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Silicon nanocrystals (NCs) represent one of the most promising material systems for light emission applications in microphotonics.
In recent years, several groups have reported on the observation of optical gain or stimulated emission in silicon NCs or in porous
silicon (PSi). These results suggest that silicon-NC-based waveguide amplifiers or silicon lasers are achievable. However, in order
to obtain clear and reproducible evidence of stimulated emission, it is necessary to understand the physical mechanisms at work in
the light emission process. In this paper, we report on the detailed theoretical aspects of the energy levels and recombination
rates in doped and undoped Si NCs, and we discuss the effects of energy transfer mechanisms. The theoretical calculations
are extended toward computational simulations of ensembles of interacting nanocrystals. We will show that inhomogeneous
broadening and energy transfer remain significant problems that must be overcome in order to improve the gain profile and
to minimize nonradiative effects. Finally, we suggest means by which these objectives may be achieved.
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1. INTRODUCTION

Silicon is the most widespread semiconductor in modern
microelectronics technologies. Its natural abundance, low
cost, and high purity, as well as the high electronic quality
of the Si/SiO2 interface, have led to its overwhelming
dominance in microelectronic devices. Nevertheless, the use
of silicon in optoelectronics remains highly limited. This
state of affairs has remained, in fact, almost unchanged
because of a fundamental property of the silicon band
structure—the indirect band gap.

The indirect radiative interband transitions in bulk Si
are strongly suppressed because an emitted photon cannot
satisfy the momentum conservation law for transitions from
the conduction-band minimum (∆-point) to the top of the
valence band (Γ-point). The photon wave vector is about
three orders of magnitude less than that required for the
transition between the ∆- and Γ-points. This difference in k-
space is k∆ = 0.86× 2π/a0, with a0 being the lattice constant
of silicon, equal to 5.43 Å. The electron-hole radiative
recombination in the bulk material is exactly forbidden
unless additional mechanisms allowing the momentum to

be conserved are involved in the recombination process. The
most probable means to have a radiative indirect transition
without breakdown of the momentum conservation law is
via phonon absorption or emission. However the electron-
phonon interaction is weak; consequently, phonon assistance
is a low-probability (and hence slow) process. This leads to a
substantial increase of the total recombination time, and a
decrease of the recombination probability compared to the
direct no-phonon Γ − Γ radiative transitions in direct-gap
semiconductors. In this sense, we call such transitions in Si
“strongly suppressed.”

The discovery of visible-range emission from nanocrys-
talline [1] and porous [2–4] silicon in the early 1990s
suggested that some of the problems associated with the
silicon band structure might be overcome in nanoscale
crystallites hosted in a widegap dielectric matrix like SiO2,
in order to create a strong confining potential for carriers
inside the nanocrystal. Electronic states become localized
within the NC and the momentum distribution spreads due
to the Heisenberg uncertainty relations. In other words, the
wave functions consist of plane waves with all possible wave
vectors including both k∼k∆ for holes and k∼0 for electrons,
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respectively. Thus, the momentum conservation law is not
violated in this case, which yields a nonzero probability of the
∆− Γ radiative transition even in the absence of phonons.

Indeed, some time later, efficient visible photolumines-
cence (PL) from silicon nanocrystals was experimentally
demonstrated, (e.g., [5]) and attributed to the transi-
tions between confined electron and hole states inside the
nanocrystal [6, 7] (the so-called quantum confinement
effect) or between interface states [8, 9]. However, the
emission quantum efficiency in Si nanocrystals remains low
compared to the direct gap III-V or II-VI materials. This is
naturally explained by the small “weights” of the plane waves
with k∼k∆ for the valence states and k∼0 for the conduction
states. Thus, improvement of the light emission efficiency
of Si quantum dots remains a challenge for optoelectronic
technologies.

As a means to modify the optical properties of silicon
crystallites, doping with shallow impurities has been sug-
gested [10–18]. In some cases (depending on the conditions
and methods of preparation), the emitting properties of
the dots were improved significantly. In particular, the PL
intensity was several times greater when the nanocrystals
were doped with phosphorus [10–12, 14] or codoped
with phosphorus and boron [15, 17]. The origin of this
phenomenon is not fully understood at the present time, and
we will touch on the problem of impurity states in silicon
nanocrystals in this review.

PL experiments are not usually carried out with a
single quantum dot but rather with large ensembles. As a
result, interpretation of the experimental data is attendant
with difficulties because of the associated inhomogeneous
broadening and various collective effects that can occur as
a result of the mutual influence of the nanocrystals in the
ensemble. Some recent studies have reported on the PL
spectra of individual silicon quantum dots [19, 20] and this
is shedding new light on the physics involved in the light
emission process. A principal distinction in the emission
of a single NC and a nanocrystal ensemble lies in the
various mechanisms of interaction amongst the nanocrystals
in an ensemble. In particular, in solid nanocrystal arrays,
some collective effects caused by electron, photon, and
phonon transfer between the dots can strongly influence the
luminescence dynamics of the nanocrystals in comparison
with the case of isolated NCs. The size distribution of the
nanocrystals can play an essential role in the excitation
exchange between the clusters.

One possible mechanism of the NC-NC interaction is
the direct tunneling of excited carriers from one quantum
dot to another [21–23]. As an example, we can imagine
two (or more) closely separated quantum dots with different
sizes. Presumably, excited carriers in the smaller nanocrystal,
having higher quantized energy levels, may relax either to the
valence band of this nanocrystal or to the conduction band
of the adjacent nanocrystal with a larger size. The transition
to the valence band is indirect, and therefore suppressed.
Meanwhile, the transfer to the neighboring quantum dot
occurs as if within the same (conduction) band, and may
be more probable in the case where the nanocrystals are
sufficiently close. If so, then the smaller nanocrystals will

inject their own excited carriers into the larger nanocrystals,
in which radiative interband transition will subsequently
take place. This idea implies the possibility of an optical
nanofountain [24]—a device emitting photons from the area
where quantum dots with larger sizes are concentrated.

An additional nonradiative mechanism of energy transfer
between adjacent nanocrystals becomes possible in dense
arrays. This is the so-called Forster mechanism originating
from the dipole-dipole (or higher-order multipole) interac-
tion between excitons in different quantum dots [25–27].
Because of the dipole-dipole interaction, the electron-hole
excitations can “travel” throughout the nanocrystals without
charge transfer. Such transitions have been observed in
solid arrays of CdSe nanocrystals [28, 29]. Some theoretical
aspects of the Forster transfer in silicon quantum dots were
recently discussed by Allan and Delerue [30].

Various collective effects in quantum-dot arrays can
result in a complicated time dependence of the experimental
PL decay. As a rule, the decay is described by the stretched

exponential function exp{−(t/τ)β} with β less than unity
[31–35]. Evidently, the value of β can be due to a size
distribution of the nanocrystals (and hence a distribution
of the recombination rates). Theoretical explanations of
the stretched exponential from the point of view of the
multiexponential decay and associated Laplace transforms
have been given in [36].

This is, in short, the framework in which we will address
the present review. At first we will briefly describe the exper-
imental situation in this field in Section 2. Then the single-
particle electronic structure and many-body corrections will
be considered in Section 3 for a single silicon quantum dot
as a basis for treatment of more complicated problem of
solid quantum-dot ensembles. The latter will be reviewed
in Section 4. Finally, Section 5 presents a general conclusion
and a commentary on the potential for stimulated emission
in silicon nanocrystal ensembles.

2. EXPERIMENTAL RESULTS: OVERVIEW

Different methods can be used for preparation of silicon
nanocrystals, for instance, Si ion implantation [37–41],
chemical vapor deposition [42], magnetron sputtering [43,
44], colloidal synthesis [45], electron beam evaporation [46,
47], and some others. A high-temperature thermal treatment
is generally required in order to precipitate the crystallites.
All these techniques allow one to form silicon NCs with
sizes predominantly ranging from 2–6 nm. Their electronic
structure and optical properties depend, of course, on the
preparation conditions and method of fabrication. However,
there are some common properties typical for silicon NCs,
independent of the fabrication technique employed. In
particular, the nanocrystals’ surroundings, either vacuum
or some host material like silicon dioxide, represent a high
potential barrier for carriers of both kinds. Such a barrier
is often referred to as a confining potential that mainly
defines the energy spectrum of the nanocrystal. In what
follows we will discuss some manifestations of the quantum-
confinement effect in experiments and theoretical models.
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Figure 1: PL spectra of silicon NCs in SiO2. The 200-nm-thick
samples were approximately identical except for the amount of
excess silicon.

First, let us briefly discuss experimental data on the PL
spectra in silicon quantum dots.

2.1. Size dependence

As has been mentioned above, silicon NCs are capable of
emitting electromagnetic energy in the visible spectrum.
This is in contrast with bulk silicon, in which energy of
the interband transition corresponds to the silicon bandgap
energy of 1.12 eV. The increase (decrease) of the photon
frequency (wavelength) in nanocrystals compared to the
bulk material is a universal phenomenon taking place in
various semiconductor materials and quantum dots. In the
general case one may say that the energy of the emitted
photon increases as the nanocrystal size decreases. Such an
increase is usually called a “blueshift” because the photon
energy shifts toward the shorter-wavelength side of the
visible spectrum. This blueshift is illustrated for Si NCs in
Figure 1. Here, the mean NC size is controlled via the excess
Si concentration, with the smallest NCs occurring in the
most silicon deficient samples. The PL intensity has not been
normalized here; the drop in intensity on the silicon-poor
side of the compositional map is due to the lower number
density of NCs, and on the silicon-rich side it is due to
the opening of nonradiative pathways in large and highly
interconnected nanoclusters.

In the simplest model of an infinitely strong confining
potential (i.e., infinitely high potential barriers at the dot
boundary) it is possible to estimate the energies of electrons
and holes localized inside the nanocrystal as proportional
to R−2, where R is the nanocrystal radius. Thus, the optical
gap may be calculated as εg(R) = εg + A/R2, where εg is
the bandgap of bulk silicon, A is some positive constant,
and A/R2 represents the total energy of the non-interacting
electron-hole pairs inside the dot. It is obvious that: (i)
the nanocrystal gap must be always greater than the bulk
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Figure 2: Experimental data on the size dependence of the optical
gap of silicon crystallites. Hydrogen-passivated surface—Wolkin
et al. [8] and Garrido et al. [53] (blue squares); SiO-bonds at
the surface—Wolkin et al. [8], Kanemitsu et al. [51] (diamonds);
deposition on quartz substrate—Ledoux et al. [48] (filled triangles);
nanocrystals embedded in Si3N4 matrix—Kim et al. [49] (empty
triangles).

one due to the additional positive term A/R2, and (ii) the
photon energy, equal to the energy of the lowest electron-
hole transition, increases as the dot size decreases.

In experimental work carried out over the past fifteen
years with silicon nanocrystals, the optical-gap dependence
on the dot size was measured and discussed extensively.
Although it is impractical to cite all the papers dealing with
this topic, a sampling is given in [8, 23, 48–56]. The data
in these papers is summarized in Figure 2. There is a fairly
large spread in the calculated values of the optical gaps
as a function of NC diameter. Presumably, several factors
influencing the accuracy of the optical-gap measurements are
as follows. First, it is difficult to determine exactly the dot
sizes and the size distribution in a luminescent ensemble of
NCs. Second, using the mean size in an ensemble of NCs in
a diagram like Figure 2 can be misleading, since it is possible
that the observed PL peak does not correspond exactly to the
mean size but instead to the largest PL rate. Third and more
practically, the nanocrystals studied by different research
groups have been prepared by different methods. As a result,
the NCs have different surroundings, surface bonds, and
shapes, all of which could lead to scatter in the experimental
data. Finally, as shown in later sections, NC-NC interactions
can play a dominant role in the emission spectrum.

Furthermore, the blue-shift energy ∆εg(R), determined
from the experiments, does not obey the law A/R2 following
from the simplest quantum-mechanical model. This depen-
dence is rather ∆εg(R)∼R−b with 1 < b < 1.5 or an even
weaker dependence on R in some cases. Such behavior has
been a reason for supposing a key role for interface states in
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the radiative recombination process [51]. The question about
the origin of the radiative electron-hole transitions in the
nanocrystals is remains under extensive debate even today.

Nevertheless, employing the principle of Occam’s razor,
the deviations from the simplest model predictions for
high-energy luminescence (when the peak-position energy
exceeds the bulk gap εg) may be explained within the
quantum confinement framework without necessarily the
need to invoke sub-gap radiative centers. Let us, first, take
into account the finiteness of the potential barriers, leading
to some weakening of the quantum confinement and, as
a consequence, to a more complicated and less steep size-
dependence of ∆εg(R) other than R−2. In addition, electron-
hole Coulomb interaction contributes a further−R−1 depen-
dence in the blue-shift energy. Both these mechanisms result
in a more gradual dependence of the optical gap on the dot
radius, which is in fact observed in experiments.

At the same time, low-energy PL with photon energies
less than the gap of bulk silicon are also observed in
experiments, see, for example, [57]. In this work an extra
luminescence peak arose at about 0.9 eV at low temperatures,
and its position remained almost unchanged for nanocrystals
of various sizes. This may be indeed treated as an attribute
of the surface states which can appear inside the band gap
of bulk silicon. This possibility and the associated pair-wise
trapping rates have been discussed and derived theoretically
by Lannoo et al. [58].

2.2. Decay rate

Time-resolved studies of the PL of silicon NCs demonstrate
near-exponential decays of the photoluminescence intensity.
Typical decay times τPL vary within a wide range of about
1 to1000 µs depending on the particle size, temperature,
detected wavelength, method of preparation, and so forth
[31, 32, 51, 59–62]. Such lifetimes are indeed large, and this
is an explicit indication of an indirect-band-gap material.
Contrary to direct-gap III-V or II-VI compounds, the drop
of luminescence intensity for silicon crystallites is sufficiently
slow to result in a low PL irradiance compared to direct-gap
NCs, even for comparable quantum efficiencies.

The characteristic time of the PL decay is determined
by two different recombination mechanisms: radiative, with
typical time τR; and nonradiative, with typical time τNR.
The rate of the photoluminescence decay is the sum of the
radiative and nonradiative recombination rates: 1/τPL =
1/τR + 1/τNR. In the case where one of the two times is
much less than the other, the photoluminescence lifetime
coincides with the smallest time. Usually in silicon, the
nonradiative channel turns out to be faster compared to
the radiative one (see, e.g., [31]), so that the PL lifetime
equals τNR. The quantum yield η, which is proportional
to the PL intensity, may be defined as the “weight” of the
radiative channel in the recombination process: η = τ−1

R /τ−1
PL .

If τR ≫ τNR, then η = τNR/τR ≪ 1. Obviously, one can
use two physically different ways to increase η. The first one
is an increase of the radiative transitions, while the second
is a decrease of the nonradiative processes. The second

way appears easier in practice because the nonradiative
processes can be influenced by preparation conditions, as
has been recently demonstrated by Miura et al. [62]. On the
contrary, according to [62], radiative recombination cannot
be controlled by the preparation conditions. Therefore,
control of the radiative channel efficiency seems to be fairly
difficult to achieve in practice.

Sometimes, both radiative and nonradiative channels
contribute comparably in the interband recombination in
silicon nanocrystals. In these cases the quantum efficiency
becomes very high—possibly on the order of tens of percent
[62]. It should be noted, however, that these situations
are possible, presumably, at pumping levels corresponding
to no more than one excited carrier in every quantum
dot. Then, traps such as surface defects may be the main
sources of nonradiative recombination. Alternatively, when
the excitation power is very high and several electrons are
excited in the dots, the Auger process becomes possible.
Since Auger interactions are fast, the radiative channel will
be “shunted” in this case. Accordingly, η tends to some small
value, on the order of a fraction of a percent.

In cases when the nonradiative channel is mostly
“closed,” that is, τR ≪ τNR, silicon nanocrystals demonstrate
strong temperature dependence of the PL lifetime [23, 33,
57, 63, 64]. In particular, the lifetime becomes smaller as the
temperature decreases from ∼300 to 4 K. This behavior is
explained within the framework of the singlet-triplet two-
level model suggested by Calcott et al. [3, 4] for porous
silicon. According to this model the exciton state splits due to
the electron-hole exchange interaction into the upper singlet
with relatively short lifetime τ↑, and lower triplet with about
2-3 orders-of-magnitude longer lifetime τ↓. The decay rate is
then defined by

1

τPL
≈ 1

τR
=
(

3/τ↓
)

+
(

1/τ↑
)

exp
[

−
(

∆S-T/kT
)]

3 + exp
[

−
(

∆S-T/kT
)] , (1)

where ∆S-T is the energy of the singlet-triplet splitting,
k is the Boltzmann constant, and T is the temperature.
The energy of the singlet-triplet splitting depends on the
nanocrystal size and increases from a few meV to 10–20 meV
for photon energies increasing from 1.4 eV to 2.2 eV [57, 64].
At low temperature, when ∆S-T ≫ kT the decay of the
singlet state is strongly suppressed, and the total lifetime τPL

coincides with the longer time τ↓. In the opposite case (when
∆S-T ≪ kT), τPL is close to 4τ↑. As a result, the PL decay
occurs substantially faster at low temperature. More rigorous
theoretical analysis [65–68] reveals a rich fine structure in
the excitonic spectrum of silicon NCs. Exciton states with
different symmetry may be ascribed to so-called bright and
dark excitons which have essentially different recombination
lifetimes.

2.3. Enhancement and quenching of
photoluminescence due to impurities

During the past decade, doping Si NCs with shallow impu-
rities has been explored as a potential route for modifying
the luminescent properties of silicon nanocrystals. The main
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questions are the following: are we able to improve the
emission of silicon quantum dots by incorporating donors
or acceptors (or both)? If so, then the next question is what is
the mechanism for the improvement? The results obtained
by different research groups indicate that the PL spectra
of silicon nanocrystals are, indeed, sensitive to doping.
However, both an increase [10–13] and a decrease [18] of the
PL intensity have been observed. This, again, depends on the
sample fabrication method and the type of doping.

Silicon NCs doped with phosphorus [10–13, 16, 69],
boron [18], or co-doped with P and B [14, 15, 17] have

recently been investigated. At the same time, the authors of
[70–72] reported on experiments with silicon NCs doped
not only with phosphorus or boron but also with hydrogen
and nitrogen. Summarizing the results, one can conclude
that doping with phosphorus or codoping with phosphorus
and boron can enhance the PL intensity of the nanocrystals
by several times, as initially reported in [10]. Meanwhile,

no enhancement is observed for NCs doped with boron,
hydrogen, or nitrogen. Moreover, the degree of quenching
of the luminescence depends on the annealing procedure
[18, 70–72].

In accordance with the results of Miura et al. [12],
Fujii et al. [13], and Mikhaylov et al. [72] reported that
an increase of the phosphorus concentration leads to an
initial rise of the photoluminescence peak, whereupon the
PL intensity subsequently decreases with a further increase
in doping. Moreover, the P concentration corresponding to
the maximum intensity becomes greater with decreasing NC
size [11–13]. Therefore, in some cases, where the NCs had
small sizes of about 3-4 nm [11, 70], only a monotonic rise of
the PL peak was observed as P concentration increased. One
possible reason for this phenomenon lies in the passivation of
dangling bonds (i.e., neutral or charged Pb centers) at the NC
surfaces. The absence of the enhancement effect for heavily
P-doped crystallites at a given size has been explained by
more extensive Auger recombination [14, 15, 17] or a coa-
lescence mechanism [72]. The authors of [72] also pointed
out the essential distinction in the photolumine scence of the
P-doped nanocrystals formed by ion implantation at 1000◦C
and 1100◦C. The former demonstrate up to 5 to 6 times
intensity enhancement, while for the latter ony PL quenching
was found (Figure 3).

As a method to reduce the Auger recombination, simul-
taneous codoping with phosphorus and boron, thereby com-
pensating the numbers of donors and acceptors inside the
crystallite, has been proposed [14, 15, 17]. PL enhancement

was successfully obtained for larger nanocrystals of ∼6–
8 nm in diameter. In this case, a large shift of the PL
peak, even below the optical gap of bulk silicon, takes place
when increasing P concentration with fixed concentration of
boron [14]. This may be evidence of the formation of bulk-

like impurity states. At the same time, codoping with high
concentration of both donor- and acceptor-type impurities
result in a strong chemical shift of the ground-state energy
levels in the conduction and valence bands [73], which may

substantially reduce the NC optical gap. In the latter case
no assumptions on the bulk-like form of electron states
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Figure 3: Influence of doping with P, B, N on the PL intensity
at 750 nm in Si NC layers synthesized by ion implantation and
annealed at either 1000 or 1100◦C. Samples were subsequently
implanted with impurity ions and then re-annealed. The dashed
line represents the intensity of the undoped reference sample.
(The figures have been kindly provided by D. I. Tetelbaum, A. N.
Mikhaylov, O. N. Gorshkov, D. I. Kambarov, V. K. Vasiliev, and A. I.
Belov, who did the experiments).

in silicon quantum dots are required, because the effect of
the strong chemical shift is exclusively due to the confining
potential of the dot.
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3. SINGLE-DOT PROBLEM

We next turn to the quantum-mechanical analysis of various
aspects of light emission in silicon nanocrystals. It is quite
clear, of course, that a consideration of electronic structure,
electron-hole recombination, and the role of impurities in
a single quantum dot provides a basis for understanding
optical properties of the quantum-dot ensembles. Therefore
the present chapter first discusses some theoretical models
concerning the interband transitions in an individual quan-
tum dot. First, we will discuss the optical gap and energy
spectra of undoped nanocrystals. Then the “band” structure
and charge distribution in doped dots will be analyzed.
Finally, the recombination lifetimes will be calculated for
undoped and doped crystallites.

3.1. Electronic structure of perfect silicon nanocrystals

The first step is a calculation of the ground-state energies
both for the conduction and valence bands of a nanocrystal.
Note that here and throughout the paper we will use
terminology that is typical for the bulk material. Of course,
no genuine energy bands exist in the nanocrystal because of
its finite size. Nevertheless, the states above and below the NC
optical gap originate from the size-quantized states of con-
duction and valence bands of the bulk crystal, respectively.
Moreover, in the following we mainly intend to employ the
envelope-function approximation (k·p method) to describe
electronic states of the nanocrystals. Consequently, such
the terminology is convenient and should not lead to any
misunderstandings. The states above and below the optical
gap will be further referred to as conduction and valence
bands, as in the bulk. Different approaches are used when
calculating the gap of silicon nanocrystals. Among them,
the simplest is the single-particle approximation. Usually,
the single-particle gap exceeds real optical gap because the
electron-hole Coulomb interaction reduces the total energy
of the system. For this reason, the values of the single-particle
gap may be treated as an upper bound for the optical gap. In
this section we discuss electron and hole states of a “pure”
crystallite, which has no defects and a perfect diamond lattice
all over its whole volume. The results are compared with the
simpler approximations discussed in the introduction.

3.1.1. Optical gap. Numerical results

It is possible to separate all calculation methods applied
for computation of the electronic spectra in pure NCs
into two groups. In the first group we have the numeri-
cal first-principles, empirical, and semi-empirical methods,
such as density functional theory (DFT) [68, 74–78],
pseudopotential (PP) method (or various combinations of
PP and DFT) [79–82], tight-binding (TB) models [83–
86], combined Green’s function (GW-approximation), and
the Bethe-Salpeter equation (BSE) technique [87–89]. All
these methods require considerable computational time, a
problem that worsens as the nanocrystal size is increased.
Analytical methods such as the effective mass approximation
or k·p method [67, 90–95] may be ascribed to the second
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group. In following we combine these two methods into a
single envelope function approximation (EFA). The latter
allows one to perform calculations without any restrictions
on cluster sizes. Additionally, this approach can be used to
find the higher excited states of the nanocrystal.

In the present subsection, we summarize the results
of some of the methods discussed above, which illustrate
dependence of the optical gap on the nanocrystal size
(Figure 4). In all calculations, any dangling bonds at the
nanocrystal surface were considered to be H-passivated.
As is seen in the figure, there is some scatter of data
due to the different computational methods and different
approximations utilized in the computational procedure.

In particular, taking into account the self-energy correc-
tion or electron-hole interaction can considerably change
the magnitude of the nanocrystal optical gap, in opposite
directions, as has been pointed out by many authors (see,
e.g., [81, 88, 89]). In particular, it is known that the local
density approximation of the DFT tends to underestimate
the optical-gap (similar results happen for silicon nanowires)
[96, 97] compared to those obtained in experiments. For
a more accurate account of the self-energy corrections and
excitonic effects, the GW+BSE approach is often applied.
The combination of the GW and BSE methods yields almost
complete compensation of the exciton and the self-energy
corrections to the single-particle optical gap [88]. The same
effect was also found by Franceschetti and Zunger [81]
within the framework of the PP method. Unfortunately,
the GW+BSE approach is employed for nanocrystals whose
diameters do not exceed 1 nm [87–89]. Therefore, we did not
depict the results of this approach in Figure 4.
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3.1.2. Electron and hole spectra in a dot

Let us now discuss electronic spectra in both the valence and
conduction bands of the quantum dot. As has been pointed
out, for this purpose it is convenient to use the EFA. Here
we describe in more detail not only the lowest but also the
higher excited electronic states as a function of size.

We assume the total potential energy of the electron
inside the quantum dot to be of the following form

U(r) = U0(r) + Vsp(r). (2)

Here U0(r) is the confining potential equal to zero inside and
infinity outside the dot. The second part Vsp(r) describes an
interaction between the electron and its image, arising due to
the charge polarization on the boundary between the silicon
nanocrystal and its dielectric surrounding. Vsp(r) is often
referred to as a self-polarization term. It can be represented
as

Vsp(r) = e2
(

εs − εd
)

2εsR

∞
∑

l=0

l + 1

lεs + (l + 1)εd

r2l

R2l
, (3)

where εs and εd are the static dielectric constants of silicon
and the dielectric matrix, respectively. In order to find the
electronic states in the dot, we have to solve the single-
particle Schrödinger-like equation for the envelope function
vector |Φ〉:

(

H + U(r)
)

|Φ〉 = E|Φ〉. (4)

Here, H is the bulk k·p Hamiltonian operator acting on the
six-dimensional (6D) envelope-function vectors |Φ〉, and E
is the electron energy. The components of the 6D-vector |Φ〉
are slowly varied expansion coefficients Φ j(r) of the total
wave function in the Bloch-state basis.

The electronic states in the valence and conduction bands
can be determined separately. Starting with the valence band,
the Bloch-state for the Γ-point is |YZ〉| ↑〉, |XZ〉| ↑〉,
|XY〉|↑〉, |YZ〉| ↓〉, |XZ〉| ↓〉, |XY〉| ↓〉, where | ↑〉 and
| ↓〉 are “up” and “down” spinors, respectively, and the
Bloch functions |YZ〉, |XZ〉, |XY〉 belong to the irreducible
representation Γ25′ . The k·p Hamiltonian matrix H in 4
is the sum of three parts: H = H(0) + H(1) + H(so). Here
H(0) = (p2/2mh) × I is the isotropic part obtained as the
average of the total k·p matrix over all angles in p-space.
H(1) is the anisotropic part that can be represented by two
equivalent 3 × 3 blocks situated on the main diagonal of the
total 6× 6 k·p matrix:

H(1) =
(

H3 0

0 H3

)

,

H3 = −
1

2m0

⎛

⎜

⎜

⎝

Q1 Npxpy Npxpz

Npxpy Q2 Npy pz

Npxpz Npy pz Q3

⎞

⎟

⎟

⎠

,

(5)

where Q1 denotes ((L −M)/3)(3p2
x − p2), Q2 denotes ((L −

M)/3)(3p2
y − p2), and Q3 denotes ((L−M)/3)(3p2

z − p2).

Finally, the term

H(so) = 1

3

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 −i∆ 0 0 0 ∆

i∆ 0 0 0 0 −i∆
0 0 0 −∆ i∆ 0

0 0 −∆ 0 i∆ 0

0 0 −i∆ −i∆ 0 0

∆ i∆ 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(6)

describes the spin-orbit interaction. We have introduced
above the spin-orbit energy ∆ equal to 44 meV for silicon,
the 6× 6 identity matrix I, and the hole effective mass mh =
3m0/(L+2M), where the numbers L, M, N are dimensionless
empirical parameters in the k·p Hamiltonian operator in
the valence band. For silicon they equal 5.8, 3.43, and 8.61,
respectively [98].

Because of the isotropic and diagonal form of the
operator H(0) + U0(r), it is possible to classify its eigenstates
similarly to atomic systems using common terminology such
as s-, p-, and d-type states, and so forth [92]. Accordingly,
one may expand the components of the envelope-function
vectors over these eigenstates as

Φ j(r) =
∑

α

C jα|α〉, (7)

where |α〉 stands for the s-, p-, d-, . . . states and C jα are the
expansion coefficients. For instance, the 1s-, 1p-, 1d-, (in
the following simply s-, p-, and d-) and 2s-type states are
described by the following functions:

|s〉 =
√

π

2R3
j0(πr/R),

∣

∣pa
〉

=
√

3

2πR3

j1
(

µ1r/R
)

j0
(

µ1

)

xa
r

,

∣

∣dab
〉

=
√

15

2πR3

j2
(

µ2r/R
)

j1
(

µ2

)

xaxb
r2

, a /= b,

∣

∣dx2−y2

〉

=
√

15

8πR3

j2
(

µ2r/R
)

j1
(

µ2

)

x2 − y2

r2
,

∣

∣d3z2−r2

〉

=
√

15

8πR3

j2
(

µ2r/R
)

j1
(

µ2

)

3z2 − r2

r2
,

|2s〉 =
√

π

2R3
j0(2πr/R),

(8)

where jn(x) are the spherical Bessel functions of argument
x, and µn are the first roots of jn(x). Below, we restrict
the basis of envelope functions |α〉 with these states only,
and determine the electron and hole spectra. Substitution of
Φ j(r) into (4) yields algebraic equations for C jα:

(

E − Eα
)

Ciα =
∑

β

〈α|H(1)
i j + H

(so)
i j + Vsp(r)δi j|β〉C jβ, (9)

where Eα denotes the energy of the state |α〉, δi j stands for the
Kronecker delta, and the Einstein convention has been used
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when summing over j. Considering all operators in the right
side of (9) as perturbations [92], one can solve the equation
and find the energies in the valence band.

Restricting the basis of the envelope states |α〉 by 1s,
2s, 1p, and 1d functions, and neglecting the spin-orbit
interaction, we obtain the following “hierarchy” of energies
(for convenience, we write down the hole energies differing
in the sign from the electron energies, which are determined
with (9)). The ground-state energy

E
(s)
h = ℏ2π2

2mhR2
(10)

is triply degenerate (or sixfold, if spin is taken into account).
It is the energy of the 1s state. Hybridization of the p-type
states yields four different levels with the energies

E
(p)
h1 =

ℏ2µ2
1

2mhR2

[

1− 3N + 2L− 2M

5L + 10M

]

,

E
(p)
h2 =

ℏ2µ2
1

2mhR2

[

1− 3N − 4L + 4M

5L + 10M

]

,

E
(p)
h3 =

ℏ2µ2
1

2mhR2

[

1 +
3N − 2L + 2M

5L + 10M

]

,

E
(p)
h4 =

ℏ2µ2
1

2mhR2

[

1 +
6N + 4L− 4M

5L + 10M

]

,

(11)

where µ1 = 4.4934. The energies of the d-d hybridized states
are as follows:

E
(d)
h1 =

ℏ2µ2
2

2mhR2

[

1− 6N

7L + 14M

]

,

E
(d)
h2 =

ℏ2µ2
2

2mhR2

[

1− 3N + 4L− 4M

7L + 14M

]

,

E
(d)
h3 =

ℏ2µ2
2

2mhR2

[

1 +
3N − 2L + 2M

7L + 14M

]

,

E
(d)
h4 =

ℏ2µ2
2

2mhR2

[

1 +
6N − 4L + 4M

7L + 14M

]

,

(12)

where µ2 = 5.7634. Finally, the energies of the 1d-2s hybrids
are written as

E
(2sd)
h1 = ℏ2

2mhR2

[

4π2 + µ2
2

2
+

3µ2
2

14

N + 2L− 2M

L + 2M

− 12
√

6√
5

πµ2

4π2 − µ2
2

N

L + 2M

]

,

E
(2sd)
h2 = ℏ2µ2

2

2mhR2
,

E
(2sd)
h3 = ℏ2

2mhR2

[

4π2 + µ2
2

2
+

3µ2
2

14

N + 2L− 2M

L + 2M

+
12
√

6√
5

πµ2

4π2 − µ2
2

N

L + 2M

]

.

(13)

The contribution of the self-polarization term from (10)–
(13) has been omitted since it represents, in fact, a common
shift of all the levels by e2(1/εd − 1/εs)/2R.
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Figure 5: Hole energy spectrum according to (10)–(13) in case of
no spin-orbit interaction. Solid line: s-type level. Short dashed lines:
p-p hybridized levels. Dots: d-d hybridized levels. Long dashed
lines: 2s-d hybridized levels. All energies are counted deep into
the valence band with respect to the valence band maximum. The
degeneracy degree including spin (from bottom to top) is 6; 6; 6; 4;
6; 4; 6; 6; 2; 6; 2; 6.

In Figure 5 the energy levels from (10)–(13) have been
plotted as functions of the NC radius. The two lowest hole
levels have very similar energies. The lowest level, being
sixfold degenerate, corresponds to six electron states with
an s-type envelope function. These states have an isotropic
macroscopic (averaged over the unit-cell volume) charge
distribution inside the dot. The second level corresponds
to six electron states with p-type envelope functions. Cor-
respondingly, the macroscopic charge has an anisotropic
distribution for these states (see [92] for details).

In the conduction band the Bloch-state basis consists
of six Bloch functions of three different X-points in the
Brillouin zone [99]. We denote three pairs of these functions
as |X〉, |X ′〉; |Y〉, |Y ′〉; |Z〉, |Z′〉. Each pair belongs to
the twofold degenerate irreducible representation X1 of the
corresponding X-point. The unprimed Bloch functions have
a nonzero value at the lattice site, while the primed functions
are zero at those points. The choice of the X1-functions as
the Bloch basis allows us to describe correctly a dispersion-
law nonparabolicity that originates mainly from the energy-
branch crossing in the X-points.

The k·p Hamiltonian operator in the conduction band
represents a 6× 6 matrix having the form

H =

⎛

⎜

⎜

⎝

Hx 0 0

0 Hy 0

0 0 Hz

⎞

⎟

⎟

⎠

. (14)

Each element of the matrix H is a block 2× 2 matrix defined
by the following expressions [99]:

Ha=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

p2
a

2ml
+

p2 − p2
a

2mt

(

1

mt
− 1

m0

)

pbpc+i
p0

ml
pa

(

1

mt
− 1

m0

)

pbpc−i
p0

ml
pa

p2
a

2ml
+

p2 − p2
a

2mt

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

(15)
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Here p0 ≈ 0.14(2πℏ/a0) is the distance in p-space from any
of the energy minima to the nearest X-point, a0 is the lattice
constant of silicon. ml = 0.92m0 and mt = 0.19m0 are the
“longitudinal” and “transverse” effective masses. The origin
of the E-axis coincides with the X-point energy. Each of the
small indices (a, b, c) runs over the values x, y, or, z and
always differs from the others.

Solving (4) for the conduction band is done in the same
way as for the valence band, as in (9)–(13) above. One can
then obtain the following groups of energies. The ground
states, as well as the second excited ones, are the 1s-1p
hybrids. Their energy levels are given by

E
(sp)
e1 =

Es + Ep − 2Hpp

2
−

√

√

√

√

(

Ep − Es − 2Hpp

2

)2

+ H2
sp,

E
(sp)
e2 =

Es + Ep − 2Hpp

2
+

√

√

√

√

(

Ep − Es − 2Hpp

2

)2

+ H2
sp,

(16)

where

Hsp =
ip0

ml

〈

s
∣

∣pz
∣

∣pz
〉

= 2πℏµ1p0
[√

3mlR
(

µ2
1 − π2

)] ,

Hpp =
1

12

(

1

mt
− 1

ml

)

〈

pz
∣

∣p2 − 3p2
z

∣

∣pz
〉

= ℏ2µ2
1

(

ml −mt

)

15mtmlR2

(17)

are s-p and p-p type matrix elements of anisotropic part Ha,
Es = ℏ2π2/2meR2, and Ep = ℏ2µ2

1/2meR2 are the energies of
the s- and p-type states of the isotropic unperturbed Hamil-
tonian operator. The isotropic average electron effective mass

is defined by m−1
e = (2m−1

t + m−1
l )/3 ≈ (0.26m0)−1. The p-p

hybridization forms states with energies:

E
(p)
e1,2 = Ep + Hpp ∓Hxy . (18)

Here Hxy = ℏ2µ2
1(m0 − mt)/5mtm0R2. The next three levels

are the result of the d-d hybridization:

E
(d)
e1 =

ℏ2µ2
2

2meR2

(

1− 2

7

ml −mt

2ml + mt
− 6

7

ml

m0

m0 −mt

2ml + mt

)

,

E
(d)
e2 =

ℏ2µ2
2

2meR2

(

1 +
4

7

ml −mt

2ml + mt

)

,

E
(d)
e3 =

ℏ2µ2
2

2meR2

(

1− 2

7

ml −mt

2ml + mt
+

6

7

ml

m0

m0 −mt

2ml + mt

)

.

(19)

Finally, the 2s-d hybridized energies are obtained numeri-
cally:

E
(2sd)
e1 = ℏ2

2meR2

(

4π2 + 2µ2
2

3
− 0.477µ2

2

)

,

E
(2sd)
e2 = ℏ2

2meR2

(

4π2 + 2µ2
2

3
− 0.455µ2

2

)

,

E
(2sd)
e3 = ℏ2

2meR2

(

4π2 + 2µ2
2

3
+ 0.932µ2

2

)

.

(20)
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Figure 6: The lowest energy levels in the conduction band as
functions of the NC radius, from (16)–(20). The energies are
counted from the X-point energy. Solid line: s-p type levels. Short
dashed lines: p-p hybridized levels. Dots: d-d hybridized levels.
Long dashed lines: 2s-d hybridized levels. All the levels are 12-fold
degenerate including spin degeneracy.

The results for the single-particle electron spectrum in the
conduction band are shown in Figure 6.

The wave function of the ground state turns out to be
a superposition of the terms with s- and p-type envelope
functions (see [92] for details). The “weight” of the s-type
envelope function is greater than that of the p-type function.
Therefore the macroscopic charge for the ground state has a
distribution close to isotropic.

From the above calculations, the optical gap of the NC
can be obtained as the sum of the lowest energies in both
bands and the energy difference between X- and Γ-points in
bulk ∆XΓ = 1.24 eV:

εg(R) = ∆XΓ + E
(sp)
el + E

(s)
h . (21)

This energy somewhat overestimates value compared to that
obtained with the numerical methods, as indicated by the
solid line in Figure 7. This is a consequence of two main
factors.

The first factor is that we have assumed infinitely high
potential barriers at the interface. The authors of [91, 93,
95] calculated the carrier energies supposing the potential
barriers to be finite and equal to approximately 3 eV (or a
little more) for electrons and 4-5 eV for holes. Moreover,
the discontinuity of the effective mass has been taken into
account. In Figure 7 we have plotted the optical gap of silicon
nanocrystal versus the confining parameter 1/R for three
models differeing according the nanocrystal’s surroundings.
The solid line corresponds to infinitely high potential
barriers. Circles represent the finite barriers and constant
effective mass throughout the sample. Finally, in case of
the mass discontinuity with effective mass outside the dot
coinciding with free electron mass, the optical gap has been
represented by disks. For the last two cases, the dependence
∆εg(R) becomes weaker than R−2, especially for the case of
the discontinuous effective mass where the dependence is
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Figure 7: NC gap versus reciprocal dot radius. Solid line: infinite
barriers (21). Circles: finite barriers (3.2 eV for electrons and 4.3 eV
for holes, which corresponds to Si/SiO2 interface) and constant
effective mass. Disks—finite barriers and free electron mass outside
the dot. Both of the latter are numerical results by EFA [92]. The
dashed line is a guide to the eye.

closer to 1/R. In the last case the gap dependence is well fitted
by the function:

ε(1)
g (R) =

√

εg2 +
D1

R2
(22)

with D1 = 4.8 eV2·nm2. In general, one may conclude that
the calculated values of the optical gap are reduced due to
the barrier finiteness and mass discontinuity, and agree better
with those shown in Figure 4.

The second factor, strongly influencing the dot gap, is
electron-hole Coulomb interaction. Its contribution to the
optical gap will be discussed in the next subsection.

3.1.3. EFA calculations: exciton corrections

The electron-hole interaction reduces the energy of the
electron-hole pair. As a result, the exciton optical gap is also
reduced. In order to estimate the exciton correction to the
total electron-hole single-particle energy one must solve the
two-particle problem. This has been done for silicon NCs
embedded in an infinitely wide-band-gap material [67, 90,
94]. The exciton corrections were found to be about 0.4 eV
[67], 0.25 eV [90], and 0.3 eV [94] for 2-nm-diameter NCs,
with the correction decreasing approximately as R−1 with
increasing size.

Meanwhile, as has been pointed out in the preceding
section, the finiteness of the potential barriers and effective
mass discontinuity can appreciably influence the electron
and hole energies. Therefore, it is possible to expect the
same for the excitonic energies. Ferreyra and Proetto [91]

have studied excitonic states for a quantum dot in vacuum.
Accordingly, they accepted the barrier heights equal to the
electron affinity of the corresponding bulk material for
electrons and infinity for holes, and the effective mass being
m0. They found an exciton correction of the order of 0.2 eV
for a 2-nm-diameter dot. As the nanocrystal size increases,
the magnitude of this correction decreased as R−0.7.

The authors of some of the previous work (e.g., [67,
90, 91]) treated the Coulomb potential energy as VC =
−e2/εsreh similar to bulk silicon. However, in a quantum
dot the electron and hole interact not only with each other
but also with their “images” due to the difference in the
permittivity of the materials inside and outside the dot.
These are the so-called polarization fields arising because of
the charge polarization at the dot boundary. The interaction
with the polarization fields has been taken into account in
[94]. Nevertheless, the polarization fields did not lead to
any significant corrections to the optical gap. As mentioned
above, the correction does not exceed 0.3 eV, which is close
to the values obtained by other authors.

Evidently, the calculations carried out with the EFA
[67, 90, 91, 94] provide sufficiently good coincidence with
both experimental and theoretical data. For comparison, we
have depicted in Figure 4 with the solid line the EFA single-

particle gap according to (22). The gap values ε
(1)
g (R) agree

well with those computed by PP, TB, and DFT methods.
Obviously, a small exciton correction of about 0.3–0.1 eV
for 2 to 5 nm diameter crystallites, respectively, does not
significantly change the single-particle gap values.

It should be noted, in conclusion, that all the authors
employed the perturbation theory considering the electron-
hole interaction to be weak compared to the typical quantum
confinement energies in the dot. Such an approach is justified
if the exciton Bohr radius is significantly larger than the dot
radius. This requirement remains valid for small quantum
dots with the sizes of about 5-6 nm or less.

3.1.4. Interface states

We have already emphasized in the introduction that
radiative transitions between interface states are also often
considered as the origin of NIR, or even visible, emission
from silicon nanocrystals. In a certain sense, this point of
view is alternative to the idea of quantum confinement.
Description of the interface states with EFA is difficult
because the real potential existing in the vicinity of the
nanocrystal surface has in principle a microscopic nature that
manifests itself at a distance on the order of a bond length.
Meanwhile, the EFA is, in fact, a “macroscopic” method
which is not able to distinguish the spatial structure on scales
smaller than the size of the primitive cell. Therefore TB and
DFT methods are essentially more suitable for this goal.

As a rule, interface states originate from various-type
defects existing at the surface of the crystallite. These include,
mainly, dangling bonds (Pb centers) which can be neutral,
positively, or negatively charged, and different SiO bonds
(backbonded and double bonded oxygen) arising at Si/SiO2

interface. Charged dangling bonds corresponding to zero or
two electrons in the bond level, respectively, produce deep
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levels inside the band gap of bulk silicon. Their energies are
approximately 0.3 eV below the conduction band minimum
for the negatively charged bond, and 0.3 eV above the valence
band maximum if the bond is positively charged [100].
Consequently, the effective gap between these levels is about
0.5-0.6 eV [101]. For nanocrystals, the effective gap gradually
rises as the nanocrystal size decreases. In particular, for a
5-nm-diameter NC this shift equals approximately 0.6 eV,
while for a 2 nm crystallite it is 1.3-1.4 eV [100]. Thus, we
see that the dangling bond levels are sensitive to the NC size.

Nanocrystal oxidation has been studied theoretically by
TB [8, 102], DFT [103, 104], and GW+BSE [89] methods.
The role of the so-called backbonded (Si–O–Si) and double
bonded (Si=O) oxygen atoms has been examined for the case
where the spherical NC surface is passivated with hydrogen.
In the first case (Si–O–Si), oxygen forms two bonds with two
different silicon atoms which already have four bonds with
other silicon or hydrogen atoms. In the second case (Si=O),
oxygen replaces two hydrogen atoms bonded with one silicon
atom. It is natural to suppose that the system perturbation
in the second case should be more significant because of the
stronger distortions of the structure. In fact, it was found that
the presence of one Si=O bond at the NC surface provides
an optical gap almost independent of the dot size [8]. At the
same time, the nanocrystal with a Si–O–Si bond has a gap
that gradually decreases with increasing size. Nevertheless,
this gap remains smaller, and varies more slowly than the gap
of perfect nanocrystal with hydrogen passivated surfaces. The
calculations carried out by different methods [89, 102, 103]
for oxidized crystallites show an essential difference in the
energy of the ground electron-hole transition in crystallites
with Si–O–Si and Si=O bonds. All the methods used exhibit
the smallest gap for the case of double-bond oxidation, while
the crystallites with backbonded oxygen have the greater
gap. In turn, the latter is less than the gap of a perfect NC.
The authors of [89] have found that only the bridge-type
bond (Si–O–Si) can provide a satisfactory agreement with
experiments on the photoluminescence in nc-Si/SiO2 system.
This fact may be explained by the considerably different
oscillator strengths of the ground transitions for NCs with
Si=O and Si–O–Si defects. As has been shown by Nishida
[102], the oscillator strength for Si–O–Si case is several orders
of magnitude greater than that for Si=O case, especially for
NCs smaller than 1 nm in diameter. This is precisely the
case studied by Luppi et al. [89], where NCs of 0.5 nm and
0.9 nm in diameter were considered. However, according to
[102] the difference between the size-quantized energy levels
and those of the Si=O and Si–O–Si defects, as well as the
difference in the oscillator strengths of the ground electron-
hole transitions, are essential only for NC diameters less
than 2 to 2.5 nm [8, 102]. For larger sizes, the energies and
the transition intensities for perfect and oxidized crystallites
almost coincide.

Finally, nonradiative trapping rates are also critical in
the light emission properties of silicon NCs. The group of
neutral or charged Pb centers at silicon dangling bonds is
the most important nonradiative trap in bulk silicon [105],
and acts also in the case of Si NCs [58]. In a detailed
theoretical investigation, Lannoo et al. [106] found that the

carrier trapping at neutral Pb centers is nonradiative, whereas
capture at charged centers can lead to photon emission at
energies smaller than the bandgap of bulk silicon. The rate
for carrier trapping at a neutral dangling bond defect at
the Si–SiO2 interface in a NC with a single Pb center was
established theoretically as a function of the NC size [106]:

wnr =
σ0v

V

1√
2π

(

(

E0

ℏω

)2

+ z2

)−0.25

× exp

[

− S coth

(

ℏω

2kT

)

+
E0

2kT

+

(

(

E0

ℏω

)2

+ z2

)0.5

− E0

ℏω
a sinh

(

E0

ℏωz

)

]

.

(23)

In (23), σ0 is the capture cross section given by c0/v where
c0 is the capture coefficient and v is the thermal velocity
equal to

√
8kt/πm∗, E0 is the ionization energy of the defect

(approximately equal to the Franck-Condon energy plus the
carrier confinement energy), S is the Huang-Rhys factor
(S = ∼15) [107], ℏω is the average phonon energy, V is
the nanocrystal volume, and z = S/[sinh(ℏω/2kT)]. The
capture rate increases strongly as a function of NC size due
to the decreasing defect ionization energy, until eventually
the volume term begins to dominate the trapping rate, which
then begins to decrease again. Since, the calculated rate is
for a single isolated defect, in practice the rate should be
modified for the likelihood of multiple defects on larger
clusters, as discussed in Section 4.

3.2. Shallow impurities in silicon nanocrystals

There is one more type of defect which can play an
important role in the optical and transport properties of bulk
semiconductors and their low-dimensional counterparts (in
particular, silicon). These are impurity centers, of which
some experimental results were discussed previously. Let us
now consider NCs doped with shallow impurities and discuss
impurity states in silicon quantum dots.

Various aspects of the problem have been explored. One
of them—the central-cell effect [108–111]—causes splitting
of the sixfold degenerate ground energy level in bulk silicon
into a singlet, doublet, and triplet with a typical energy
splitting of about 10–20 meV for various donors [112].
According to a number of theoretical studies [73, 113–119],
in quantum dots doped with donors or acceptors the central-
cell potential strengthens the level splitting compared to
(i) bulk silicon, and (ii) undoped dots [66, 85, 120, 121].
Investigations of the spatial charge distribution [122, 123],
the formation of impurity centers inside silicon nanocrystals
from the energy point of view [114–117, 124, 125], inter-
valley scattering [126], hyperfine splitting and optical gap
effects [127], and the screening of the point-charge field
[123, 128–136] have been performed. Below, we present
EFA calculations of the electronic structure of both donor-
and acceptor-doped silicon quantum dots and examine the
dependence on the impurity position inside the dot within
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the framework of the hydrogenic-impurity model. Also, we
discuss the effect of the central-cell potential in screening the
point charge in NCs.

3.2.1. Screening in quantum dots

In order to solve accurately the Schrodinger-like equation
for the envelope functions in the dot in the presence of
an impurity ion, we need the correct expression for the
Coulomb potential energy VC . Its determination in the
quantum dot is not a simple task because of the complicated
character of screening in NCs. Some authors described the
screening properties in an NC with a modified dielectric
constant ε(R) that depends on the dot radius [137–139].
Such a simple model, indeed, gives a moderate increase of the
dielectric properties due to the finite size of the crystallite but
it does not reflect correctly the local structure of the electric
field.

The correct description of such a structure requires
first-principles calculations [123, 129–136]. Nevertheless,
the microscopic picture permits a clear qualitative macro-
scopic interpretation using the local dielectric function ε(r)
depending on electron position vector, r. Taking into account
the short-range field and charge polarization at the dot
boundary due to different static dielectric constants εs and εd
of an NC and its surroundings, one can in principle obtain
ε(r) (Figure 8) [73].

An overall decrease of ε(r) in a nanocrystal takes place
compared to the bulk value of εs = 12. As was pointed out
earlier [123, 128, 129], this decrease is mainly due to the
polarization charges at the dot boundary. The monotonic
decrease of ε(r) extends to the nanocrystal boundary, where
the value of the dielectric function becomes equal to εd. At
the same time, the sharp reduction of ε(r) toward unity
occurring at small r is exclusively due to the short-range
central-cell potential.

3.2.2. Donor states in silicon crystallite

First, we consider electronic states in a silicon NC with a
hydrogenlike donor placed in some arbitrary position inside
the dot. The total electron potential energy described by (2)
transforms into U(r, h) = U0(r) + VC where h stands for
the impurity position vector, and VC is a Coulomb potential
energy, including not only the direct electron-ion interaction
but also the interaction with polarized charges arising at the
dot boundary. Solving the eigenstate and eigenvalue problem
for the conduction band [140] yields the ground-state energy
splitting shown in Figure 9 at nx = 0.8, ny = 0.5, and
nz = 0.33, where n = h/h, and h stands for the absolute value
of h.

In Figure 10, the envelope-function correction ∆Φ is
shown for the ground state due to the hydrogen-like donor,
as a function of the angles θ and ϕ on the spherical surface
r = h for the former values of na. Angles θ and ϕ are the
spherical coordinates. The maximal values of ∆Φ (light areas
in the figure) are located around the donor site marked with
the cross. This is a natural result in that the electron density
shifts towards the donor site.
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Figure 8: Dielectric function of silicon NCs in silicon dioxide
matrix (εd = 3) for (1) R = 1 nm; (2) R = 1.75 nm; (3) R = 2.5 nm.
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Figure 9: Fine structure of the energy spectrum with respect to the
unperturbed sixfold degenerate energy level. Solid lines correspond
to two states located in the Brillouin zone at the X-point (001).
Dashed line: X-point (010). Dots: X-point (100). The direction of
the donor’s position vector is defined by nx = 0.8, ny = 0.5, and
nz = 0.33. The NC radius is indicated in the figure.

3.2.3. Acceptor states in silicon crystallite

It is interesting to compare the fine structure of the spectrum
for donor- and acceptor-doped dots. Obviously, the fine
structure in the valence band occurs because of the spin-orbit
interaction and the asymmetry of the Coulomb field inside
the dot, when the acceptor occupies some noncentral posi-
tion. The energy splitting has been presented in Figure 11.
Similarly to the donor case, the splitting turns out to be large
compared to the magnitudes of chemical shifts in bulk silicon
[141–144].

The Coulomb and spin-orbit interactions remove the
sixfold degeneracy of both lowest levels shown in Figure 5,
keeping only the double spin degeneracy of each the levels.
Furthermore the splitting increases with decreasing the
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Figure 10: Contour plot of the first-order correction to the
envelope function for a 3-nm-diameter quantum dot. The value of
the correction rises from dark to light. The cross indicates the donor
position defined by: nx = 0.8, ny = 0.5, and nz = 0.33. h/R = 0.46.

nanocrystal size. This is evidence in favor of a quantum
confinement effect, as was the case in the donor-doped dots.

The spatial distribution of the hole density in B-doped
crystallite for all the six doublets is shown in Figure 12 for
h/R = 0.1 (upper panels) and h/R = 0.46 (lower panels).
We have plotted the average of the squared absolute value
of the total wave function over the unit cell. In this case
the Bloch-function oscillations do not appear in the electron
density, which reduces to the “density of envelope function”

ρenv(r) =
∑6

j=1|Φ j(r)|2, where Φ j(r) is the jth element of the
6D envelope function vector |Φ〉 as before.

As the calculations show, for all the six doublets the
envelope-function density has an axial symmetry with
respect to the line drawn through the NC center and the
acceptor. Therefore ρenv(r) has the same distribution in
any dot cross-section to which the acceptor position-vector
belongs. Figure 12 shows such a central cross-section of
the electron density averaged over the unit cell for all the
doublets. Brighter areas in the density plots correspond to
higher values of ρenv(r). The circle represents the nanocrystal
boundary, and the bold point situated at the vertical axis
indicates the acceptor location.

It should be noted that the general trends in the location
of the electron density under the action of the acceptor
electric field are, in fact, similar for all the doublets in both
cases h/R = 0.1 and h/R = 0.46. In particular, the ground-
state electron density shifts to the acceptor site, while for the
excited states, as the energy of the state increases and the
electron density gradually moves into the areas free of the
acceptor.
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Figure 11: Splitting of the two lower hole levels shown in Figure 5 as
function of the dimensionless acceptor displacement from the dot
center in (a), and with respect to the NC radius in (b). The direction
of the acceptor position-vector is defined by nx = 0.8, ny = 0.5, and
nz = 0.33. Dashed and solid lines represent the energies originating
from doublet and quadruplet at h = 0, respectively. All the energies
are counted from the mean quadruplet energy at h = 0.

3.3. Interband recombination in silicon nanocrystals

The PL intensity and quantum efficiency is defined by the
relative contribution τ−1

R /τ−1
PL of a radiative recombination

channel in an interband transition. In turn, the total
decay rate is defined by both radiative and nonradiative
recombination rates: 1/τPL = 1/τR + 1/τNR. Consequently, in
order to discuss possible means of increasing the quantum
efficiency of silicon crystallites, we should understand what
factors influence the radiative and nonradiative rates. For this
purpose in this section we analyze theoretically both radiative
and nonradiative recombination processes.

3.3.1. Radiative recombination times in undoped Si NCs

In bulk silicon, no-phonon radiative transitions between
the conduction-band ∆-point and the valence-band Γ-point
are forbidden because of indirect band-gap of silicon. In
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Figure 12: Density plot of the probability distribution ρenv(r) of all the six doublets at h/R = 0.1 (upper images), and h/R = 0.46 (lower
images) for NCs containing a hydrogenic acceptor. The acceptor position is indicated with a red point. (a): ground state; (b) to (f): first to
fifth excited states. For each state the hole density is normalized to its maximum in the state, and rises from dark to light. The nanocrystal
boundary is marked by the yellow circle, with R = 1.5 nm.
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Figure 13: Schematic representation of the silicon band structure
with phonon-assisted radiative transitions from the conduction-
band minimum to the valence-band maximum indicated by arrows.

this case, only phonon-assisted transitions may take place,
as shown in Figure 13. In a quantum dot no-phonon
emission becomes possible but remains a low probability
process for reasons discussed below. Meanwhile, the phonon-
assisted radiative transitions have much greater rate. Here,
we calculate both no-phonon and phonon-assisted radiative
lifetimes in silicon nanocrystal.

We first calculate the rate τ−1
0 of the no-phonon radiative

recombination. Using Fermi’s golden rule in the first-order
perturbation theory, one can write the decay rate for the
transition between initial (I) and final (F) states in the

conduction and valence bands, respectively, in the following
form:

τ−1
0,IF =

2π

ℏ

∑

Q,σ

∣

∣WIF

∣

∣

2
δ
(

εg(R)− ℏωσ(Q)
)

. (24)

Here, ωσ(Q) and Q stand for the photon frequency and
wave vector. The Dirac delta-function reflects the energy
conservation law for the electron transition. The operator W
describes the electron-photon interaction, and has the form:

W =
∑

k,σ

√

√

√

√

2πℏe2κ
(

εs; εd
)

m2
0ωσ(Q)V0εs

(

cQσ + c+
Qσ

)

eQσp, (25)

where p = −iℏ∇ is the electron momentum operator, eQσ

is the polarization vector, the operator cQσ annihilates and
c+

Qσ creates a photon with the wave vector Q and polarization
σ , and V0 stands for the volume of the electromagnetic
resonator. The function κ(εs; εd) is written as [145]

κ
(

εs; εd
)

=
√

εd
εs

(

3εd
2εd + εs

)2

. (26)

This function represents the correction factor in the field
magnitude due to the replacement of homogeneous media
with bulk permittivity εs by a spherical silicon nanocrystal
surrounded by silicon dioxide with a dielectric constant εd.

The initial state in (24) corresponds to an electron-hole
pair being in its ground state, and an ensemble of photons
whose distribution over Q is described by the Bose-Einstein
statistics. In the final state, the valence band is completely
occupied and the conduction band is empty. The number of
photons in the final state always increases by one.

As has already been mentioned (see Section 3.1.2), the
ground spinless electron state in the conduction band is
sixfold degenerate. However, TB [85, 120], PP [66], and DFT
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[121] calculations revealed a weak splitting of the ground
state into the singlet, doublet, and triplet states due to the
tetrahedral symmetry of the spherical silicon nanocrystal.
The authors pointed out that as the NC size varies, A1-,
E-, or T2-type states alternately become the ground level.
Correspondingly, in order to take into account tetrahedral
symmetry of the quantum dot, we build the six ground states
in accordance with the symmetric transformations of the
irreducible representations A1 (singlet), E (doublet), and T2

(triplet) of the tetrahedral group. These functions are defined
as follows [73]:

ΨS = cos(λ)
∣

∣A1

〉

|s〉

+ sin(λ)

∣

∣X ′
〉∣

∣px
〉

+
∣

∣Y ′
〉∣

∣py
〉

+
∣

∣Z′
〉∣

∣pz
〉

√
3

,

Ψ
(1)
D = cos(λ)

∣

∣E(1)
〉

|s〉

+ sin(λ)

∣

∣X ′
〉∣

∣px
〉

−
∣

∣Y ′
〉∣

∣py
〉

√
2

,

Ψ
(2)
D = cos(λ)

∣

∣E(2)
〉

|s〉

+ sin(λ)

∣

∣X ′
〉∣

∣px
〉

+
∣

∣Y ′
〉∣

∣py
〉

− 2
∣

∣Z′
〉∣

∣pz
〉

√
6

,

Ψ
(1)
T = cos(λ)

∣

∣X ′
〉

|s〉

− sin(λ)

√
2
∣

∣A1

〉

+
√

3
∣

∣E(1)
〉

+
∣

∣E(2)
〉

√
6

∣

∣px
〉

,

Ψ
(2)
T = cos(λ)

∣

∣Y ′
〉

|s〉

− sin(λ)

√
2
∣

∣A1

〉

−
√

3
∣

∣E(1)
〉

+
∣

∣E(2)
〉

√
6

∣

∣py
〉

,

Ψ
(3)
T = cos(λ)

∣

∣Z′
〉

|s〉

− sin(λ)

∣

∣A1

〉

−
√

2
∣

∣E(2)
〉

√
3

∣

∣pz
〉

.

(27)

Here, the parameter λ is defined by the relationships [92]

cos(2λ) =
Ep − Es − 2Hpp

√

(

Ep − Es − 2Hpp

)2
+ 4H2

sp

,

sin(2λ) =
2Hsp

√

(

Ep − Es − 2Hpp

)2
+ 4H2

sp

,

(28)

where vectors |s〉 and |pa〉 stand for the s- and p-type
envelope functions as before. The Bloch states |A1〉 = (|X〉+
|Y〉 + |Z〉)/

√
3, |E(1)〉 = (|X〉 − |Y〉)/

√
2, |E(2)〉 = (|X〉 +

|Y〉 − 2|Z〉)/
√

6, and |T2〉 = |X ′〉, |Y ′〉, or |Z′〉 belong to
the representations A1, E, and T2 of the tetrahedral group.
In what follows, when computing the interband matrix
elements of W we will choose one of the states given by (27)
as the initial one. For convenience, one can rewrite the wave
functions of the initial states in a general form:

ΨI =
∑

α, j

B
α j
I Fα(r)ψ j(r), (29)

where the index α indicates the “values” of the s, px,
py , and pz, functions, and ψ j(r) stands for the six Bloch
functions |X〉, |Y〉, |Z〉, |X ′〉, |Y ′〉, |Z′〉 of the irreducible
representation X1. The s- and p-type envelope functions
are denoted as F(r), and Fx(r), Fy(r), Fz(r), respectively.

Selecting expansion coefficients B
α j
I , we can construct any of

the states defined by (27).
The final state is one of the three degenerate states

(neglecting the spin-orbit coupling) in the valence band [92]
with the s-type envelope function:

ΨF = F(r)ψF(r), (30)

where ψF(r) stands for the Bloch state basis functions |YZ〉,
|XZ〉, or |XY〉 of the irreducible representation Γ25′ .

After some algebra, one can obtain recombination rate
τ−1

0,IF in the form:

τ−1
0,IF =

4e2√εsκ
(

εs; εd
)

εg(R)

3m2
0ℏ

2c3

∣

∣pIF

∣

∣

2
, (31)

where pIF = 〈ΨI |p|ΨF〉. In order to compute the momen-
tum matrix element, we expand the Bloch functions ψ j(r)
and ψF(r) over the reciprocal lattice vectors gn as follows:

ψ j(r) =
∑

m

C jm exp
[

2πi
(

gm + e j

)

r/a0

]

,

ψF(r) =
∑

n

VFn exp
[

2πignr/a0

]

,
(32)

where a0 is the lattice constant of silicon, and unit vectors e j

define the X-point. We set e1,4 = ex, e2,5 = ey , and e3,6 = ez.
Expansion coefficients C jm and VFn are determined with the
local pseudopotential method. They satisfy the normalizing
condition

∑

n|C jn|2 =
∑

n|VFn|2 = 1. As a result, the
momentum matrix element is given by

pIF =
ℏ

4πa0
bIF(R)

(

a0

R

)4

, (33)

where bIF(R) =
∑

α, jB
α j
I Jα(R) with Jα(R) being oscillating

vector functions [146] of the dot radius. For s- and p-type
subscripts, respectively, these functions are

J(R) =
∑

n,m

C∗jmVFndn+m

d4
n−m

cos

(

2πdn−m
R

a0

)

,

Ja(R) = −i
√

3µ1

π

∑

n,m

C∗jmVFndn+md
(a)
n−m

d5
n−m

sin

(

2πdn−m
R

a0

)

.

(34)



16 Advances in Optical Technologies

65432

Diameter (nm)

10

102

103

104

105

R
at

e
(1

/s
)

Photon + phonon

Photon Room
temperature

Figure 14: Recombination rates of no-phonon and phonon-
assisted radiative transitions between the ground electron and hole
states in silicon NCs, after averaging over all degenerate initial and
final states.

Here, a = x, y, z, dn±m = gn ± gm ± e j , and d
(a)
n−m represents

an ath component of dn−m. The nonzero value of pIF is
exclusively due to the Heisenberg uncertainty relations which
cause the wide distribution of the wave function in p-space.

Averaging (31) over all possible initial and final states
yields

τ−1
0 =

e2√εsκ
(

εs; εd
)

εg(R)

12π2m2
0c3a2

0

(

a0

R

)8
〈

∣

∣bIF(R)
∣

∣

2
〉

. (35)

In Figure 14 we show the no-phonon recombination rate τ−1
0

as function of the dot size. Although the no-phonon decay
rate has a nonzero value, its magnitude remains small (less
than 103 s−1) within the range of the NC sizes shown in the
figure.

Next, we calculate the phonon-assisted recombination
rate [95, 147–149]. The total phonon-assisted rate of the
radiative electron-hole recombination is determined in the
second-order perturbation theory as

τ−1
R,IF =

2π

ℏ

∑

Q,σ

∑

q,ℓ

∣

∣

∣

∣

∣

∑

a

WFAUAI + UFAWAI

εI − εA

∣

∣

∣

∣

∣

2

×
[

δ
(

εg(R)− ℏωσ(Q)− ℏνℓ(q))

+ δ(εg(R)− ℏωσ(Q) + ℏνℓ(q)
)]

.

(36)

Here the matrix elements of the electron-photon (W) and
electron-phonon (U) interaction operators are calculated
between the initial I , the final F, and an intermediate state
A; εA and εI are the total energies of the intermediate and
initial states, respectively, including not only the energies of
the electrons (or holes) but also the energies of the photons
and phonons. The phonon frequency of ℓth polarization is
denoted as νℓ(q) with q being the dimensionless phonon
wave vector taken in units of 2π/a0.

The electron-phonon interaction operator is treated
within the framework of the rigid-ion model and is given by

U = −
∑

q,ℓ

∑

n,s

√

ℏ

2MNνℓ(q)
∇Vns

×
(

eqℓs exp

{

i2πqRn

a0

}

bqℓ

+ e∗qℓs exp

{

− i2πqRn

a0

}

b+
qℓ

)

.

(37)

Here, N is the number of primitive cells in the crystal, M is
the mass of a silicon atom, Vns = Vat(r−Rn−τs) is the atomic
potential, where Rn stands for the position vector of the nth
unit cell, and τs represents the position vectors of two atoms
within the unit cell: τ1 = 0, and τ2 = (1, 1, 1)× a0/4, b+

qℓ and
bqℓ are the phonon creation and annihilation operators, and
the phonon polarization vectors are denoted as eqℓs. Making
the Fourier transformation of the atomic potential: Vat(r) =
N−1

∑

pVp exp{ipr}, one can rewrite the operator U in the
form (see also [150, 151]):

U = 2πi

a0

∑

q,ℓ,s,m

√

ℏ

2MNνℓ(q)

(

q + gm

)

×
[

e∗qℓsV
∗
q+gm

exp

{

− i2π
(

q + gm

)(

r− τs
)

a0

}

b+
qℓ

− eqℓsVq+gm exp

{

i2π
(

q + gm

)(

r− τs
)

a0

}

bqℓ

]

.

(38)

Calculations of the electron-photon and electron-phonon
matrix elements yield

τ−1
R,IF =

4π2ℏ2e2√εsκ
(

εs; εd
)

εg(R)

3Mm2
0c3a4

0

(

a0

R

)3

×
∑

ℓ

PIF(ℓ)

ℏνℓ
coth

[

ℏνℓ

2kT

]

,

(39)

where

PIF(ℓ)= Bαm
I

(

B
βn
I

)∗
xFm(ℓ)xFn(ℓ)2π2R3

×
∫

drFα(r)Fβ(r)F2(r),

xFm(ℓ)=
∑

A

〈

ψF|w|ψA

〉〈

ψA|u|ψm

〉

+
〈

ψF|u|ψA

〉〈

ψA|w|ψm

〉

εI − εA
.

(40)

ψA represents the Bloch functions of the intermediate states
and the operators w and u are directly proportional to W and
U :

W = w
2πℏ

a0

√

√

√

√

2πℏe2κ
(

εs; εd
)

m2
0ω(Q)V0εs

,

U = u
2π

a0

√

ℏ

2MNνℓ(q)
.

(41)
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As has been shown earlier, the electron subsystem in silicon
nanocrystals interacts more efficiently with TO and LO
phonons [147, 148] similarly to bulk silicon [150, 151]. The
contribution of TA phonons is negligibly small. Therefore, in
the sum over the phonon modes in (39), only TO and LO
modes may be taken into account.

For convenience, we have again averaged the calculated
rates over all the possible initial and final degenerate states
and obtained the recombination rate in the following form:

τ−1
R =

π2ℏ2e2εg(R)
√
εsκ

(

εs, εd
)

9Mm2
0c3a4

(

a0

R

)3

×
(

7.527 coth
[

ℏνLO/2kT
]

ℏνLO
+

32.768 coth
[

ℏνTO/2kT
]

ℏνTO

)

×
(

4cos2λ + 9.26
)

.

(42)

Here: ℏνLO = 0.051 eV and ℏνTO = 0.0576 eV represent the
energies of LO and TO phonons and the numbers 7.527,
32.768 come from numerical integration of electron-phonon
matrix elements. The size dependence of the recombination
rate has been presented in Figure 14. The dependence of τ−1

R

on the dot radius is close to R−3. This is much slower than
the rate obtained for no-phonon transitions (R−8).

The results presented here agree well both qualitatively
and quantitatively with those obtained by other authors [95,
147, 148] for similar systems. In particular, according to their
results, the recombination rates for NCs from 2 to 6 nm in
diameter do not exceed 105 s−1 and are never less than 5 ×
102 s−1. It should be noted, however, that the TB calculations
[148] produce a considerably slower decrease of the radiative
decay rate than the EFA (as developed here and in [95, 147,
149]) predicts.

Finally, concluding this subsection, we would like to
discuss briefly the relation between our single-particle calcu-
lations and the singlet-triplet model which gives a reduction
of the radiative lifetime with increasing temperature, as
in (1). It is, of course, not applicable in the frame of a
single-particle treatment to obtain the state splitting caused
by the exchange electron-hole interaction. Therefore, the
temperature dependence of τ−1

R (42) is defined exclusively
by the phonons. As a result, no sharp rise of the decay rate
appears in our model as the temperature increases up to the
room values. At temperatures higher than about 150–200 K,
both models nevertheless should give similar results because
the upper excitonic states become highly populated. Thus,
the single-particle model remains valid for T > 200 K. As
well, it should be noted that the separation of dark and bright
excitons is not always possible. The spin-orbit coupling
transforms forbidden exciton transitions into suppressed
ones due to the entanglement of single-particle states with
different spin projections. The entanglement can be crucially
strengthened by imperfections of the crystallite structure
such as shape nonsphericity or, especially, by various point
defects such as Pb centers, SiO bonds, and impurities. In
the presence of the latter effects, all the transitions can
become allowed and consequently the single-particle model
is acceptable.

3.3.2. Radiative recombination in doped dots

Experimental evidence of shallow impurity effects in the PL
of silicon NCs (see Section 2.3) has no corresponding rig-
orous theoretical grounds. Usually, when discussing various
changes in optical properties of the NCs due to doping,
the nonradiative recombination channel is considered more
closely. For instance, doping may passivate dangling bonds,
and, as a consequence, essentially reduce the effectiveness
of the nonradiative channel. On the other hand, a large
number of donors or acceptors in the nanocrystal leads to
the appearance of extra carriers that can recombine through
the Auger process. Thus, doping is an important factor
influencing the nonradiative recombination (a more detailed
description of the nonradiative recombination mechanisms
can be found in the next subsection). The nonradiative
lifetime τNR can be varied by doping, which leads to the
change of the emission efficiency.

The impact of doping on the radiative channel has not
yet reported. However, it is interesting to examine also the
possibility of increasing the quantum yield via enhancement
of the radiative rate τ−1

R . This is exclusively a quantum
effect that can be explained by the reconstruction of the
wave functions in different symmetry (or asymmetry), and
changing selection rules for the interband transitions. We
would like to touch upon this question in the present
subsection and compute the radiative recombination rates in
a silicon NC doped with a hydrogen-like donor and acceptor.

In order to compute the decay rates for the doped dot we
follow (36). The main reason for the rate changes compared
to the case of the undoped dot lies in some corrections to the
electronic wave functions of both initial and final states (27),
(30) due to the existence of a shallow impurity in the dot. In
the following, we discuss two different cases.

The first case corresponds to an off-center position for
the impurity inside the dot. In the valence band such an
impurity location creates a field asymmetry in the system,
which entangles the three spinless s-type states (30) with the
three spinless p-type states [92]

Ψp1 =
Fx(r)|XZ〉 − Fy(r)|YZ〉√

2
,

Ψp2 =
Fz(r)|YZ〉 − Fx(r)|XY〉√

2
,

Ψp3 =
Fy(r)|XY〉 − Fz(r)|XZ〉√

2
.

(43)

These states (30) and (43) correspond to the closely spaced
lowest triply degenerate energy levels shown in Figure 5. As
a result, the ground hole state becomes a superposition of
the states with s- and p-type envelope functions. In the
conduction band, the ground electron states are the s-p
combinations even without impurities, as seen from (27).
Embedding the impurity into some arbitrary position within
the NC raises the number of the p-type envelope functions
in the ground states as well as in the valence band. However,
PIF(ℓ) becomes smaller if the integrated envelope functions
are p-type. Consequently, the squared transition matrix
element, proportional to PIF(ℓ), and the rate itself decrease
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relative to the case of an undoped NC, as shown in Figure 15
for two different displacements of the impurity from the dot
center.

The ratio h/R = 0.46 corresponds to the greatest possible
mix of s- and p-type states with maximal weight of the p-
type envelope functions in the ground states both in the
conduction and valence bands. The strong mixing results
in maximal decrease of the decay rate independently of
the impurity type. When the impurity is situated near the
nanocrystal boundary, h/R = 0.9, the weight of the p-type
envelope functions reduces in the ground state of both bands.
As a consequence, the rate rises with respect to the case
h/R = 0.46, but remains smaller than that for the undoped
NC.

The second case we consider is the case of the central-
located impurity. If h = 0, no s-p entanglement takes place
in the valence band. The functions with the s-type envelope
(30) describe the ground states of both donor- and acceptor-
doped NCs.

The situation is different for the conduction band.
Formally, the wave functions of the six spinless ground states
are described by (27) as before. However, for doped dots,
parameter λ has a form which differs from that given by (28).
In the presence of an impurity center, λ is defined as:

cos(2λ) =
Ep − Es + δV − 2Hpp

√

(

Ep − Es + δV − 2Hpp

)2
+ 4H2

sp

,

sin(2λ) =
2Hsp

√

(

Ep − Es + δV − 2Hpp

)2
+ 4H2

sp

,

(44)

where δV = Vpp−Vss is the difference between the p-p and s-
s type matrix elements of the Coulomb potential energy VC .
The appearance of this term in the definition of λ is explained
by the shift of the energy levels of the s- and p-states Es
and Ep, respectively, due to the Coulomb interaction. The
relative shift δV turns out to be positive for donors, and
negative for acceptors. Consequently, cos(λ) increases and
sin(λ) decreases for donors, and vice versa for acceptors.

This implies that the weight of the s-type envelope
function in the electron ground state increases for the donor-
doped dot and shrinks for the dot doped with acceptor,
with respect to its value in the undoped dot. Hence, the
coefficient PIF(ℓ) for the donor-doped dot is greater than
that for the undoped dot. In turn, the latter exceeds PIF(ℓ)
for the acceptor-doped dot. Precisely the same relationships
take place for the recombination rates, as shown in Figure 15.

Note in conclusion, that the central-symmetric case
h = 0 qualitatively corresponds to some real situation,
where the NC has been highly doped with donors or
acceptors. It is natural to assume a homogeneous impurity
distribution within the nanocrystal in this case. Obviously,
such a homogeneous density of charge induces a spherically
symmetric electric field that cannot mix the s- and p-type
states. Moreover, the relative Coulomb shift δV remains
positive for donors and negative for acceptors, as in the above
case of a single impurity center in the dot [73]. Therefore,
one can expect similar behavior of τ−1

R for highly doped NCs.
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Figure 15: The rates of the phonon-assisted ground radiative
transition as functions of the dot radius for a doped dot. For h /= 0,
we have nx = 0.8, ny = 0.5, and nz = 0.33.

3.3.3. Nonradiative recombination

In parallel with radiative transitions, nonradiative processes
occur in silicon nanocrystals. As a rule, nonradiative pro-
cesses play a problematic role in silicon crystallites, due to
their high recombination rates which substantially exceed
the rates of the radiative transitions. Among the possible
nonradiative processes, capture on dangling bonds and
Auger recombination are the most efficient. Both processes
are phonon-assisted, possibly even multi-phonon. The first
one takes place both at low and high pumping levels, while
Auger recombination becomes possible exclusively at high
excitation power when more than one excited electron (hole)
exist in the conduction (valence) band of the nanocrystal.



V. A. Belyakov et al. 19

The capture on a neutral dangling bond has been studied
earlier by TB method [100, 106]. It was shown that excited
electron-hole pairs can recombine on a neutral dangling
bond in two stages. First, the electron (hole) is trapped on
a neutral Pb center making it negatively (positively) charged.
Then, the hole (electron) is trapped on the charged dangling
bond. According to estimations [100], the capture rate on
the neutral dangling bond for holes is always much greater
than that for electrons. In turn, the electron capture rate at
room temperature increases sharply as the nanocrystal gap
decreases from 2.7 eV to 1.5 eV (see (23)). Within the same
range of energy gaps, the hole capture rate also increases
but less sharply. We should emphasize the presence of two
main features of the capture process. First, there is a very
stron dependence of the capture rates (even for holes) on the
energy gap, that is, the NC size. The second feature is the
overall high capture rates, which are much greater than the
radiative decay rates. Evidently, the presence of a dangling
bond in silicon crystallite drastically reduces the quantum
efficiency of photon generation. Therefore the passivation
of dangling bonds is required for achievement of relatively
efficient luminescence.

Let us now touch briefly on the role of SiO defects in
the photoluminescence. The calculations of Nishida [102]
showed that the oscillator strength is almost independent
of the existence of Si–O–Si bonds. In contrast, the Si=O
bonds reduce the oscillator strength by several orders of
magnitude. Recently, however, Sa’ar et al. [64] demonstrated
experimentally that both back-bonded and double-bonded
oxygen atoms can enhance the PL intensity due to formation
of coupled states of electrons (holes) and SiO vibrations.
Such vibrations induce electric polarization fields generating
long-lived coupled states named “vibrons”. Usually, the
surface vibrations scatter the carriers; however, vibrons,
being coupled states, do not scatter the carriers and thereby
exclude one of possible nonradiative channels from the
recombination process.

For highly excited nanocrystals, Auger recombination
may take place. It is sufficient to have only three particles
(two electrons and a hole, or vice versa) for this process to
occur. It is well known that Auger recombination has high
efficiency in bulk silicon. Therefore, it is natural to expect
a similar behavior in silicon crystallites. Calculations of the
Auger-recombination rate in crystallites carried out with TB
[58, 152] and EFA [153] techniques confirm, indeed, the fast
character of this mechanism. In particular, the characteristic
times have been found to be of the order 0.1 to 10 ns−1

and gradually rise with decreasing nanocrystal size. Thus,
Auger recombination, as well as dangling bonds, can strongly
quench the luminescence in silicon crystallites, as confirmed
experimentally [152].

4. ENSEMBLES OF QUANTUM DOTS

4.1. Size distributions

As discussed in detail in the previous sections, the recom-
bination energy for Si NCs is dependent on the NC size.
In order to achieve optical gain and stimulated emission,

therefore, a narrow size distribution would be beneficial in
order to narrow the gain profile. In ensembles of silicon
nanocrystals grown by various thin film methods or by
ion implantation, it is so far not possible to obtain the
narrow size distributions that can be achieved with chemical
methods, where post-synthesis size selection methods are
routinely employed [154]. However, there is hope for better
size selectivity, as will be discussed toward the end of this
section.

The nucleation and growth behavior of nanocrystals in
ion implanted systems, in particular, has been extensively
characterized [155, 156]. The lognormal size distribution
results in general when multiple microscopic processes
govern the nucleation and growth kinetics, as is typical in
these systems. The lognormal distribution is found even in
cases where the “memory” of the specific initial conditions is
lost, for example, after annealing of ion implanted samples
[156]. In such cases, the nanocrystal size distribution is
governed by the standard lognormal curve:

P(x) = 1

Sx
√

2π
exp

[

−
(

ln(x)−M
)2

2S2

]

, (45)

where the mean and variance can be related to the M and
S parameters by µ = exp(M + S2/2) and var = exp(S2 +
2M)[exp(S2)− 1].

For thin films also, a lognormal distribution is predicted
on the basis of random nucleation and growth in a homo-
geneous medium, regardless of the growth temperature,
specific method of crystallization, and the mean grain size
[157, 158], which is consistent with previous theories on
cluster growth in metals and ceramics [159]. Lognormal
distributions in the case of silicon grains crystallizing in
amorphous silicon have been reported [157], and the
lognormal size distribution has also been observed in silicon
NCs over the range of annealing temperatures from 400
to 1100◦C [47, 160]. Figure 16 shows the size distributions
obtained from TEM data for two samples available in the
literature. In Figure 16(a), the data from Vinciguerra et al.
[161] are reproduced along with a Gaussian least squares fit
(µradius = 1.68 nm, σ = 0.65 nm) which is similar to the fit
in the original publication (quoted as µ = 1.7 ± 0.6 nm),
and a lognormal fit with S = 0.27 and M = 0.54). The
data look decidedly lognormal with a skew toward large radii;
the lognormal fitting matches the data better on both the
high and low tails of the distribution, has a better correlation
(R2 = 0.94 versus 0.86), and is naturally equal to zero for
negative radii. Figure 16(b) shows the original data from
Glover and Meldrum [162], along with a lognormal fit with
S = 0.29, M = 0.22. This latter data and fit will be used in
the model in the following subsections. Obviously, the exact
numbers obtained for M and S depend on the histogram
binning and on the quantity of the data.

Size distributions can potentially be different than log-
normal whenever the nucleation and growth processes are
not random but are controlled in some way, such as via
irradiation-induced nucleation [163], or through nonunifor-
mities in the concentration of silicon, or when size selection
is built into in the process as, for example, in the formation
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Figure 16: (a) Experimental size histogram from [161], with a
Gaussian fit (blue line) and a lognormal fit (red line). Panel (b)
shows the data from [162] with a lognormal fit.

of silicon nanocrystals by laser pyrolysis [164], or when
size selection is done after crystal formation in solution, or
when there is a mechanism for producing nonuniform (i.e.,
bimodal) distributions. Nevertheless, in numerous studies of
silicon nanocrystals a Gaussian distribution is assumed. It
can be mentioned that in most cases where a Gaussian fit is
used to model the silicon NC size distribution, there is in fact
no theoretical basis for it. In fact, it can predict unphysical
results (e.g., the Gaussian function does not go to zero when
its argument—the radius or diameter—is negative).

The lognormal function should, therefore, be used in
cases except those in which there are reasons to expect a
different distribution. Since there is a strong dependence of
the bandgap energy on the cluster size, accurate modeling of

the behavior of ensembles of Si NCs does imply that the size
distributions should be well known and correctly modeled.
For modeling luminescent properties of ensembles of silicon
nanocrystals, as discussed below, the lognormal distribution
will be used in every case.

4.2. PL spectra and dynamics

Silicon NCs are characterized by a broad emission spectrum
typically peaked between 800 and 900 nm, with a full-width-
at-half-maximum (FWHM) of as much as 200 nm, even
in “monodispersed” multilayered samples [165]. Although
the size distributions for the monodispersed samples in
[165] were not actually reported, it seems likely that they
would nevertheless be much wider than typically obtained
for CdSe NCs due to the lack of post-synthesis size selection
methods. Therefore, the broad emission band could simply
be due to the range of confined carrier energies in clusters
of different sizes, or to the random nature of the interface
states that may affect the PL spectrum. Single quantum
dots may show homogeneous broadening up to ∼150 meV
at room temperature [19], although this is still narrower
than the overall inhomogeneous broadening due to the size
distribution. Below, we will investigate the spectral effects
of broadening and nonradiative defects on the emission
spectrum of an ensemble of Si NCs.

In order to investigate the theoretical luminescence spec-
trum and dynamics, the NC size distribution for SiO films
annealed at 1000◦C from [47] (lognormal radius parameters
S = 0.21, M = 0.74) was used along with the theory
developed in Sections 1–3. First, the effect of inhomogeneous
broadening was investigated by plotting one spectrum in
which the energies of 106 NCs produced with a lognormal
probability function were binned in histogram form. In this
case, for simplicity the NCs were treated as isolated, and
energy transfer between them was not permitted (purple
curve, Figure 17). The effect of homogeneous broadening
was determined by assigning each cluster a Gaussian range
of emission energies with standard deviations ranging
from 0 to 200 meV and adding all the resulting curves
(Figure 17). As the homogeneous broadening increases, the
emission spectrum became broader, effectively similar to
a “Gaussian smoothening” of the spectrum. Additionally,
the spectrum was observably wider even for small levels of
homogeneous broadening, and the peak shifts to slightly
shorter wavelengths due to the overall shape of the lognormal
function. The spectrum maximizes at shorter wavelengths
than actually observed for a real specimen with this size
distribution because NC-NC interactions were not yet
turned on in the simulation. At this stage, the intent is simply
to demonstrate the effect of homogeneous broadening on
the observed PL spectrum. One may furthermore propose
that the term “monodisperse” may only be used rigorously
in situations in which the width of the PL spectra is governed
primarily by homogeneous rather than inhomogeneous
spectral broadening.

Next, the effect of nonradiative interface defects on the
emission spectra and dynamics was estimated. Two size
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Figure 17: Effect of homogeneous broadening on the simulated
(normalized) PL spectrum. The FWHM of the Gaussian homoge-
neous broadening is shown in the legend.

distributions corresponding to those in [47] (S = 0.21;
M = 0.74) and [162] (S = 0.29; M = 0.22) were used, and
for the present evaluation NC-NC energy transfer was not
permitted. Several different concentrations of nonradiative
defects ranging from 0 to 1020 cm−3 were assigned to the
clusters with probabilities weighted proportionally to the
surface areas. Clusters were checked in random order and
a defect was assigned to a cluster if the random number
was smaller than ANC/Aall NCs. The process was continued
until all defects had been assigned, allowing for multiple
defects on a single particle (Figure 18). Every cluster was then
given an electron-hole pair with a lowest excited-state energy
calculated according to (22). The radiative and nonradiative
rates were calculated from (42) and (23), respectively. Using a
simple Monte Carlo procedure, the probabilities of radiative
and nonradiative decay were calculated for each NC and a
random number generator used to determine whether either
type of decay occurred. This process continued until no
excited carriers remained.

The resulting PL spectra were characterized by an
asymmetric curve shape, tailing toward higher energies due
to the form of the equations leading up to (22) (Figure 19).
The effect of various concentrations of nonradiative surface
defects is clearly observable in the simulated PL spectra.
In addition to decreasing the overall PL intensity, the
effect of the nonradiative centers is to blueshift the peak
wavelength. The spectral blueshift occurs because the larger

Figure 18: Left: Plot of a simulation box, 4000 NCs, initial state.
Dark clusters contain one or more defects. Right: multilayered
sample in a time window between 50–100 µs after the end of
the pump pulse. Yellow NCs had a radiative recombination event
during this time period and white NCs have no charge carriers
remaining. Interaction effects were turned off for these simulations.
The orange NC in the lower left corner of both images is 5 nm in
diameter.

clusters are statistically more likely to contain defects, and
the effect would be even stronger if defects were assigned
with a volume rather than surface-area weighting (e.g., for
volume defects). If extended annealing periods can remove
nonradiative centers without increasing the NC size [166],
then the effect would be to cause an increased intensity and a
redshift of the PL peak, exactly as reported experimentally
[53]. This redshift is not due to increasing cluster size,
but is due to the removal of nonradiative traps. Finally,
the high-energy skewness of the simulated spectra is due
to a combination of effects, including the lognormal size
distribution, and the lack of carrier transfer from small to
large clusters.

As discussed in Section 1, PL decay dynamics in ensem-
bles of Si NCs are characterized by the “stretched expo-

nential” function It/I0 = exp[−(t/τ)β], with values of the
exponent β often between 0.7-0.8. The stretched exponential
has been suggested to be due to a hopping mechanism
in which excitons are temporarily trapped and delayed at
sites in the oxide matrix or at the cluster-oxide interfaces
[32, 167, 168]. However, the stretched exponential decay
could also be due to the distribution of lifetimes in NCs of
different sizes, as has been indicated by a few groups [35,
169]. In the absence of radiative centers, the recombination
energy is given by (22), and the size-dependent radiative
rates were developed in (42). Here we found that when
the defect concentration was set to zero (uppermost line
in Figure 20), values of β = 0.58 and τ = 33µs emerged
naturally. The small lifetime is due to the small size of
the clusters used in this simulation. Also, since interactions
were not enabled, there is no energy transfer from small
to large clusters which would also affect the time constant
(and the value of β). Including defects changed these
values considerably: with increasing defect concentration,
the decays are more precipitous (Figure 20). The stretched
exponential function with low β values can, therefore, be
obtained naturally as a result of the lifetime distribution.
Approximately 100-microsecond-timescale carrier hopping,
as suggested in previous work [168] as an explanation for
the stretched exponential decay, while not ruled out by this
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Figure 19: PL spectra as a function of surface defect concentration for non-interacting NCs. The spectra in the top panel correspond to
µradius = 2.1 nm, varradius = 0.21 nm2; the bottom panel is for µradius = 1.3 nm, σradius = 0.38 nm. The legends show the defect concentration
in cm−3.

analysis, is not required in order to generate the stretched
exponential dynamics, a conclusion that is in agreement with
recent experimental results [169].

This is not meant to imply that energy transfer does
not occur—in fact, it certainly does occur in most samples
as discussed below—but that the shape of the decay curve
is in fact governed by the size distribution even in the
presence of energy transfer. However, energy transfer will
also affect the shape of the decay curve—in the absence of
nonradiative processes shifting the decay to longer lifetimes
and larger β. In fact, in the absence of nonradiative decay,
it is in theory possible to work back from the observed
decay to the lifetime distribution using the inverse Laplace
transform for the stretched exponential function [170]. From
the lifetime distribution one could in principle then work
back to the size distribution if τpl ≈ τrad and the radiative rate
model is accurate. If nonradiative processes are included, the
values of β and τ are sensitive to the size distribution, filling
fraction, and defect concentration. In the discussion below,
the first interaction simulation including Forster transfer and
tunneling will be performed and its effect on the PL spectrum
investigated.

4.3. Interactions

In order to achieve better size control, several studies have
formed silicon nanocrystals using a thin film multilayering
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Figure 20: Simulated PL decays for a specimen with µradius =
1.3 nm, varradius = 0.15 nm2. The lines correspond to defect
concentrations of 0, 1019 cm−3, 1020 cm−3. Interactions were not
permitted, which minizes the effect of defects.
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approach. Instead of depositing a single thick layer of SiOx,
alternating thin layers of SiOx and SiO2 were used. In this
way, the thin SiOx layers are isolated from one another by the
SiO2 buffer layers. Upon annealing, silicon clusters crystallize
in the SiOx layers, but the cluster growth occurs only by
diffusion within the layer as opposed to three-dimensionally.
Although the resulting cluster sizes should clearly be smaller
than for three-dimensional diffusion in a thick layer of the
same composition, it is not immediately clear without more
detailed modeling whether the distribution should, in theory,
be more narrowly distributed with respect to the mean value.
However, narrower distributions have been reported in many
cases [171]. Nevertheless, even in apparently monodispersed
multilayered samples [165] the PL peak is nearly 200 nm
wide at the half maximum.

Through investigating the effect of multilayering of the
Si NCs on the luminescence spectrum, it has been observed
that the PL spectrum and dynamics from silicon nanocrystals
depends on the thickness of both the SiO2 buffer layers and
the active nanocrystal layers, even if the size distributions
remain approximately constant [23, 32, 162]. This is evidence
of an interaction mechanism operating between the clusters:
as the NCs become more isolated—in one direction at
least—by the buffer layers, the PL peak shifts to shorter
wavelengths and there is a change in the decay dynamics
as well, with a possible trend toward higher values of the
exponent β. As already discussed, this has been widely
interpreted in terms of a kind of excitonic hopping or
migration (e.g., see [23]) between clusters, although only
more recently have the mechanisms for carrier transfer
among Si NCs been more clearly elucidated [30, 160].

There are at least two fundamental means by which
closely spaced nanocrystals can exchange charge carriers. The
first mechanism is via tunneling of individual electrons or
holes from one cluster to another. If the two clusters are
approximately the same size (or if the higher levels of a
larger cluster overlap with lower levels of a smaller one),
then the tunneling is resonant, it is equally probable in either
direction, and its rate depends on the negative exponent of
the separation distance. Tunneling is well known to occur
in silicon clusters and forms the basis of silicon nanocrystal
memories [172, 173]. Accurate calculation of the tunneling
rate in ensembles of nanocrystals with different energies
and spacings is a difficult problem, however. The tunneling
rate can be approximated by the Wentzel-Kramers-Brouillin
(WKB) approximation, as has been established for the case
of double quantum wells [174–176]:

wt =
1

ttunnel
=
(

1

2dp

)(

2E

mp

)1/2 16E(V − E)(mp/mb)
[

V +
(

mp/mb − 1
)

E
]2

× exp

[

− 2db

(

2mb(V − E)

ℏ2

)1/2
]

,

(46)

where mb and mp are the carrier effective masses in the
barrier and the particle, dp and db are the particle diameter
and barrier thickness, V is the barrier height, and E is
the carrier energy. This equation (using the corrected form

shown in [160]) has previously been employed to estimate
tunneling rates between asymmetric quantum wells [176],
despite the fact that (46) is strictly applicable only to the
resonant case.

If the energy levels of adjacent clusters are mismatched,
then tunneling must be “assisted” by emission or absorption
of phonons. The tunneling rate dependence on the energy
gap, ∆E, and the phonon energies (within the clusters and
in the SiO2 matrix) for these mechanisms is not well known
and may need to be estimated experimentally if sufficiently
narrow size distributions can be obtained. Recently, com-
puter simulations showed [160] that a large Stokes shift
between absorption and emission in the specimen as a whole
can occur as a result of tunneling between nanocrystals
although, as for the quantum well case, (46) was used
without accounting for phonon-assisted tunneling.

The second fundamental interaction mechanism is res-
onance energy transfer, or “Forster transfer” [177]. In this
mechanism, electron-hole pairs may “migrate” from particle
to particle by a dipole-dipole or higher-order multipole
coupling, that is, the Forster process—which has already
been established for the case of CdSe nanocrystals [178].
Others have shown that it applies to silicon nanocrystals also
[30], although due to the indirect gap the rates can be much
different (typically smaller) than for CdSe. Forster transfer is
the basis for fluorescence resonance energy transfer (FRET)
microscopy, and has been widely investigated in the case of
interactions amongst the rare earth ions [179]. The distance
dependence of the transition dipole transfer rate, wd, is
given by wd = wPL(R0/r)6, where wPL is the PL rate, R0

is the distance at which the transfer rate and the PL rate
are equal, and r is the distance between the edges of the
particles. R0 itself depends on the spectral overlap integral
between the donor (D) and acceptor (A) clusters, and is,
therefore, technically different for any pair of nanocrystals
undergoing this process. Previous work in CdSe nanocrystals
has assumed that the energy levels must be resonant for the
Forster transfer to occur [178], however this is not strictly
true: phonon-assisted Forster transfer has been calculated
for the rare earth ions and should apply to nanocrystals
as well. In the Miyakawa-Dexter theory [180], the resonant
Forster rate is modified by considering the electron-phonon
coupling parameters in the density-of-states function for the
donor and activator ions. In this way, one obtains [180]:

wdip = wpl

(

R0

r

)6

exp(−β∆E), (47)

where β depends on the electron-phonon coupling strength,
and its value can be extracted from a plot of the transfer
rate versus ∆E in silicate glass. From the data provided in
[181], a rough estimate gives α = 0.0018 for rare earth ions
embedded in SiO2, where α indicates internal transitions and
is about twice the value of β [180]. Unfortunately, the value of
β is much more difficult to obtain experimentally for silicon
NCs, as a result of the size distributions (i.e., every NC is
slightly different; whereas all rare earth ions of the same type
have identical properties).

The Miyakawa-Dexter model has been widely discussed
and applied extensively in the case of transfer between
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different rare earth ions [182–184]. In the present case, one
may assume that the energy difference is lost to phonons
in the surrounding silicate glass, as would be the case for
isolated “point” dipoles such as the rare earth ions. As the
energy gap grows, the transfer rate decreases exponentially,
and experimentally, for rare earth ions at least, this trend
shows little variation despite the many simplifications in
the Miyakawa-Dexter model [185]. The effective Forster
distance, R0, is more difficult to obtain, since it is not
practical to calculate the overlap integral (including phonon
sidebands) for every possible pair of interacting particles in
a sample. Therefore, an experimental approach is taken to
approximate a single R0 value for all pairs of particles. By
varying the distance between layers of interacting particles
and using the geometrical constraints imposed by interacting
layers (as opposed to two point dipoles) [186], an estimated
value of R0 = 5 nm was used in the simulations. Obviously,
this is a significant simplification and it must be stressed
that the results remain approximate until phonon-assisted
multipole transfer between all possible pairs of NCs can be
calculated in a reasonable way.

The simulation setup was done exactly as described pre-
viously: every particle was populated with a single electron-
hole pair at time t = 0. This time, the effect of nonradiative
traps was not included in order to show only the energy
migration effects. Next, for every nanocluster the probabil-
ities associated with each of the four processes described
above (radiative decay, nonradiative decay, tunneling, and
Forster transfer) were calculated in random order (the NCs
themselves are also checked randomly) and compared to
a flat-probability random number between 0 and 1 to
determine whether one of these four events occurred. When
the calculation started, the simulation timestep was 1 ×
10−12 s. After iterating through all the particles, the time
increments by one picosecond and the process repeats. If ten
complete iterations through all the clusters (in randomized
order each time) produce no events of any kind, the timestep
is multiplied by a factor of ten. In this way, it is possible
to overcome the otherwise impossible computational limits
associated with the vastly different rates for the different
processes. The simulation ends when there are no electron-
hole pairs left. When a particle radiates, the energy of the
outgoing photon is stored for the spectral output function,
and the time is recorded in order to plot the decay of the
luminescence. Finally, a set of tests were performed to find
the minimum sample size for which edge effects (due to the
finite box size) became unobservable. A simulation of 5,000
particles was found to provide sufficiently short computation
time (∼12 hours on a 2.6 GHz CPU) and no observable edge
effects. Auger effects were not simulated, which effectively
approximates the behavior of a lightly pumped ensemble.

Figure 21 shows the PL spectrum with and without
the Forster and tunneling “energy migration” interactions.
In the first few nanoseconds, numerous tunneling events
and dipole-dipole interactions occurred. The rates for these
processes for adjacent nanocrystals are many orders of
magnitude faster than the radiative decay processes. Some
nonradiative trapping can also occur early on in the simu-
lation. Even after only a few picoseconds, there was already
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Figure 21: Effect of carrier migration on the PL histogram of a
silicon NC ensemble with a lognormal distribution S = 0.21, M =
0.74, and volume fill = 35%. The PL spectrum is strongly redshifted
as a result of tunneling and Forster transfer in this densely packed
ensemble. For this simulation, there were no non-radiative defects
and infinte barriers were assumed. The “after interactions” result
agrees reasonably well with the observed CW PL from a specimen
with the same size distribution and volume fill [47].

a small fraction of charged nanocrystals due to electron or
hole tunneling events. Many nanocrystals had no remaining
charge carriers, and many others—predominantly the larger
ones—had multiple electron-hole pairs. After 500 ns, many
thousands of tunneling and dipole events occurred and most
of the smaller clusters were devoid of charge carriers. In
the microsecond timescale, radiative decay joins the longer-
range energy transfer events, and by 100 microseconds only
a few excited nanocrystals remained. The long wavelength
of the emitting states (compared to absorption)—as well
as a decrease in the overall skewness of the PL peak—in
dense ensembles of Si NCs can originate predominantly
from energy migration, indicating that the large Stokes
shift in ensembles of Si NCs can be attributed, at least in
part, to these effects. We have also found that the degree
of “stretching” of the PL decay depends on the resulting
ensemble of particles with electron-hole pairs; in the absence
of nonradiative effects the PL lifetime is longer but if defects
are introduced the PL lifetime can be dramatically shorter in
the presence of energy migration, due to the greater statistical
probability for defects to occur on larger NCs. Based on the
initial results presented here, it would seem that the combi-
nation of theory with computational simulations may be one
of the best tools to obtain a more thorough understanding of
the complicated and controversial luminescence behavior of
ensembles of silicon clusters.

At this point, although instructive, the simulations
have obvious limitations that we are currently working
to overcome. For example, we have not incorporated the
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effects of Si=O surface bonds, which again may cause the
simulated spectra to peak at wavelengths slightly too short,
especially for smaller NCs. An obvious limitation of the
model is the estimate of a single value of R0 for all Forster
interactions. The fact that phonon-assisted Forster processes
among silicon NCs remain beyond theoretical scope [30],
required a further assumption that the phonon-assisted rate
had a similar dependence on ∆E as for the case for rare-earth
ions in silicate glass. Higher-order multipole interactions
were also ignored. Finally, unlike the case in which infinite
barriers were assumed [160], here the resulting spectra are
narrower and redden than observed experimentally.

Nevertheless, the implications of these simulations are
clear. First, the two energy transfer mechanisms dominate
the PL spectrum when the clusters are separated by less than
2 nm, and can still be significant in the case of Forster transfer
over distances of 5 nm or more. Therefore, in most of the
experimental work reported to date, NC-NC interactions
strongly affect the PL spectrum. Multilayer simulations such
as that shown in Figure 18 have also been performed, and
the results are consistent with the experimentally observed
spectral blueshift and increased lifetime in multilayered
samples. The decay exponent β shows a more complicated
behavior however; its value depends on the distribution of
lifetimes which in turn depends on the size distribution and
the nonradiative defect concentration. Next, in most samples
the largest clusters act as depressions in the energy landscape
and can attract numerous charge carriers. Under high pump
rates, therefore, the Auger problem can become significant
when the clusters are reasonably closely separated. Next, the
simulations can easily be extended to model the sensitizing
action of the NCs on erbium ions; this work is currently
ongoing and uses the Forster mechanism of energy transfer.
The results seem consistent with the reports of optical gain
(ASE) in very short timescales before significant amount of
energy transfer can occur (as long as the size distribution is
sufficiently narrow to have a narrow enough gain profile) but
for CW stimulated emission the NCs must be sufficiently well
separated to prevent carrier migration and buildup on the
largest clusters. The largest NCs are also the ones most likely
to contain a defect, so their effects on the emission spectrum
and gain profile are extremely strong in most samples where
carrier interactions occur. Therefore, in the final section of
this paper we briefly discuss the controversial observations
of optical gain in silicon nanocrystals, and the implications
of the theoretical results in Sections 1–3 and the simulations
of Section 4 for the development of photonic devices relating
to stimulated emission in silicon nanocrystals.

4.4. Stimulated emission in Si NCs

There have been numerous recent reports of optical gain in
silicon nanocrystals [165, 187–189], and stimulated emission
was reported in [190], although to our knowledge the results
are not fully understood. Many of these studies deduced
the presence of gain by analyzing data from the variable
strip length (VSL) technique [191]. This method has been
discussed in great detail in the literature, owing to the many
possible sources of error. In general, a planar waveguide film

containing silicon nanocrystals is optically pumped from
above (parallel to the specimen surface normal). The pump
laser beam is first incident on a variable-length slit, such that
only a diffraction-limited strip of the sample is pumped. The
waveguided PL signal is then collected from the edge of the
specimen in the direction parallel to the axis of the excitation
strip. The signature of optical gain is a superlinear increase in
the PL intensity (marked by a distinct transition) for constant
pump flux as the strip is lengthened. This is due to the
stimulated emission from excited nanocrystals interacting
with photons originally emitted at the farther end of the
excitation strip. This method, along with some corrections,
has been one of the most widely used methods to support
optical gain in Si NCs. The other method that has been used,
although somewhat less extensively, is the standard pump-
probe technique. In that case, the transmission of a probe
beam is measured as a function of the probe power, with the
transition from loss to gain marked by a shift from positive to
negative absorption of the pump. This method has been used
both for Si NC waveguides and in single-pass measurements.

The presence (or absence) of SE in Si NCs is a subject
of much debate. After the initial report [5], which used both
the VSL and the single-pass pump-probe methods to report
a net modal gain for a silicon nanocrystal film of 100 cm−1,
a net material gain of 104 cm−1, and a gain cross section
per NC of ∼10−16 cm2, numerous groups have searched for
optical gain in ensembles of Si NCs. The results of these
investigations have not been entirely consistent. Currently,
there seems to be some possible evidence in favor of SE in an
Auger-limited time window of a few ns after intense pulsed
excitation, with gain cross sections per NC of ∼10−16 cm2

in the extreme short wavelength side of the broad emission
band [189]. However, in comparison to the case for CdSe
NCs, where there is clear and unequivocal observations of SE
(e.g., marked by a sudden superlinear increase of PL intensity
with pumping power in a narrow wavelength range), in the
case of Si NCs the signatures of SE have been extracted from
fairly elaborate and complicated experiments, and the results
have shown significant specimen-to-specimen variation. A
brief examination of the limiting factors and key specimen
requirements for SE in ensembles of silicon NCs would be
of use with the ultimate objective demonstrating, unequivo-
cally, stimulated emission in nanocrystalline silicon.

Gain profile

The calculations discussed in Sections 1–3 indicate several
key factors relating to optical gain in Si NCs. First, for
size distributions produced by standard physical vapor
deposition or ion implantation methods (including multi-
layering) the gain profile becomes extremely wide. This
reduces the gain coefficient and the gain cross section per
NC in the sample. Dal Negro et al. [187], for example,
reported a gain coefficient of 1600 ± 300 cm−1 at λ =
750 nm, with a gain cross section at this wavelength of 3 ×
10−16 cm2 per NC. Since the overall PL spectra generally
peak at longer wavelengths, only a small fraction of the NCs
may actually emit within the reported gain window. Most
of the nanocrystals, therefore, may not contribute to SE
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and are in fact, detrimental as a result of confined carrier
absorption, scattering, and other loss mechanisms they can
cause. If Si NCs could be prepared with a size distribution
similar to that for CdSe (e.g., 5% standard deviation), the
theoretical gain coefficient per nanocrystal in the specimen as
a whole could increase by a fairly large factor, simply because
a greater number of NCs could contribute to the overall gain
at the peak wavelength. Therefore, true monodispersivity
(i.e., overall emission profile controlled by homogeneous
broadening) is likely to be a requirement for producing SE
in ensembles of Si NCs.

Secondly, the size distribution presents an inherent prob-
lem for laser excitation of the specimen. With the exception
of erbium doped waveguides that used LED excitation [192],
SE or gain is reported as a result of pumping the sample with
a laser. Laser excitation implies a narrow excitation energy
window, and only NCs that happen to have a transition
within that window will be absorbing. In a given sample with
a wide distribution, therefore, many of the NCs may not
absorb and cannot contribute to the overall specimen gain.
Furthermore, these “unexcited” NCs can enhance the energy
migration or other undesired effects discussed above.

The cluster-cluster energy transfer mechanisms found
to be important in the overall luminescence spectrum also
have implications for the presence of SE in ensembles of Si
NCs. Generally, a high-pump rate is necessary to observe
the transition from loss to gain. Under such high rates,
one can assume a relatively large number of excitons per
NC (we hesitate somewhat to suggest a number as high as
100) [5] but at least 1 exciton per NC is readily possible.
In this case, charge carriers will be rapidly redistributed
through the tunneling and Forster mechanisms, on the sub-
nanosecond time scale for a typical volume filling fraction
of NCs (the volume fraction ultimately controls the average
NC-NC spacing). Therefore, in a short time after the initial
pump pulse, one has the accumulation of charge carriers
on the largest NCs as a result of tunneling and Forster
interactions. This drastically decreases the number of NCs
that can contribute to the gain spectrum and can lead
to enhanced nonradiative trapping and undesirable Auger
interactions. This may be one reason that gain may only
occur in very short timescales, as suggested in several recent
experimental works [189], and only in certain specimens but
not in others. In such cases, gain may only build up before
the energy migration processes have occurred, and will be
very susceptible to the average NC-NC spacing (and size
distribution, as above) from specimen to specimen. The fact
that the gain, if present, occurs on the short-wavelength side
of the PL band is also consistent with the idea that the gain
occurs before the charge carriers transfer to the larger and
“redder” nanoclusters. By increasing the NC-NC spacing it
should be possible to limit the energy migration problem,
due to the strong distance dependence of the main processes.
This may be accomplished by, for example, freeing the Si NCs
via an HF etch and redepositing them at a known (low) filling
fraction, an idea we are currently exploring. Other methods
are also possible.

Additionally, the level degeneracies calculated in
Section 3 imply a further key limiting factor for SE in silicon

nanocrystals. With a two-fold degeneracy or more, more
than 1 exciton per NC must be present, on average, in order
to switch from loss to gain, which in turn raises the problem
of the Auger interactions. This number becomes higher as
the degeneracy of the electron and hole levels increases. In
the case of CdSe NCs, Klimov et al. [193] have shown that
one way to avoid this problem is to separate electrons and
holes in a core-shell nanostructure, thereby creating a large
crystal-field shift of the absorption spectrum. Such problems
(and solutions) may well apply to Si NCs also.

5. CONCLUSION

There is now an enormous wealth of data on ensembles
of silicon nanoclusters. The difficulties in understanding
the optical properties of these materials are caused by
the indirect gap of silicon, the large homogeneous, and
inhomogeneous broadening, the possible effects of radiative
centers and nonradiative traps, the cluster size dependence
of the lifetimes, and energy transfer. All these processes must
be considered when evaluating a luminescence spectrum; it
is insufficient to study the luminescence as a function of
cluster size only, although size undoubtedly plays a role.
Unfortunately, owing to the complexity of the materials,
there are many contradictory observations and much uncer-
tainty in the literature. We hope that, with this paper, we
have been able to summarize some of the main theoretical
and computational results that should help to work out the
problems and issues with our understanding of ensembles
of silicon NCs. We hope that the combination of theory and
simulation, new single particle spectroscopies [20], and new
synthesis methods [194] will eventually lead to unequivocal
and readily reproducible reports of stimulated emission in Si
NCs.
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“Temperature-dependent study of spin-dependent
recombination at silicon dangling bonds,” Applied Physics
Letters, vol. 64, no. 13, pp. 1690–1692, 1994.

[106] M. Lannoo, C. Delerue, and G. Allan, “Nonradiative recom-
bination on dangling bonds in silicon crystallites,” Journal of
Luminescence, vol. 57, no. 1–6, pp. 243–247, 1993.

[107] D. Goguenheim and M. Lannoo, “Theoretical calculation of
the electron-capture cross section due to a dangling bond at
the Si(111)-SiO2 interface,” Physical Review B, vol. 44, no. 4,
pp. 1724–1733, 1991.

[108] W. Kohn and J. M. Luttinger, “Theory of donor levels in
silicon,” Physical Review, vol. 97, no. 6, p. 1721, 1955.

[109] W. Kohn and J. M. Luttinger, “Theory of donor states in
silicon,” Physical Review, vol. 98, no. 4, pp. 915–922, 1955.

[110] A. Baldereschi, “Valley-orbit interaction in semiconductors,”
Physical Review B, vol. 1, no. 12, pp. 4673–4677, 1970.

[111] S. T. Pantelides and C. T. Sah, “Theory of localized states
in semiconductors. I. New results using an old method,”
Physical Review B, vol. 10, no. 2, pp. 621–637, 1974.

[112] R. A. Faulkner, “Higher donor excited states for prolate-
spheroid conduction bands: a reevaluation of silicon and
germanium,” Physical Review, vol. 184, no. 3, pp. 713–721,
1969.

[113] Z. Zhou, M. L. Steigerwald, R. A. Friesner, L. Brus, and M. S.
Hybertsen, “Structural and chemical trends in doped silicon
nanocrystals: first-principles calculations,” Physical Review B,
vol. 71, no. 24, Article ID 245308, 8 pages, 2005.

[114] S. Ossicini, E. Degoli, F. Iori, et al., “Simultaneously B-
and P-doped silicon nanoclusters: formation energies and
electronic properties,” Applied Physics Letters, vol. 87, no. 17,
Article ID 173120, 3 pages, 2005.

[115] L. E. Ramos, E. Degoli, G. Cantele, et al., “Structural
features and electronic properties of group-III-, group-IV-,
and group-V-doped Si nanocrystallites,” Journal of Physics:
Condensed Matter, vol. 19, no. 46, Article ID 466211, 12
pages, 2007.

[116] F. Iori, E. Degoli, R. Magri, et al., “Engineering silicon
nanocrystals: theoretical study of the effect of codoping with
boron and phosphorus,” Physical Review B, vol. 76, no. 8,
Article ID 085302, 14 pages, 2007.

[117] Q. Xu, J.-W. Luo, S.-S. Li, J.-B. Xia, J. Li, and S.-H. Wei,
“Chemical trends of defect formation in Si quantum dots:
the case of group-III and group-V dopants,” Physical Review
B, vol. 75, no. 23, Article ID 235304, 6 pages, 2007.

[118] V. A. Belyakov and V. A. Burdov, “Chemical-shift enhance-
ment for strongly confined electrons in silicon nanocrystals,”
Physics Letters A, vol. 367, no. 1-2, pp. 128–134, 2007.

[119] V. A. Belyakov and V. A. Burdov, “Anomalous splitting of the
hole states in silicon quantum dots with shallow acceptors,”
Journal of Physics: Condensed Matter, vol. 20, no. 2, Article ID
025213, 13 pages, 2008.

[120] S. Y. Ren, “Quantum confinement of edge states in Si
crystallites,” Physical Review B, vol. 55, no. 7, pp. 4665–4669,
1997.

[121] B. Delley and E. F. Steigmeier, “Quantum confinement in Si
nanocrystals,” Physical Review B, vol. 47, no. 3, pp. 1397–
1400, 1993.

[122] T. Blomquist and G. Kirczenow, “Poisson-Schrödinger and
ab initio modeling of doped Si nanocrystals: reversal of the
charge transfer between host and dopant atoms,” Physical
Review B, vol. 71, no. 4, Article ID 045301, 9 pages, 2005.

[123] F. Trani, D. Ninno, G. Cantele, et al., “Screening in semi-
conductor nanocrystals: ab initio results and Thomas-Fermi
theory,” Physical Review B, vol. 73, no. 24, Article ID 245430,
9 pages, 2006.

[124] G. Cantele, E. Degoli, E. Luppi, et al., “First-principles study
of n- and p-doped silicon nanoclusters,” Physical Review B,
vol. 72, no. 11, Article ID 113303, 4 pages, 2005.

[125] F. Iori, E. Degoli, E. Luppi, et al., “Doping in silicon
nanocrystals: an ab initio study of the structural, electronic
and optical properties,” Journal of Luminescence, vol. 121, no.
2, pp. 335–339, 2006.

[126] Y. Hada and M. Eto, “Electronic states in silicon quantum
dots: multivalley artificial atoms,” Physical Review B, vol. 68,
no. 15, Article ID 155322, 7 pages, 2003.

[127] D. V. Melnikov and J. R. Chelikowsky, “Quantum confine-
ment in phosphorus-doped silicon nanocrystals,” Physical
Review Letters, vol. 92, no. 4, Article ID 046802, 4 pages, 2004.

[128] M. Lannoo, C. Delerue, and G. Allan, “Screening in semi-
conductor nanocrystallites and its consequences for porous
silicon,” Physical Review Letters, vol. 74, no. 17, pp. 3415–
3418, 1995.
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silicon grains in SiO2 matrix: ultrafast photoluminescence
and optical gain,” Journal of Non-Crystalline Solids, vol. 352,
no. 28-29, pp. 3041–3046, 2006.

[189] P. M. Fauchet, J. Ruan, H. Chen, et al., “Optical gain in
different silicon nanocrystal systems,” Optical Materials, vol.
27, no. 5, pp. 745–749, 2005.

[190] M. H. Nayfeh, N. Barry, J. Therrien, O. Akcakir, E. Gratton,
and G. Belomoin, “Stimulated blue emission in reconstituted
films of ultrasmall silicon nanoparticles,” Applied Physics
Letters, vol. 78, no. 8, pp. 1131–1133, 2001.
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