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Implant-associated infection is a major source of morbidity in orthopaedic surgery. There has been 

extensive research into the development of materials that prevent biofilm formation, and hence, 

reduce the risk of infection. Silver nanoparticle technology is receiving much interest in the field of 

orthopaedics for its antimicrobial properties, and the results of studies to date are encouraging. 

Antimicrobial effects have been seen when silver nanoparticles are used in trauma implants, tumour 

prostheses, bone cement, and also when combined with hydroxyapatite coatings. Although there are 

promising results with in vitro and in vivo studies, the number of clinical studies remains small. 

Future studies will be required to explore further the possible side effects associated with silver 

nanoparticles, to ensure their use in an effective and biocompatible manner. Here we present a review 

of the current literature relating to the production of nanosilver for medical use, and its orthopaedic  

applications. 
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Silver is a soft, white, lustrous transition metal which is recognised to have antimicrobial properties 

and has assumed an important role in the treatment of infections.
1-3

 As a non-specific biocidal agent, 

in suitable doses silver is not toxic to mammalian cells and disinfects a broad spectrum of bacterial 

and fungal species, including antibiotic-resistant strains.
1-3

 Silver and silver nanoparticles are used as 

antimicrobials in a variety of industrial, healthcare and domestic applications. 
4,5 

Silver has been 

incorporated into wound dressings, and as an antimicrobial coating on medical devices in order to 

prevent biofilm formation.6 The clinical potential of silver nanotechnology is of particular interest to 

the field of orthopaedics, where infection of implanted devices represents a persistent threat. In this 

paper we provide a review of the literature on the use of silver nanoparticles and their application in 

the field of orthopaedics. In addition, we review the potential for toxicity if silver is not used with 

caution. 
 

Mechanism of action 
 

Silver has well-documented broad-spectrum activity against Gram-positive and Gram-negative bacteria, fungi, 

protozoa and viruses.7 However, its mechanism of action has only recently been elucidated. In vitro studies have 

shown that silver releases biologically active ions from its surface. The released ions bind to a number of bacterial 

cell structures, including the peptidoglycan cell wall and plasma membrane, the bacterial DNA and bacterial proteins 

(Fig. 1).8 This creates three different mechanisms by which silver exerts its toxic effects. The binding of ions to the 

cell wall damages the outer cell layers, causing loss of cell contents and creating structural abnormalities. 9 As 

Gram-positive bacteria have thicker cell walls, a higher concentration of silver is necessary to prevent bacterial 

growth than for Gram-negative bacteria.10 Interaction with sulfhydryl (SH) groups in bacterial proteins and enzymes 

impairs many key cell functions, such as respiration and permeability. Binding to nucleic acids in DNA prevents cell 

reproduction. 11 A further mechanism of toxicity is through the production of reactive oxygen species (ROS) by 

silver ions. This generation of ROS probably acts in synergy with the SH group interaction mechanism. Evidence for 

this is the increased antimicrobial activity seen in aerobic versus anaerobic conditions.12 These mechanisms of 

action provide for deconstitution of surface species, such as proteins, cells and resultant biofilms, which in turn 

promotes long-term exposure of the surface silver nanoparticles and their associated antimicrobial effects. 

The multimodal activity outlined above has major clinical significance, as there is far less potential for bacterial 

resistance to silver than with traditional antibiotic agents. When bacterial resistance to silver nanoparticles does 



 

occur, it develops more slowly than resistance to antibiotics.13 Some of this resistance appears to be related to 

genes that control the pumping of silver out of the cell.14 Taglietti et al15 showed that a self-assembled 

monolayer of silver nanoparticles on glass was obtained via amino-silanisation of the glass surface. They found 

that there was prolonged release of silver ions, whereas the silver nanoparticles remained attached to the 

underlying substrate, and strong antibiofilm  activity against the biofilm-producer Staphylococcus epidermidis 

was detected. The structural make-up of silver has consequences for its antimicrobial efficacy. Choi et al16 

conducted a comparative study of nanosilver, silver chloride and silver nitrate and concluded that nanosilver has 

greater efficacy against bacteria. This is thought to be because nanosilver has a secondary mechanism of action. 

Nanosilver particle size is another important factor that influences the level of antimicrobial activity. It has been 

shown that smaller particles (< 10 nm) are significantly more efficacious, as there is a greater surface area for the 

release of silver ions. Therefore, particle size may be of greater significance than concentration or mass.17 The 

period of activity has also been shown to be related to nanoparticle size and, when present, the type of 

nanoparticle functionalising element (i.e. a nanoparticle that has had a chemical functional group added to its 

surface). It is reported that ion concentrations for the best antibiotic effects range between 10 nM and 10 μM.18 

A number of studies19,20 have investigated the use of silver nanoparticles in combination with antibiotics and have 

found a synergistic effect. Fayaz et al19 used Trichoderma viride for the biosynthesis of silver nanoparticles and 

also investigated the antimicrobial activity of these nanoparticles in the presence of antibiotics. They found that 

activity against Gram-positive and Gram-negative bacteria was increased for ampicillin, kanamycin, 

erythromycin and chloramphenicol. Dar, Ingle and Rai20 investigated the properties of nanosilver produced using the 

fungus Cryphonectria sp. The fungally produced nanosilver was found to have higher antibacterial activity 

against Escherichia coli, Salmonella typhi and Staphylococcus aureus than streptomycin and amphotericin. It 

also displayed antifungal activity against Candida albicans, and enhanced the effects of other antibiotics.20
 

  

 
Fig. 1 

 
Diagram showing mechanism of action 

of silver ions. 

 
Manufacturing processes 
 

Silver has been used medically in mineral and compound forms, such as silver zeolite and silver nitrate, and the 

advance of nanotechnology has enabled the production of nanosilver. Nanosilver constitutes minute structures of 

silver atoms measuring between 1 nm and 100 nm in diameter, metallically bonded together. Silver nanoparticles 

have been produced using a wide variety of methods, but the two main methods of production are chemical 

reduction and photoreduction. In these processes, negatively charged electrons are donated to the positively charged 

silver ions, causing them to return to their metallic form.21 A stabilising agent is usually added during 

production which prevents aggregation of the silver atoms, which could negatively affect the high antimicrobial 

activity associated with nanoscale dimensions.22 More recently, biological methods of producing nanosilver have 

been explored,23 which involve the use of organisms as reducing agents rather than as chemicals. This is an 

exciting development, as it eliminates the need for chemicals that may have added toxic effects, especially in 

clinical applications, thereby increasing the biocompatibility of the produced nanosilver. Multiple organisms have 



 

been used, including bacteria, fungi and plants. Unlike chemical reduction, which requires separate reducing and 

stabilising agents, the micro-organism used for biological synthesis provides both agents. Each produces silver 

nanoparticles that vary in size and shape, and which may be found intracellularly or extracellularly on the cell 

wall.23 A study involving the reduction of silver using S. aureus showed that the nanoparticles produced had high 

antimicrobial activity against methicillin-resistant S. aureus (MRSA), methicillin-resistant S. epidermidis (MRSE) 

and Streptococcus pyogenes.24 Nanoparticles produced chemically can aggregate in liquid, reducing the surface 

area available for high antimicrobial activity. One of the advantages of using biogenic silver is that it has been 

found to be more stable over longer periods of time in a liquid environment.25 Coating medical devices is the 

major use of silver nanoparticles, with the aim of preventing biofilm formation. A number of nanotechnology 

approaches to facilitate the adherence of silver to device surfaces, have been developed. These include vacuum-

sputter coating and electrodeposition technologies, which fix vaporised silver on to the surface of the device.26 

 
Tumour prostheses 

Peri-prosthetic infection is a significant problem in orthopaedic oncology, with infection rates of 9% to 29%.27-

29 This patient group is at increased risk of infection compared with standard arthroplasty patients, because of 

immunosuppression related to their underlying disease, and also from adjuvant treatments such as chemotherapy 

and radiotherapy. Implant-related infection can result in amputation in these patients.28,31 Gosheger et al30 

investigated the antimicrobial efficacy and possible side effects of a silver-coated mega-prosthesis in a rabbit 

model. They compared 15 titanium with 15 silver-coated MUTARS endoprostheses (Implantcast GmbH, 

Buxtehude, Germany), each of which had been inoculated with S. aureus. Rabbits in the silver group displayed 

significantly lower signs of inflammation as measured by C-reactive protein (CRP), neutrophil count and rectal 

temperature. The silver group also showed significantly lower rates of  infection (7%) than the titanium group 

(47%), and no toxicological side effects were observed.30 The effect of silver coatings on infection rate was 

prospectively assessed in 51 sarcoma patients using a silver coating applied to the implanted mega-prostheses by 

galvanic deposition of elementary silver.31 The layer thickness ranged from 10 μm to 15 μm. No silver coating was 

applied at the articulating surfaces. The infection rate was compared with that of a historical control group of 74 

patients who had undergone surgery using a non-silver-coated titanium mega-prosthesis and was found to be 

substantially reduced, from 17.6% in the titanium group to 5.6% in the silver group. A total of five patients out of 

16 (38.5%) in the titanium group who developed a deep infection required amputation, but there were no 

amputations for infection in the silver-coated group.31 At present, we indicate silver-coated prostheses in order to 

reduce the rate of infection in tumour patients, and also in patients with infection following extensive trauma. 

However, there have been no clinical studies comparing silver-coated revision arthroplasty with non-coated implants, 

nor have there been any clinical studies using silver nanoparticle technology. 

 
External fixator pins 
 

Pin tract infection is the most common complication associated with the use of external fixators and has been 

reported to be present in up to 42% of inserted pins.32 Pin tract infection can result in loosening requiring removal 

or exchange, loss of fixation, fracture non-union and osteomyelitis.33 An in vitro study has examined the 

antimicrobial efficacy of surface-coated external fixator pins. Stainless steel pins were coated with a continuous 

layer of polymer in which nanoparticulate silver was embedded. These test specimens were compared against 

uncoated stainless steel, titanium and copper pins. The test pins were incubated with S. epidermidis for 20 

hours to initiate a biofilm, following which the test pins were analysed for highly adherent bacteria. It was 

demonstrated that fixation pins with a coating of nanoparticulate silver showed a 3-log step reduction in biofilm-

forming bacteria compared with non-coated stainless steel or titanium implants.34 These findings are supported 

by in vitro work by Wassall et al,35 who examined the antimicrobial effect of conventional silver and showed a 

significant reduction in adhesion for E. coli, Pseudomonas aeriginosa and S. aureus when silver coated pins 

were compared with stainless steel pins. Collinge et al36 reported on the potential benefit of silver coating on 

external fixator pins inoculated with S. aureus inserted into the iliac crest of sheep. After two and a half weeks, the 

pin sites were examined for movement, inflammation and infection. A reduction in the rate of infection from 84% 

to 62% was demonstrated when comparing silver coated and stainless steel pins. In addition, silver-coated pins 

were less frequently found to be loose than stainless steel pins.  The authors postulated that bacterial 

adherence to the surface of the silver-coated pins was prevented by inhibition of the formation of a bacterial 

glycocalyx membrane on the surface of the pin, rather than by local leaching of silver ions.36 Coester et al37 

performed a prospective randomised study in patients to compare the effect of silver coating on pin tract 

infection. The study design involved a monolateral fixator with stainless steel pins and silver-coated pins being 

used in the same construct, allowing for direct comparison of the effects of silver coating within the same 

environment. The results from 33 external fixators showed that there was no difference in the rate of pin tract 



 

infection, torque to remove pins or radiographic lucency around the pins.37 The difference in outcome between 

the results of Collinge et al36and those of Coester et al37 may be explained by the lack of direct inoculation of 

bacteria into the pin tract in the latter. 

Massè et al38  prospectively studied 24 men who were treated with monolateral external fixators for tibial or 

femoral diaphyseal fractures. A total of 50 screws were silver coated and were compared with 56 uncoated stainless 

steel screws. The coated screws resulted in a lower rate of positive culture (30.0%) than the uncoated screws 

(42.9%), but this did not reach statistical significance (p = 0.243). The clinical behaviour of the pins did not 

differ between the groups, with both showing similar inflammation and mechanical anchorage scores. Because of 

an increase in the serum silver levels the study was discontinued on ethical grounds. However, the development 

of nanoparticle coatings should reduce the systemic absorption of silver and allow similar studies to be 

conducted safely. 

 

 
 

Fig. 2 

 

Radiographic images of 108 CFUsStaphylococcus aureus Mu50-infected rat femoral segmental defects 

implanted with 0.0%, 1.0% and 2.0% nanosilver–polylactic-co-glycolic acid  bone grafts coupled with 30 

mg/ml bone morphogenetic protein-2. From left to right at weeks 2, 4, 6, 8, 10 and 12. Reproduced with 

permission from Zheng Z, Yin W, Zara JN, et al. The use of BMP2 coupled Nanosilver-PLGA composite 

grafts to induce bone repair in grossly infected segmental defects. Biomaterials 2010;31:9293-9300. 

 
Osteomyelitis and infected nonunion 
 

Electrically generated silver ions have been used to treat osteomyelitis and infected nonunions with variable 

success.39-42 Concerns regarding toxicity and the ability to overcome large bone defects have limited the application 

of silver iontophoresis; a physical process by which ions flow diffusively in a medium driven by an applied 

electric field. The insertion of autogenous bone graft or allograft in the presence of active infection is 

contraindicated because the graft may act as a nidus for infection,43 but a tissue-engineered graft that can control 

infection and promote bone regeneration would be advantageous. Zheng et al44 have developed a composite 

bone graft consisting of bone morphogenetic protein 2 (BMP-2) coupled with nanosilver polylactic-co-glycolic acid 

(PLGA). A critical defect measuring 6 mm was created in the femoral diaphysis of rats, and bone grafts 

containing variable quantities of nanosilver were implanted into the defects. The grafts were injected with ten 

colony-forming units (CFU) of vancomycin-resistant MRSA. No antibiotic was administered post-operatively. 

Radiographic and histological analysis 12 weeks after implantation showed defect fusion from new bone 

formation  in  the   BMP-2-2%   nanosilver–PLGA   graft (Fig. 2). In contrast, there was loss of bone and 

regression of the proximal and distal cut bone ends of the femur in the control group, which had a BMP-2-PLGA 

graft without nanosilver. Elimination of bacteria in the defect by the 2% nanosilver graft composite resulted in 

considerably more stimulation of new bone formation than the control graft, with resultant union. 

 



 

Hydroxyapatite (HA) coating 
 

HA is often used to coat trauma implants as it stimulates osseo-integration. It does not, however, contain any 

antibacterial properties unless it is combined with zinc, copper, titanium (Ti) silver or other antibiotic agents. A 

number of studies have investigated the efficacy of silver-containing hydroxyapatite coatings (Ag-HA) as 

potential agents for reducing the rate of implant-associated infections. In an in vitro study comparing the 

differences in bacterial adhesion on Ti, HA and Ag-HA surfaces, Chen et al45 assessed the efficacy of co-

sputtered silver-containing HA. There was significantly lower adhesion of S. aureus and S. epidermidis on the Ag-

HA surfaces, indicating that these coatings were bactericidal. 

There have been several studies investigating various methods for the incorporation of silver into HA 

coatings. These include ion exchange, thermal decomposition, sol-gel technology, magnetron sputtering, ion beam-

assisted deposition and electrochemical deposition.46-50 The goal is to achieve a uniform coating that produces 

an antibacterial effect without compromising the osteoconductive effect of HA. The results have been 

promising, with most studies concluding that silver can be added to HA coatings without affecting the 

mechanical properties of HA. A universal occurrence in all studies of silver coatings is the ‘peak effect’, 
whereby a large release of silver ions is seen in the initial period. This is because the ions lie on the surface of 

the coating. This large release of ions helps to protect against infection in the first few weeks, when the risk of 

peri-prosthetic infection is highest.51 However, after this period there is minimal antimicrobial efficacy. A recent 

study52 investigated the co-deposition of silver and HA by electrochemical means. It was found that this method 

gave a steady prolonged release of silver ions which the authors suggested was due to the release of silver as the 

HA dissolved (compared with a double coating, in which silver overlies the HA coating). Thus, co-deposition 

gives good long-term antimicrobial cover but with loss of the ‘peak effect’, as there is limited bactericidal 

effect in the initial period.52 Shimazaki et al53 conducted a study in which AgHA-coated titanium plates were 

implanted subcutaneously in the backs of Sprague–Dawley rats, comparing Ag-HAcoated plates with HA-

coated plates in terms of their activity against MRSA. The results demonstrated significantly fewer MRSA 

CFUs on the Ag-HA-coated plates, showing promise for the use of such coatings clinically. Akiyama et al54 

investigated the bactericidal activity of Ag-HA-coated titanium in the medullary cavities of rat tibias. Again, 

the effects of Ag-HA coatings were compared with those of HA coatings and their relative activity against 

MRSA. The reduction in the numbers of viable MRSA in the tibiae with Ag-HA-coated implants compared with 

the HA-coated implants was statistically significant when measured at 24, 48 and 72 hours post-operatively (p = 

0.002, p = 0.008 and p = 0.041, respectively). They also found significant differences on radiological assessment 

at four weeks, suggesting a prolonged inhibitory effect of the silver ions on bacterial growth.54
 

 
Bone cement 

Alt et al55 reported an in vitro study comparing nanosilverloaded bone cement with gentamicin-loaded and plain 

cement. Each cement type was tested against S. epidermidis, MRSE and MRSA. Only the nanosilver cement had 

high antimicrobial efficacy against all bacterial strains. Prokopovich et al56 conducted a novel study using 

tiopronin (a thiol compound) as a stabilising agent, and encapsulating the produced nanosilver in bone cement. 

The tiopronin provided excellent stability to the nanosilver and the combination exhibited good antimicrobial 

efficacy without affecting the mechanics of the cement or producing cytotoxicity. 

 
Dressings 

Silver has been used in wound dressings for some time, and more recently dressings containing nanosilver have 

become available. These are designed to provide a sustained release of silver ions over a number of days, taking 

effect via delivery into the wound and through their action on the exudate released from the wound. Studies have 

shown that dressings containing nanosilver have a higher antimicrobial effect than bulk silver, although little is 

known about the possibility of increased toxic effects.57
 

 
Coating of trauma implants 

Silver coatings on trauma implants have generally proved effective in vitro, but in vivo studies have shown mixed 

results.58,59 In 2004, Sheehan et al60 investigated the effect of Ti, stainless steel and silver-coated implants against 

biofilm formation in rabbits. A Kirschner wire (silver-coated titanium, silver-coated stainless steel, and titanium and 

stainless  steel  controls)  2  mm  in  diameter  was  implanted into each of the distal femoral canals of the rabbits, and 

S. epidermidis and S. aureus were introduced by direct inoculation. There was no statistically significant 

difference in bacterial adhesion when comparing the control groups with the silver-coated implants. More recent 

in vivo work by Kose et al61used a more sophisticated method of silver coating. In their study, instead of directly 

coating the implants with metallic silver, a silver ion-doped calcium phosphate-based ceramic nanopowder was 

developed, the idea being that ionic silver is more biologically active. This coating was applied to 2.5 mm 



 

titanium alloy pins, which were implanted in the distal femoral canals of rabbits, similar to the study by Sheehan et 

al,60  and MRSA was inoculated. Colonisation of the silver-coated implants was compared with that of the uncoated 

and HA-coated implants. In the silver-coated group, the antimicrobial outcomes were more favourable, with a 

lower proportion of positive cultures and lower rates of osteomyelitis.61 Comparing the results of these two 

studies, it may be hypothesised that advances in the production of silver coatings have allowed for the manufacture of 

more biologically active models. 

 
Toxicity 

In addition to their use on orthopaedic implants, silver nanoparticles can be found in common consumer products as 

a result of their excellent antimicrobial properties.62-64 With the recent concerns relating to the effect of metal ion 

exposure as a result of metal-on-metal arthroplasty, surgeons are apprehensive about the potential toxic effect of 

silver nanoparticles.65 A cautionary note has been sounded elsewhere regarding the introduction of nanotechnology 

to medicine.66 A number of studies have been performed exploring the effect of sliver nanoparticles on a variety 

of cell types. These investigations have demonstrated that silver nanoparticles have the potential to induce 

developmental abnormalities in zebra fish embryos,67 disrupt the cell membrane,68 and induce genotoxic and 

cytotoxic damage to human lung fibroblast and glioblastoma cells,69 in addition to a system-wide suppression of 

the immune system.70 One of the difficulties of using silver nanoparticles in orthopaedics is controlling the release 

of the silver ions. These particles can be released from the connection sites on the implants to which they were 

attached, under the biodegrading effects of body fluid during medical treatment, and can harm the surrounding 

tissue.71 Considering that most patients into whom these implants have been inserted have undergone some bony 

procedure, the influence of the silver nanoparticles on bony metabolism is of critical importance. Pauksch et al72 

recently explored this by investigating the effect of silver nanoparticles on primary human mesenchymal stem 

cells and osteoblasts. Their study demonstrated silver nanoparticle-mediated cytotoxicity at higher concentrations 

(10 μg/g) and suggested that a therapeutic window for the application of these particles in medical products 

might  exist.  Greulich  et  al73   also  confirmed  that  silver nanoparticles were taken up by human mesenchymal 

stem cells and were found intracellularly in endolysosomal structures but not in the cell nuclei. A further study by 

Necula et al74 focused on the in vitro cytotoxicity of silver nanoparticles of various concentrations using a human 

osteoblastic cell line and evaluated their bactericidal activity against MRSA. The results showed that high 

concentrations of silver nanoparticles (3.0 Ag) were extremely cytotoxic, but lower concentrations (0.3 Ag) 

demonstrated optimum cell growth of osteoblasts as well as good antibacterial properties. It appears that the 

cytotoxicity is not only dose dependent but also particle size dependent. Albers et al75 demonstrated that the 

antibacterial effects of silver nanoparticles occurred at concentrations that were two to four times higher than 

those inducing cytotoxic effects. The authors stated that such adverse effects on osteoblast and osteoclast 

survival may have deleterious effects on the biocompatibility of orthopaedic implants. 

Another area of concern with respect to toxicity is the effect that silver nanoparticles might have on DNA 

synthesis, which would be particularly relevant when implants coated with silver nanoparticles are used in 

women of childbearing age. Powers et al76 showed that silver nanoparticles compromised neurodevelopment in 

PC12 cells, a model used for neuronal differentiation and neurosecretion. Their study revealed that exposure to 

silver nanoparticles was dependent on size and the coating to which it was attached, indicating that the effects are 

not due simply to the release of silver ions into the environment. Subsequent work from this group explored the 

effect of embryonic exposure of silver nanoparticles on zebra fish. The results indicate that the silver nanoparticles 

act as a developmental neurotoxicant, which can cause persistent neurobehavioral effects, which is also highly 

dependent on particle coating and size.77,78 Kovvuru et al79 explored the effect of oral ingestion of silver 

nanoparticles on inducing DNA damage and permanent genome alterations in a mouse model. Their results revealed 

that silver nanoparticles induced large DNA deletions in developing embryos, irreversible chromosomal damage 

in bone marrow, and double-strand breaks and oxidative DNA damage in peripheral blood. These issues highlight 

the health concerns about ions released from silver nanoparticles, particularly at high concentrations, although it 

should be noted that none of these issues have so far been reported in humans. A further concern relates to the 

effect of circulating silver nanoparticles, which inevitably end up in contact with vascular endothelium and have 

the potential to induce cardiovascular damage. In an in vitro study Ucciferri et al80 demonstrated that silver 

nanoparticles have a toxic effect on primary human endothelial cells. Furthermore, endothelial cells were shown to 

be more susceptible when exposed to silver nanoparticles under flow conditions in a bioreactor. This study 

highlights the fact that although simple in vitro tests are useful  to  screen  compounds  and  to  identify  the  type  

of effect induced on cells, they may not be sufficient to define safe exposure limits. The authors contend that more 

physiologically relevant in vitro models need to be developed to understand better how nanomaterials can affect 

human health. With respect to nanosilver, particle size can be significant in terms of side effects. Martínez-

Gutierrez et al81 conducted a study which showed that the optimum particle size in terms of antimicrobial efficacy is 

in the region of 20 nm to 25 nm. They also studied the cytotoxic effects associated with nanoparticles of this size 



 

and concluded that 24 nm particles of nanosilver had potent antimicrobial activity, but this size of nanosilver 

particle was cytotoxic to macrophages, causing a proinflammatory response and apoptosis. There are limited 

examples of toxic effects of silver in orthopaedic practice. Vik et al82 reported a neuropathy, resulting in grave 

muscle paralysis, in a patient in whom silver-impregnated cement was used at revision total hip arthroplasty. Intra-

operative analysis of the fluid drawn from the hip joint revealed that the concentration of silver was 1000 times the 

normal serum reference value. Following removal of the prosthesis and cement, the serum concentration of silver 

decreased over a period of two years from more than 60 times to 20 times normal, and the patient partially 

recovered from her muscle paralysis.83 Gosheger et al,84 in a rabbit model, also explored the infection rates and 

toxicological effects of silver-coated megaendoprostheses. Their study demonstrated that the concentration of silver 

in blood and organs was elevated with the use of silver-coated implants, although there were no pathological 

changes in laboratory parameters or histological changes of the organs. 

In conclusion, the use of silver nanoparticle technology in orthopaedic devices has great potential as a 

means to reduce the incidence of implant infection. Whereas many of the early animal studies produced positive 

initial results, this area certainly warrants further research, especially to elucidate the potential harmful effects of 

circulating silver nanoparticles. Further development of silver nanoparticle technology in orthopaedics needs to 

focus on controlling the release of the nanoparticles from the implant so that it is not only bioactive in 

preventing infection but also biocompatible with the host. 
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