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Abstract: Silver nanoparticles (AgNPs) have unlocked numerous novel disciplines in nanobiotechno-
logical protocols due to their larger surface area-to-volume ratios, which are attributed to the marked
reactivity of nanosilver, and due to their extremely small size, which enables AgNPs to enter cells,
interact with organelles, and yield distinct biological effects. AgNPs are capable of bypassing immune
cells, staying in the system for longer periods and with a higher distribution, reaching target tissues
at higher concentrations, avoiding diffusion to adjacent tissues, releasing therapeutic agents or drugs
for specific stimuli to achieve a longer duration at a specific rate, and yielding desired effects. The
phytofabrication of AgNPs is a cost-effective, one-step, environmentally friendly, and easy method
that harnesses sustainable resources and naturally available components of plant extracts (PEs). In
addition, it processes various catalytic activities for the degradation of various organic pollutants.
For the phytofabrication of AgNPs, plant products can be used in a multifunctional manner as a
reducing agent, a stabilizing agent, and a functionalizing agent. In addition, they can be used to
curtail the requirements for any additional stabilizing agents and to help the reaction stages subside.
Azadirachta indica, a very common and prominent medicinal plant grown throughout the Indian sub-
continent, possesses free radical scavenging and other pharmaceutical properties via the regulation of
proinflammatory enzymes, such as COX and TOX. It also demonstrates anticancer activities through
cell-signaling pathways, modulating tumor-suppressing genes such as p53 and pTEN, transcriptional
factors, angiogenesis, and apoptosis via bcl2 and bax. In addition, it possesses antibacterial activities.
Phytofabricated AgNPs have been applied in the areas of drug delivery, bioimaging, biosensing,
cancer treatment, cosmetics, and cell biology. Such pharmaceutical and biological activities of phyto-
fabricated AgNPs are attributed to more than 300 phytochemicals found in Azadirachta indica, and
are especially abundant in flavonoids, polyphenols, diterpenoids, triterpenoids, limonoids, tannins,
coumarin, nimbolide, azadirachtin, azadirone, azadiradione, and gedunin. Parts of Azadirachta indica,
including the leaves in various forms, have been used for wound healing or as a repellent. This study
was aimed at examining previously biosynthesized (from Azadirachta indica) AgNPs for anticancer,
wound-healing, and antimicrobial actions (through MTT reduction assay, scratch assay, and micro-
broth dilution methods, respectively). Additionally, apoptosis in cancer cells and the antibiofilm
capabilities of AgNPs were examined through caspase-3 expression, dentine block, and crystal violet
methods. We found that biogenic silver nanoparticles are capable of inducing cytotoxicity in HCT-116
colon carcinoma cells (IC50 of 744.23 µg/mL, R2: 0.94), but are ineffective against MCF-7 breast cancer
cells (IC50 >> 1000 µg/mL, R2: 0.86). AgNPs (IC50 value) induced a significant increase in caspase-3
expression (a 1.5-fold increase) in HCT-116, as compared with control cells. FITC-MFI was 1936 in
HCT-116-treated cells, as compared to being 4551 in cisplatin and 1297 in untreated cells. AgNPs
(6.26 µg/mL and 62.5 µg/mL) induced the cellular migration (40.2% and 33.23%, respectively) of V79
Chinese hamster lung fibroblasts; however, the improvement in wound healing was not significant
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as it was for the controls. AgNPs (MIC of 10 µg/mL) were very effective against MDR Enterococcus
faecalis in the planktonic mode as well as in the biofilm mode. AgNPs (10 µg/mL and 320 µg/mL)
reduced the E. faecalis biofilm by >50% and >80%, respectively. Natural products, such as Syzygium
aromaticum (clove) oil (MIC of 312.5 µg/mL) and eugenol (MIC of 625 µg/mL), showed significant
antimicrobial effects against A. indica. Our findings indicate that A. indica-functionalized AgNPs are
effective against cancer cells and can induce apoptosis in HCT-116 colon carcinoma cells; however,
the anticancer properties of AgNPs can also be upgraded through active targeting (functionalized
with enzymes, antibiotics, photosensitizers, or antibodies) in immunotherapy, photothermal therapy,
and photodynamic therapy. Our findings also suggest that functionalized AgNPs could be pivotal
in the development of a novel, non-cytotoxic, biocompatible therapeutic agent for infected chronic
wounds, ulcers, and skin lesions involving MDR pathogens via their incorporation into scaffolds,
composites, patches, microgels, or formulations for microneedles, dressings, bandages, gels, or other
drug-delivery systems.

Keywords: Azadirachta indica; phytofabrication; silver nanoparticles; anticancer drugs; caspase-3
expression; wound healing; antimicrobial agents; multidrug resistance

1. Introduction
1.1. Ulcers and Wounds

The four phases of wound healing include hemostasis, inflammation, proliferation
(new tissue formation, granulation, and angiogenesis) [1,2], and tissue remodeling; these
phases are capable to overlap in time and space [3]. Following the initial hemostasis,
inflammation is a critical part of the normal wound-healing process [1]. Wound healing
is one of the primary survival mechanisms, which is based on a very complex series of
biological events or processes [1]; however, the mechanisms can be complicated if they are
compromised by multidrug-resistant (MDR) microorganisms that prolong inflammation,
as inflammation hampers the epithelialization and cellular process, resulting in a chronic
wound (Figure 1) [4,5]. Frequently, MDR pathogens have been isolated from burns, diabetic
foot ulcers, and wounds; in addition, E. faecalis and S. aureus are known for causing chronic
wound infections [5,6]. Microbial biofilm is known to delay the cellular process, collagen
formation, and the remodeling of ulcers and wounds [4,5,7,8]; furthermore, biofilm-led
pathogens can defy macrophages in order to persist and proliferate [9]. A persistent wound
infection (chronic wound) may include diverse pathogens, including P. aeruginosa and S.
aureus, that have been implicated in delaying wound healing [10]; thus, the polymicrobial
nature of a wound infection is widely known [11,12]. Oral infections and diseases, such as
ANUG, tuberculosis, syphilis, gonorrhea, HPV, HIV/AIDS, HSV, measles, and mucormy-
cosis, are present in ulcerative forms [13]. Neoplastic ulcers may also be found as oral
manifestations of numerous oral cancers [13]. Nutritional deficiencies (scurvy, pellagra, and
xerostomia) and blood disorders, such as leukemia, aplastic anemia, and cyclic neutropenia,
can also manifest as ulcers. Aphthous ulcers or stomatitis are mainly associated with iron
deficiency, vitamin B12 deficiency, the bacterial infection of alpha-hemolytic Streptococcus,
and the bacterial infection of Streptococcus sanguinis. In addition, protein and vitamin
deficiencies can affect the wound-healing process [14].
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Figure 1. Oral ulcers and wounds (reproduced with permission from all authors) [15].

1.1.1. AMR in Pathogens Causing Wounds, Oral Ulcers, and Lesions

MDR microbial species, such as Staphylococcus spp. and Enterococcus spp., have
been isolated from burns, diabetic foot ulcers, and wounds [2,5,6,16]. These microbes
are responsible for infections and high complications, if presented with comorbidities
such as diabetes, cancer, and an immunosuppressive state [5]. Other multidrug-resistant
microorganisms, isolated from infected or noninfected wounds, are Pseudomonas aeruginosa
and beta-hemolytic Streptococci [2]. Delayed wound healing and wound-related infections
have been attributed to microbial biofilms [1,4,17]; in addition, biofilm-led microbes are
capable of countering the actions of neutrophils, macrophages, and other defense cellular
processes [18]. Any disturbances or obstructions in the collagen formation and in the
cellular action of fibroblasts or macrophages within the proliferation, inflammation, or
remodeling stages may result in delayed wound contraction [19]. Antimicrobial resistance
and metastasis of infections, to distant organs that can induce systemic infections, have
also been implicated in chronic wound infections [18]. Consequently, inducing toxicity
against major organs, adverse reactions, and drug antagonism can further complicate
the remediation efforts [20]. After years of drug development for wound healing, the
remediation strategies, for efficiently managing the skin damages, do not have an edge over
MDR infections [21]. A few antimicrobials, such as silver compounds, have been examined
for their bactericidal properties. Such antimicrobials have been potentially considered for
treating wound infections caused by Pseudomonas spp., methicillin-resistant Staphylococcus
spp., and Enterococcus spp. [20,22,23].

1.1.2. Factors Affecting Ulcers and Wound Healing

Broadly, oxygen, bacterial infections, foreign bodies, and venous sufficiency at the local
level, and diseases such as diabetes and blood disorders in addition to immunosuppressive
conditions such as HIV/AIDS, radiation therapy, and cancer at the systemic level can
severely affect the wound-healing process. Oxygen is essential for proper wound healing,
especially for cell metabolism. Due to a high metabolism, vascular disruption, and oxygen
consumption, the wound environment may become hypoxic [2,17,24,25]. Initially, the
hypoxic condition may affect the secretion of cytokines, chemokines, and other regulatory
proteins and factors crucial for angiogenesis, proliferation, migration, and chemotaxis [2].
However, long-term hypoxia can delay healing [17]. Chronic administration of systemic
corticosteroids via the suppression of the cellular response, anti-inflammatory effects, and
the reduced production of hypoxia-induced factor-1 can delay the wound-healing process.
Topic corticosteroids have been shown to improve wound healing, reduce hypergranulation
tissue formation, and reduce inflammation [2,26,27]. Due to antiplatelet functions, short-
term, non-steroidal, anti-inflammatory drugs such as ibuprofen can delay proliferation,
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epithelialization, fibroblast functions, and angiogenesis, impairing wound contraction and
healing [2,28].

1.2. Cancer and Systemic Diseases

Of the noncommunicable diseases, cancers are responsible for a higher mortality and
high morbidity globally [1]. Severe toxicity against normal cells and organs, failed targeting,
and AMR have presented numerous challenges in the management of cancer; in addition,
recurrences and extreme after-effects are usually seen with conventional anticancer thera-
pies. Anemia, thrombocytopenia, diarrhea, fatigue, alopecia, fertility issues, lymphedema,
delirium, infection, and neutropenia are some of the common side effects associated with
conventional anticancer therapies. AMR and infection by opportunistic or MDR microor-
ganisms are major issues for patients with immunocompromised states, such as those who
have AIDS, diabetes, or cancer, as they complicate the condition [29–31]. Malignant condi-
tions may become critical and vulnerable, with lower 5-year survival rates [32]. Hence, most
important goal of our time is the development of potent and effective antineoplastic drugs,
that can also deal with the comorbidities such as diabetes-associated wounds infections.
The pathogenesis of systemic infections and diseases, such as atherosclerosis, endocarditis,
brachial artery endothelial dysfunction, cystic fibrosis, and systemic inflammation, has
been linked to biofilm-led AMR microorganisms, where biofilm-embedded bacterial cells
can show continuous, slow growth, or no growth [18,33–36].

1.3. Complications

Manifestations of cancer present as severe situations in theranostics, and the remedia-
tion efforts often result in unwarranted injury and inducing toxicity against vital organs.
Comorbidities, confounding factors, and after-effects can further complicate anticancer
therapies. Anticancer drugs are intended to target cancerous cells exclusively, but drugs
failing to provide active targeting and extended retention result in severe cytotoxicity and
organ failure. The roles of biofilm in disease progression are very much evident [18,37,38].
Bacteremia, the metastatic spread of an oral infection to a distant location (endocarditis,
osteomyelitis, acute bacterial myocarditis, and sinusitis), and metastatic injury (myocardial
infarction, chronic meningitis, and toxic shock syndrome) have been linked with circulating
bacterial toxins [39]. MDR strains of Enterococcus faecalis bacteria have been seen in ulcers
and chronic wounds; in addition, delayed wound healing and high complications have
been observed due to biofilms [40–42]. Due to the failure of the early generation and
development of antimicrobials, the quest for novel drugs has become unavoidable as efforts
to control wound infection, postoperative complications, and the management of neoplastic
lesions and ulcers are severely affected [43].

1.4. Therapeutic Strategies

Cyclosporin, tacrolimus, corticosteroids such as triamcinolone and fluocinonide, aloe
vera, 1% chlorhexidine gel alone and in combination with 1% metronidazole and 2%ligno-
caine, and 0.2% hyaluronic acid gel are usually used as topical applications for wounds
and ulcerative lesions [44]. Novel delivery systems such as biodegradable cefazolin-loaded
niosomes, which are synthesized via an electrospray onto the chitosan membrane for
wound-healing applications, have been found to have the ability to enhance skin regenera-
tion by improving re-epithelialization, tissue remodeling, and angiogenesis; in addition,
there was no cell cytotoxicity induced, and they were potent against biofilm-forming
pathogens [45]. Apart from that, a number of nanomaterials, such as NPs, nanocomposites,
scaffolds, coatings, nanocarriers, and nanogels made of metals and polymers (chitosan,
polysaccharides, alginate, chitin, and polyvinyl alcohol), have been reviewed for their tissue
regeneration capabilities [46]. Silver sulfadiazine (SSD) (1%), which is known for being
used to treat P. aeruginosa-infected wounds, is more effective than PVP-I for treating wound
infections [47,48]. However, SSD has also been observed delaying the wound healing and
inducing toxicity in the murine fibroblast cells [27,49]. Silver-containing delivery systems,
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such as SSD, have also been tested extensively for wound dressings [50,51]. Poor solubility
in an aqueous environment and its chemical stability have restricted the further use of
SSD as a drug delivery system [15,52]. Silver in the form of nanoparticles (AgNPs) can
promote wound healing by impeding biofilms and promoting the destruction of microbial
membrane structures; in addition, AgNPs induce cytotoxicity against pathogens such as
Staphylococcus spp., Enterococcus spp., V. cholerae, and B. subtilis [23,53]. Novel collagen
and chitosan scaffolds containing AgNPs (at 10 µg/mL) were capable of healing wounds
through cellular migration [54]. AgNPs were also found to be anti-inflammatory in action.

AgNPs, as well as their composites, assemblages, and complexes, are widely utilized
for antimicrobial and wound-healing purposes [55]. In addition, incorporation of metals,
metal oxide nanoparticles and silver-containing compounds, into gels [56,57], hydrogel
or gelling fibers [23,54,58], and mesh or polymeric membranes, has been mentioned as
one of the natural solutions for the development of unique bandages [58,59]. Nanogel and
nanomesh, functionalized with AgNPs, growth hormones, antibiotics, or enzymes, have
been suggested as wound-dressing systems, for enhancing wound healing, for decreas-
ing the inflammatory responses, and for enhancing the immune responses [60]. AgNPs
embedded in wound-dressing polymers, alginate, cotton fabrics, cellulose, or chitosan,
promote wound healing and control MDR microbial growth [61–63]. Ag+ ions can create
pores in the bacterial cell wall, by binding with the sulfur- and phosphorus-containing
proteins of the cell wall and the cell membrane [64–66]. Ag+ ions can disrupt the cellular
permeability [67–69], can generate oxidative stress, and can cause cell death [53,69–71].
The abovementioned factors are responsible for the antibacterial effects of AgNPs, and
are caused by protein leakage, by compromising the cellular wall integrity, and by the
inactivation of LDH through ROS production.

Surgery, chemotherapy, and radiation therapy, as the most viable and common ap-
proaches, as well as novel techniques such as immunotherapy and gene therapy, are
currently considered in cancer treatment and management. The anticancer potential of NPs,
including AgNPs, has already been discussed in detail in our previous study [72]. Biogenic
AgNPs (14 nm), synthesized from Podophyllum hexandrum Royle extracts, are considered
very effective against HeLa cells for inducing DNA damage and caspase-3-mediated apop-
tosis [73]. Functionalized AgNPs are more likely to gain intracellular access to cancer cells
through a passive mode and to deliver anticancer drugs in a greater quantity via their
extended permeability and retention (EPR) effects [74]. Recently, a number of novel meth-
ods and techniques capable of targeting neoplastic cells efficiently have emerged [75–77].
Among these unfamiliar and ingenious options, nanotechnology has provided a remarkable
canvas for cancer research [77].

Natural products, such as Azadirachta indica (neem tree) and Syzygium aromaticum
(clove), have been examined against Enterococcus faecalis, for antimicrobial effects [78,79]. In
addition, they have been used in mouthwashes, toothpastes, and ointments [80–82] for their
analgesic, anti-inflammatory, and antiseptic effects [78,83]. AgNPs are some of the most
effective options available against microbial infections [84,85], due to their antimicrobial
activities, their capabilities for incursion on the microbial physical structures, and their
interaction with the molecular armamentariums [86,87]. AgNPs have been found to be
relevant in areas such as drug delivery, bioimaging, biosensing, cancer, cosmetics, and cell
biology; in addition, their applications in textiles, automobiles, air purification, and water
purification are well acknowledged [88–90]. Nanoparticles (<100 nm) can be synthesized
from inorganic (silica, quantum dots, and metal nanoparticles) or organic (liposomes,
micelles, dendrimers, and polymeric nanoparticles) materials through physical, chemical,
or biological approaches [91]. Being the most effective against bacterial cells and cancer
cells, AgNPs have become popular for invading cells, for creating oxidative stress, and for
damaging cellular structures [92]. In various forms, AgNPs have been widely applied to
control wound infections [93–95].
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1.5. Gaps

Gaps can be observed in the treatment of cancers with or without ulcerative lesions,
since a common and potent drug is yet to be developed for cancers, chronic ulcers and
wounds, and MDR microbial infections. Second, a majority of the already developed
potent compounds are either cytotoxic, genotoxic, or impractical to be applied. Third, the
synthesis or fabrication processes of anticancer and wound-healing compounds or drugs
are either very complex or require extensive resources. Fourth, a majority of previous
studies have traditionally focused on ATCC strains or strains not implicated in biofilm-led
wound infection. For anticancer and improved wound-healing properties, novel drug
candidates such as AgNPs have been developed by using concepts of green chemistry and
a cost-effective, one-step, environmentally friendly, easy method that harnesses sustainable
resources [96–101]. Biologically synthesized AgNPs show excellent hemocompatibility
and antibacterial and anticancer properties as compared to chemically or polymerically
synthesized NPs and commercial NPs. Therefore, a batch of assays can be performed, for
analyzing the anticancer properties and for analyzing the cellular migration actions of
biogenic AgNPs.

1.6. Aim

To examine the anticancer, apoptotic, wound-healing, and antimicrobial properties of
previously biosynthesized silver nanoparticles.

1.7. Rationale of the Study

Due to their extremely small size, AgNPs can enter cells, interact with organelles,
and yield distinct biological effects; in addition, AgNPs can contribute significantly to the
design of drug delivery systems, anticancer therapies, tissue regeneration methods, and
antimicrobial therapies. Therefore, we examine the anticancer, apoptotic, wound-healing,
and antimicrobial properties of previously phytofabricated AgNPs.

2. Materials and Methods
2.1. Silver Nanoparticles

Nanoparticles are solid colloidal particles that are nanosized (<100 nm); due to their
exemplary size and ability to confine electrons, they possess special optical and physiochem-
ical characteristics, which are distinct from their powder, plate, or sheet forms [102,103].
AgNPs can be fabricated by using concepts of green chemistry and cost-effective, one-step,
environmentally friendly, easy methods to harness sustainable resources and naturally
biodegradable components, such as polysaccharides, biopolymers, vitamins, plant extracts
(PEs), and microorganisms. Plant-based methods provide feasible and eco-friendly op-
tions for processing various catalytic activities that degrade various organic pollutants.
Plants and plant products provide few advantages over the time-consuming and complex
multistep process with a high throughput that involves yeast, fungal, or bacterial cultures.
If properly fabricated and functionalized with appropriate biomolecules or drugs, NPs
can bypass the immune cells, stay in the system for a longer period, provide a higher
distribution, and reach the target tissue at a higher concentration. NPs can avoid being
diffused to adjacent tissues and can release therapeutic agents or drugs at a specific rate
on specific stimuli and for a longer duration; in addition, NPs can yield desired biological
effects that can be used in imaging. The AgNPs with 44.6 nm to 66 nm diameters that were
used in this study were phytofabricated previously by the authors from Azadirachta indica
leaf extracts [72].

2.2. Chemicals and Reagents

Dulbecco’s modified Eagle medium that included a high-glucose (DMEM-HG) medium
and an MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) reagent, fetal
bovine serum (FBS), Hank’s balanced salt solution (HBSS), and 0.25% trypsin-EDTA solu-
tion were purchased from MP Biomedicals (Eschwege, Germany). Dulbecco’s phosphate-
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buffered saline (DPBS), trypsin-EDTA, a 2% paraformaldehyde solution, 0.1% Triton-X
100 in 0.5% BSA solution, 0.5% BSA in 1× PBS, hydrogen peroxide, sodium hypochlorite
(3%), chlorhexidine (2%), and EDTA were procured from HiMedia (Mumbai, India). The
APO-DIRECT™ kit and FITC rabbit anti-active caspase-3 IgG antibody were purchased
from Pharmingen (BD Biosciences). Standard silver stock, DMSO, and Suprapur-grade
2% HNO3 were procured from Merck (Darmstadt, Germany). Antibiotic discs were pur-
chased from Titan Biotech (New Delhi, India). Antibiotics and resazurin sodium salt were
purchased from CDH (New Delhi, India). Clove and eugenol were purchased from Aggar-
wal Drug Co. (New Delhi, India). Water was obtained from the Milli-Q® Integral Water
Purification System (Millipore, Burlington, MA, USA).

2.3. Cell Lines

HCT-116, MCF-7, and V79 Chinese hamster lung fibroblast cell lines were obtained
from NCCS (Pune, India).

2.4. MTT Cytotoxicity Assay

The cytotoxicity of AgNPs (experimental group) in HCT-116 and MCF-7 cells was ana-
lyzed using yellow tetrazolium MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium
bromide), according to the methods explained earlier [104–108]. Untreated cells were
considered as controls and all experiments were performed in triplicates. Cells cultured in
T-25 flasks (Biolite, Thermo Fisher Scientific Inc., Waltham, MA, USA) were trypsinized,
aspirated into a 5 mL centrifuge tube (Tarsons, Kolkata, India), and pelleted via centrifu-
gation at 300× g. The cell count was adjusted by using the DMEM-HG medium (MP
Biomedicals, Germany) so that 200 µL of suspension contained approximately 10,000 cells.
To each well of the 96-well microtiter plate (Nunc, Thermo Fisher Scientific Inc., USA),
200 µL of the cell suspension was added, and the plate was incubated at 37 ◦C and in a
5% CO2 atmosphere for 24 h. After 24 h, the spent medium was aspirated and 200 µL of
different test concentrations of AgNPs was added to the respective wells. The plate was
then incubated at 37 ◦C and in a 5% CO2 atmosphere for 24 h. The plate was removed from
the incubator and the AgNPs containing media were aspirated. Thereafter, 200 µL of the
medium containing the 10% MTT reagent (MP Biomedicals, Germany) was added to each
well to obtain a final concentration of 0.5 mg/mL, and the plate was incubated at 37 ◦C
and in a 5% CO2 atmosphere for 3 h. The culture medium was then removed completely
without disturbing the crystals formed. Subsequently, 100 µL of solubilization solution
(DMSO, Merck, Germany) was added, and the plate was gently shaken in a gyratory shaker
to solubilize the formed formazan. The absorbance was measured using a microplate reader
at a wavelength of 570 nm and 630 nm. The percentage growth inhibition was calculated
after subtracting the background and the blank. The concentration of AgNPs that was
needed to inhibit cell growth by 50% (IC50) was calculated from the dose–response curve.

2.5. Caspase-3 Mode of Action

Apoptotic activities were examined (in triplicates) via the quantification of caspase-
3 in AgNP-treated (IC50 value) HCT-116 cells, following the methods explained earlier
with some modifications [109,110]. Cisplatin-treated (44 µg/mL) and -untreated cells
were considered as controls. Cells were cultured in a 6-well plate (Biolite, Thermo Fisher
Scientific Inc., Waltham, MA, USA), at a density of 3 × 105 cells/2 mL and incubated in
a CO2 incubator at 37 ◦C for 24 h. After incubation, the spent medium was aspirated
and cells were washed with 1 mL 1X PBS (HiMedia, Mumbai, India). Cells were then
treated with the required concentration of the experimental test compound in 2 mL of
culture medium and incubated for 24 h. One of the wells was left untreated to be used
as the negative control. At the end of the treatment, the medium was removed from all
the wells, placed into the 5 mL centrifuge tubes, and washed with 500 µL PBS (PBS was
saved in the same tubes). The PBS was removed and 200 µL of trypsin-EDTA solution
(HiMedia, Mumbai, India) was added and incubate, at 37 ◦C for 3–4 min. The culture
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medium was poured back into the respective wells and cells were harvested directly into
the centrifuge tubes. The tubes were centrifuged for five minutes at 300× g at 25 ◦C and the
supernatant was decanted carefully. Washing with 1× PBS was performed twice. The PBS
was decanted completely. Then, 0.5 mL of 2% paraformaldehyde solution was added and
incubated for 20 min. Washing with 0.5% bovine serum albumin (BSA) in 1X phosphate-
buffered saline (PBS) was performed. Thereafter, 0.1% Triton-X 100 in 0.5% BSA solution
was added and incubated for 10 min. Washing with 0.5% bovine serum albumin (BSA) in
1X phosphate-buffered saline (PBS) was carried out 2 times. Next, 0.5% BSA in 1X PBS
was added and 20 µL anti-caspase-3 antibody (BD Biosciences, Catalog No. 559341) was
added and mixed thoroughly via pipetting before being incubated for 30 min in the dark at
room temperature (25 ◦C). Once the washing with 1X PBS was performed, 0.5 mL of PBS
was added, mixed thoroughly, and analyzed. If samples were not analyzed immediately,
mixing was performed thoroughly just prior to analysis.

2.6. Scratch Assay

In vitro wound-healing properties of AgNPs (6.26 µg/mL and 62.5 µg/mL) and stan-
dard EGF (0.01 µg/mL) were examined (in triplicates) by using a scratch assay in accor-
dance with the methods explained earlier with a few modifications [54,111]. V79 cells were
cultured in 6-well plates to form a monolayer. As the cells reached around a 70% confluence,
a scratch was made with a 200 µL pipette tip to form a wound, which was followed by
the washing of the monolayer with 1 mL DPBS two times. Subsequently, 2 mL of medium
was added to each well with (experimental group) or without test drugs (AgNPs), and
was incubated for 24 h. Untreated wells and wells treated with 0.01 µg/mL EGF were
considered as controls. AgNP-treated wells were considered as experimental. Using an
inverted phase-contrast microscope, images were taken at regular time intervals (0 h, 12 h,
and 24 h). The percentage of cell migration/wound healing was calculated by comparing
the final gap area (24 h) to the initial gap area (0 h).

2.7. Microorganism

The human pathogen Enterococcus faecalis was isolated from the mixed culture obtained
from the Centre for Drug Discovery Design and Development (C4D), Department of
Microbiology, SRM University Haryana, Sonepat (India).

2.8. Antibiogram

The susceptibility of Enterococcus faecalis to 26 antibiotics from 14 different classes
(including first-line, second-line, and last-line drugs) was examined (in triplicates) through
the Kirby–Bauer and the microbroth dilution method [112,113]. Results were interpreted in
accordance with the EUCAST and the CLSI standard procedure for antimicrobial suscepti-
bility testing (2021) [114,115].

2.9. Antimicrobial Susceptibility Testing

The antimicrobial susceptibility of Enterococcus faecalis was investigated by utilizing the
following methods in accordance with EUCAST and CLSI standard procedures [112–115].
All experiments were performed in triplicates.

2.9.1. Agar Well Diffusion Method

The antimicrobial susceptibility of Enterococcus faecalis to AgNPs and common antimi-
crobials such as hydrogen peroxide (H2O2), sodium hypochlorite (NaOCl) (3%), chlorhex-
idine (CHX) (2%), and EDTA was examined by using the agar well diffusion method.
The antimicrobial susceptibility of Enterococcus faecalis to clove oil and eugenol was also
examined through the agar well diffusion method.
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2.9.2. Microbroth Dilution Method

The antimicrobial activities of AgNPs, clove oil, and eugenol against Enterococcus
faecalis were investigated by utilizing the microbroth dilution method, which was carried
out pursuant to the methods explained prior to this with some modifications [112,113]. The
minimum inhibitory concentration of AgNPs opposing Enterococcus faecalis was established
by incubating Enterococcus faecalis in a U-bottom, 96-well microtiter plate. AgNPs were
serially diluted in sterile Mueller–Hinton broth (MHB). Aggregately, the cumulative volume
attributed to each well was 100 µL as a consequence of adding 50 µL of the 24-hour
bacterial culture (0.5 McFarland). The column-wise terminating concentration appertaining
to AgNPs turned out to be 1280 µg/mL to 2.5 µg/mL. A total of 10 µL (0.7 mg/mL)
of resazurin was added to each particular well (giving a blue or purple color) in sterile
conditions and incubated for 18 to 24 h. After 6 to 8 h, the microtiter plate was examined
for the transformation of color from blue to pink or red, indicating bacterial growth.
Enterococcus faecalis ATCC 29212 was used as reference strain. The standardization of the
method was based on the criteria established by the CLSI.

2.9.3. Synergistic Studies via the 2D Checkerboard Method

The antimicrobial synergistic activities of AgNPs in combination with clove oil or
eugenol were examined (in triplicates) through the synergistic assay using the 2D checker-
board method, which was explained earlier and was performed with some modifica-
tions [116,117]. The mixtures of AgNPs and different concentrations of clove oil or eugenol
were incubated with the 24 h broth culture of Enterococcus faecalis (0.5 McFarland) at 37 ◦C
for 18 to 24 h in a 96-well plate, with a final volume of 100 µl per well. Post-incubation,
about 10 µL of resazurin (0.7 mg/mL) was added to each well in the same manner explained
earlier and incubated for another 6 to 8 h. Subsequently, the microtiter plate was observed
for a change in color. The MIC was determined as the least amount of dilution without any
change in color, from blue to pink or red. Finally, the fractional inhibitory concentration
(FIC) for combinations was used as an indicator to measure the effects of combined drugs.
The fractional inhibitory concentration index (FICIndex) was determined as the inhibitory
concentration of the combination divided by that of the single antimicrobial or drug, as
described by Mataraci and Dosler (2012) [116]. The combination index was derived from
the highest dilution of an antimicrobial combination that permitted no visible growth.
The calculation method of FIC was used. Enterococcus faecalis ATCC 29212 was used as a
reference strain.

2.10. Biofilm Assay
2.10.1. Dentine Block Method

The antibiofilm activity (reproduced from our previous study [118]) of AgNPs against
Enterococcus faecalis was determined (in triplicates) by utilizing the dentine block method,
which was explained earlier and was performed with some modifications [119]. Human
dentine blocks (5 mm × 5 mm × 1 mm) were treated for 24 h at 37 ◦C in groups including
the control (dH2O), AgNPs (MIC value), and 2% chlorhexidine; additionally, blocks were
treated for combinations of different concentrations of AgNPs with either clove or eugenol.
After treating the dentine blocks, 50 µL of dilution from the serial dilution solutions was
poured on TSA/nutrient agar plates. CFU/mL was calculated after 18–24 h of incubation
at 37 ◦C.

2.10.2. Crystal Violet Method

The antibiofilm efficacy of AgNPs was also examined via the crystal violet method
explained earlier by using a 96-well microtiter plate with some modifications [120,121].

2.11. Statistical Analyses

Data were statistically analyzed by means of the Kruskal–Wallis rank-sum test and by
employing the Microsoft Windows statistical software “R” version 4.0.2 (R Foundation),



Antibiotics 2023, 12, 121 10 of 27

with a p < 0.05 being statistically significant. Results were recorded, summarized, and
presented by means of descriptive statistics.

3. Results
3.1. Nanoparticles

Silver nanoparticles (44.04 to 66.50 nm), synthesized previously [72] by the authors
of this study through the green method using Azadirachta indica, were used in this study.
Phytofabricated AgNPs had a zeta potential of −55 mV. Through FTIR analyses, it was
found that some potent phytochemicals, such as flavonoids and proteins from Azadirachta
indica, had formed a strong coating or capping on the AgNPs without affecting their
secondary structure and had interacted with Ag+ and NPs for the formation of AgNPs.
Phytofabricated AgNPs had a strong antibacterial activity (MIC of 10 µg/mL) against
the multidrug-resistant pathogen Enterococcus faecalis; in addition, no IC50 values were
recorded for AgNPs and Azadirachta indica, signifying the negligible cytotoxicity (in V79
Chinese hamster lung fibroblast cells) of AgNPs. Near the MIC conc. of 7.812 µg/mL and
15.62 µg/mL, 91.18% and 91.44% of V79 cells were viable, respectively. At 1000 µg/mL,
about 62.47% of V79 cells were viable. AgNPs did not cause any significant DNA damage in
V79 fibroblast cells. The DNA degradation activity of AgNPs, analyzed through the TUNEL
assay, revealed no significant increase in the overall FITC mean fluorescence intensity (MFI)
and no significant increase in the DNA fragmentation index (DFI). AgNP (10 µg/mL)-
treated cells had 5.45% DNA damage and a 790 MFI, as compared to 31.2% DNA damage
and a 1308 MFI in cisplatin-treated cells. The apparent permeability or Papp in Caco-2 cells
was moderate at 5.14 × 10−6 cm/s, which was quantified through ICP-MS [72].

3.2. MTT Cytotoxicity Assay

Figure 2 shows the 24-hour treatment of AgNPs in the HCT-116 and MCF-7 cells.
AgNPs were not effective against MCF-7 breast cancer cells, as no IC50 value was observed.
However, AgNPs were effective against HCT-116, with an IC50 > 500 µg/mL. A significant
decline in the viability of HCT-116 cells was noticed after the concentration was 250 µg/mL
and cell viability was 26.17% at a concentration of 1000 µg/mL. At a concentration of
1000 µg/mL, the MCF-7 cells were 75% viable (Figure 2).

Figure 2. Cell viability of HCT-116 and MCF-7 cells in treatment with AgNPs.
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3.3. Caspase-3 Mode of Action

Caspase-3 expression in HCT-116 cells was quantified through flow cytometry (Figure 3)
by using the FITC rabbit anti-active caspase-3 IgG antibody. A significant increase in the
caspase-3 FITC-MFI was observed in HCT-116 cells treated with AgNPs (1936, 1.5-fold
increase) and those treated with cisplatin (44 µg/mL) (4551, 4.5-fold increase), as compared
with control (untreated) cells (1297). An increase in the percentage of active caspase-
3-positive HCT-116 cells treated with AgNPs (11.4%) was observed, as compared with
cisplatin (66.2%) and untreated (8.77%) HCT-116 cells. An increase in the FITC-MFI corre-
sponds to an increase in the active caspase-3 expression and in the treated cells going for
apoptosis. FITC (green) fluorescence was collected in the FL1 detector by using a 525 nm
band-pass filter.

Figure 3. Caspase-3 activities induced by biosynthesized silver nanoparticles in HCT-116 cells,
quantified through FITC rabbit anti-active caspase-3 IgG antibody (BD Biosciences). Representative
FS/SS dot plots (a) of uniform population, percentage of cells with high caspase-3 activity assessed by
dUTP-FITC (b) for control (i), standard EGF (ii), and biosynthesized silver nanoparticles (AgNPs) (iii).
Flow cytometry histogram overlays (c) show the intensity of dUTP-FITC in the HCT-116 cells that are
untreated (control), those treated with cisplatin (standard), and those treated with biosynthesized
silver nanoparticles (AgNPs).

3.4. Scratch Assay

No significant improvement was observed (Figure 4) in the percentage of wound
healing (40.2% and 33.23%) in V79 cells treated with AgNPs (6.26 µg/mL and 62.5 µg/mL,
respectively), as compared with the untreated (41.95%) and EGF-treated (57.11%) cells.
There was a dose-dependent reduction in the percentage of wound healing (in the form
of cellular migration) in the AgNP-treated cells. This could be due to the concentration
of AgNPs in the in vitro scratch assay, suggesting the need for follow-up in vivo animal
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experiments to reach an effective concentration for cellular migration. AgNP treatments of
6.25 µg/mL and 62.5 µg/mL decreased the migration of V79 fibroblast cells.

Figure 4. Cellular migration in V79 Chinese hamster lung fibroblast cells analyzed through scratch
assay for wound-healing properties of AgNPs at different concentrations.

3.5. Microorganism

Enterococcus faecalis (n = 79) was identified from the mixed sample through standard
biochemical and microbiological tests. Isolated strains were cryopreserved in glycerol
stocks and kept at −20 ◦C/−80 ◦C until further use.

3.6. Antibiogram

The susceptibility of Enterococcus faecalis to antibiotics was examined and interpretated,
as per the EUCAST and CLSI standard procedure for antimicrobial susceptibility testing
(2021).

3.6.1. Disc Diffusion Method

The susceptibility of Enterococcus faecalis (n = 79) to antibiotics was examined through
the disc diffusion method. It was revealed that besides amoxicillin and ampicillin, Enterococ-
cus faecalis was majorly resistant to streptomycin, ciprofloxacin, cotrimoxazole, sparfloxacin,
cefixime, ceftriaxone, meropenem, vancomycin, tetracycline, and nitrofurantoin. Ofloxacin
and norfloxacin were the most effective antibiotics against Enterococcus faecalis.
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3.6.2. Microbroth Dilution Method

Results from the disc diffusion method were validated through additional testing. The
antibiotic susceptibility of Enterococcus faecalis to 26 antibiotics from 14 different classes,
including first-, second-, and last-resort antibiotics, was tested through the microbroth
dilution method. It was found that 14 antibiotics (kanamycin, novobiocin, ampicillin, amox-
icillin, cefoxitin, ceftriaxone, chloramphenicol, vancomycin, erythromycin, spiramycin,
metronidazole, linezolid, colistin, and polymyxin B) from 9 classes were resistant. Strepto-
mycin, sulfamethoxazole, norfloxacin, tetracycline, and nitrofurantoin were active against
and capable of inhibiting Enterococcus faecalis in a planktonic state after 18–24 h of treatment.
High-level antibiotic resistance (HLAR) was observed for amoxicillin (>1024 µg/mL) and
novobiocin (512 µg/mL). Enterococcus faecalis was very sensitive to fluroquinolones, as a
very small concentration (0.25 µg/mL) was able to inhibit E. faecalis completely. The second
most effective drugs (1 µg/mL) were minocycline and azithromycin.

3.7. Antimicrobial Activities
3.7.1. Agar Well Diffusion Method

AgNPs (ZOI (mm), 24.39 ± 4.03) were more effective (Kruskal–Wallis rank-sum
test statistics: 103.06, df:2, p < 0.05), against Enterococcus faecalis (n = 79), than clove
oil (21.49 ± 3.63) or eugenol (16.95 ± 2.89). Whereas, H2O2 exhibited the highest ZOI
(32.68 ± 5.44) as compared to NaOCl (14.94 ± 7.06), CHX (15.94 ± 2.87), and EDTA
(16.50 ± 2.9).

3.7.2. Microbroth Dilution Method

The antimicrobial susceptibility of Enterococcus faecalis (n = 79) to AgNPs, clove oil,
and eugenol was examined through the microbroth dilution method. AgNPs had an MIC
of 10 µg/mL. The MICs of clove oil and eugenol were 312.5 µg/mL and 625 µg/mL,
respectively. There was a statistically significant difference between the MICs of clove oil,
eugenol, and AgNPs (Kruskal–Wallis rank-sum test statistics: 184.49, df:2, p > 0.05).

3.7.3. Synergistic Studies via the 2D Checkerboard Method

The synergistic effects of AgNPs when combined with clove oil or eugenol were eval-
uated by determining the fractional inhibitory concentration (FIC) index. The synergistic
and additive effects of AgNPs with clove oil or eugenol were observed against multidrug-
resistant Enterococcus faecalis. However, no antagonistic effect was observed. There was a 4-
to 8-fold reduction in the AgNP MIC when combined with clove oil. In addition, there was
a 4- to 16-fold decline in the AgNP MIC when combined with eugenol.

3.8. Biofilm Assay

The antimicrobial effects of AgNPs against Enterococcus faecalis-formed biofilms were
studied via the CFU method and crystal violet method by using human dentine blocks and
a 96-well plate, respectively.

3.8.1. Dentine Block Method

A significant difference (Kruskal–Wallis rank-sum test statistics: 73.278, n:99, df:8,
p < 0.05) was observed, with a mean colony count of 9.9, 14.9, and 9.4 CFU/mL (107), for
the 20 µg/mL AgNPs, 10 µg/mL AgNPs, and 2% CHX, respectively. The biosynthesized
AgNPs were as effective as the 2% CHX against Enterococcus faecalis.

3.8.2. Crystal Violet Method

The antibiofilm activities of biosynthesized AgNPs were also analyzed through the
crystal violet method. E. faecalis isolates (n:79) were strong (n:11), moderate (n:24), weak
(n:35), and non-biofilm formers (n:9). Strong biofilm formers were considered for the crys-
tal violet antibiofilm assay. Effective and dose-dependent antibacterial activities (biofilm
reduction >50% and >80%) of AgNPs (10µg/mL and 320µg/mL, respectively) were ob-
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served against MDR Enterococcus faecalis in the biofilm mode (Kruskal–Wallis rank-sum test
statistics: 107.15, df:9, p < 0.05).

4. Discussion

This study signifies that phytofabricated silver nanoparticles are effective against can-
cer cells and MDR human pathogens; in addition, they are capable of inducing apoptosis
in cancer cells. Although the wound-healing actions were not significant, AgNPs induced
weak cellular migration. Cellular migration can be improved with the appropriate function-
alization, capping, or conjugation of AgNPs with other biomolecules. Prototypical features
of phytofabricated nanostructures, including NPs, would provide an advantageous edge
over conventional methods in the therapy of carcinomas and tumors. Such leverages are
due to the ability of NPs to reach target cells or tissue without diffusing to the adjacent
areas. Such typical features are not enjoyed with conventional diffusing or anticancer thera-
peutic agents; furthermore, conventional therapeutic agents usually precipitate unwanted
after-effects and induce cytotoxicity against normal healthy cells. Conventional drugs or
therapeutic agents can target both cancerous and healthy cells. However, phytofabricated-
NPs are formulated to only reach cells of interest. The findings of this study might also
help in understanding cellular pathways, signaling, and disease progression through the
efficient identification of novel biomarkers and mechanisms of drug action. Observations
from this study also provide a scope for the modification of NPs by conjugating bioactive
molecules such as enzymes, photosensitizers, therapeutic drugs, and even nucleic acids.
We believe that our findings show the untapped potential of phytofabricated NPs in the
areas of cancer diagnosis and prevention, antimicrobial therapies, and the prevention of
morbidities.

This study was a continuation of our previous studies [72,118]. We biologically syn-
thesized AgNPs and concluded that they had excellent biocompatibility with negligible
cytotoxicity (IC50 >> 1000 µg/mL) in noncancerous V79 Chinese hamster lung fibroblast
cells; in addition, there was no significant genotoxicity in noncancerous V79 cells due to
the biosynthesized AgNPs. In the current study, the cytotoxicity of AgNPs capped with
Azadirachta indica was examined for two cancer cell lines (HCT-116 and MCF-7) through an
MTT assay (Figure 2). Our results were in line with a study by Guilger-Casagrande et al.
(2019), in which no IC50 values were recorded for AgNPs synthesized through Trichoderma
harzianum and that were examined through a tetrazolium reduction assay (MTT) on three
cell lines [122]. Likewise, Składanowski et al. (2016) revealed the biologically synthesized
AgNPs in L929 mouse fibroblasts at a concentration of 10 µg/mL to not have no cytotoxic-
ity [123]. In our study, the IC50 of AgNPs against HCT-116 colon cancer cells (Figure 2) was
744.23 µg/mL, despite any significant actions against MCF-7. The significant cytotoxicity
of biogenically synthesized AgNPs from Calligonum comosum and Azadirachta indica was
observed on HepG2 hepatocellular carcinoma, LoVo colon adenocarcinoma, and MDA-
MB231 human breast adenocarcinoma cells [124]. The IC50 of A. indica-fabricated AgNPs
against HepG2 cells was 16.4 µg/mL. In addition, the IC50 of AgNPs synthesized from
aqueous extracts of A. indica was recorded at 10.9 µg/mL against LoVo and MDA-MB231
cells [124].

Similarly, biologically synthesized AgNPs (from methanolic extracts of A. indica barks)
at a very low concentration (IC50 of 8.02 µg/mL) were as effective as doxorubicin (IC50
of 6.37 µg/mL) against DU-145 human prostate cancer cells [125], suggesting other parts
of medicinal plants should also be examined. A. indica-functionalized AgNPs have been
observed inhibiting the HT1080 fibrosarcoma cancerous cells effectively, but not the HEL293
human embryonic kidney noncancerous cells [22]. This suggests that biogenic NPs are
biosafe despite their toxicity to cancerous cells [126]. A similar trend was observed in our
studies, where biogenic AgNPs were cytotoxic against HCT-116 cancerous cells, but not
against V79 noncancerous cells [72]. AgNPs, biosynthesized using Juglans regia aqueous
extracts, have been observed inhibiting 70% of the MCF-7 cancerous cells at 60 µg/mL, as
compared to a 15% inhibition of the L929 noncancerous cells; moreover, the same AgNPs at
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10 µg/mL inhibited 50% of the MCF-7 cells, but did not induce any significant cytotoxicity
against noncancerous cells at that concentration [127]. It seems that the sensitivity of
cancer cells to biogenic AgNPs is higher than that of other cells, such as noncancerous
cells [127,128]. This was also observed with AgNPs biosynthesized with Cordia myxa leaf
extracts [129]. The inhibition of HCT-116 and SW480 colon cancer cells was >70% at a
concentration of 50 µg/mL, which was significantly higher than that in our findings (IC50
of 744.23 µg/mL) [129].

The selective cytotoxicity of biogenic AgNPs against cancerous cells has been sug-
gested due to the abnormal metabolism, high proliferation rate, and higher uptake of
AgNPs by cells [130]. Such factors make cancerous cells more vulnerable [130]. Func-
tionalization also supports the unique actions of biogenic AgNPs [131]. In addition, the
material utilized, the fabrication approach [127,128], the parameters of the bioassay [127],
the parameters and physical characteristics of NPs [132], functionalization, and cellular
conditions can usually affect the biological actions of NPs [127–129]. However, biogenic
AgNPs can act against cancerous cells in a number of ways (Figure 5). AgNPs are more
cytotoxic to cancerous cells than to noncancerous cells, comparatively [127,128,133]. We
must verify our findings with additional in vivo animal experiments. Second, despite the
observations of the observed cytotoxicity against particular cancer cells, an examination
of in vitro cytotoxicity should be conducted on other cancer cells before reaching any
conclusions. Third, AgNPs must be functionalized to enhance the anticancer effects.

Figure 5. Methods to target cancer cells through silver nanoparticles (part of the figure reproduced
with permission from all authors) [15].

Biogenic AgNPs (IC50 value) were also examined for their capability to induce apop-
tosis in HCT-116 cancerous cells. The apoptotic pathway is more likely to be activated
by AgNPs, anticancer drugs, or radiation. The caspase-3 activities in HCT-116 cells were
1.5-fold higher, comparatively. Caspase-3 expression in HCT-116 cancerous cells were in co-
herence with the previous studies [134–136]. Similarly, there was a 1.18-fold increase in the
caspase-3 expression in MCF-7 cells treated with AgNPs (10 µg/mL) and synthesized with
Rubus fairholmianus extract; in addition, AgNPs induced apoptosis through the intrinsic
pathway [136]. Biogenic AgNPs (12–41 nm) synthesized with Solanum trilobatum extracts
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upregulated the caspase-3 expression in MCF-7 cancerous cells [137]. Apoptotic pathway
can also be initiated, by UV rays, gamma rays, or by oxidative stress from reactive oxygen
species, for releasing cytochrome-c from the mitochondria and for activating the caspase-9
(Figure 6) [136–138]. Biogenic NPs have been considered to be very potent against carci-
noma cells. AgNPs (53 nm) synthesized with Beta vulgaris L root extracts induced caspase-3
activities (5 µg/mL, 20 µg/mL, and 40 µg/mL) in HuH-7 human hepatic cancerous cells
at a level much higher than in CHANG normal human hepatic cells [139]. In the same
study, more chromosomal condensation was also observed by using DAPI, in 40 µg/mL
AgNPs exposed HuH-7 cells [139]. High toxicity was detected in cancerous cells by FACS,
on exposure to higher concentration of biogenic AgNPs (40 µg/mL) [139]. The biological
actions of AgNPs (7–20 nm) have been examined for the induction of apoptotic activities
in cancerous cell lines [140]; AgNPs were able to induce apoptosis at amounts as low
as 0.78 µg/mL and 1.56 µg/mL (for HT-1080 and A431, respectively). Biogenic AgNPs
(73.37 nm, 12.35 µg/mL) synthesized from Fagonia indica were able to induce caspase-3 in
human breast cancer cells [141]. The abovementioned studies indicate that biogenic AgNPs
can induce apoptosis in cancerous cells by activating caspase-3 more efficiently than in
noncancerous cells.

Figure 6. Caspase-3 pathway of cellular apoptosis.

Figure 4 shows that AgNPs were able to close the wound by migrating toward the
wound space. There was no significant percentage of wound healing when comparing
the lowest dose of AgNPs (40.2% for 6.26 µg/mL) with the controls. Wound healing was
lowest (33.23%) for the highest dose of AgNPs (62.5 µg/mL). Capped biomolecules from A.
indica must have affected the cellular migration and biological movement of the fibroblasts.
Previous studies have examined a number of drug delivery systems by employing silver in
various forms, such as NPs, in order to achieve higher wound-healing actions both in vivo
and in vitro [142–144]. Composites of AgNPs amalgamated in polymers have been seen to
have increased cellular migration and a slowed down immune response; in addition, com-
posites or scaffolds have been seen to have enhanced epithelialization and remodeling [142].
The most accepted and possible theory for the higher wound-healing actions of AgNPs
can be explained by the evidence of enhanced cellular migration, greater wound closure,
cellular upregulation, and reduced toxicity against normal cells [144]. Formulations and
amalgamations of silver, through different drug delivery systems, have been examined for
ulcerative lesions [145,146], charred lesions [147,148], and lacerations [149]. Such formu-
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lations have been found to be very effective for assisting in faster healing, for providing
analgesic effects, and for the ease of application. However, few of these formulations
have been connected with cell death, skin damage, and the development of resistance in
wound microbes [147,150]. Long-term exposure to silver-based formulations may result in
genotoxicity, damage to kidneys, and damage to other vital organs [151].

Among all elements, silver is considered to be one of the dynamic elements due
to its applications in semiconductors, nanosensors, and therapeutic solutions for ulcers
and wounds [152–154]. Silver has been employed, through diverse forms, in different
formulations and drug delivery systems. Silver sulfadiazine is one of the widely applied
formulations for a number of conditions, such as chronic wounds and ulcers [142,155].
Although we found silver (in the form of nanoparticles) to be comparatively biosafe [72],
its application has drawn a few concerns due to its dose-dependent and cell-dependent
biological actions [108,156,157]. Silver has been observed to induce a considerable loss
of viability in two noncancerous cell lines [157]. In addition, significant toxicity was in-
duced by polymer-functionalized AgNPs in noncancerous IMR-90 and U251 cell lines [108].
AgNPs (~250 nm) have been found to induce renal toxicity in Wistar rats upon oral expo-
sure [158]. Very significant degenerative changes were noticed in 30 mg/kg and 125 mg/kg
treatment groups, upon the histopathological examination of glomeruli, such as loss of
tubular architecture, loss of brush border, and interrupted tubular basal laminae [158]. On
the other hand, apoptotic activities were very evident in the groups treated with 125 mg/kg
and 300 mg/kg. The expression of TNF-α mRNA and EGF mRNA was also noticed in
AgNP treatment groups [158]. NPs have been seen to have a dose-dependent cytotoxicity
against noncancerous cells [22,159]. AgNPs biosynthesized with a Streptomyces sp. NH28
biomass exhibited low viability (82.9 ± 7.5 %) in mammalian cells at 25 µg/mL (IC50 of
64.5 µg/mL) [123]. Starch-stabilized AgNPs (20 nm) induced a decline in the viability of
murine cells at 10 µM [105]. Starch-capped AgNPs have been found to induce genotox-
icity in IMR-90 human lung fibroblasts cells, although the cells were unaffected beyond
100 µg/mL [108]. A significant toxicity in murine hepatocytes was observed for commercial
AgNPs (15 nm and 100 nm, 5 to 50 µg/mL), as compared to NPs of manganese oxide,
molybdenum, aluminum, iron oxide, or tungsten [160]. A dose-dependent inhibition was
also observed in RAW264.7 macrophages, with a significant cytotoxicity and significant
changes in the cellular morphology being due to Cs-AgNPs [67]. It is very much evident
that biological actions and behaviors of NPs are established through an array of factors,
such as their functionalization, materials used in fabrication, physical parameters, or drug
delivery methods [156,161].

Formulations and composites of silver have been scrutinized for their actions, such
as the rate of cellular migration. Silver formulations have also been found to have poor
wound-healing properties, slowed down cellular proliferation, and slowed down cellular
migration [156]. However, such findings of deferred cellular movement and remodeling
can be relative. Such drawbacks and hinderances can be dealt with via composites, scaf-
folds (illustrated in Figure 7) [144,145], nanoparticles, and nanofibers that contain silver
nanoparticles [162].
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Figure 7. Composites and scaffolds of silver nanoparticles. Silver nanoparticle-based bandages,
dressings, patches, and other drug delivery systems.

Intrinsic resistance in Enterococcus faecalis, for beta-lactams, for clindamycin and for
aminoglycosides, is well known [163,164]. In our study, resistance in Enterococcus fae-
calis, for beta-lactams, was nonconflicting with the previous studies [165–167]. Ofloxacin,
followed by cefixime, came to be the most efficient antibiotic opposing Enterococcus fae-
calis. The susceptibility of ofloxacin was comparable with the global susceptibility rate
of 44.8% [165]. No other antibiotics were as efficient as ofloxacin. However, the ineffi-
ciency of tetracycline came to be more substantial globally, relative to the prior range
of 13.8% to 65.3% [164,167,168]. Norfloxacin turned out to be the second least effective
antibiotic, following after the majority of the beta-lactam antibiotics. The susceptibility rate
of norfloxacin was not in accordance with the global rate of 16.6% to 73.2% [169,170].

The antimicrobial effects of clove oil, eugenol, and AgNPs were evaluated for syn-
ergistic activities, by 2D checkerboard method. The combination of AgNPs, with clove
or eugenol, led to a reduction in the MIC of AgNPs. AgNPs exerted an 8- and 16-fold
increase within the antibacterial activities when combined with clove oil or eugenol. Silver
nanoparticles had the better antimicrobial activity toward the tested MDR pathogen, but
once examined at its MIC, it was comparable to clove oil and eugenol. Clove oil and its com-
ponent eugenol exhibit antibacterial activities, opposing a variety of pathogens [78,79,171].
This current in vitro study demonstrated the higher inhibitory effects of clove oil as com-
pared to eugenol against multidrug-resistant Enterococcus faecalis, which were greater than
those recorded earlier [171–173]. In addition, a statistically significant difference was ob-
served (p < 0.05) for the antimicrobial effects of AgNPs (MIC of 10 µg/mL), clove oil, and
eugenol. Our attempts have resulted in preliminary, yet pivotal, outcomes, providing
a map for replication. AgNPs have shown excellent antibacterial activity [174] against
multidrug-resistant bacteria, and it can be concluded that they can be an ideal approach for
treating multidrug-resistant Enterococcus faecalis. AgNPs in a suspension form have been
observed to be more effective against Enterococcus faecalis as compared to a gel form [175].
Nanosilver gel (0.02%) was more effective than the nanocadmium gel (0.02%) against
Enterococcus faecalis [176]. Halkai et al. (2018) demonstrated strong antibiofilm effects of
silver nanoparticles (30 µg/mL) against Enterococcus faecalis [119]. Their toxicity to human
tissue has also been studied. For 80–100 nm silver nanoparticles, no apparent cytotoxicity
has been observed against fibroblasts [177].



Antibiotics 2023, 12, 121 19 of 27

Aviv (2016) reported an MIC of clove oil of 12.5 mg/mL against Enterococcus faecalis;
this result indicates that our concentration was much more effective [178]. Additionally,
Krishnan et al. (2015) reported an MIC of AgNPs of 5 mg/mL against Enterococcus fae-
calis [179], which is still less effective than our findings. Conversely, Charannya et al. (2018)
reported an MIC of AgNPs at 0.015 mg/mL. These results indicate possible variations
in the particle size or synthesis methods of AgNPs [180]. Synergistic as well as additive
effects for AgNP–clove oil and AgNP–eugenol combinations suggest strong evidence for
the combination of diverse novel agents against multidrug-resistant Enterococcus faecalis.
It can be noted that no antagonistic effect was observed. Similar results were reported
by Elshinawy et al. (2018) for AgNPs in combination with ozonated olive oil against
Enterococcus faecalis [181].

Biosynthesized AgNPs (10 µg/mL) are as effective as chlorhexidine against Entero-
coccus faecalis, with mean CFU/mL (107) values of 14.9 and 9.4, respectively; in addition,
AgNPs were able to significantly reduce the formation of microbial biofilms grown in a
96-well plate at the MIC level. These results were in accordance with those of AgNPs that
were biologically synthesized with the endophytic fungi Fusarium semitectum and isolated
from healthy leaves of Withania somnifera (ashwagandha or winter cherry) [119]. AgNPs
(30 µg/mL) have been shown to exhibit effective antibacterial activity against Enterococ-
cus faecalis (ATCC 29212) biofilms [119]. Similar results were observed for commercial
AgNPs (20 nm) used as a vehicle for calcium hydroxide and as 0.2% and 0.1% gels for a
7-day treatment against Enterococcus faecalis biofilms [175,182] The 0.2% and 0.1% AgNP
gels were found to be more effective with a 1-day treatment against Enterococcus faecalis
biofilms [183]. The results of the current study indicate the effective antibacterial activity of
AgNPs (10 µg/mL) against Enterococcus faecalis biofilms. AgNPs that were biologically syn-
thesized using Bacillus licheniformis have been shown to have significant antibiofilm effects
against Pseudomonas aeruginosa-formed and Staphylococcus epidermidis-formed biofilms [121].

5. Conclusions

The present study shows that biosynthesized silver nanoparticles induced concentration-
dependent cytotoxicity and caspase-3 apoptotic cell death in HCT-116 human colon cancer
cells. AgNPs induced the significant expression of the caspase-3 FITC-MFI in HCT-116
cells, which was not induced in cisplatin-treated and untreated control cells. An increase in
the FITC-MFI active caspase-3 expression in treated cells, corresponded to the induction
of apoptosis in cells. The scratch assay revealed no significant improvements in wound
healing due to AgNPs, as was observed in EGF-treated and untreated cells. However, the
migration of V79 Chinese hamster lung fibroblasts was noticed. AgNPs possess significantly
higher antibacterial activities against the MDR pathogen Enterococcus faecalis when it is in
both a planktonic state and antibiofilm state. Clove oil and eugenol were able to inhibit
Enterococcus faecalis. AgNPs had a significantly higher ZOI as compared to clove oil and
eugenol. Combination studies (with clove oil) showed synergistic effects, with a 4- to 8-fold
reduction in the MIC of AgNPs. A significant reduction in biofilms grown on dentine blocks,
was observed for AgNPs, which were more potent than the known, effective antibiofilm
agent 2% chlorhexidine. The reduction (>50%) in the formation of biofilms grown in 96-
well plates was observed through the crystal violet method with the treatment of AgNPs
(10 µg/mL). AgNPs at 320 µg/mL inhibited >80% of biofilm formation.
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