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Abstract

The objective of this paper is 3D shape understanding from single and multiple im-

ages. To this end, we introduce a new deep-learning architecture and loss function, Sil-

Net, that can handle multiple views in an order-agnostic manner. The architecture is fully

convolutional, and for training we use a proxy task of silhouette prediction, rather than

directly learning a mapping from 2D images to 3D shape as has been the target in most

recent work.

We demonstrate that with the SilNet architecture there is generalisation over the num-

ber of views – for example, SilNet trained on 2 views can be used with 3 or 4 views at

test-time; and performance improves with more views.

We introduce two new synthetics datasets: a blobby object dataset useful for pre-

training, and a challenging and realistic sculpture dataset; and demonstrate on these

datasets that SilNet has indeed learnt 3D shape. Finally, we show that SilNet exceeds

the state of the art on the ShapeNet benchmark dataset [6] at generating silhouettes in

new viewpoints, and we use SilNet to generate novel views of the sculpture dataset.

1 Introduction

Inferring 3D shape from an image is one of the core problems of computer vision. An-

other of the many benefits of deep learning has been a resurgence of interest in this task.

Many recent works have developed the idea of inferring 3D shape given a set of classes (e.g.

cars, chairs, rooms) and a large dataset of synthetic 3D models of those classes for train-

ing [7, 10, 13, 29, 32, 37, 39, 40]. This modern treatment of class based reconstruction

follows on from the pre-deep learning classic work of Blanz and Vetter for faces [2], and

later for other classes such as semantic categories [19] or cuboidal room structures [11, 17].

In this paper we extend this area in two directions: first, we consider 3D shape inference

from multiple images, rather than only a single one (though we consider this as well); second,

we consider the quite generic class of 3D undulations – smooth curved surfaces – and apply

this to the case of piecewise smooth textured sculptures. An example is shown in figure 1.

To achieve these extensions we introduce a deep learning architecture, SilNet, that can

learn to encode 3D shape from one or more input images. The encoding can be used to gen-

erate new views or a 3D rendering by modifying only the decoder. We also introduce a proxy

loss based on the silhouette, and show that the network can be trained to encode 3D shape
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Figure 1: Each image and θ pair is processed jointly by SilNet to generate novel views of

the sculpture. Zoom in for more detail.

using this 2D loss without explicitly including a 3D representation in the decoder. This is an

advantage since the 2D loss is not then limited by the resolution of the 3D representation. To

train the network we generate, and pre-train on, a large dataset of ‘blobby’ objects, and then

fine tune SilNet on datasets for new tasks, such as for sculpture rendering.

Specifically, our contributions include the following. First, a new deep learning architec-

ture (sec. 4) for multi-view shape encoding that handles a variable number of views at train

and test-time in an order-agnostic manner; Second, two new synthetic datasts: a large scale

dataset of simple blobby textured objects that can be used for pre-training the network, and a

new challenging dataset of realistic sculptures with complex illumination and a wide variety

of shapes (sec. 5). The sculpture dataset is used to demonstrate that our proxy task (sec. 3) is

sufficient to learn and encode 3D shape, and enable silhouettes to be generated in new views

for a wide variety of sculpture shapes and materials, as well as generating 3D representa-

tions; Third, we show (sec. 6) that using multiple views improves results over single views,

and that the architecture is capable of generalising at test time to more or fewer views. The

experiments also demonstrate the benefit of using the blobby object dataset for pre-training.

Finally, we compare to the state of the art on the ShapeNet benchmark dataset [6].

2 Related work

There is a large body of work in the computer vision and graphics community on the area of

reconstructing a 3D object, or generating new views of an object, given a set of images or

silhouettes as input [5, 15, 22, 23, 25, 28, 31, 33, 34, 38]. Unlike modern approaches, these

methods require multiple views of the object at test (inference) time to constrain the opti-

misation, and cannot predict parts of the object not visible in the input views (for example

the back of the object if only the front is imaged). The exceptions are methods that employ

strong prior information about the properties of a particular object class and consequently

can proceed from a single view for inference [2, 3, 30].

The modern generation of deep learning approaches can be loosely divided into those

that learn transformations on images to render new views, or those that generate 3D models.

In both cases the learning has access to a large number of images of an object class (e.g. cars

or chairs) that are usually synthetic. One of the first approaches for generating novel views

based on one image using deep learning was that of Tatarchenko et al. [35] which could ren-

der chairs in novel viewpoints and interpolate between views. This approach was improved
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on to model the transformation of pixels as a flow field by Zhou et al. [41]. However, using an

image based approach suffers from the problems of the smooth L1 and L2 losses which blur

out the higher details. As a solution Park et al. [27] propose using GANs as the loss function.

A number of methods have been shown to be successful in generating simple 3D models

from images of a set of classes. These approaches use priors based on the given object classes

to fill in the unknown information using a deep network. For example the works by [10, 13,

19, 29, 32, 37, 39, 40] use deep learning architectures to learn a mapping from an image to

voxels, point clouds, meshes, or geometry images. They differ in their choice of loss function

(e.g. Euclidean, GANs, ray consistency, voxel-wise softmax etc.) and architecture design.

The work of Moreno et al. [26] predicts a set of latent variables (e.g. the object class, lighting

effects) using a neural network which is used by their generative model to render the scene.

Most of these works focus on generating objects from a single image. SilNet, on the

other hand, handles a variable number of views at test time, and the results improve given

more views. In this regard, SilNet is most similar to 3D-R2N2 [7] which learns a 2D to 3D

mapping from images to voxels. 3D-R2N2 was also able to combine a variable number of

views at test time, but it uses a RNN which is impacted by the order of the views and may

forget salient information from the initial views. Rezende et al. [29] also considers generat-

ing models from multiple views, but they again use an LSTM which has the same limitations

(and their architecture also receives additional information, as they use depth images as op-

posed to 2D rendered images). In contrast, our approach can input a variable number of

views in an order-agnostic manner. Though the image-based approach of Zhou et al. [41]

allows for the combination of multiple views, this is done following the decoder as each

image generates its own prediction of the output image. They also train two separate models

for the single/multi-view cases. In contrast, we explicitly allow the decoder access to the

information from each view and SilNet handles a variable number of views at test time.

Moreover, many of the current approaches are class-specific [19, 26, 29, 32, 35] and re-

quire separate training for each class (car, chair, etc.). As a result, an important question is

to what extent these architectures have actually learnt about shape in general. For example,

Yan et al. [40] consider how their architecture performs on new categories unseen during

training; they note that it performs as well on the new categories as the old only when the

new categories are very similar to the original ones.

3 The silhouette: a proxy for learning to encode 3D shape

We consider the task of generating new views of a 3D object, given one or more images. In

particular we ask the network to predict the object silhouette given only the angle of the new

viewpoint. The key idea is that in order to carry out the task, the network will need to encode

3D shape, though we do not explicitly represent 3D shape or have a training loss on this.

By concentrating only on the silhouette, the network does not need to learn to predict image

intensities, so the learning (and inference) are easier. We also avoid the need for geometry

images [32] or 3D voxel representations during training.

Geometrically, if the network can predict the silhouette for multiple views, then it must

at least encode the visual hull [23] of the object – this is the maximum 3D object that is

silhouette-equivalent to the given images. How well SilNet has encoded 3D shape can then

be probed by asking it to create silhouettes of new objects at new viewpoints or by extracting

the implicitly learned 3D shape. Our approach is inspired by the work of Koenderink on

inferring 3D properties of smooth surfaces from their occluding contours [21].
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Figure 2: Training framework. Each image/θ pair is processed by a separate encoder f

to output a feature vector. These are combined (in our case, max-pooled) by φ to obtain a

combined feature vector. This is decoded by g to generate the silhouette of the object in a

new view θ ′.

Loss Function. We are given a set of images I1 . . . IN of an object taken at angles θ1 . . .θN

(see fig 1) and ground truth silhouette S, where Sx,y ∈ 0,1 where 0 means object and 1 non-

object. We wish to learn a function gθ ′

that generates S at an angle θ ′ (see fig 2). A pixel-wise

binary cross-entropy loss L minimises the difference between the ground truth and predicted

silhouette: L(S,gθ ′

) = ∑x,y gθ ′

x,y log(Sx,y)+(1−gθ ′

x,y) log(1−Sx,y).

4 The SilNet Architecture

In order to generate the silhouette from multiple views, SilNet uses the encoder/decoder ar-

chitecture, outlined in figure 2. It consists of an encoder f , which can be replicated as many

times as there are numbers of views. As the parameters of all the encoders are shared, this

corresponds to no increase in memory. The encoders are combined in a pooling layer φ
which max pools over the feature vectors for each tower to learn a combined feature vector.

This allows SilNet to take into account multiple images, as it can attend to the important

features from each image in the pooling layer. Finally a decoder gθ ′

up-samples from the

feature vector to generate a 2D image of the silhouette in a new viewpoint θ ′. A detailed

overview of the architecture for one target is given in figure 3. The learned feature vector

can also be used to generate a 3D latent shape representation using a 3D decoder. This latent

shape is projected to a 2D image of the silhouette using a projection layer described below.

Note, that due to the pooling layer the number of images used as input can vary (and indeed

may differ between train/test time).

Each image and θ pair is encoded in a separate encoder tower. The images are resized

to 112× 112. The theta parameter is encoded as (sinθ ,cosθ) to represent a distribution of

angles such that 0◦ is closer to 359◦ than 180◦. These theta values are passed through two

fully connected layers, broadcast and concatenated to the corresponding tower.

In the decoder, the feature vector is up-sampled and followed by a pixel-wise sigmoid.

An additional convolutional layer is added following the final two up-sampling layers [9].

4.1 3D Decoder

In order to extract the 3D object and ascertain whether the 2D features encode information

about 3D shape, SilNet’s decoder is modified such that SilNet learns a latent representation

of the 3D shape while the encoder is kept fixed. In the 3D decoder, the combined feature

vector is up-sampled using 3D convolutional transposes to generate a 57× 57× 57 volume

V which is followed by a sigmoid layer (for full details, please see the extended paper). This
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Figure 3: Silhouette prediction in the case of a single view. In the case of multiple input

views, the feature vector ti resulting from the encoder for image Ii is max-pooled over the

multi-towers to give t, as shown in figure 2. This feature vector is up-sampled by the 2D de-

coder which is parameterised by θ ′. Convolutions and convolutional transposes are followed

by ReLU units except for the last convolution which is followed by a pixel-wise sigmoid.

volume can be imagined as a 3D representation of the object, which can be projected to ob-

tain the silhouette using the projection layer described below. Finally, a binary cross entropy

loss over the projected silhouette is used, as for the 2D decoder. Note, there is no direct loss

on a 3D representation, as in many previous methods.

Projection layer Tθ ′ . Given a voxel assumed to represent a 3D shape, we wish to project

this to a 2D image to use our loss function over silhouettes. V is first rotated by θ ′ us-

ing a nearest neighbour sampler [18]. Then, the min value over all depth values for each

pixel location is used to determine whether the pixel is filled or not. Assuming orthographic

projection and rotation θ ′ about z, the projected image pixel p j,k is given by

Vθ ′(i, j,k) =V (
⌊

cos(θ ′)i− sin(θ ′) j+0.5
⌋

,
⌊

sin(θ ′)i+ cos(θ ′) j+0.5
⌋

,k)

p j,k = min
i

Vθ ′(i, j,k)
(1)

where Vθ ′(i, j,k) denotes the rotated box. This is a differentiable composition of functions,

so the pixel-wise classification loss can be back-propagated through this layer.

A similar layer was investigated by [12, 29, 37, 40]. Yan et al. [40] treat the silhouette as a

regression problem and use a Euclidean loss. Tulisani et al. [37] use a ray potential to enforce

consistency constraints. Gadelha et al. [12] treat the volume as opaque, using an exponential

function to combine the summation of values in the volume at each pixel location followed

by a GAN as their loss function. Rezende et al. [29] use a learned projection module which

requires them to constrain the latent volume at train time using multiple output images. Our

approach differs from previous work, as we use the the min function (as does [40]), and also

we treat the silhouette as a binary classification problem (as opposed to a regression problem)

which is simpler to train. We further demonstrate in our experiments (section 6) how we

can achieve good results without latently generating a 3D shape, and we can incorporate

additional views at test time to achieve superior results to the work of Yan et al. [40].

5 Datasets

Three synthetic datasets are used. Sample renderings from each are given in figure 4.
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Sculpture 

Dataset

ShapeNet

Blobby Obj 

Dataset

Figure 4: Samples from each dataset exhibiting the sculptures’ variety and complexity.

Blobby objects1. This consists of smooth (undulating) surfaces created using implicit sur-

faces. It contains 11,706 blobby objects split 75/10/15 into train/val/test. There are a very

small number of images (five) per object so that SilNet must reason about 3D shape to solve

the proxy task. The images are rendered under orthographic projection using Cycles in

Blender [4]. Five views are created as follows: first, three light sources are randomly dis-

tributed about the object (and from view to view); second, the camera is rotated about the

z-axis and the θ value for each rendering chosen uniformly at random from [0◦,120◦]; finally,

a complex texture model is used; it exhibits subsurface scattering and has diffuse/specular

reflections. This dataset is also used for pre-training the network for other tasks.

Sculpture dataset1. We compiled a new dataset of 307 realistic sculptures from Sketch-

FAB [1]. Again, it is split 75/10/15 into train/val/test. Images are rendered for five views as

done for the blobby objects. These sculptures have no canonical orientation unlike ShapeNet

(e.g. in ShapeNet chairs are aligned such that 0◦ corresponds to the chair facing the viewer).

ShapeNet. ShapeNet [6] is a large dataset of 3D models divided into sub-categories. To

compare this work to Yan et al.’s [40], we use their subdivision, train/val/test split and ren-

derings. Their renderings of ShapeNet objects are simpler than those of the sculpture dataset.

Their objects have no complex reflectance properties, the lighting conditions are constant,

and they render 24 views at fixed (not random) 15◦ intervals about the z-axis for each object.

6 Experiments

This section evaluates the performance of SilNet on the blobby object dataset, the sculpture

dataset, and also compares SilNet to the work of Yan et al. [40] on ShapeNet. We demon-

strate that using multiple towers improves results in all of these scenarios.

Evaluation measure. Results are reported using the mean Intersection-over-Union (IoU)

for the testing partition of the datasets. The IoU for a given predicted silhouette S and ground

truth silhouette S̄ is defined as
∑x,y(I(S)∩I(S̄))

∑x,y(I(S)∪I(S̄))
where I is an indicator function that equals 1 if

the pixel corresponds to an object. This is then averaged over all images for the mean IoU.

1Available at http://www.robots.ox.ac.uk/~vgg/data/SilNet/.

http://www.robots.ox.ac.uk/~vgg/data/SilNet/


WILES, ZISSERMAN: SILNET 7

GTGT GTInput Images Input Images Input ImagesPrediction Prediction Prediction

Figure 5: Sample silhouette predictions of SilNet trained with two towers on the blobby

object dataset. The left hand images are the input views, the right-hand the ground-truth

silhouette and the central ones SilNet’s prediction. The rightmost column also demonstrates

how increasing the number of input views improves the results.

Training/Testing setup. Datasets are divided randomly into the train/val/test splits such

that objects are in one set. This ensures the generalisability of SilNet to unseen objects.

When training with N towers, N +1 views of an object are randomly selected. The mask of

one of these views is used as the silhouette to be predicted, and the rest are given as input

images. We also re-train SilNet with the entire train/val set when reporting results.

When comparing results for differing numbers of towers, we similarly randomly choose

an object and N + 1 views for N towers. With each new tower we include an additional

unselected view. We ensure these choices are consistent when comparing variants of SilNet.

The parameters of SilNet are initialised with Xavier initialisation [14]. For the blobby

objects, SilNet is trained using SGD with a momentum of 0.9, weight decay of 0.001, and

batch size of 16. The blobby object dataset is then used to initialise a network for fine-tuning

on the sculpture dataset. The Adam solver [20] is used for training with a learning rate of

1e−5, β1 = 0.9,β2 = 0.999 for the 2D case and SGD with a momentum of 0.9, weight decay

of 0.001, and a batch size of 32 for the 3D case. Data augmentation is included in the form

of jittering the y-location of the object and subtracting off the mean image.

6.1 Blobby Objects

There are 5 views of an object in the train/test set at different, random viewpoints, so to gener-

ate the silhouette in new views, SilNet must implicitly understand the object’s 3D shape. For

example, a bump (e.g. a nose) may not impact the object boundary in the given view (e.g. the

full face frontal view) but lies on the silhouette in the new view (e.g. the profile). To predict

the silhouette, SilNet must recognise the bump and thereby understand the object’s 3D shape.

We first consider how the architecture copes when the number of towers at training or

testing time is varied. Results are given in table 1. It can be seen that the performance is high,

and that SilNet trained with two or three towers, for example, does indeed generalise to one,

two, or three towers at test time. The major reason SilNet performs better given more views

at test time is the problem of self-occlusion (fig 5). Continuing the example above, from the

back of the head the nose is hidden, but it is visible in the silhouette corresponding to the

profile view. With more views, it is more likely that the hidden part of the object (the nose)

will be partially visible, allowing SilNet to construct the silhouette in the new viewpoint.

We found that max pooling outperforms average pooling when combining towers (see ta-

ble 1). Max-pooling allows the combined feature vector to jointly record information about

the viewpoint and associated embedding enabling a more direct path from the output view-

point to the relevant (e.g. closer) input image embeddings. In the average pooling case, this

viewpoint information is averaged out and lost. Using minor modifications to the approach
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Image 

corresponding to 

view ϴ'
Input Images Max-Pool Reconstruction Average-Pool Reconstruction

Figure 6: Reconstructions of the original input images when generating the new viewpoint

shown (left), using a method similar to [24]. The two reconstructions per viewpoint

demonstrate different random initialisations. It is clear that the network is more easily

able to reconstruct the original images using the max pooling architecture, implying that it

records a joint embedding of image and viewpoint when generating the new image.

described by Mahendran and Vedaldi [24], we can visualise the different properties of the

two networks (fig 6). Given the inputs, we run a forward pass through the network and ex-

tract vector X (the feature vector following the FC layer and adding the output angle θ ′ – see

fig 3). We then fix the angles and generate the most likely input images starting from noise

that will regenerate X . Given the three ground truth viewpoints, SilNet with max pooling can

reconstruct the original input images, as the association between image embeddings and an-

gles is kept. However, SilNet with average pooling struggles to reconstruct the input images.

Num. of towers tested with

1 2 3

trained with 1 tower 0.833 0.832 0.830

trained with 2 towers 0.885 0.927 0.934

trained with 3 towers 0.872 0.925 0.936

avg (2 towers) 0.883 0.895 0.894

Table 1: Mean IoU of variants

of SilNet on the blobby object

dataset. Higher is better. The

top three variants use max (not

average) pooling to combine

feature vectors.

Id # towers pre-training Num. of towers tested with

trained with 1 2 3 4

SilNet2D

(A) 1 View blobby objects 0.755 0.780 0.780 0.775

(B) 2 Views – 0.703 0.746 0.758 0.761

(C) 2 Views blobby objects 0.735 0.821 0.832 0.834

(D) 3 Views blobby objects 0.720 0.815 0.830 0.836

SilNet3D

(E) 2 Views – 0.711 0.745 0.751 0.755

(F) 2 Views † 0.732 0.770 0.773 0.776

(G) 2 Views blobby objects 0.713 0.777 0.788 0.793

Table 2: Mean IoU of variants of SilNet on the sculp-

ture dataset. Higher is better. † indicates the encoder

from SilNet2D (C) was used and frozen during training.

6.2 Sculpture Dataset

Experiments. Results are given in table 2. We first demonstrate that a curriculum learning

strategy of pre-training on the blobby object dataset and then fine-tuning on the sculpture

dataset improves results in both the 2D case (SilNet2D) and 3D case (SilNet3D). Compare

row B to row C for example in the 2D case. Here the 3D case refers to the architecture

which uses 3D convolutions and the projection module from which we can recover a latent

3D shape, and the 2D case refers to when the shape is only learnt implicitly – sec. 4. Second,

we demonstrate that the features learned in the 2D case for the sculpture dataset generalise

to the 3D case. More precisely, we fix the encoder trained in the 2D case, and train the 3D

decoder separately. The results of this (row F) are better than training SilNet3D from scratch

(row E). This implies that the feature vectors learned in the 2D case encode something about



WILES, ZISSERMAN: SILNET 9

GT GT GT

Input Images 2D 3D Input Images 2D 3D Input Images 2D 3D
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Figure 7: Silhouette predictions for SilNet2D(C)/SilNet3D(G) trained on two views on the

sculpture dataset. The left hand images are the input test views, the ones boxed in red

the ground-truth silhouettes and the right-hand ones SilNet2D/3D’s predictions. Each row

corresponds to adding an additional view, which improves SilNet’s predictions.

Input Images

0°              22.5°          45°            67.5°        90°            112.5°         135°           157.5°

Input Images

 180°            202.5°       225°           247.5°         270°          292.5°         315°           337.5°
0°              22.5°               45°                67.5°                90°             112.5°              135°           157.5°

 180°             202.5°              225°              247.5°               270°            292.5°             315°                337.5°

Socrates: Torso of 

Heracles:
Additional 

Images

Figure 8: SilNet3D’s predictions for the given input images. Additional images in more nat-

ural viewpoints are provided to orient the reader. The latent 3D volumes V are shown in red.

These are up-sampled 3× and rendered using view dependent texturing [8]. The renderings

are given in the blue squares (the black pixels indicate that this portion of the sculpture is

not visible in the given images). SilNet is trained on images with θ/θ ′
∈ [0◦,120◦], so it has

to extrapolate for θ ′ > 120◦. Zoom in for details.

3D shape, and also that the pre-training for F is better than the no pre-training of E. However,

we note that the 2D case consistently outperforms the 3D case. We hypothesise this is due to

the 2D decoder having fewer weights to learn – simplifying training – and not being forced

to explicitly represent the 3D shape – allowing for flexibility. Finally, the results demon-

strate quantitatively that SilNet trained using N towers generalises to more/fewer towers at

test-time; this is demonstrated visually in figure 7. The improvement with more views is

again a result of self occlusion, as in the blobby object dataset.

An application: novel view synthesis. Although generating 3D models is not the thrust

of this work, we exhibit how well SilNet3D(G) extrapolates to novel views in figure 8. Please

see the extended paper for more examples.

6.3 ShapeNet

In this section, the generalisability of the multi-tower portion of SilNet is compared against

the architecture of Yan et al. [40] on the ShapeNet chair test set and we demonstrate SilNet

performs better. We only compare to Yan et al. [40] as theirs is the only publicly available

state-of-the-art model that uses segmentation masks to infer 3D shape from one image with-

out strong priors on the object class. Their silhouette S̄ is a real-valued mask corresponding
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to how likely a pixel is to be object or background. They first train their encoder to differen-

tiate between different classes and then train the decoder for the given class.

To compare, SilNet2D with two towers is trained on their full set of train classes. SilNet

was trained from scratch on the entire ShapeNet train subset. One variant of SilNet was then

fine-tuned on the chair subset, which is the same manner that Yan et al. [40] use to train their

model. To use SilNet’s classification loss, the publicly available masks from [40] are thresh-

olded at S̄x,y > 0.5. To compare the generated silhouettes, we use their implementation of the

IoU metric
∑x,y I(Sx,y)×S̄x,y

∑x,y((I(Sx,y)+S̄x,y)>0.9)
. Table 3 compares the results and demonstrates that SilNet

is comparable given only one view (though it was trained with two) but performs better with

more views. Some visual examples are given in figure 9. Interestingly, given more views,

SilNet without fine-tuning performs better than SilNet fine-tuned on the chair set, implying

that more data and more views yield better generalisability.

Fine-tuned on: Num. of towers tested with

1 2 3 4 5

Yan et al. [40] chair 0.797 – – – –

SilNet2D chair 0.792 0.806 0.809 0.809 0.809

SilNet2D – 0.788 0.818 0.828 0.833 0.835

Table 3: Mean IoU on the chair ShapeNet class. Higher is better. SilNet is comparable in

the 1-view case but performs consistently better given more views.

Figure 9: Performance of SilNet2D on the ShapeNet chair test set. The input images (and

angles) are kept constant while the angle corresponding to the output view θ ′ is rotated

between [0◦,360◦]. The input images are the coloured images to the left and each row

corresponds to the addition of another view, which improves SilNet’s predictions.

7 Conclusion

We have demonstrated a novel architecture, SilNet, for performing 3D shape understanding

using neural networks that works in challenging scenarios (e.g. a small number of images,

wide baselines, and complex illumination). The proxy task of producing silhouettes in new

views forces SilNet to encode 3D shape without ever having to see a ground-truth 3D volume

or even an object in more than five views from a restricted azimuth range. Moreover, SilNet

trained with N > 1 towers is able to combine the information from multiple images at test

time and performance improves accordingly. Both SilNet2D/3D generate visually compelling

and consistent silhouettes in new views on our challenging and realistic sculpture dataset.

Interestingly, SilNet2D outperforms SilNet3D on our proxy task implying improvements to

the naive 3D decoder should be investigated (e.g. [16, 36]).
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