
RESEARCH Open Access

Silver staining (Campbell-Switzer) of
neuronal α-synuclein assemblies induced
by multiple system atrophy and Parkinson’s
disease brain extracts in transgenic mice
Isabelle Lavenir1, Daniela Passarella1, Masami Masuda-Suzukake1, Annabelle Curry1, Janice L. Holton2,

Bernardino Ghetti3 and Michel Goedert1*

Abstract

Synucleinopathies [Parkinson’s disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA)]

share filamentous α-synuclein assemblies in nerve cells and glial cells. We compared the abilities of brain extracts

from MSA and PD patients to induce neuronal α-synuclein assembly and neurodegeneration following intracerebral

injection in heterozygous mice transgenic for human mutant A53T α-synuclein. MSA extracts were more potent

than PD extracts in inducing α-synuclein assembly and in causing neurodegeneration. MSA assemblies were

Campbell-Switzer- and Gallyas-silver-positive, whereas PD assemblies were only Campbell-Switzer-positive, in

confirmation of previous findings. However, induced α-synuclein inclusions were invariably Campbell-Switzer-

positive and Gallyas-negative, irrespective of whether MSA or PD brain extracts were injected. The α-synuclein

inclusions of non-injected homozygous mice transgenic for A53T α-synuclein were also Campbell-Switzer-positive

and Gallyas-negative. These findings demonstrate that transgene expression and its intracellular environment

dominated over the silver staining properties of the conformers of assembled α-synuclein.
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Introduction

The ordered assembly of α-synuclein into abnormal fila-

ments defines a group of neurodegenerative diseases

called synucleinopathies [18]. α-Synuclein was linked to

Parkinson’s disease (PD), when a dominantly inherited

missense mutation (A53T) in SNCA, the α-synuclein

gene, was found to cause a familial form of PD [39].

Subsequently, genome-wide association studies also

identified α-synuclein as a significant risk factor for idio-

pathic PD [32]. α-Synuclein is the major component of

Lewy bodies and Lewy neurites, the intraneuronal fila-

mentous assemblies found in all patients with PD, with

or without dementia, and in patients with dementia with

Lewy bodies (DLB) [44, 45]. α-Synuclein not only accu-

mulates in Lewy pathology, but it can also template its

assembly. Injection of misfolded α-synuclein induces

assembly of endogenous protein into phosphorylated

assemblies that resemble Lewy bodies [26, 31]. Neurons

bearing Lewy bodies eventually die [19, 33].

Filamentous inclusions of multiple system atrophy

(MSA) are also made of α-synuclein [43, 47, 51]. MSA is

more aggressive than PD and DLB, with an interval

between diagnosis and death of approximately 9

years [11]. The defining lesion of MSA is the presence of

α-synuclein inclusions in oligodendrocytes, the majority of

which are in the form of cytoplasmic inclusions [glial cyto-

plasmic inclusions (GCIs) or Papp-Lantos inclusions [34,

35]]. Smaller numbers of filamentous α-synuclein

inclusions are also present in the nuclei, cytoplasm and

processes of some neurons [8]. Inclusions comprise α-

synuclein phosphorylated at S129 [1, 13].

Much previous work on seeded aggregation used M83

mice, which are transgenic for human mutant A53T α-

synuclein, under the control of the prion protein promoter

[16]. Homozygous mice (M83+/+) develop abundant
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neuronal inclusions made of filamentous pS129 α-

synuclein and neurodegeneration when aged 8–16

months, whereas heterozygotes (M83+/−) show no α-

synuclein inclusions or neurodegeneration until 20

months of age. Inclusions are most abundant through-

out spinal cord and hindbrain, followed by midbrain,

thalamus and hypothalamus.

Experimental studies established that the intracellular

milieu of oligodendrocytes is essential for the formation of

GCI-specific conformers of assembled α-synuclein [33].

Previous investigations using mouse models of seeded

pathology through intracerebral injections with brain sam-

ples from patients with either PD or MSA showed that

MSA extracts were capable of inducing neuronal α-

synuclein pathology in transgenic mice [40, 52]. Thus, ho-

mogenates from the brains of patients with MSA induced

the formation of abundant α-synuclein inclusions and

neurodegeneration characterized by motor symptoms in

M83+/− mice. In contrast, injection of brain homogenates

from the brains of PD patients failed to induce the forma-

tion of either α-synuclein inclusions or neurodegenera-

tion. These findings lent support to the view that different

conformers of assembled α-synuclein are typical of PD

and MSA.

Although the filamentous inclusions of MSA and PD

are made of modified, assembled α-synuclein, they can

be distinguished using silver staining, consistent with the

presence of distinct conformers [35, 49]. Thus, GCIs and

neuronal inclusions exhibit argyrophilia with both

Campbell-Switzer and Gallyas, whereas Lewy pathology

stains with Campbell-Switzer, but not Gallyas.

We injected brain homogenates from 7 MSA and 5 PD

cases, all neuropathologically confirmed, into the hippo-

campus and overlying cerebral cortex of M83+/− mice.

Thirty mice injected with MSA brain extracts developed

abundant neuronal α-synuclein inclusions and neurode-

generation, with an incubation time of 167 ± 17 days. The

same was true of 7 of 17 mice injected with PD extracts

(incubation time of 286 ± 62 days). By 18months of age, 5

additional mice had developed α-synuclein inclusions, in

the absence of neurodegeneration.

Inclusions were positive with Campbell-Switzer and

negative with Gallyas silver, irrespective of whether MSA

or PD extracts were injected. The same was true of assem-

bled recombinant α-synuclein, which induced the forma-

tion of abundant α-synuclein inclusions and caused

neurodegeneration (incubation time of 145 ± 10 days). α-

Synuclein inclusions of non-injected M83+/+ mice were

also Campbell-Switzer-positive and Gallyas-negative.

Materials and methods

Transgenic mice

The M83 transgenic mouse line, which expresses human

mutant A53T α-synuclein under the control of the mouse

prion protein promoter [16], was purchased from the

Jackson Laboratory (stock number 004479). Mice hetero-

zygous and homozygous for the transgene were used. All

experiments were carried out in compliance with the

Animals (Scientifc Procedures) Act of 1986 and were

approved by the local Animal Welfare and Ethical Review

Board.

Human brain tissues

Frozen brain tissues from neuropathologically confirmed

cases of MSA and PD were obtained from the Queen

Square Brain Bank for Neurological Disorders (London,

UK) and the tissue collection at Indiana University (In-

dianapolis, USA). Tissues were homogenised in

phosphate-buffered saline (PBS) (200 mg/ml), sonicated

(Misonix: output 2 for 5 × 0.9 s) and centrifuged in the

cold at 3000 g for 5 min. Supernatants were aliquoted,

snap frozen and stored at − 80 °C until use.

Recombinant human α-synuclein

Full-length human α-synuclein was expressed and

purified, as described [23, 53]. It was assembled into

filaments by incubating 400 μM at 37 °C for 48 h with

constant agitation at 450 rpm.

Intracerebral injection

Three-month-old heterozygous M83 mice were anaes-

thetised with isoflurane and injected unilaterally with

5 μl human brain extract or 5 μl assembled recombinant

human α-synuclein (400 μM), as described for tau

assemblies [6]; 2.5 μl were injected into the right hippo-

campus (A/P, − 2.5 mm; M/L, + 2.0 mm; D/V, − 2.0 mm)

and 2.5μl into the overlying cerebral cortex (A/P, − 2.5

mm; M/L, + 2.0 mm; D/V, − 1.0 mm) at a speed of

1.25 μl/min. Following injection, the needle was kept in

place for another 3 min. Mice were given analgesia

(Rimadyl, 4 mg/kg) prior to surgery and were placed on

a heat mat; their body temperatures were monitored

throughout surgery and they were placed in a heat cabi-

net after surgery to aid recovery.

Survival

Following stereotaxic brain injections, mice were moni-

tored weekly for signs of motor impairment. When they

reached hind limb paralysis, they were humanely killed

and their brains and spinal cords collected. Kaplan-

Meier survival curves were produced using Graphpad

Prism 7.

Dot blotting

The levels of α-synuclein phosphorylated at S129 were

determined by dot blotting (Minifold I Spot-Blot System,

GE Healthcare), using human brain samples diluted 1:

1000, and run in quadruplicate. Dried nitrocellulose
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membranes (Amersham) were blocked, incubated with a

polyclonal pS129 α-synuclein antibody (ab18467,

Abcam, 1:5000) for 3 h at room temperature, followed

by secondary antibody (1:4000) for 1 h. Chemilumines-

cence and ImageJ were used to quantify the signal. Phos-

phorylation of purified recombinant human α-synuclein

at S129 using casein kinase-2 (New England Biolabs)

was done as described [42]. Serial dilutions (0.5–3.5 ng)

were used as standard. The linear parts of the standard

curves were used to measure the concentrations of

pS129 α-synuclein.

Immunohistochemistry and silver staining

Mice were terminally anaesthetised and transcardially

perfused with 20 ml cold PBS, followed by 20ml 4%

paraformaldehyde in 0.1M phosphate buffer. Brains and

spinal cords were dissected and postfixed overnight.

Fixed tissues were paraffin-embedded and 8 μm sections

cut. Following deparaffinisation, the sections were

incubated in blocking buffer [PBS + 0.1% Triton X-100

(PBST) + 10% foetal calf serum] for 15 min at room

temperature, followed by an overnight incubation with

primary antibody specific for pS129 α-synuclein

(ab51253, Abcam, 1:5000 dilution) in blocking buffer.

After three rinses with PBST, the sections were incu-

bated with biotin-conjugated secondary anti-rabbit

antibody (1:200 dilution) for 1 h at room temperature.

The antigen was visualised with the Vector VIP substrate

kit (Vector Laboratories). Fixed, deparaffinised tissue

sections were stained using Campbell-Switzer [4, 5] or

Gallyas [6, 15] silver, as described. All sections were

counterstained with haematoxylin and coverslipped

using Pertex mounting medium.

Results

We homogenised and sonicated cerebellum (7 cases of

MSA) and substantia nigra (5 cases of PD) from neuro-

pathologically confirmed cases of disease (200mg/ml) and

injected 2.5 μl into the hippocampus and 2.5 μl into the

overlying cerebral cortex of heterozygous M83 mice trans-

genic for human mutant A53T α-synuclein. Recombinant

assembled human α-synuclein was used as a positive and

cerebellar extract from a neurologically normal individual

as a negative control. Upon development of hindlimb par-

alysis, the mice were culled, their brains and spinal cords

dissected and stained for pS129 α-synuclein, as well as

Campbell-Switzer and Gallyas silver. Mice without hind-

limb paralysis were culled at 18months of age.

Thirty heterozygous M83 mice were injected with cere-

bellar extract from 7 cases of MSA. All injected mice

developed hindlimb paralysis with an average incubation

time of 167 ± 17 days (Table 1; Fig. 1). Assembled α-

synuclein was detected in the central nervous system

(Figs. 4 and 5), with amounts and distributions similar to

those previously described for homozygous M83 mice

[16]. We injected 17 heterozygous M83 mice with

Table 1 Motor impairment of heterozygous mice transgenic for human mutant A53T α-synuclein following intracerebral injection of

brain extracts from multiple system atrophy (MSA)

Human brain extract Age at death Mice injected Mice with motor impairment Survival (days) SD

(1) MSA-P 68 10 10 168 21

(2) MSA-P 75 2 2 181 12

(3) MSA-P 82 3 3 166 28

(4) MSA-P 65 4 4 166 20

(5) MSA-P 83 4 4 168 19

(6) MSA-C 69 3 3 174 4

(7) MSA-C 60 4 4 152 23

Table 2 Motor impairment of heterozygous mice transgenic for human mutant A53T α-synuclein following intracerebral injection of

brain extracts from Parkinson’s disease (PD)

Human brain extract Age at death Mice injected Mice with
motor impairment

Survival (days) SD Survivors to 18 Mo Survivors with
assembled α-synclein

(1) PD 76 3 0 – – 3 2

(2) PD 83 4 4 288 79 – –

(3) PD 92 3 1 265 – 2 1

(4) PD 68 3 1 335 – 2 1

(5) PD 74 4 1 – – 3 1
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substantia nigra extract from 5 cases of PD. Only 7 mice

developed hindlimb paralysis, with an average incubation

time of 286 ± 62 days (Table 2; Fig. 1). Assembled α-

synuclein was detected in the central nervous system, with

a distribution similar to that seen in homozygous mice

(Figs. 4 and 5). However, the number of inclusions was ap-

proximately two-fold less. The remaining 10 mice were

culled at 18months of age. Five mice showed staining for

α-synuclein phosphorylated at S129, with a similar distri-

bution of pathology to that described in homozygous M83

mice, but significantly fewer inclusions in a given region.

As a positive control, 32 heterozygous M83 mice were

injected with 30 μg assembled recombinant human α-

synuclein. All mice developed hindlimb paralysis and ex-

tensive pS129-α-synuclein immunoreactivity, with an

average incubation time of 145 ± 10 days (Figs. 1, 4 and 5).

α

a

b

c

Fig. 1 Survival of heterozygous mice transgenic for human mutant A53T α-synuclein following intracerebral injection of (a) cerebellar extracts

from seven patients with multiple system atrophy (MSA) and (b) substantia nigra extracts from five patients with Parkinson’s disease (PD).

Cerebellum from a neurologically unaffected individual served as control. Five MSA cases were of the parkinsonian type (MSA-P) and two cases of

the cerebellar type (MSA-C). Assembled recombinant human α-synuclein was also injected (c)
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As a negative control, cerebellar extract from a 64 year old

neurologically normal individual was injected into 4

heterozygous M83 mice. At 18months of age, there were

no motor symptoms or staining for pS129 α-synuclein.

Dot blotting showed that the levels of α-synuclein phos-

phorylated at S129 varied between cases (Fig. 2). Thus,

approximately 1 ng assembled α-synuclein from MSA case

7 had a similar effect as approximately 85 ng from MSA

case 1. However, this was unlikely to account for the

differences between MSA and PD. The levels of assembled

α-synuclein of MSA cases 2 and 3 were similar to those of

PD cases 1 and 2.

α-Synuclein pathologies of PD and MSA can be

distinguished by silver staining [49]. PD pathology is

stained by Campbell-Switzer, but not Gallyas silver. By

contrast, MSA pathology is stained by both Campbell-

Switzer and Gallyas silver. We confirmed these find-

ings (Table 3; Fig. 3). Cases of PD were positive for

Campbell-Switzer, but not Gallyas, whereas all cases of

MSA were positive for both silver stains. Like PD,

brain and spinal cord from homozygous M83 mice

were positive for Campbell-Switzer, but negative for

Gallyas silver (Table 3; Fig. 3). Tissue sections from

heterozygous M83 mice were silver-negative.

Intracerebral injection of brain extracts from all cases

of MSA and most cases of PD, as well as injection of as-

sembled recombinant human α-synuclein, into heterozy-

gous M83 mice resulted in staining for pS129-α-

synuclein and motor dysfunction, leading to hindlimb

paralysis (Figs. 1, 4 and 5). α-Synuclein inclusions were

stained with Campbell-Switzer silver, but not Gallyas sil-

ver, irrespective of the injected material (Table 4; Fig. 6).

Discussion

Intracerebral injection of cerebellar homogenates from 7

cases of MSA into heterozygous mice transgenic for hu-

man mutant A53T α-synuclein caused the formation of

abundant neuronal α-synuclein inclusions and severe

motor dysfunction. Most cases of MSA can be divided

into MSA-P, a parkinsonian variant, and MSA-C, a cere-

bellar variant, based on the predominant motor symp-

toms [17, 29]. We injected brain extracts from 5 cases of

MSA-P and 2 cases of MSA-C and did not observe any

differences between cases. Future studies will have to

look at additional cases of MSA-P and MSA-C. The time

between injection and death was 167 ± 17 days. These

findings confirm previous studies of MSA brain extract

injections into the same mouse line [40, 52].

Unlike the earlier studies, which failed to observe a

motor phenotype following intracerebral injection of

PD homogenates [40], we observed neuronal α-

synuclein inclusions and hindlimb paralysis in 7 of 17

mice injected with substantia nigra extracts from 5 PD

patients. The time between injection and death was

286 ± 62 days. Five additional mice showed some α-

synuclein inclusions, but no motor impairment at 18

months of age. Five mice failed to develop either inclu-

sions or motor dysfunction. These results indicate that

α-synuclein assembly preceded neurodegeneration.

They are in agreement with previous studies showing

that α-synuclein inclusions from PD and DLB brains

exhibit prion-like behaviour [28, 41].

MSA homogenates were more potent than PD homoge-

nates, consistent with the view that α-synuclein assemblies

from MSA and PD are made of different conformers

[38, 40, 52]. Negative stain electron microscopy

Fig. 2 Dot blotting was used to measure the levels of pS129 α-

synuclein in cerebellar extracts from the seven cases of multiple

system atrophy (MSA) and substantia nigra extracts from the five

cases of Parkinson’s disease (PD) that were used for intracerebral

injection. Recombinant α-synuclein phosphorylated at S129 was

used for the standard curves

Table 3 Silver staining of brain sections from multiple system

atrophy (MSA) and Parkinson’s disease (PD) patients. Cerebellum

was used for MSA cases 2, 3, 6, 7, brainstem for cases 4, 5 and

basal ganglia for case 1. Substantia nigra was used for PD cases

1, 3, 4, 5 and cingulate cortex for case 2

Human tissue Gallyas silver Campbell-Switzer silver

(1) MSA-P + +

(2) MSA-P + +

(3) MSA-P + +

(4) MSA-P + +

(5) MSA-P + +

(6) MSA-C + +

(7) MSA-C + +

(1) PD – +

(2) PD – +

(3) PD – +

(4) PD – +

(5) PD – +
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established differences between α-synuclein filaments

of DLB, MSA and PD [7, 43, 44, 46]. Previous work

using recombinant α-synuclein showed that it can as-

semble into distinct filament conformations that exert

differing effects [3, 37]. The structures of recombinant

human α-synuclein assembled under various conditions

also showed differences [20, 25, 48]. We do not know how

the structures of our recombinant α-synuclein assemblies

related to those reported by others [20, 25]. Structures of

α-synuclein filaments from human brain are not known. It

therefore remains to be seen how they relate to those

of assembled recombinant protein. The structures of

a

b

c

d

Fig. 3 Silver staining (Campbell-Switzer and Gallyas) of tissue sections from (a) brainstem of multiple system atrophy (MSA-P) case 4, (b)

substantia nigra of Parkinson’s disease (PD) case 5 and lumbar spinal cord of non-injected (c) homozygous (tgM83+/+) and (d) heterozygous

(tgM83+/−) mice transgenic for human mutant A53T α-synuclein. Only MSA sections were Gallyas-positive. They were also stained by Campbell-

Switzer, as were PD and tgM83+/+ sections. TgM83+/− sections were silver-negative. Scale bars, 50 μm
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a

c

b

d

Fig. 4 Immunohistochemistry for pS129-α-synuclein of lumbar spinal cord from heterozygous mice transgenic for human mutant A53T α-

synuclein that were injected with (a) cerebellar extract from multiple system atrophy (MSA-P) case 1, (b) substantia nigra extract from Parkinson’s

disease (PD) case 3 and (c) assembled recombinant human α-synuclein. (d) Spinal cord from a non-injected mouse was used as control. Scale

bars, 50 μm

a

c

b

d

Fig. 5 Immunohistochemistry for pS129-α-synuclein of midbrain from heterozygous mice transgenic for human mutant A53T α-synuclein that

were injected with (a) cerebellar extract from multiple system atrophy (MSA-P) case 1, (b) substantia nigra extract from Parkinson’s disease (PD)

case 3 and (c) assembled recombinant human α-synuclein. (d) Midbrain from a non-injected mouse was used as control. Scale bars, 50 μm
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3R tau filaments from Pick’s disease are different from

those formed by incubating recombinant 2N3R tau with

heparin [10, 54].

We quantified the amount of assembled α-synuclein

in brain homogenates using dot blotting and an anti-

body specific for pS129-α-synuclein. Even though it

has been reported that GCI-α-synuclein is less phos-

phorylated at S129 than Lewy body α-synuclein [38],

the varying amounts of phosphorylated protein were

unlikely to account for the differences in motor

dysfunction that we observed between MSA and PD.

Injection of as little as 1 ng assembled pS129-reactive

α-synuclein was sufficient to cause motor dysfunction

in heterozygous M83 mice 5 months later. However,

this value may have been an underestimate, since some

seed-competent species of assembled α-synuclein may

not be phosphorylated at S129 [14].

Although the filamentous inclusions of PD and MSA

are made of assembled α-synuclein, they can be distin-

guished by silver staining. Both types of inclusion stain

with Campbell-Switzer, but only GCIs are also Gallyas-

positive. This difference may reflect the presence of

distinct conformers of assembled α-synuclein. It is

reminiscent of tau filaments from Alzheimer’s disease,

which are Campbell-Switzer and Gallyas-positive and

those from Pick’s disease, which are only Campbell-

Switzer-positive [50]. Electron cryo-microscopy has

shown that these filaments are made of different con-

formers of assembled tau [10, 12].

Upon intracerebral injection of MSA and PD brain

homogenates into heterozygous mice transgenic for

human mutant A53T α-synuclein, inclusions were

Campbell-Switzer-positive, but Gallyas-negative, like

those in homozygous mice. A recent study has also

shown that the inclusions formed following intracere-

bral injection of MSA brain extracts were Gallyas-

negative [9]. Injection of assembled recombinant

human α-synuclein gave rise to Campbell-Switzer-posi-

tive, Gallyas-negative α-synuclein inclusions. Cerebellar

extract from a neurologically normal individual was with-

out effect. These findings differ from those obtained fol-

lowing the injection of brain extract from APP/PS1 into

APP23 transgenic mice, when the seeds determined the

properties of the seeded aggregates [22].

α-Synuclein seeds from MSA and PD brains were from

end-stage disease. The mechanisms resulting in seed for-

mation at the beginning of the pathological process are

unknown. This is particularly relevant for MSA, which is

defined by the presence of abundant GCIs, despite the

fact that α-synuclein is expressed at best at only low

levels in oligodendrocytes and that assembly is

concentration-dependent [2, 30]. α-Synuclein may give

rise to a seed in as little as a single oligodendrocyte.

Seeded aggregation could then proceed, even though

oligodendrocytes express only low levels of α-synuclein.

Assemblies have been shown to spread between

oligodendrocytes [38]. The reason why GCIs were not

observed following intracerebral injection of MSA brain

extracts may have been due to the lack of significant

transgene expression in oligodendrocytes. It remains to

be seen if the A to T mutation at residue 53 of human

α-synuclein also played a role. It will be interesting to

Table 4 Silver staining of sections from the central nervous system of heterozygous mice transgenic for human mutant A53T α-

synuclein (tgM83+/−) following intracerebral injection of cerebellar homogenates from cases of multiple system atrophy (MSA) and

substantia nigra homogenates from cases of Parkinson’s disease (PD). Sagittal brain sections encompassed brainstem, hippocampus

and cerebral cortex. Spinal cord sections were of the lumbar region

Mouse Human brain extract Gallyas silver Campbell-Switzer silver

tgM83 +/+ – – +

tgM83 +/− – – –

tgM83 +/− (1) MSA-P – +

tgM83 +/− (2) MSA-P – +

tgM83 +/− (3) MSA-P – +

tgM83 +/− (4) MSA-P – +

tgM83 +/− (5) MSA-P – +

tgM83 +/− (6) MSA-C – +

tgM83 +/− (7) MSA-C – +

tgM83 +/− (1) PD – +

tgM83 +/− (2) PD – +

tgM83 +/− (3) PD – +

tgM83 +/− (4) PD – +

tgM83 +/− (5) PD – +
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determine the silver staining properties of the neuronal

and oligodendroglial α-synuclein inclusions that have

been described in cases of PD and DLB caused by muta-

tions in SNCA [21, 24, 27, 36].

In conclusion, the present findings show that the silver

staining properties of assembled α-synuclein in nerve

cells following intracerebral injection of PD and MSA

brain homogenates depend on both transgene expression

and its cellular environment.
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