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Abstract

Entanglement is a fundamental property of quantum mechanics, and is a primary resource in

quantum information systems. Its manipulation remains a central challenge in the development of

quantum technology. In this work, we demonstrate a device which can generate, manipulate, and

analyse two-qubit entangled states, using miniature and mass-manufacturable silicon photonics. By

combining four photon-pair sources with a reconfigurable six-mode interferometer, embedding a

switchable entangling gate, we generate two-qubit entangled states, manipulate their entanglement,

and analyse them, all in the same silicon chip. Using quantum state tomography, we show how our

source can produce a range of entangled and separable states, and how our switchable controlled-Z

gate operates on them, entangling them or making them separable depending on its configuration.

Keywords: silicon quantum photonics, integrated quantum information processing,

entanglement, photonic qubits, quantum photonics

(Some figures may appear in colour only in the online journal)

1. Introduction

Photons remain a promising vehicle for the development of

next-generation quantum technology [1, 2]. Integrated

quantum photonics, with its intrinsic phase stability and

miniature devices, is necessary to bring linear optics to the

large scale [3–5]. Several integrated photonic platforms have

emerged to solve this problem, including silica-on-silicon [3,

6–8], direct-write glass [9–13], lithium niobate [14–17], sili-

con nitride [18, 19] and silicon-on-insulator [20]. Silicon

quantum photonics promises to simultaneously achieve the

required functionality, performance, and scale.

Several important quantum optical functionalities have

already been shown with high performance in silicon. Photon

pairs can be generated using spontaneous four-wave mixing

(SFWM) [21–26], and interfered with high visibility [26–30].

Single-photon [31] and pump-rejection [32, 33] spectral demul-

tiplexers, as well as two-mode interferometers [34], have been
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demonstrated with very high extinction. Finally, single-photon

detectors, based on superconducting nanowires have shown

excellent performance on silicon waveguides [35, 36]. The very

high refractive index contrast of silicon-on-insulator waveguides

yields micron-scale components (e.g. [37]), while miniature ring

resonator SFWM sources [22], and quantum interferometric

networks [38] facilitate devices on a very large scale.

The integration of entangled qubit sources with entan-

gling quantum logic, together on a common platform, is an

important next step. Here, we show a new method for gen-

erating path-encoded, variably entangled two-qubit states. We

perform multi-qubit quantum logic on these states and study

their entanglement. We implemented this scheme on a

reconfigurable, silicon photonic device to generate a wide

range of two-qubit states. We integrated this source with

arbitrary state preparation, a switchable two-qubit gate, and an

interferometer for tomographic analysis. The implemented

quantum circuit is similar to the one reported in [39].

We tested the device’s quantum logic capabilities with

several experiments. We analysed the source performance

using reversed-Hong–Ou–Mandel-type (RHOM) [28, 40]

quantum interference, and qubit tomography on a wide range

Figure 1. Device and apparatus overview. (a)Operating principles. (i)Non-degenerate spontaneous four-wave mixing, (ii)quantum circuit
description. (b)Schematic of the silicon quantum photonic chip. A pump laser is coupled into the device, coherently pumping two spiralled
RHOM sources which produce two photons entangled or separable in path. These are fed into a reconfigurable linear optical network which
can entangle or disentangle them, and analyse the output. (c)Off-chip apparatus. A continuous wave (CW) tunable laser source (TLS) is
polarisation controlled (PC), amplified (EDFA), filtered and coupled onto the chip using lensed fibres and spot-size converters. Signal, idler,
and pump photons coupled back into fibre in the same way, then spatially separated using dense wavelength-division multiplexers (DWDM),
detected using superconducting nanowire single-photon detectors (SNSPD), and the output signal is analysed by a time interval analyser
(TIA). (d)Electron (i)and optical (ii)micrographs of the device.
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of possible states. We followed this with an exploration of the

on-chip quantum logic, with the switchable two-qubit gate in

both entangling (ĉz) and non-entangling (Î ) configurations,

and using the purity (P) [41], the CHSH parameter (S) [42]

and the Schmidt number (K ) [43] as diagnostic metrics.

2. Device structure and operation

A schematic of the device is shown in figure 1(a). It com-

prises a reconfigurable source of two path-encoded entangled

photons, controlled by the parameters fb, fT and fB. The
source is followed by a reconfigurable interferometer, able to

implement any two-qubit projector (including entangled

projections). This second part of the device can be divided

into three sections: arbitrary single qubit gates, a switchable

post-selected controlled-Z (cz) gate [44], and final single-

qubit unitaries, used to implement projectors for quantum

state tomography, to reconstruct the output state.
The device comprised ´500 220 nm2 waveguides,

directional couplers (approximate length m45.9 m), a wave-

guide crossing (>20 dB isolation), and resistive metallic

heaters (length m54.0 m). It was coupled to fibre via edge

coupling, fibre lenses, and polymer spot-size converters.

Electrical connections were achieved through multi-contact

electrical probes and m200 m pitch on-chip gold pads

(approximately m´120 200 m2). Fabrication of the device

proceeded as in [31].

The experimental setup is presented in figure 1(b). Pho-

tons are generated on the chip via SFWM, pumped by an

amplified continuous-wave tunable laser, and filtered to

remove in-band noise. An average facet-to-facet transmission

of »-28 dB was observed. The dominant sources of loss

were scattering at the chip facets, and propagation loss in the

spiralled source waveguides. Inside the device the light was

reconfigurably manipulated by an interferometric network,

composed of evanescent coupler beam-splitters and thermo-

optic phase-shifters [38, 45]. Photons were collected from the

device, demultiplexed and separated from the pump using

dense wavelength-division multiplexers, detected using

superconducting nanowire detectors [46], and finally con-

verted into coincidence counts by a time-interval analyser.

2.1. Photon-pair generation

The strong nonlinear properties of silicon waveguides are
well known [47]. SFWM, an effect of the c( )3 nonlinearity, is

now commonly used to produce photon pairs in silicon

quantum photonic devices [21, 28].

Figure 2. Quantum interference for the two sources, measuring

coincidences from the outputs ¢OUTT and ¢OUTB , obtained by

pumping each RHOM source and scanning the source internal phase,
fT or fB. The imperfect interference can be explained in terms of

imbalance in the on-chip evanescent coupler beam splitters.

Figure 3. Two-qubit state properties, direct from the source, as a
function of the input state control phase, fb. (a)Balance between the

ñ∣00 and the ñ∣11 components of the state, see equation (2).

(b)Schmidt number. (c)CHSH parameter. Maximal entanglement
occurs when the state is balanced, when f p=b 2. Error bars were

computed as one standard deviation of 200 trials around each
tomographic measurement, each with a random sampling of Poisson
photon noise. We assume a control phase uncertainty of p 50.
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In the non-degenerate SFWM process used here, two

photons from a bright pump are annihilated, producing two

correlated photons with different wavelengths (figure 1(a)). The

two generated photons, ‘signal’ and ‘idler’, emerge spectrally on

either side of the pump, conserving energy and momentum. In

our experiment, spiralled 21mm long waveguides were used to

produce photon-pairs, with the pump, signal, and idler photon

wavelengths being 1551, 1547 and 1555nm. These photons

were generated in a continuous spectrum and the chosen

wavelengths were post-selected by the off-chip demultiplexers.

2.2. Entangled qubits generation

Our device uses a new scheme to generate entangled path-

encoded states, which can subsequently be interfered, using pairs

of non-degenerate photons. Pump laser is distributed between

two reverse-HOM structures using a reconfigurable power
splitter (splitting ratio fb[ ]sin 22 ). Each RHOM contains two

spiralled waveguides and a thermal phase shifter, as in [28]. The

internal RHOM phases (fT and fB) were set to p 2, such that
the produced photon-pairs emerged deterministically split, one in

each output waveguide, and in a state symmetrical between

signal and idler photons. fb allows us to control the balance of

photon-pair emission between the two RHOM structures, and so

to control the entanglement present in the two-qubit output state.

Following figure 1(b), if f p=b , photons will be gen-

erated only in the top RHOM, and the photon number output

state, after the waveguide crossing, will be ñ∣1010 , or ñ∣00 in

the qubit basis. On the other hand, if f =b 0, only the bottom

RHOM generates photons, leading to ñ = ñ∣ ∣0101 11 . Finally,

if f p=b 2, we obtain the maximally entangled state:

F ñ º ñ + ñQ Q∣ (∣ ∣ )00 e 11 2i , where Θ is a fixed phase factor

due to the chip’s intrinsic path-length mismatch. Thus, the

output state from the entangled qubit generator is

y b bñ = ñ + - ñQ∣ ∣ ∣ ( )00 e 1 11 1i

which can be continuously varied across a wide range of

separable and entangled states, depending on the balance

parameter, β. The balance depends on the square of the power

division of the state control Mach–Zehnder interferometers

(MZI) (controlled by the phase fb), due to the two-photon

dependence of SFWM:

b
f

f f
=

+

b

b b

( )

( ) ( )
( )

sin 2

sin 2 cos 2
. 2

2

4 4

2

2.3. Quantum logic and analysis

The state yñ∣ is fed into a two-qubit circuit, composed of

single-qubit rotations, and a switchable entangling gate. We

implemented the arbitrary rotations on each qubit by cas-

cading phase-shifters and MZI. These were used to realise R̂z
and R̂y rotations, respectively, obtaining an arbitrary ( )SU 2

with the combination ˆ · ˆ · ˆR R Rz y z.

Figure 4. Reconstructed output states for various source and gate
configurations. States (a), (c), (e)are seeded by an entangled source
state, while (b), (d), (f)are seeded by a ñ∣11 source state. States (a),

(b)bypass the gate; (c), (d)pass through the gate set to Î ; and (e),
(f)pass through the gate set to ĉz, and include the phase information,
below. State properties are compiled in table 1. Device configura-
tions producing each set of states are shown at right.
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We implemented a switchable entangling gate using a

scheme based on [44], but replacing the 1/3 beam-splitters

with tunable-reflectivity MZIs. In this way, we can switch the

gate’s controlled-Z operation on and off. When on, the cz

operation succeeds with probability 1/9. In the remaining 8/9
cases, non-qubit states are generated, which are filtered by the

coincidence-counting post-selection. Note that only the on

( q =( )cos 1 3cz ) and off ( q = -( )cos 1cz ) gate configurations

produce unitary operations. The two qubit gate is followed by

rotations (parametrised by qMz3, qMy2, Î { }M T B, ) used to

implement quantum state tomography, via the method

described in [48].

2.4. Calibration

Since the phase shifter parameters (phase-per-electrical-

power, and phase offset) varied between phase modulators, a

calibration process was essential. Measuring the bright-light

transmission from the inputs (IN and ¢IN ) to the outputs

(OUTT , OUTB, ¢OUTT , ¢OUTB ), we were able to characterise

the electro-optic parameters of each thermal phase shifter, in a

similar way to that described in [49]. We learned the para-

meters associated with each phase according to the scheme:

f q q q q

f f q q
q q q q
q q q

¢  ¢ ¢

 ¢ ¢




b

( )

IN OUT , OUT : , , , ,

IN OUT , OUT : , , ,

IN OUT : , , ,

IN OUT : , , . 3

T B B By Ty

T B T Tz Bz

T Ty Tz Tz

B By Bz Bz

1 CZB 1 CZT

1 1

CZC 2 2 3

2 2 3

We observed instabilities in the calibration data, due to changes

in electrical contact resistance between our probe card and the

on-chip gold pads. To mitigate this, we periodically recalibrated

the on-chip parameters. Metallurgical wire-bonded contacts can

prevent this in future. Low levels of thermal and common-

ground crosstalk were observed but not compensated. Recent

results suggest that crosstalk can be reduced through efficiency

improvements, passive compensation methods, and by current

driving of the thermal phase shifters [38, 49, 50].

The offsets of the tomographic z-rotation phases (qTz3,
qBz3) were left at zero, meaning that additional random (fixed)

z rotations were applied to each qubit before measurement.

This choice was necessitated by the combined difficulty of:

(1) calibrating the nonlinear source phase with bright light,

and (2) doing this for each setting of the gate, in the device’s

finite stability time.

3. Results

3.1. Source performance

One of the key metrics of a photon-pair source is its pair-

generation efficiency [51]. This quantity is obtained from the

photon-pair detection rate as a function of the input power,

accounting for loss and detector efficiency. Inside the 1 nm

wide signal and idler spectral bands, we measured a bright-
ness of -20 kHz mW 2.

The indistinguishability between photon-pair sources is

also important. The contrast of the RHOM block’s quantum

interference fringes indicates the indistinguishability of the

block’s constituent photon-pair sources. We measured

RHOM quantum interference fringes on each source by

configuring the chip to maximise photon flux at the ¢OUTT
and ¢OUTB outputs, then varying fT and fB to obtain the
fringes of figure 2. We pumped the bottom source via the

auxiliary input ¢IN , and the top source via IN and the state-

control MZI, integrating each point for 5s. We observed

= C 93.2% 1.4% and 72.9%±0.8% fringe contrasts,

respectively, for the top and bottom sources. Here,

= - +( ) ( )C N N N Nmax min max min , where Nmax and Nmin are

the accidental-subtracted maximum and minimum fitted count

rates. The reduced contrasts can be explained by deviations

(from the ideal h = 50%) in the input evanescent couplers of

each RHOM structure; they are compatible with reflectivity

values of h » 43% and h » 36% for the top and bottom

sources, respectively.

3.2. Quantum logic

We next quantified the device’s control over entanglement.

Quantum state tomography was used to extract the purity
( r= ( ˆ )P Tr 2 [41]), the CHSH parameter, a strict measurement

of quantum correlations, and the Schmidt number, analogous

to the number of pure states represented in a given density

Table 1. Purity, Schmidt number, CHSH parameters and fidelity for a variety of measured states. The Schmidt number and CHSH parameter
indicate entanglement. >S 2 indicates the presence of non-local correlations [42], while K indicates the number of coefficients in the
Schmidt decomposition of the state [43]. The fidelities ¢F reported are computed against the ideal state optimised over local Rz rotations, to
compensate for the intrinsic random phase factor on each qubit.

Source state Gate Purity P Schmidt number K CHSH S Fidelity ¢F

ñ∣00 Bypassed 0.995±0.012 1.012±0.011 1.577±0.072 0.973±0.011

ñ∣00 Î 0.946±0.031 1.034±0.017 1.465±0.064 0.962±0.016

ñ∣11 Bypassed 0.998±0.008 1.004±0.006 1.511±0.049 0.984±0.007

ñ∣11 Î 0.949±0.055 1.048±0.037 1.601±0.121 0.948±0.031

ñ + ñ(∣ ∣ )00 11 2 Bypassed 0.864±0.019 1.905±0.022 2.560±0.037 0.909±0.028

ñ + ñ(∣ ∣ )00 11 2 Î 0.832±0.040 1.936±0.025 2.538±0.072 0.900±0.026

++ñ∣ ĉz 0.931±0.036 1.657±0.045 2.560±0.078 0.873±0.038

ñ + ñ(∣ ∣ )00 11 2 ĉz 0.900±0.071 1.166±0.055 1.907±0.137 0.839±0.013

5
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matrix. These last two metrics show how separable the state

is. The CHSH inequality, r( ˆ )S 2 [31, 42, 52], is violated

when the state r̂ cannot be represented by a local classical

theory, indicating its entangled quantum nature. The Schmidt

number, on the other hand, is an entanglement monotone and

can give further evidence of the entangled or separable nature

of r̂ [42, 43, 53]. CHSH parameter values were obtained by

computationally selecting an optimal measurement set for

each of the states under analysis [31].

We analysed a wide set of separable and entangled

quantum states produced by the two-qubit source. Fixing

f f p= = 2T B , we varied the phase of the state control MZI,

fb, between 0 and π to prepare variably entangled states in the

form of (1). When b = 0 or 1, separable states result, while

when b = 1 2, a maximally entangled state is produced.

States obtained directly from the source (bypassing the gate)

showed good agreement with (1). These were measured using

the ¢OUTT and ¢OUTB auxiliary outputs (see figure 1(b)).

Measured and calculated variations of the balance, Schmidt

number, and CHSH parameter are plotted in figure 3, versus

the state control parameter fb.
In figure 4 we show a sample of density matrices arising

from the main device configurations, and we list their prop-

erties (purity, Schmidt number, CHSH parameter, and fidelity

with the ideal z-rotated state) in table 1. Errors were obtained

from Monte-Carlo simulations, based on 200 samples of

Poissonian photon noise and accompanying tomographic

reconstructions [54]. As expected, the Î -mode gate did not

substantially affect the properties of the input states. The

ĉz-mode gate, however, acted to entangle separable states,

and separate entangled states, though it also degraded the

purity. The limited contrast in the quantum interference of the

two RHOM sources contributed to this reduction, by occa-

sionally depositing two photons into one ‘qubit’. Gate and

tomography calibration errors likely also contributed.

Since the entangling gate operates on the input state’s

phase, we must examine with care the phase of the output

state, r[ ˆ]arg . The intrinsic and uncalibrated z-rotations on

each qubit result in complicated phase pictures (figures 4(e)

and (f)). To compare these to their ideal counterparts, we

computationally applied z zÄˆ ( ) ˆ ( )R Rz t z b to the reconstructed
output state, and optimised the fidelity over local z-rotations

via zt and zb. The resulting fidelities are listed in table 1 and
the process is shown visually in figure 5.

4. Discussion

We have presented a silicon-on-insulator quantum photonic

device which embeds capabilities for the generation, manip-

ulation, and analysis of two-qubit entangled states, by lever-

aging on-chip linear and nonlinear optics. We showed how

the device can prepare a variety of entangled and separable

states, and operate on them using a switchable entangling

gate. We demonstrated a new reconfigurable source of vari-

ably path-entangled non-degenerate photon pairs, using

RHOM quantum interference, and used on-chip quantum

state tomography to measure its performance. The integration

of this source with a complex integrated linear optical net-

work enabled both the entanglement and disentanglement of

the on-chip generated quantum states.

Device performance was hindered by imperfect beam-

splitters and high coupling losses, leading to issues with

stability, and ultimately limiting the measurable purity and

entanglement. However, the use of more advanced fibre

couplers, such as those based on ultra-low loss gratings [55],

together with adaptive methods, employing multiple imper-

fect MZIs for the realisation of a very high-quality one [34],

can overcome these limitations, and enable high-performance,

Figure 5. Detail of phase entanglement, separability of states shown
in figures 4(e) and (f). Since the cz gate operates on phase, random,
fixed, local z-rotations obscure the underlying performance. The
connection between the measured and ideal states, via numerical
optimisation of zt and zb, is shown for (a) the gate-entangled, and

(b) gate-disentangled states. In both cases, the ideal density matrix
magnitude is constant, r =∣ ˆ ∣ 1 4i j, .
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large-scale silicon photonic quantum devices in the near

future.
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