fe were calculated and plotted against the 
cumulative thickness of total Fe (Fig. 3F). Here, we used a mixture of exactly one Fe(II) and one Fe(III) phase to 
minimize the standard deviation of the �ts (i.e. vivianite and ferrihydrite).

Data Availability
All data analyzed during this study are included in this published article.
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