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Abstract  

Colorectal cancer (CRC) is the fourth leading 

cause of mortality, world-wide. Gut bacterial 

dysbiosis being one of the major causes of CRC 

onset. Gut microbiota produced metabolites, e.g. 

folate and butyrate play crucial roles in cancer 

progression and treatment, and thus, need to be 

considered for effective CRC management. A 

potential cancer therapy, i.e., use of silver 

nanoparticles (AgNPs), imparts cytotoxic effects 

by inducing high intracellular reactive oxygen 

species (ROS) levels. However, the simultaneous 

interactions of AgNPs with gut microbiota to aid 

CRC treatment has not been reported thus far. 

Therefore, in this study, variation of intracellular 

ROS concentrations, in Enterococcus durans (E. 

durans), a representative gut microbe, was 

studied in the presence of low AgNP 

concentrations (25 ppm). Increases were 

observed in intracellular hydroxyl radical and 

extracellular folic acid concentrations by 48% 

and 52%, respectively, at the 9thhour of microbial 

growth. To gain a systems level understanding of 

ROS metabolism in E. durans, genome scale 

metabolic network reconstruction and modeling 

was adopted. In silico modeling reconfirmed the 

critical association between ROS and folate 

metabolism. Further, amino acids, energy 

metabolites, nucleotides, and butyrate were found 

to be important key players. Consequently, the 

anticancer effect of folic acid was experimentally 

studied on HCT116 (i.e., colon cancer cell line), 

wherein, its viability was reduced to 79% via 

folate present in the supernatants from AgNP 

treated E. durans cultures. Thus, we suggest that 

the inter-relationship between gut bacteria and 

AgNP-based cancer treatment can be used to 

design robust and effective cancer therapies. 
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Introduction  

Colorectal cancer (CRC)1 is characterized as a 

chronic consequence of abnormal gut bacterial 

metabolism and constitution (1). It is the fourth 

leading cause of cancer related mortality (2), and 

is defined as a complex association of tumor cells, 

non-neoplastic cells and a large amount of gut 

microbes such as Streptococcus bovis, 

Helicobacter pylori, Enterecoccus faecalis etc. 

that render carcinogenic effects (1, 3, 4).Various 

factors such as infection, diet and lifestyle can 

disrupt the symbiotic association between the 

host and the resident gut microbiota, leading to 

cancer (4). 

The gut microbiome is composed of microbes 

that inhabit the gastrointestinal tract (GIT), which 

aid in human digestion, and serve as a 

metabolically active organ (5, 6). 

Bifidobacterium and Bacteriodes are the most 

abundant gut microbial species inhabiting the 

human gut (6). Gut microbes are also markers of 

homeostatic alterations often associated with 

chronic diseases. Perturbations in the 

composition and metabolic activity of the gut 

microbes, which are facultative or strict 

anaerobes, often result in neurodegenerative 

disorders (7) and cancer (4, 8). 

The gut microbiome that consists of facultative or 

strict anaerobes (4, 8, 9) synthesizes and supplies 

essential nutrients such as short chain fatty acids 

(SCFAs) including butyrate, vitamin K and B 

                                                           
1 Abbreviations used are, CRC: colorectal cancer, 

ROS: reaction oxygen species, GEMs: genome-scale 

metabolic model, COBRA: constraint-based 

group vitamins (B12, folate, riboflavin) (10). 

Amongst these metabolites, SCFAs and folic acid 

have been reported to be of importance in CRC 

initiation, progression and treatment (11, 12). 

Butyrate acts as a carbon source for colonocyte 

growth/maintenance (13), and protects against 

colon carcinogenesis, by modulating cancer cell 

apoptosis, cell proliferation and differentiation by 

inhibiting histone deacetylase (14). On the other 

hand, folic acid maintains the genetic integrity of 

normal colonocytes, and plays a crucial role in 

CRC management and treatment (it is often used 

as an adjunct with chemotherapeutic drugs to 

suppress tumor growth) (15).However, the effect 

of low concentrations of folic acid on cancer cell 

viability has not yet been reported. This study 

reports the unexpected effect of low folic acid 

levels on HCT 116, a colon cancer cell line. 

 

Conventional cancer therapies such as 

chemotherapy and radiotherapy induce cytotoxic 

effects on the healthy cells, as well, due to lack of 

selectivity or high dosages (16). Nano-

biomedicine is emerging as a novel anti-tumor 

therapeutic alternative (17), which can reduce the 

above side-effects on healthy cells. But 

nanoparticles at high concentrations can be toxic 

to human cells, predominantly due to lethal 

oxidative stress (18). However, at low 

concentrations (e.g. 32 ppm) silver nanoparticles 

(AgNPs), showed no significant toxicity to 

reconstruction and analysis, FBA: flux balance 

analysis, FVA: flux variability analysis 
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normal cells (19), and thus, can be of immense 

therapeutic importance. The impact of the 

interactions between gut microbes and AgNPs to 

aid CRC treatment has not been explored so far. 

Nanoparticles (NPs) induce cytotoxicity in the 

cancer cells by generation of oxidative stress due 

to excessive reactive species (RS) (18, 19), or by 

disrupting the cell membranes (20). RS are a class 

of highly reactive chemical species consisting of 

reactive oxygen species (ROS), e.g. superoxide, 

(O2
-.), hydroxyl radicals (.OH), reactive nitrogen 

species (RNS), and others (21). Induced ROS, at 

appropriate levels, can increase metabolite 

production (31, 32), and hence, they can be 

expected to improve the production of anti-cancer 

metabolites (such as folate, butyrate) from gut 

bacteria. Thus, AgNPs, when administered for 

colon cancer treatment, are expected to be 

effective by two mechanisms: (i) by directly 

inducing cytotoxicity in cancer cells, and (ii) by 

increasing the anti-cancer metabolite production 

by gut bacteria through induced ROS (Fig. 1). 

The role of gut microbiota as a producer of folic 

acid or other anti-cancer metabolites, in the 

presence of oxidative stress has not been studied. 

Among the members of the Enterococci genus, E. 

durans is classified as a non-pathogenic 

inhabitant of the colon, rarely associated with 

human infections (22). Recent studies (23) 

suggest that E. durans is a beneficial gut resident 

because it is a potential anti-inflammatory 

probiotic in gut inflammatory disorders therapy. 

This study reports the effects of AgNP generated 

oxidative stress on metabolism of E. durans, 

which were investigated through experiments and 

further refined and directed via genome-scale 

metabolic modeling approach. 

Constraint-based reconstruction and analysis 

(COBRA) method remains the most preferred 

systems biology tool to interrogate phenotypic 

properties of the target organism (37). Genome-

scale metabolic network (GEMs) integrates the 

biochemistry, genomic, and genetics of the 

modeled organism, and serves as the best 

platform to gain a systems understanding of the 

cellular /molecular phenomenon (24). GEMs for 

numerous human microbes have been compiled 

successfully using COBRA framework (25). The 

effect of changed dietary components and 

environments on cellular robustness can be 

readily simulated and analyzed (26). Recently, 

COBRA models of 773 most prominent gut 

microbes were made available through AGORA 

(Assembly of gut organisms through 

reconstruction and analysis). AGORA is a 

resource of GEMs that is effective to understand 

metabolic diversities of microbial communities 

(27). These large scale metabolic networks, so 

far, have not taken into account the probable 

effects of reactive species on the gut bacterial 

metabolism.  

In this study, the effects of AgNP induced 

oxidative stress on the production of anti-cancer 

metabolites (i.e., folic acid and butyric acid) was 

investigated in Enterococcus durans. A 

combinatorial extensive wet lab experimentation 

and genome-scale metabolic modeling approach 

was adopted to analyze the (i) impact of ROS on 
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the cellular metabolism of the bacterium, and (ii) 

the cytotoxic potential of low folic acid levels as 

potential cancer treatment strategy. 

Results  

2.1 Characterization of AgNPs and their 

interaction with E. durans 

The sizes and stability of AgNPs in solution were 

first characterized using dynamic light scattering 

(DLS) and zeta potential measurements, 

respectively. The average particle size was 185±6 

nm, and the zeta potential of the bacterial medium 

with nanoparticles was –13±0.95mV. The 

topographic details and composition of 

nanoparticle treated bacterial cells were 

examined through scanning electron microscopy 

(SEM). The interaction between nanoparticles 

with the bacterial cells was observed in the SEM 

micrographs (Fig. 2). The composition analysis 

showed 9.7% Ag content in the biomass. 

2.2 Lower concentrations of silver nanoparticles 

had no major deleterious effects on E. durans 

The above characterizations provided the 

information on the relevant properties of AgNP. 

The effect of AgNP concentration on the growth 

and cell viability of E. durans was next studied 

by exposing the bacterial cultures to different 

concentrations of AgNPs between 25ppm to 

250ppm (Fig. 3). The specific growth rate for the 

cultures treated with lowest concentration 

(25ppm) of nanoparticles was 0.198±0.03 h-1. 

The specific growth rate reduced by 8% at 25 

ppm compared to control. Further, the specific 

growth rate decreased with increasing 

concentration of nanoparticles. At 250 ppm 

concentration, the specific growth rate was 

0.08±0.016 h-1, which indicates the deleterious 

effects of nanoparticles at high concentrations. 

However, the lower concentrations of AgNPs in 

the range studied did not adversely affect the 

growth of the organism. 

2.3 Exposure of E. durans to lower AgNP 

concentration increases intracellular ROS 

generation 

Although the AgNPs at 25 ppm did not 

significantly affect growth, they may alter the 

relevant aspects of cellular metabolism. For 

example, nanoparticles are known to induce 

intracellular ROS generation, viz. superoxide and 

hydroxyl radicals, inside bacterial cells (28).The 

intracellular levels of superoxide and hydroxyl 

radicals were quantified at 25ppm, and the results 

are presented in Fig. 4. At the 6thhour (mid log 

phase) of nanoparticle treated bacterial culture 

growth, 0.273±0.01 nanomoles/(g-cell) 

intracellular superoxide concentration was 

generated, thereby showing an increase by 13% 

in the specific superoxide level, when compared 

with control. The specific intracellular hydroxyl 

radical level showed48% increase (1.057±0.02 

nanomoles/g-cell) in the late-log phase, when 

compared to control. Thus, intracellular reactive 

species levels were altered at lower AgNP 

concentration, without affecting the cell viability. 

2.4 Reactive oxygen species generation alters 

intra- and extra-cellular folate concentrations in 

bacterial cells 

We then studied the effects of nanoparticle (at 25 

ppm) mediated, increased oxidative stress on 
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bacterial folic acid production (Fig. 5). Three 

different time points, one each in the lag (3rd h), 

mid-log (6th h), and late-log (9th h) phases were 

chosen to measure the intracellular and 

extracellular concentrations of folic acid using 

HPLC. It was also observed earlier that specific 

extracellular folic acid levels reduced after the 9th 

hour, and hence, only the above points were 

chosen. The maximum difference in the 

intracellular folic acid levels produced by treated 

cells and control was observed at the 6th hour of 

microbial growth. The intracellular folic acid 

level was 45.53±0.012 nanomoles/g-cell in 

nanoparticle treated culture, which was 49% 

higher compared to control.  

Moreover, E. durans was found to secrete folic 

acid into the extracellular space. The maximum 

specific level of extracellular folic acid was 

detected at the 9th hour in nanoparticle treated 

cultures (128.84±0.16 nanomoles/g-cell), which 

was 52% higher compared to control.  

2.5 In silico analysis of reactive species provides 

insight into the alteration of gut microbial 

metabolism 

Genome-scale metabolic modeling of E. durans 

was used to identify the important metabolic 

consequences associated with increased 

generation of reactive species (ROS/RNS), 

within the microbial system. To assess the 

fundamental effects of nanoparticle generated 

reactive species on folic acid metabolism in E. 

durans, a constraint-based metabolic modeling 

approach was adopted. The genome-scale 

metabolic model of E. durans was obtained from 

Virtual Human Metabolic (VMH) database (27) 

and further expanded with reactive species 

reactions (Table 1, Supplement Table S1). The 

relevant reactive species reactions were obtained 

through literature search. These reactions focused 

on the bio-chemical interactions between reactive 

species (predominantly superoxide, hydroxyl 

radical and nitric oxide) and major bio-molecules 

such as amino acids and nucleic acids. The input 

constraints imposed on the model were based on 

the experimental conditions provided for 

microbial growth. For instance, the model was 

studied under aerobic conditions (E. durans being 

a facultative anaerobe), with glucose as a major 

carbon source present in the chemically defined 

media used to culture the bacteria. 

Further, to investigate the effects of ROS on 

metabolic network of the microbe, flux 

variability analysis (FVA) was performed. The 

relative changes in the network fluxes before and 

after the addition of ROS reactions were 

evaluated through the flux span ratio (FSr). The 

FSr corresponds to the variability of each 

network reaction in the presence and absence of 

oxidative stress, under the defined constraints. 

The reactions having FSr values in the range 

0.8>FSr>2, were most affected in the presence of 

ROS.    

A total of seven reactions were found to be in the 

specified FSr range.  These reactions were 

explicitly associated with folate metabolism and 

showed positive fluxes in the presence of reactive 

species. MinNorm analysis indicated that these 

seven reactions in turn influenced different major 
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metabolic pathways like, amino acid/peptide 

metabolism, nucleotide metabolism, 

carbohydrate metabolism (pyruvate metabolism, 

glycolysis/gluconeogenesis) and energy 

metabolism, as elucidated in Fig.6.  

2.6 Microbial model under oxidative stress 

exhibited secondary effects on butyrate-linked 

metabolic pathways 

Although the associations between folic acid 

derivatives and energy metabolism, amino acid 

metabolism or nucleic acid metabolism are 

known (details mentioned in discussion section), 

the association between folic acid derivatives and 

SCFA metabolism (i.e., butyrate), as predicted by 

the constraint based modeling approach, is 

unknown. More specifically, an association 

between the cellular folate pool and butyrate 

(SCFA) metabolism (Fig. 6), under oxidative 

stress conditions was predicted by modeling 

analysis (Table 1). 

2.7 Folic acid exhibited cytotoxic effects on HCT 

116 colon cancer cell line at lower 

concentrations 

Although it is known that folic acid enhances 

cancer viability (29), the effects of lower 

concentrations of folic acid on cancer cells have 

not been reported in literature. We tested different 

concentrations of folic acid on the viability of 

HCT 116 colon cancer cells (Fig. 7(A)). As 

expected, higher concentrations of folic acid (5 – 

30μM) resulted in increased viability of cancer 

cells. On the contrary, unexpectedly, lower 

concentrations (1 – 0.1 μM) reduced cell 

viability. The optimal-cytotoxic concentration 

was around 0.5 μM folic acid, which resulted in 

decrease of viability by 14% when compared 

with the appropriate control. The reduction in cell 

viability at lower concentrations of folic acid was 

statistically significant. A P-value of 0.001458 

was obtained on performing single factor 

ANOVA. Further, t-test (two-sample assuming 

equal variances) generated a P-value of 0.027004, 

statistically supported the finding. 

2.8 Folate enriched supernatant from 

nanoparticles treated E. durans cultures affects 

cancer cells viability 

Bacterial culture supernatant is rich in different 

metabolic secretion products. Many of these 

metabolites are known to have anticancer 

properties, some of which have been previously 

discussed. However, the role of folate/folic acid 

produced by gut microbiome in context of 

nanoparticles based targeting of colorectal cancer 

has not been studied yet. To observe the effects 

of secreted folic acid present in nanoparticle 

treated bacterial culture on HCT 116 cancer cell 

viability, the cancer cells were treated with crude 

bacterial supernatant. MTT assay was then 

performed. It was found that silver nanoparticles 

(25 ppm) treated bacterial culture supernatant 

exerted cytotoxic effects on cancer cells. The 

cancer cell viability treated with 9th hour 

supernatant from nanoparticle treated cultures 

reduced to 79% of control (Fig. 7(B)), which is 

the time point corresponding to the release of the 

optimal concentration of folic acid produced in 

the culture. The reduction in cell viability on 

exposing the cancer cells to 9th hour AgNP treated 
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E. durans cultures was statistically significant. A 

P-value of 0.001429 was obtained on performing 

single factor ANOVA. Further, t-test (two-

sample assuming equal variances) generated a P-

value of 0.013265, statistically supported the 

finding. 

 

 

Discussion  

Silver nanoparticles were characterized for their 

size and stability in the bacterial culture medium. 

The stability of the nanoparticles was assessed 

through zeta potential measurement. A negative 

value (–13±0.95 mV) indicated better stability of 

the dispersed nanoparticles. The higher stability 

also indicates that the well dispersed 

nanoparticles effectively, interacted with the 

bacterial cells in the culture, and affected their 

viability. Higher concentrations of AgNPs 

severely affected E. durans growth rate. This 

observation is in accordance with the literature 

studies, where it has been shown that AgNPs at 

higher concentrations induce their cytotoxic 

effects by disrupting bacterial cell membranes 

and permeability, thereby interfering with Na+ 

transport and homeostasis (20).The other 

significant explanation for the cytotoxic activity 

of AgNPs is the generation of reactive species, 

which results in inhibition of aerobic respiration 

in the organism and causes damage to its genetic 

moiety (18). However, AgNPs at concentrations 

as low as 25 ppm had minimal cytotoxic effects 

on E. durans viability. Since the context is use of 

nanoparticles for therapy, this lower 

concentration of AgNPs was chosen for all 

further experiments. 

AgNPs have been reported to generate oxidative 

stress in a cellular system (37), hence, we studied 

the response of E. durans to nanoparticle 

treatment. The intracellular ROS (hydroxyl and 

superoxide radicals) levels were quantified at 

three different time points corresponding to 

different phases of bacterial growth. Despite E. 

durans exhibiting notable antioxidant properties 

(30), the lower concentration of AgNP resulted in 

increased generation of intracellular reactive 

species. The hydroxyl levels increased 

considerably during the late log phase in 

nanoparticle treated cultures, indicating that 

AgNPs are potent inducers of reactive oxygen 

species. The augmented reactive species levels 

are known to affect and damage the major bio-

molecules, such as nucleic acids and proteins 

(18). This nanoparticle-generated oxidative 

stress, in turn, may also affect the cellular 

metabolic systems, thereby resulting in increased 

productivity of certain metabolites. For instance, 

previous studies in our laboratory have 

established the role of stress induced ROS in 

increased lipid accumulation in Chlorella 

vulgaris (31).  Likewise, HOCl (a commonly 

used hydroxyl ion generator) treatment of 

Xanthomonascampestris improved the xantham 

gum productivity in different cultivations (32). In 

case of E. durans, the role of intracellular 

oxidative stress on the production of folic acid or 

other gut microbial metabolite has not yet been 

investigated. In our study, it was observed that the 
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folate levels (both intracellular and extracellular) 

were modulated in response to the enhanced 

intracellular ROS levels, in nanoparticle (25 

ppm) treated cultures. The intracellular folic acid 

level is a measure of the bacterial cell potential to 

produce and secrete extracellular folic acid, and 

thus needs to be quantified. The extracellular 

folic acid concentrations increased during the late 

log phase, which also corresponded to the time 

point of increased intracellular hydroxyl levels. 

This finding strongly supports the role of ROS in 

regulating the generation of microbial 

metabolites. At higher nanoparticle 

concentrations (> 50 ppm) the cell viability was 

reduced. Also, no detectable intracellular or 

extracellular folic acid levels were observed at 

AgNP concentrations above 50 ppm, which 

suggests a deleterious effect of high AgNP levels 

on folic acid synthesis and secretion. 

The gut microbiota is a reservoir of many 

essential metabolites required by the host 

homeostasis (10). Amongst all these metabolites, 

folic acid (vitamin B group) is of major relevance 

due to its involvement in chief metabolic 

pathways (34, 35). To better understand the 

mechanism of the effects of reactive species on 

microbial metabolism, we used computational 

analysis. For this purpose, constraint-based 

metabolic modeling was used to analyze the 

systems level effects of ROS on the metabolism 

of E. durans. In our study, COBRA modeling 

helped establish the critical link between reactive 

species with other important intermediary 

metabolisms (i.e., amino acid, energy, and lipids) 

and their consequent effects on microbial 

metabolism. Previous studies involving systems 

biology approaches have helped in deciphering 

the host-microbe interactions and their 

consequences on human health. The 

reconstruction of genome scale metabolic 

networks under various constraints (mimicking 

diseased state), have successfully predicted the 

host phenotypic characteristics (25). A similar 

approach has been used to study the metabolism 

of gut microbe in presence of oxidative stress. As 

stated earlier, folic acid (and its derivatives like 

THF, DHF etc.) and SCFAs, such as acetate, 

propionate, valerate and predominantly butyrate, 

are of metabolic importance in the development 

or suppression of colon cancers. Additionally, 

butyrate is known for its tumor suppressive role 

in colon and stomach cancer (14).The increasing 

or diminishing levels of intracellular reactive 

species in bacteria, affect the generation of these 

metabolites of interest. So, it is crucial to 

understand how the entire metabolic network of 

the gut microbe gets affected in response to 

oxidative stress (Table 2). For instance, one of the 

reactions affected by the addition of ROS to the 

model system involved glycine, serine and 

threonine metabolism. In this reaction, the 3-

carbon serine serves as one of the major sources 

in transferring one carbon moiety to 

tetrahydrofolate (THF) to form 5, 10-methylene 

THF (MLTHF) via glycine hydroxymethyl 

transferase (E.C.2.1.2.1) (34), A positive flux 

(500.5 mM/g-dry weight h) was generated 

through this reaction, thus implying an increased 
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release of the folate derivative which contributed 

to the folate pool by affecting folate metabolism. 

In another case, NADPH and serine metabolism 

have also been associated with folate metabolism 

(35). MLTHF from serine metabolism is used to 

synthesize METHF (methenyl THF) via 

methylenetetrahydrofolate dehydrogenase 

(E.C.1.5.1.5), which in turn is utilized for 

nucleotide synthesis. The model with ROS 

reactions showed increased flux through this 

reaction, thus, supporting the involvement of 

folic acid in energy and nucleic acid metabolism, 

as well as, highlighting the role of reactive 

species in heightened folate production. 

Interestingly, the link between folic acid 

derivatives and butyric acid (SCFA) metabolism 

was revealed through the modeling predictions.  

Thus, this approach involving constraint based 

metabolic modeling served two purposes. Firstly, 

the curated model can facilitate studying of the 

effects of reactive species generated by AgNPs 

on the entire metabolic network of the gut 

microbe. Secondly, this methodology can be used 

to identify the metabolic pathways significantly 

associated with generation of anti-cancer 

metabolites in the presence of reactive species to 

improve upon the cancer treatment strategies. 

This is the first study of its kind that validates the 

gut bacterium metabolic model experimentally, 

where folate levels showed an increase in the 

presence of AgNP generated intracellular 

oxidative stress. The modeling results primarily 

emphasized the effects of reactive species on 

folate metabolism and generation, which may 

play a crucial role in strategizing colorectal 

cancer treatment therapies. 

Perturbations in gut microbiota have been linked 

to inflammatory bowel disease, as well as, the 

cancers of colon and stomach (8). Similarly, the 

alterations in gut bacterial metabolites production 

can also contribute to the initiation or treatment 

of these metabolic disorders. For instance, folate 

deficiency has often been associated with 

increased risk of colon cancer. On the contrary, 

supplementing folic acid in patients diagnosed 

with cancer, resulted in formation of aberrant 

crypt foci and initiation of cancer in colon polyps 

(29). The quantitative effects of lower folic acid 

concentrations on cancer cells have not been 

studied so far. Surprisingly, the experimental 

findings showed that lower concentrations of 

folic acid had cytotoxic effects on HCT116 colon 

cancer cells. 

The AgNP treated bacterial cultures also showed 

increased production of folic acid, as a 

consequence of increased oxidative stress. The 

supernatants of the AgNP treated bacterial 

cultures with increased folic acid content reduced 

the viability of HCT116 colon cancer cells. The 

folic acid concentrations in these cultures were 

equivalent to the optimal-cytotoxic concentration 

(0.5 to 1 μM) of synthetic folic acid that resulted 

in cell death. This result indicates that oxidative 

stress caused increased production of folate to 

optimal-cytotoxic levels, which resulted in 

decreased cancer cell viability. 

 

Conclusion  
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In our study, AgNPs when used at lower 

concentrations, showed no major cytotoxic 

effects on the E. durans. Instead, AgNP-

generated oxidative stress modulated the folic 

acid levels in the microbe. This finding was 

supported by genome scale metabolic modeling. 

Further, metabolic association between folate and 

SCFA metabolic pathways was observed. Other 

key players to this were identified as amino acids, 

energy metabolites, and nucleotides. Lastly, folic 

acid, at lower concentrations was found to exert 

cytotoxic effects on HCT116 colon cancer cell 

line, thus, highlighting the potential of critical 

folate concentration for CRC treatment.  

 

Experimental procedures 

Bacterial culture and growth conditions 

Enterococcus durans, a facultative aerobe, 

procured from MTCC (MTCC No. 3031) was 

used as the model organism. The bacterial culture 

was grown in shake flasks containing MRS broth 

at 37o C, 180 rpm, in a shaker (Scigenics Orbitek). 

The total cell concentrations at different time 

points were measured through optical density 

(cell scatter) at 600 nm (JASCO V-630 

Spectrophotometer), and comparison with a 

standard plot of OD vs. cell concentration was 

done.  

Characterization of silver nanoparticles (AgNPs) 

Silver Nanoparticles (AgNPs) were obtained 

from Sigma Aldrich (catalogue no. 7440-22-4). 

Size distribution analysis was carried out using 

dynamic light scattering and zeta potential was 

measured using Horiba Scientific nanopartica 

nanoparticle analyzer (SZ-100). Scanning 

electron microscope was used to study NP-

bacteria interaction. 

Treatment of bacterial cells with silver 

nanoparticles (AgNPs) 

The AgNPs were dispersed in medium using 

water bath sonicator, till the nanoparticles were 

dispersed in the solution. AgNPs at 25-250 ppm 

concentrations was used. The medium was then 

inoculated with the appropriate volume of the 

subculture (inoculum), such that the OD value at 

the zeroth hour was 0.1. 

Quantifying intracellular ROS concentrations 

Intracellular RS were measured by following the 

procedures from literature (31). The fluorescent 

dyes 3’-(p-amino-phenyl) fluorescein 

(Invitrogen, USA) and dihydroethidium (Sigma-

Aldrich, India) were used to detect hydroxyl 

radical and superoxide radical, respectively. 

Hydroxyl and superoxide radical concentrations 

were determined from calibration curves using 

the standards hydrogen peroxide and potassium 

superoxide, respectively. The concentration of 

superoxide and hydroxyl radicals was reported in 

nanomoles per gram-cell weight.   

Sample preparation for folate estimation  

For analyzing intracellular folate concentrations, 

bacterial culture was harvested every 3 hours and 

culture volume corresponding to 10 OD was used 

for sample preparation. The bacterial pellet 

obtained on centrifuging the required volume was 

suspended in 1ml of milli Q water. It was then 

sonicated (Q Sonica sonicator), at amplitude of 

70%, for a process time of 4 minutes (pulse on 
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and off time being 2 seconds). The sonicated 

sample was then placed in a water bath at 100oC 

and subjected to heat for 5 minutes so as to 

release any folate bound to the folate binding 

proteins (FBPs). The cell free extract was 

obtained by centrifuging the sample. The 

supernatant was collected, filtered and used 

further for folate estimation. 

For quantifying extracellular folate, released by 

the bacterial cells into the growth medium, 1ml of 

culture was collected every 3 hours and the 

filtered supernatant was used for HPLC (38). 

HPLC analysis of folate 

Folic acid (Himedia, catalogue no. CMS175) was 

used as standard in estimation of folate in samples 

(cell extracts and bacterial supernatant). HPLC 

analysis of samples was performed using UFLC 

Shimadzu HPLC setup. C18 Hypersil column 

(25cm*4.6mm, 5 micron spherical packing) was 

used as the analytical column. 15% HPLC grade 

Carbinol in 0.05M KH2PO4was used as the 

mobile phase. The mobile phase and samples 

were first filtered through 0.46 micron filters 

before use. The mobile phase was then sonicated 

in a bath sonicator for 10 minutes for degassing 

the solution. The flow rate was maintained at 0.4 

mL/min. Excitation wavelength of 295nm was 

used to analyze the folic acid peak (38).  Folic 

acid standards were used at different 

concentrations (0-125 μM), and the retention time 

for the analyte was determined from the 

chromatographs. 

Treatment of HCT 116 with bacterial supernatant 

HCT 116 (colon cancer cell line) was obtained 

from Dr. Bert Vogelstein, John Hopkins 

University, Baltimore, USA. The tumor cells 

were grown in Dulbecco’s Modified Eagle Media 

(DMEM), with 5% serum. The cells were seeded 

and grown in 96 wells plate and were treated with 

bacterial supernatant (control and 25ppm 

AgNPs), and different concentrations of synthetic 

folic acid. MTT cell proliferation assay was then 

performed to quantify cell viability on exposure 

to the drug after 48 hours of treatment. MTT (3-

(4, 5-dimethylthiazol-2-yl) - 2, 5-

diphenyltetrazolium bromide) is a widely used 

colorimetric method to measure cellular 

metabolic activity. The principle behind this 

method is based on the ability of nicotinamide 

adenine dinucleotide phosphate (NADPH)-

dependent cellular oxidoreductase enzymes to 

reduce the tetrazolium dye MTT to its insoluble 

formazan, which has a purple colour. This assay, 

therefore, measures cell viability in terms of 

reductive activity as enzymatic conversion of the 

tetrazolium compound to water insoluble 

formazan crystals by dehydrogenases occurring 

in the mitochondria of living cells. 

Modeling gut bacteria – ROS interplay 

Constraint based model formulation 

S-matrix and steady state assumption 

Constraint-based metabolic model of the target 

organism comprises of metabolic reactions, 

metabolites participating in these reactions, and 

genes that encode the enzymes catalyzing these 

reactions. On a metabolic network map, 
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metabolites form the nodes, and reactions forms 

the links. Mathematically, these metabolic 

networks are represented as stoichiometric matrix 

(S matrix) of size m x n, where the row and 

column represent the metabolites (m) and the 

reactions (n), respectively. The values in each 

column denote the stoichiometric coefficient for 

every metabolite participating in a particular 

reaction. The negative value indicates metabolite 

consumption, whereas, positive value is for 

metabolite production. Non-participation of a 

metabolite in a reaction is marked zero in the 

matrix.  

The stoichiometry intends to impose constraints 

on flow of metabolites (in the form of flux values 

i.e. mass) through the network. Flux through all 

the metabolic reactions in the network is 

represented by a vector v. COBRA models are 

simulated under the steady-state condition, 

mathematically defined by the following 

equation: S. v =  0 (1) 

Where in, S is a sparse matrix because most 

biochemical reactions involve only a few 

different metabolites and any value of v that 

satisfies this equation falls in the null pace of S. 

The metabolic network is a system of mass 

balance equations at steady state (dx/dt=0), which 

signifies the total amount of a metabolite 

consumed is equal to the total amount of being 

produced in the system at steady state. Each 

reaction is also assigned lower and upper bounds, 

which define the range of allowable flux 

distributions of a system. 

Flux Balance Analysis (FBA): 

For a large scale metabolic model, generally, the 

number of reaction equations are greater than the 

number of metabolites in the system (n>m). 

Therefore, a whole solution space exists in such a 

scenario, there being no unique solution to this 

system of equations. In order to realistically 

narrow down this solution space, flux balance 

analysis (FBA) calculates and selects only those 

flux values that can together optimize some 

biologically relevant objective, like, finding 

metabolic reaction fluxes, simulation of growth 

on different substrates etc. 

Mathematical formulation of FBA lies in 

optimizing (maximizing or minimizing) any 

objective function through linear programming 

(LP), which is represented by: 𝑍 = 𝐶𝑇𝑣  (2) 

Here, c is the vector of weights that specifies to 

what extent each reaction contributes to the 

objective function. The output of FBA is given as 

a particular flux distribution, v, which either 

maximizes or minimizes the objective function Z. 

Since FBA doesn’t require kinetic parameters 

information, and can also be computed promptly 

for large networks, it can be utilized in studies 

involving characterization of various 

perturbations. However, it poses limitations in 

predicting metabolite concentration due to lack of 

kinetic data, and is suitable in determining fluxes 

at only steady state. 

Flux Variability Analysis (FVA): 

Flux Variability Analysis (FVA) is another tool 

to maximize or minimize the flux values for each 
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reaction in the metabolic network, while 

simultaneously satisfying all imposed constraints 

on the optimized objective function value. It 

provides a span or range of allowable fluxes that 

can exist within the optimized solution space as 

defined by the linear program. Consequently, 

FVA provides useful insight into the network 

variability.  

For our work, the unconstrained E. durans 

metabolic model was downloaded from Virtual 

Human Metabolism (VMH) database 

(https://vmh.uni.lu/) and then ROS reactions 

were added to the model. 

rBioNet was used to add the different reactions 

(ROS reactions; missing transport and exchange 

reactions; sink and demand reactions) to the 

model. rBioNet enables the user to add these 

reactions in a quality controlled manner, by 

exempting sources of manual error (36).  A total 

of 8 ROS reactions and 11 metabolites were 

added to the model. The resulting reconstruction 

(with ROS reactions) was then merged with 

downloaded metabolic model, thus formulating 

the ROS model (Supplement Table S1). Flux 

Balance analysis (FBA) was carried out on the 

newly added reactions individually to check if the 

reactions were blocked (carrying zero net flux). 

Blocked reactions might result from incomplete 

reaction information about the consumption of 

substrates or the generation of products. The 

blocked reactions were then resolved by adding 

complete metabolic reactions and pathways from 

literature). In case there were no evident 

supporting reactions pertaining to the blocked 

reaction, then the reaction was un-blocked (by 

adding demand or sink reactions for products and 

reactants respectively). In case of our E. durans 

model, seven demand reactions and one sink 

reaction was added. Upon un-blocking the newly 

added reactions, dead end metabolites were then 

identified. Dead end metabolites are the ones 

which are either produced or consumed but never 

both. These dead end metabolites were also 

resolved using literature information for adding 

the required reactions to the model. FVA was 

then performed that provides the flux values 

(minimum and maximum) through all the 

reactions in the metabolic network.  Flux Span 

ratio (FSr) was calculated. FSr is the ratio 

between absolute net flux values of reactions for 

unconstrained model to absolute net flux values 

of reactions for constrained model with ROS 

reactions. The range for FSr is user defined. The 

reactions with FSr values in the range 0.8>FSr>2 

were identified. These were the reactions that got 

affected due to the addition of ROS reactions to 

the model. MinNorm analysis was then carried 

out on the reactions of interest. MinNorm 

function in MATLAB is a tool for frequency 

estimation in a particular data vector, for a given 

function. 

Statistical analysis 

All cultures and measurements were carried out 

in triplicates (each subjected to three technical 

replicates). Values have been reported as 

mean ± SD (please refer to individual results in 

the results section). One way ANOVA (level of 
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significance = 0.05) and Tuckey’s multiple 

comparison tests were carried out.
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Tables  

Table 1: Statistics of genome scale metabolic model of E. durans containing ROS reactions and related metabolites. 

Model contents Statistics  

Total number of reactions 1208 

Metabolic reactions 884 

Transport reactions 158 

Exchanges/demands/sinks 153/11/2 

Total number of metabolites 1039 

Total number of genes 756 

Total number of references  1500 + 7 

 

Table 2: Different folic acid reactions being affected on addition of ROS reactions to the unconstrained E.durans model that 

are validated in literature. 

 

S.No. Reaction abbrev. Flux 

(mmol/gDW/hr) 

Comments 

1. glycine 

hydroxymethyltransferase, 

reversible 

(E.C.2.1.2.1) 

500.5 Glycine, serine and threonine metabolism is 

affected upon addition of reactive species to 

the metabolic network (34) resulting in 

addition of folate derivatives to folic acid 

pool. 

2. methylenetetrahydrofolate 

dehydrogenase (NADP) 

(E.C. 1.5.1.5) 

 

1000 NADPH and serine metabolic pathways are 

also linked to folate metabolism (35), and get 

affected in presence of ROS, thereby 

generating positive flux values. 

3. 2-Hydroxybutyrate:NAD+ 

oxidoreductase 

(E.C. 1.1.1.27) 

 

105.8 Association between butyrate and folic acid 

pathways has not been established 

experimentally yet and needs to be validated. 
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Figure legends 

Figure 1: An overview of the direct and indirect effects of AgNPs mediated oxidative stress on gut 

bacterial metabolism in treatment and management of CRC. AgNPs are known to mediate their direct 

cytotoxic effects through increased generation of reactive species inside the target cells. Besides, the 

AgNP-generated oxidative stress can also affect the cellular metabolism and certain pathways of 

interest (in this case, the anti-cancer metabolites) thereby enhancing indirect cytotoxicity. 

Figure 2: Scanning electron microscopy to elucidate the interaction between silver nanoparticles 

(AgNPs) and bacterial cells. 2(A) represents bacteria alone, whereas, 2(B) shows AgNPs interacting 

with the bacterial cells 

Figure 3: Variation of E.durans growth with different concentrations of AgNPs. Exposure of bacterial 

cultures to higher concentrations of the nanoparticles results in excessive cell death. This is 

confirmed by significant decrease in the specific growth rates of bacterial culture with increasing 

AgNP concentration. The specific growth rate, is a function of cell viability (maximum growth) with 

respect to time, is also affected negatively at higher concentrations of AgNPs. 

Figure 4:Reactive species time profile in the absence and presence of AgNP generated oxidative stress 

(  indicates control culture;  indicates culture treated with 25 ppm AgNP).The hydroxyl radical 

concentration in the presence of lower concentration of AgNP, showed increase with increase in time 

of exposure, when compared to the control. The superoxide radical levels, increased during the mid-

log phase of growth (on exposure to AgNPs), and then dropped, when compared to control. 

Figure 5: The intracellular and extracellular folic acid concentrations increased on exposure to AgNPs 

( indicates control culture;  indicates culture treated with 25 ppm AgNP). This increase could be an 

outcome of the oxidative stress induced in the organism, which in turn impact folate related metabolic 

pathways. However, higher concentrations of AgNPs negatively affected folic acid generation by 

causing cell death. 

Figure 6: Folate metabolism and its association with different central metabolic pathways (viz. amino 

acid, energy and nucleotide metabolism), where the model predictions agreed with experimental 

evidences in literature. The link between SCFA metabolism and folic acid metabolic pathways is a novel 

model prediction, and needs to be experimentally validated. 

Figure 7: Effect of different folic acid concentrations on the viability of HCT116 cancer cells.   (A) 

Lower concentrations of synthetic folic acid exhibited cytotoxic effects on cancer cells. (B) Also, MTT 

analysis of HCT116 treated with bacterial supernatants from cultures exposed to silver nanoparticles 

and control. Reduction in viability was observed for cells treated with 9th hour supernatants, the time 

point corresponding to maximum concentration. 

 

Supporting information: 

Supplement Table S1: Excel sheet containing details of the expanded E.durans model with ROS reactions. 
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