
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3080275, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Sim2RealQA: Using Life Simulation to
Solve Question Answering Real-world
Events

TAIKI MIYANISHI1,3, TAKUYA MAEKAWA 2, AND MOTOAKI KAWANABE.1,3

1
Advanced Telecommunications Research Institute International (ATR), 2-2-2 Hikaridai, Seika Town, Kyoto 619-0288, Japan

2
Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan

3
RIKEN Center for Advanced Intelligence Project (RIKEN AIP), 2-2-2 Hikaridai, Seika Town, Kyoto 619-0288, Japan

Corresponding author: Taiki Miyanishi (e-mail: miyanishi@atr.jp).

ABSTRACT As smart speakers continue to proliferate, question answering (QA) by smart devices is

being woven into our daily lives. This study assumes question answering related to daily life events

detected by context recognition systems, such as activity recognition and indoor positioning systems, e.g.,

answering questions like “Did my grandma eat dinner?” and “How many times did my grandpa go to the

toilet?” These questions can effectively support human memory-aids, locate lost items, and monitor human

activities. However, training a question-answering model requires large amounts of labeled training data

(i.e., questions, answers, and the time-series of real-world event triplets) collected in a target environment.

In this paper, we propose a novel simulation to real QA (Sim2RealQA) framework that completely trains a

QA model with QA datasets produced in a life simulator and use it for solving real-word QA problems

without answer labels. Our proposed QA model can learn a general reasoning process for QA that is

independent of environments and deal with diverse types of questions specific to question answering in

real-world environments, e.g., counting the number of occurrences of a real-world event and enumerating

the names of those who are performing an activity together. Experiments show that using life simulations is

a promising approach for solving real-world QA problems when no real-world answer labels are available.

INDEX TERMS Lifelog, ubiquitous computing, daily-living activities, real-world question answering.

I. INTRODUCTION

A. BACKGROUND

Based on the recent advances in sensing methods, such

context recognition technologies as activity recognition and

indoor positioning have been scrutinized in the IoT com-

munity. Many activity recognition studies employ body-

worn sensors, including acceleration sensors, gyroscopes,

cameras, and microphones to recognize such daily activities

as walking, running, and house cleaning [1]–[5]. Indoor

positioning studies rely on signaling technologies, for exam-

ple, infrared [6], ultrasound [7], active sound probing [8],

[9], Bluetooth [10], and Wi-Fi [11], [12]. The recognized

context information can be used in real-world services, e.g.,

context-aware systems, lifelogging, and the surveillance of

the elderly [13]–[17].

Due to the recent proliferation of such smart speakers as

Amazon Echo and Google Home, question answering (QA)

by these smart devices is being woven into our daily lives. As

mentioned above, our daily lives are being monitored by such

context recognition techniques as activity recognition and

indoor positioning. Based on the recognized and stored daily

activity data, real-world question answering (real-world QA)

has been investigated [18]. Real-world QA, which provides

more fine-grained understanding of our daily living than just

retrieving past events, offers many useful real-world applica-

tions for improving quality of life. For instance, answering

such questions as “What did I eat last night?,” “Where is

my smartphone?,” and “Did Mary take her medicine after

eating?” supports human memory-aids, locates lost items,

and monitors human activities.

Because a real-world QA is assumed to output a linguistic

description as an answer, which is read out by a smart

speaker, recognized daily life events are stored as linguis-

tic descriptions (a series of sentences related to real-world

events) that facilitate answer generation from the stored

sentences related to daily life based on the state-of-the-art QA

methods. For example, when an indoor positioning system

detects that Mary’s current indoor coordinates have changed

VOLUME 4, 2016 1

Miyanishi et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Virtual world Real world

1. What did Sheldon do after siting on the sofa?

2. Where is Sheldon?

3. Who is in the living room?

4. Did Sheldon wash the plate?

5. How many times did Sheldon eat bread?

1. talked with Amy

2. living room

3. Amy, Sheldon

4. yes

5. 1

Sheldon took out the bread from the fridge in the kitchen.

Sheldon put the bread on the table in the kitchen.

Sheldon ate the bread in the kitchen.

Sheldon held the plate in the kitchen.

Sheldon washed the plate in the kitchen.

Sheldon moved to the living room from the kitchen.

Sheldon sat on the sofa in the living room.

Sheldon talked with Amy in the living room.

Neural QA Model

1. What did David do after mopping the floor?

2. Where is David?

3. Who is in the living room?

4. Did David drink coffee?

5. How many times did David drink coffee?

1. turned on the TV

2. living room

3. David

4. no

5. 0

David put on the slippers in the entrance.

David moved to the washroom from the entrance.

David brushed his teeth with the toothbrush in the washroom

David moved to the bedroom from the washroom.

David read the book in the bedroom.

David moved to the living room from the bedroom.

David mopped the floor with the mop in the living room.

David turned on the TV in the living room.

Real-world storyVirtual-world story

Question QuestionAnswer Answer

Virtual-world story generator Real-world story generator

Activity Recognition System Indoor Positioning SystemSimulator Logging System Manual Annotation

FIGURE 1. Sim2RealQA example: We train models with a virtual-world QA dataset produced in a life simulator (left) to solve real-world QA problems (right).

from the living room to the kitchen, this event is converted

to the following sentence: “Mary has moved from the living

room to the kitchen.” Since real-world QA requires com-

plex reasoning and the generation of diverse answers (e.g.,

numbers, “yes/no,” and a sequence of words) in response

to various information needs in the real-world, the current

real-world QA approaches mainly use neural network-based

QA models that demonstrate high performance over many

story-based QA tasks [19]–[21]. However, neural network-

based model performance relies heavily on large training

datasets [22], [23].

In real-world QA, question and answer pairs as well as sen-

tences about daily stories collected in a target environment

are required as a training dataset. 5,000 QA pairs and 1,500

sentences are required for each environment [18]. However,

preparing a sufficient amount of real-world QA dataset is

costly and impractical. Preparing QA pairs is especially diffi-

cult because daily life events must be observed by someone to

answer real-world questions, which also raises severe privacy

concerns.

B. APPROACH

To address these problems, we propose to use a life simulator

to produce sufficient amounts of QA datasets for training

neural QA models. With a life simulator, we can easily create

realistic daily living environments rather than building actual

houses and obtain diverse realistic daily life stories. With

virtual daily life stories, a large amount of virtual-world

QA datasets can be efficiently compiled without breaching

privacy concerns. Due to such advantages, we trained a

neural QA model with this virtual-world QA dataset and

solved real-world QA problems without real-world labeled

data. We designated this proposed framework as a simulation

to a real QA (Sim2RealQA). Fig. 1 presents an example

of our proposed framework. In this study, we use a life-

simulator game1 (e.g., The Sims), which replicates a person’s

life in a virtual world. Because a person performs a variety of

activities while interacting with common objects and others

to replicate real-world daily life activities, we can generate a

sufficient amount of information about daily events to acquire

reasoning rules of QA in normal daily lives regardless of

privacy issues.

We assume the existing activity recognition and indoor po-

sitioning methods studied in the IoT community and generate

a sequence of sentences about daily stories in a real-world

environment based on the expected outputs of these meth-

ods. We generate sentences by embedding the information

acquired by the activity recognition and indoor positioning

methods into a template, such as “Subject + Predicate +

Object + Location.” Assume that the activity recognition

system detects that David has started a “sleeping” activity.

In addition, an indoor positioning system has tracked his

position, and his location is estimated to be a bedroom.

By referring to the predictions, “David slept in the bed-

1In some of the figures of this paper, we cite screenshots of gameplay.

2 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3080275, IEEE Access

Miyanishi et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

room” is generated for that event. In this study, we prepared

templates that can decode the results of various types of

activity recognition and indoor positioning methods. Based

on these templates, we generated a sequence of sentences

about daily stories in real/virtual environments. We believe

that generating sentences about daily life stories from sensor

data has the following benefits. (i) We can design our real-

world QA model based on state-of-the-art QA techniques in

NLP studies, which assume linguistic descriptions as input.

(ii) Because a question (and an answer read out by a smart

speaker) is done by natural language, QA targets (i.e., events)

that have the same modality as the question are easy to find.

(iii) Since various activity recognition and indoor positioning

systems are available, the output formats of such systems

also vary. When outputs are stored in a relational database,

for example, the columns of tables depend on activity recog-

nition/indoor positioning systems. Therefore, a process that

handles information from the systems greatly depends on

the output formats (e.g., table structures) and must be hand-

crafted for each system, complicating the implementation of

these processes in a neural network model. In contrast, our

approach can deal with the outputs of any type of system once

templates are prepared for each one.

In addition to sentences about real-world stories, we gen-

erate typical real-world questions based on the entities (e.g.,

object, place, and person) in a real/virtual environment,

which are used to train/evaluate a QA model. We made

various types of questions that can be used in real-world

situations, including “Where is Sally?”, “What did Ann do

before going to bed?”, “Who opened the refrigerator?”, and

“How many times did Tom drink coffee?” The answers

require different forms: “bathroom,” “used her smartphone,”

“Ann, Sally, and Tom,” and “5”.

To train a QA model that is applicable for such real-world

QA problems using a virtual-world QA dataset, we designed

a QA model so that it learns a general reasoning process that

can be used in any environment. Assume that the following

time-series of sentences about daily stories (story events)

are generated by activity recognition and indoor positioning

systems:

1) Mary moved to the washroom from the entrance.

2) Tom drank coffee in the living room.

3) Mary washed her hands in the washroom.

4) Mary brushed her teeth in the washroom.

5) Tom moved to the kitchen from the living room.

6) Tom opened the fridge in the kitchen.

In addition, a question is asked: “Where is Mary?” To answer

it, a naive QA model may calculate the output probabilities of

each word in vocabulary. In this case, the probability related

to “washroom” is expected to be high. However, the naive

model cannot output answer words that are not included in

the training data (i.e., the virtual-world data) because the

naive model learns to maximize the output probability of

words in the vocabulary of the training dataset. Therefore, it

cannot deal with answers that contain an entity (e.g., object,

place, and person) not included in the virtual world. For

example, if “washroom” does not appear in the virtual-world

data, the naive model cannot output it as an answer even if

“washroom” appears in the real-world events.

In contrast, our QA model learns a general reasoning

process for real-world events independent of environments.

When sentences about daily stories and a question are given,

our model first focuses on sentences that relate to the ques-

tion. Our model then focuses on the words in the found

sentences that might relate to the question, which are used

to generate an answer. In the above example, our model first

focuses on sentences, including the word “Mary.” Because

“Where is” in the question specifies the latest location of

“Mary,” our model focuses on the last sentence and the

words in it related to the question. Since “Where” in the

question specifies a place, our model focuses on the target

word “washroom,” which is located after “in.” Moreover, our

model can output the target word “washroom” even if it did

not appear in the training data by coping it from sentences

about real-world stories to the answer. This reasoning process

can be learned in any environment when sufficient training

data are given, and the process can be applied to any real

target real environment.

Note that, unlike standard question answering studied in

the NLP community, which mainly focused on choosing an

answer from multiple choices or selecting an answer range

in documents, real-world QA must generate diverse types of

answers (e.g., numbers and a sequence of names of entities)

by processing a sequence of real-world events. Therefore,

our method is designed to be equipped with a module that

is responsible for answer generation that efficiently gener-

ates an answer by synthesizing information about multiple

important events (sentences that require high attention) to

facilitate counting the number of occurrences of an event and

enumerating the names of the entities related to the question.

As described above, our method focuses on critical sen-

tences and words in given stories. We implement this idea

by employing an attention mechanism that extracts important

information in neural network inputs. We incorporate event-

level attention that computes the weight (importance) of each

event (sentence) into our QA model as well as the word-

level attention that computes each word’s weight. We then

generate or copy an answer by employing words with high

weights that appeared in the events (sentences) with high

weights. By using the word attention distribution of input

sequence, this approach output answers that are related to an

entity even when it is not found in a virtual-world QA dataset.

C. CONTRIBUTIONS

The following are the contributions of this study:

• We introduced a novel Sim2RealQA framework that

uses a QA model that is entirely trained with a virtual-

world dataset for solving real-world QA problems.

• To accelerate real-world QA study in the IoT

community, we developed real-world and virtual-

world QA datasets comprised of daily life sto-

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3080275, IEEE Access

Miyanishi et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

ries collected from an actual house and simulated

household environments. The dataset is available:

https://miyatai.org/data/Sim2RealQA.zip.

• We proposed a new real-world QA model tailored to

Sim2RealQA. The proposed model can learn a general

reasoning process of real-world QA independent of

environments by leveraging an attention mechanism.

In addition, the model is designed for real-world QA

so that it can generate diverse types of answers about

real-world events by synthesizing information about

important events detected by the attention mechanism.

• We evaluated our model using the real-world and

virtual-world QA datasets. Our experimental results

demonstrate that the Sim2RealQA framework with our

model accurately solved real-world QA problems with-

out real-world answer labels for training.

In the rest of this paper, we first review studies on sensor-

based context recognition methods and question answering

and present our method for dataset construction and our real-

world QA model tailored to Sim2RealQA. We evaluate it

using data collected in real-world and virtual-world environ-

ments.

II. RELATED WORK

We solved real-world QA problems with a QA model trained

with virtual-world data. To tackle this cross-domain QA, we

used a life simulator that generated virtual-world stories for

making virtual-world QA datasets. In this section, we intro-

duce sensor-based context recognition, the existing language

tasks in a simulated world, simulations to real approaches,

and cross-domain QA methods that describe different aspects

from ours.

A. SENSOR-BASED CONTEXT RECOGNITION

In the IoT community, sensor-based context recognition

methods have been studied, especially context related to hu-

man daily activities and indoor positions. Context recognition

methods can be roughly grouped into wearable sensing and

environment augmentation. The former approach employs

such body-worn sensors as accelerometers, microphones,

cameras, and Wi-Fi receivers. The latter approach employs

sensors embedded in an environment, e.g., cameras, mi-

crophones, switch sensors, RFID tags, and Wi-Fi transmit-

ters/receivers. e Activity recognition based on body-worn

accelerometers recognizes simple activities such as walking,

eating, drinking, and brushing teeth [3], [4], [24]–[26]. Ac-

tivity recognition based on body-worn cameras recognizes

complex activities that involve interactions with objects or

other persons, such as eating, talking with someone, and

reading [5], [27], [28]. Activity recognition based on object-

attached sensors such as switch sensors and RFID tags also

categorizes complex activities by sensing interactions with

objects [29]–[32]. Several methods also detect a person’s

activities as well as the objects or those who are interacting

with the person of interest.

Indoor positioning methods estimate the indoor coordi-

nates of a signal receiver or a place class, e.g., toilet or

kitchen, using wearable sensors [8], [33], [34]. Cameras

installed in an environment can also be used for indoor

positioning with a person identification technique [35]. Es-

timated indoor coordinates are usually converted to the name

of a room when this information is provided to a user. We

assume the above activity recognition and indoor positioning

techniques for generating sentences about daily life stories.

B. LANGUAGE TASKS IN A SIMULATED WORLD

For developing intelligent systems that perform language

tasks in realistic environments, many studies have used sim-

ulators to train models that perform such language tasks as

executing navigation instructions with natural language [36]–

[39], answering questions about virtual-world situations with

embodied agents in a simulated house [40]–[42], and generat-

ing the daily household activities of human-like agents [43],

[44]. These methods presented in earlier works admirably

performed the given tasks because the simulations provide

a sufficient amount of labeled data or rewards for training.

However, they only solve the language tasks with a simulator.

On the other hand, although our framework also uses simula-

tions, its main purpose is to solve real-world language tasks

with virtual-world datasets that are comprised of simulation

data.

C. SIMULATION TO REAL

Modern machine-learning systems that use deep neural net-

works require many labeled training datasets to achieve su-

perior performance. To execute a real-world task that often

lacks labeled data, transferring machine-learning systems

from simulations to the real world has been widely used,

such as navigating a robot to find a target object indoors [45],

grasping various objects with robotic arms [46], learning

to drive from a simulation [47], collision avoidance for

drones [48], in-hand manipulation [49], agile locomotion

for quadruped robots [50], and the semantic segmentation

of actual driving video using a popular video game [51].

The results of these works indicate that simulation plays

an important role in training machine-learning systems and

increases the real-world task performance. The method pro-

posed and examined in this study also uses the notion of

simulations to real data. Unlike earlier works, we specifically

leverage simulators to address real-world QA problems.

D. NATURAL ANSWER GENERATION

Question answering aims to automatically answer questions

about a given context (e.g., documents, knowledge base,

and multimedia data.) There are several ways of answering

questions: selecting the span corresponding to the answer

from the document [52], [53], choosing one from multiple

answer options [19], [54], or generating an answer [20]. For

responding to various real-world information needs, the real-

world QA task [18] takes the form of generating answers.

As with the real-world QA, most existing works use the

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3080275, IEEE Access

Miyanishi et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

encoder-decoder framework that takes as input a question and

a sequence of words in a given context and then generates

answer words [55]–[57]. For augmenting the question and

answer pairs to improve QA performance, the methods of

generating questions as well as answers have also been

proposed [58], [59]. However, these works mainly focus on a

single domain for answer generation. In contrast to them, we

take a cross-domain QA framework that trains the QA model

with source domain data (virtual-world data) and generates

answers with target domain data (real-world data.) Another

setting of natural answer generation is the setting of multi-

turn QA (i.e., dialogue) [60], [61], which generates answer

responses based on a given context and a history, including

past questions and answers. Our story-based QA can be

viewed as a special case of single-turn dialogue, which does

not use any past questions and answers. Even though this

study’s main topic is to generalize the single-turn QA model

trained with the virtual-world data to the real-world data, we

can naturally extend our story-based QA method to the multi-

turn QA method by using the QA history as input.

E. CROSS-DOMAIN QUESTION ANSWERING

For real-world QA tasks, making QA datasets by collecting

real-world stories is costly and complicated by privacy issues.

We address this difficulty using a cross-domain QA method

that uses QA models learned from a source QA dataset

to solve target QA problems. Existing cross-domain QA

methods are used under supervised, semi-supervised, and un-

supervised conditions. Supervised methods use both labeled

source and target datasets. They pre-train a QA model using

the source dataset and fine-tune it with the target domain [62],

[63]. A semi-supervised method uses unlabeled source and

labeled target datasets and the unlabeled source dataset to

boost the performance of the QA models by adapting a model

to the target domain [64], [65]. In contrast to the supervised

and semi-supervised QA methods, we use an unsupervised

approach based on the difficulty of obtaining real-world,

labeled data in the target domain. Under the unsupervised

QA scenario, we can use a source domain (virtual-world)

dataset for training the models, but target domain (real-

world) labels are unavailable. Earlier studies investigated

cross-domain QA under unsupervised conditions and demon-

strated their usefulness [66]–[69]. However, these works used

standard reading-comprehension or QA datasets comprised

of Wikipedia entries, web snippets, and newspaper articles.

These documents are completely different from the daily

living stories used for real-world QA. Moreover, these studies

focused on choosing an answer from multiple choices or

selecting an answer range in documents. In contrast, real-

world QA tasks must generate numbers, “yes/no” answers,

and a sequence of words as answers based on the content of

a given question for addressing various information needs in

real-world situations. For these reasons, we created daily life

stories with a life simulator and made a virtual-world QA

dataset that resembles a target real-world QA dataset.

III. GENERATING DAILY LIFE STORIES AND

CONSTRUCTING DATASET

In this section, we introduce how to create sentences about

daily stories from the outputs of activity recognition and

indoor positioning systems. After that, we describe the real-

world and virtual-world QA datasets constructed in this

study.

A. GENERATING STORIES

In this study, we generate sentences related to (i) locomotion

and (ii) activity. When an indoor positioning system detects

that a person has moved to a room, we generate a sentence of

the event based on the following template:

Template for locomotion✓ ✏
[person] moved to the [place.current] from the [place.previous].

✒ ✑
Here, [person] is replaced by the name of the individual

being tracked. [place.current] is replaced by the name of the

current room, and [place.previous] is replaced by a name of

the room from which the individual moved. The following

is an example sentence generated from this template: “David

moved to the toilet from the living room.”

As for daily activities, we assume activities that can be

performed both by a single person and by multiple persons.

When a single-person activity is detected by an activity

recognition system, we generate a sentence of the event based

on the following template:

Template for single-person activity✓ ✏
[person] [activity] [[activity.object]] in the [place.current].

✒ ✑
Here, [person] is replaced by the name of the individual

being monitored, and [activity] is replaced by the name of

the detected activity. Because [[activity.object]] shows an

option, it is replaced by an object’s name if the system can

detect the object that was used in the activity (e.g., using

RFIDs or body-worn cameras). A preposition is inserted

before the object name, if necessary (e.g., “with”). Note that

in some activities, the object being used can be automatically

determined. For example, when toothbrushing is detected, an

object must undoubtedly be a toothbrush. [place.current] is

replaced by the user’s current place detected by the indoor

positioning system. The following is an example sentence

generated from this template: “Sheldon read a book in the

living room.”

When a multi-person activity is detected by the activity

recognition system, we generate a sentence of the event based

on the following template:

Template for multi-person activity✓ ✏
[person] [activity] [[activity.object]] with [activity.person] in the
[place.current].

✒ ✑
Here, [activity.person] is replaced by the name(s) of a

person detected as a member of the activity (e.g., using body-

worn cameras or proximity sensors). The following is an

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3080275, IEEE Access

Miyanishi et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

example sentence generated from this template: “Sheldon

talked with David in the living room.” We assume that the

activity recognition and indoor positioning systems generate

sentences based on the above templates.

B. DATASET CONSTRUCTION

We assume the above context recognition systems and in-

troduce the construction of real-world and virtual-world QA

datasets.

1) Story Collection Method

We generated story events for our datasets by observing

real/virtual environments depicted in Figs. 2 and 3.

Real-world stories: We attached a wearable camera to each

subject to obtain stories in the real house environment de-

picted in Fig. 2. Annotators watches the captured videos and

manually created sentences based on templates described in

Section III-A. We manually generated story sentences be-

cause this study’s purpose is to construct precise QA datasets

that are independent of sensor systems as well as to validate

the effectiveness of our proposed Sim2RealQA framework.

In the experiment, we generally followed an earlier study

of real-world QA tasks [18]. Real-world stories consist of

sentences that describe various daily living activities in resi-

dential settings. To collect more diverse daily activities than

in a laboratory setting, we used a semi-naturalistic collection

protocol [1]. We attached a Tobii Pro wearable eye tracker to

five subjects who repeatedly performed 20 daily activities ten

times in six different places: bathroom, bedroom, entrance,

kitchen, living room, and washroom. For example, the sub-

ject makes coffee in the kitchen, takes it to the living room,

and drinks it while watching TV. During the data collection,

we captured first-person videos of their daily activities and

obtained ten real-world stories per person: 50 stories. Two

annotators labeled these first-person videos using a sequence

of sentences that described what they are doing, when, and

where inside a house. Fig. 4 (top) shows examples of the

annotated real-world stories. We obtained 7,369 story events

(697 unique) about their daily activities. Each story has 147

± 8 sentences and 1,338 ± 76 words on average.

FIGURE 2. Actual house environment for collecting real-world stories, where

a person performs a variety of daily life activities at each location

Virtual-world stories: For collecting virtual-world stories,

we used a life-simulation game called The Sims2, which

replicates the life of an individual person in a virtual world.

In contrast to recent simulators that imitate household envi-

ronments [70]–[73], The Sims simulator easily and automat-

ically generates many human-life stories about virtual-world

residents called Sims. In their respective environments, they

make their own life choices based on the available electrical

appliances and furniture in their house and to match their

physical and mental needs (e.g., hunger, companionship, hy-

giene, entertainment, health, and bodily functions), which are

represented by their interior parameters. For example, when

a Sim’s hunger parameter decreases, she removes food from

her refrigerator, moves to the dining room table, and starts

eating. We can easily customize the room layout and include

such furniture and appliances as beds, sofas, coffee-makers,

and PCs in the house environment where the Sims live. With

these advantages of a life simulator, we obtain more realistic

and diverse daily living stories than fictional stories [21],

[54], [74], books [19], [20], and movie scripts [75] where

detailed human activity logs are not recorded. Note that this

work used The Sims due to its simplicity, but other life

simulators (e.g., VirtualHome [43]) can also be used.

We simulated daily activities by preparing three shared

housing environments with typical households using The

Sims because the real target environments and residents are

actually unknown. Each environment has a kitchen as well

as a dining room, a living room, a bathroom, and bedrooms

with appropriate objects for daily life. Fig. 3 depicts three

environments used for the data collection. Using these house

settings, we simulated the daily lives of ten family units

comprised of 16 adults. With the life-simulation game, we

collected 30 days of daily activities per family unit (i.e.,

300 stories). Two annotators manually created story events

by watching the recorded game-play videos. We obtained

54,770 story events (7,218 unique) about the daily activity

events. Each story has 183 ± 58 sentences and 1,568 ± 523

words on average. Fig. 4 (bottom) shows examples of the

annotated virtual-world stories. Table 1 show a list of names

of entities used for creating sentences about daily life stories

in the real and virtual worlds.

2) QA Creation Method

For each story, we made question and answer pairs to con-

struct QA datasets, i.e., question, answer, and story triplets.

We made a template of 22 QA tasks related to world situa-

tions following previous real-world QA work [18]. Table 2

shows the QA template with which we generated questions

about each task. First, we randomly select the positions where

questions are inserted in each story for each person in both

worlds and then generate a question using a question template

and events before the question’s position. We repeat this

process until generating 20 questions per task. Then, we

generate answers to a given story by an oracle QA which can

2https://www.ea.com/games/the-sims

6 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3080275, IEEE Access

Miyanishi et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 3. House environments in The Sims 4 for simulating daily life: Environment 1 (left) simulates a single-person household. Environment 2 (center) simulates

a shared house. Environment 3 (right) simulates a nuclear family. We use artificial personages as described above for each environment to obtain daily life stories.

TABLE 1. List of names of entities used for generating daily life stories

Real world Virtual world

Subject Courteney, David, Jennifer, Lisa, Matt Amy, Bernadette, Chandler, Dharma, Gregory, Howard, Joey, Leonard, Monica, Penny, Phoebe,
Rachel, Ross, Sheldon, Skyler, Walter

Predicate brush, close, drink, eat, flush, hold, look at,
make, moisten, mop, move, open, pick up,
pour, pour off, put, put on, read, remove,
scoop, sit down on, spread, stand up from,
stir, take out, throw away, turn off, turn on,
unroll, wash, watch, wipe

add, bring in, brush, call from, change, change into, clean, clean on, close, cut, do pushups, do
yoga, dress, drink, eat, feed, fix, flush, fry, get off, get up from, grill, hang out, hit punching,
hold, hold cutting, hug, kiss, knead, listen to, look at, mop, move, open, pat, pet, play, play with,
pour, pour off, pull, put, put away, put on, read, replenish, run on, saute, season, set, shoot, sit
down on, sleep in, sleep on, stand up from, stew, stir, sweep, take, take off, take out, talk with,
taste, throw away, turn off, turn on, undress, use, wash, watch, water, wipe

Object air conditioner, bed, book, butter knife,
coffee, coffee bottle, coffee powder,
cracker, cracker pack, cracker sand,
crackers, cream cheese, cream cheese
pack, cup, cupboard, dishwasher, electric
kettle, electric kettle lid, face, floor,
hands, hot water, light, plate, refrigerator,
shoes, slippers, sofa, spoon, table, teeth,
television, toilet, toilet lid, toilet paper,
toothbrush, water, wristwatch

BBQ grill, auto feeder, bag, ball, basketball, bath, bed, beef, board, bowl, bread, casual wear,
cat, chair, channel, chicken, child, clothes, coffee, coffee beans, coffee maker, comic book,
computer, cup, desk, dining table, dirt, dishwasher, dog, doll house, dressing table, dryer,
egg, fertilizer, fish, floor, garbage box, glass, guitar, hands, hot water, ice cream, ice cream
maker, kitchen counter, kitchen sink, large plate, lavatory sink, magazine, mail, mail box,
microwave, milk, mushroom, music, night clothes, noodle, novel, oven, photo book, piano,
picture book, plant, plate, pork, potato, recipe book, refrigerator, rice, rumba, seafood, shower,
situps, smartphone, sofa, speaker, sportswear, sugar, tea, tea leaf, tea maker, television, textbook,
tofu, toilet, trash, trash bag, treadmill, tropical fishes, vegetable, violin, washer, water, weeds

Location bathroom, bedroom, entrance, kitchen, liv-
ing room, washroom

1st living room, 2nd living room, bathroom, bedroom, dining, entrance, kids room, kitchen,
living room, yard

accurately answer all the questions about both real-world and

virtual-world QAs using the syntax structure of the questions

and stories. For example, given a story "Tom washed the

plate in the kitchen. Tom moved to the living room from

the kitchen.", we insert a question template "Where is [per-

son]?" after the first event. Then, we automatically fill in the

question template according to the first event’s content and

generate a question, "Where is Tom?". Finally, we create an

answer "kitchen" by the oracle QA. Also, when a second

question is inserted after the second event, the same question

"Where is Tom?" and a different answer "living room" will be

generated. An oracle for generating answers was also used in

an earlier study [18], [21], [76], [77]. Note that we only use

the oracle QA to validate the concept of Sim2RealQA, which

is not available in the actual case. Due to the diversity of

natural language questions, the oracle QA is not practical in

real-world situations compared to learning-based approaches

which can learn such diversity from data. “No answer” tokens

are used if a question has no answer. We used the same data

format for all the tasks as the bAbI dataset [21]. We also

show examples of real-world and virtual-world QAs in Fig. 4.

Their activities are identical in many cases, but the persons,

objects, places, and daily life patterns in both worlds are

sometimes different. In particular, QA models must output

answers to the unknown entities that appear in the real world,

but not in the virtual world (e.g., “Lisa” and “washroom,”

in Fig. 4) and generate such answers as numbers, “yes/no,”

and several entities (e.g., “entrance, kitchen, living room,” in

Fig. 4) in response to various information needs in the real

world. In fact, 28% of the answer words in the target domain

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3080275, IEEE Access

Miyanishi et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

V
ir
tu

a
l-
w

o
rl
d
 Q

A
R

e
a
l-
w

o
rl
d
 Q

A

FIGURE 4. Examples of real-world and virtual-world QA datasets using daily life stories collected in an actual house and a life simulator. Our QA datasets ask

questions about daily life stories in both worlds.

TABLE 2. Question and answer template on each QA task, where words

[person], [activity], [object], and [place] are randomly extracted from given

stories of QA datasets. ‘+’ indicates multiple entities.

Task Question Answer

1 Is [person] in [place]? yes/no
2 Did [person] [activity] just now? yes/no
3 Was [person] in [place]? yes/no
4 Did [person] [activity] ? yes/no
5 Where is [person]? [place]
6 Where did [person] see [object]? [place]
7 Where was [person] before [place]? [place]
8 Where was [person] after [place]? [place]
9 Where did [person] see [object] before [place]? [place]
10 Where did [person] see [object] after [place]? [place]
11 Who is in [place]? [person]+
12 Who was in [place]? [person]+
13 Who [activity]? [person]+
14 Where did [person] [activity]? [place]
15 What did [person] [activity]? [object]
16 Which rooms did [person] go? [place]+
17 What did [person] do just now? [activity]
18 What did [person] do before [activity]? [activity]
19 What did [person] do after [activity]? [activity]
20 How many rooms did [person] go? [number]
21 How many times did [person] [activity]? [number]
22 How many times did [person] see [object]? [number]

(real world) do not appear in the source domain (virtual

world). To exploit the simulation data and further improve

the real-world QA performance, we need to address these

differences between the real and virtual worlds.

IV. REAL-WORLD QA MODEL FOR SIM2REALQA

A. OVERVIEW

We introduce our real-world QA model for the Sim2RealQA

framework trained on the source QA examples (i.e., question,

answer, and story triplets) of the virtual world, which can

output correct answer when the target story and question sets

of the real world are given. To achieve this generalization of

real-world QA problems, we addressed the unknown entities

that do not appear in the source QA examples, but which do

appear in the target QA examples that simultaneously capture

the relations over multiple events related to a given question.

The overall architecture of our QA model is shown in

Fig. 5. The model mainly consists of five layers: (i) em-

bedding, (ii) context, (iii) attention , (iv) matching, and (v)

answer. The layers (i-iv) are parts of a dynamic memory

module inspired by a dynamic memory network [78], [79].

Layer (v) is part of the pointer generator module inspired by

pointer generator networks [80]. For a brief explanation, we

consider a sentence in a story an event and a sequence of sen-

tences about a daily story story events. In our model, the input

consists of events (a daily-life story) and a question. First,

the embedding layer extracts their word feature vectors (i.e.,

word embeddings). Second, the context layer takes the word

embeddings as input, computes the sequential dependencies

of the words in the question and each event, and outputs a

8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3080275, IEEE Access

Miyanishi et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Ann talked with Sally in the living room.

Tom washed his hands in the bathroom.

Ann ate the cookies in the living room.

Tom moved to the kitchen from the bathroom.

Tom opened the cupboard in the kitchen.

Events (daily-life story)

What did Tom

do just now?

Question

G
lo

v
e

G
lo

v
e

Cross attention

E
v
e
n
t

e
n
c
o
d
e
r

Q
u
e
s
ti
o
n

e
n
c
o
d
e
r

Event word

embeddings

Embedding

Layer

Question word

embeddings

S
to

ry
 e

n
c
o
d
e
r

Event

embeddings

Question

embedding

Context Layer
Attention

Layer

E
v
e
n
t-

le
v
e
l

a
tt
e
n
ti
o
n

W
o
rd

-l
e
v
e
l

a
tt
e
n
ti
o
n

A
tt
e
n
ti
o
n
-b

a
s
e
d

e
n
c
o
d
e
r

Matching

Layer

Story

embeddings

P
o
in

te
r

g
e
n
e
ra

to
r

d
e
c
o
d
e
r

Answer Layer

Matching

embedding opened

the cupboard

Event-level

attention distribution

...

...

...

...

...

...

...

...

...

...

Word-level

attention distribution

...

...

...

...

...

Story sentence

...

Dynamic memory module Pointer generator module

Contextual event word embeddings

Answer

FIGURE 5. Overall model architecture for solving real-world QA problems with Sim2RealQA framework. Given sentences of a daily life story and a question, the

QA model outputs a corresponding answer sentence through inference by five layers.

question embedding and event embeddings. In addition, this

layer takes event embeddings as input and calculates the story

embeddings that capture the context of story events. The

attention layer takes the question and story embeddings as in-

put and computes the event-level attention that represents an

event’s importance for a given question. The matching layer

aggregates the events weighted with event-level attentions

and outputs the matching embedding. Because the matching

embedding is a vector that represents the association between

a question and its relevant events, it is used for decoding

answers. Finally, the answer layer outputs an answer sentence

based on the two types of word weights from the vocabulary

and word attention distributions. The vocabulary distribution,

which is a probability distribution over all the words in

the vocabulary of the training dataset, is calculated based

on the hidden state of an RNN language model trained for

predicting the answer words. By using this distribution, the

model can generate answer words from the fixed vocabulary

used in training. The word attention distribution, which is a

probability distribution over the words in the input sequence,

is calculated based on the cumulative attentions of the input

words for generating the answer words. By sampling words

from this distribution, the model can output unseen entities as

an answer when such entities are included in the input story.

We extended this word attention distribution with event-level

attention that represents the relevance between a question

and events because relevant events to a question are likely

to contain words suitable for the answer. Finally, the answer

decoder in the layer recurrently generates a sequence of

answer words by integrating the vocabulary and the extended

word attention distribution. We explain each component of

our model in detail.

B. EMBEDDING LAYER

The model’s input is the question and story events. First,

we convert each word in the question and story events

into vectors that represent the semantics of words. For the

vector representation of the word in the events and the

question, we use the Glove model trained with Gigaword5 +

Wikipedia2014 corpus [81]. This layer’s outputs are question

word embeddings Qw ∈ R
n×dw and event word embeddings

Ew ∈ R
m×dw , where n is the length of a question (i.e., the

number of words in it), m is the length of an event (i.e.,

the number of words in it), and dw is the size of the word

embedding. The event word embedding is created by each

event in a story.

C. CONTEXT LAYER

This layer models a sequence of words (i.e., question and

event) and a sequence of events (i.e., story) using the ques-

tion, event, and story encoders. To model the long-term

dependencies in the input sequence, we encode the sequences

of the words and events using a bidirectional-GRU (Bi-

GRU) [82], [83], which is a special kind of recurrent neural

network. The question encoder outputs the GRU’s hidden

state after reading question word embeddings Qw as question

embedding q ∈ R
dh , where dh is the size of the hidden

state of Bi-GRU. The question embedding corresponds to

modeling a sequence of words in the question. The event en-

coder reads event word embeddings Ew and outputs GRU’s

hidden state as the event embedding. This resembles the

modeling of a sequence of words in the event. The event

embeddings of all events are denoted as E ∈ R
l×dh , where

l is the length of the story (i.e., the number of events in it).

In addition, we use the GRU outputs as the contextual event

word embeddings Ec ∈ R
m×dh when reading the event word

embeddings. The contextual event word embeddings model

VOLUME 4, 2016 9

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3080275, IEEE Access

Miyanishi et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

the sequential word representations in each event to compute

the word-level attention distribution for answer decoding.

We also use the GRU outputs (i.e., the hidden states of the

story encoder) when reading the event embeddings as story

embeddings. The story embeddings of all the events are

denoted as S ∈ R
l×dh , which resembles modeling of the

context of events in a story.

D. ATTENTION LAYER

This layer computes how essential an event is to a given

question using event-level attention. It is a useful clue to

find the relevant events to a user’s question in a long story.

In addition, this information helps enumerating name of

entities a particular event related to a question. Using story

embeddings S and question embedding q, the event-level at-

tention computes the weight of each event. For example, this

attention increases the weight of events (e.g.,“Tom washed

his hands in the bathroom,” “Tom moved to the kitchen

from the bathroom,” and “Tom opened the cupboard in the

kitchen” in Fig. 5), including the words in a question (e.g.,

“Tom”). The attention value of kth event is given by

βk = softmax(Wβtanh(Wzzk + bz) + bβ), (1)

where Wβ , Wz , bβ , and bz are the learnable parameters, zk =
[sk ◦ q; |sk − q|], and sk ∈ S is the story embedding of the

kth event. Here ; denotes horizontal vector concatenation, ◦
is an adamal product, and | · | is the absolute value for each

element. Because sk◦q represents the similarity between two

vectors and |sk−q| represents their distance, zk represents the

relationship between the story event and a question. We use

this event-level attention distribution β for weighting story

events by their importance to a question in the next matching

layer.

E. MATCHING LAYER

This layer encodes the story and question embedding as

a question-story matching embedding (matching embed-

ding for short) with an attention-based encoder. First, the

attention-based encoder sequentially weights kth story em-

bedding sk ∈ S with corresponding event-level attention

value βk and aggregates them by

ck = (1− βk) ◦ ck−1 + βk ◦ sk. (2)

The output of encoder c after reading all story embeddings

S is the weighted sum of the story embeddings by relevance

to the questions, which emphasize recent events. To predict

a question’s answer based on question embedding q and final

weighted story embedding c, this layer computes matching

embedding m:

m = ReLU(Wm[c; q] + bm), (3)

where Wm and bm are the learnable parameters. Here ReLU

is a Rectified Linear Unit [84]. The matching embedding

holds the relevance information between a given question

and story events computed by the event-level attention which

gives a large weight to events related to the question. There-

fore, it contains important clues to answer the question. Then,

we use matching embedding m as the initial hidden state of

RNN-based decoder h0 in the answer layer for bringing the

matching results between a question and a story to answer

decoding.

F. ANSWER LAYER

This layer in the pointer-generator module generates a se-

quence of answer words based on the matching results be-

tween the question and the story using the pointer-generator

decoder. Fig. 6 shows its overview. First, the RNN-based

decoder with a hidden layer initialized by matching embed-

ding reads a 〈START 〉 token that indicates the beginning

of the answer sentence and updates the internal state. Based

on this updated hidden state, the decoder then generates the

next word based on the (i) vocabulary distribution and (ii)

the word attention distribution. The decoder computes the

vocabulary distribution to predict the next answer word in

the vocabulary used in training. It also computes the word

attention distribution to address the unknown entities that

do not appear in the training dataset. The decoder uses the

word attention distribution to copy words from the input story

events with a pointing mechanism [80], [85]–[87]. Second,

this layer updates this word attention distribution using the

event attention distribution from the encoder and computes

the extended word attention distribution to actively reflect

a question’s intention about an answer. Finally, the decoder

samples the word with the highest probability based on the

final distribution that combines the extended word attention

distribution and the vocabulary distribution and uses it for

the next decoder input. By repeating this process, the answer

layer can output multiple types of answer sentences, e.g.,

word sequences, word sets, as well as a single word. In this

section, we first introduce the conventional pointer-generator

decoder used as a part of the answer layer and explain its

extension that addresses unknown entities by considering the

question’s intention.

1) Pointer-generator decoder

To predict a sequence of answer words, the pointer-generator

decoder sequentially generates words by using previously

generated words as additional input at each decoding step. At

each decoding step, the decoder outputs answer word a with

word-level attention that tells the decoder which words in the

story are useful for predicting the next word. The word-level

attention distribution αt at each decoding step t is defined:

otj = vT tanh(Weej +Whht + be) (4)

αt = softmax(ot), (5)

where ej denotes the jth contextual event word embedding

from the context layer, ht denotes a tth decoder hidden state,

and v, We, Wh, and be are learnable parameters. Therefore,

the word-level attention is computed based on the word-level

encoder’s hidden state (i.e., contextual event word embed-

ding) and the decoder’s hidden state. By using this word-level

10 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3080275, IEEE Access

Miyanishi et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

cupboard

Matching

embedding

<START>

openedTom the kitchentheincupboardtalkedAnn with livingtheinSally

…

room

Event-level attention

…

Word attention distribution

Extended word attention distribution

Event attention distribution

Final distribution

Pointer-generator decoder

theopened

Vocabulary distribution

TomdidWhat nowjustdo

1 yoga 1 yoga 1 yoga

Context vector

Cross attention

Generation probability

Decoder

hidden states

Event encoder

hidden states

Story encoder

Question embedding

Event embedding

Question encoder

hidden states

1 − # #

Question
Story Events

Answer

FIGURE 6. Overview of answer layer: Point-generator decoder sequentially generate answer words or copy them from the input in autoregressive manner by

integrating vocabulary and extended word attention distribution. The extended word attention distribution holds information about question’s intention by updating

the original word attention distribution with the event attention distribution.

attention, the decoder produces answer words based on the

vocabulary distribution:

Pvocab = softmax(W1(W2[ht;ut] + b2) + b1), (6)

where W1, W2, b1, and b2 are learnable parameters. Here

ut =
∑

j α
t
jej is called a context vector that represents

a sequence of words relevant to the current decoding step.

Therefore, the vocabulary distribution is computed based

on the decoder’s hidden state and the word-level encoder’s

hidden states weighted by word-level attention that indicates

which input words are important for the current decoding

step. By using this distribution, the decoder can create any

words from a fixed vocabulary. However, the word proba-

bility from Pvocab with regard to unknown entities almost

becomes zero because they did not appear during the training

phase.

To address this problem, the pointer-generator decoder

uses words in the story as outputs by using the following

cumulative word attention distribution:

Pcopy =
∑

j:wj=w

αt
j , (7)

where wj is the jth word in the input story. Copy distribution

Pcopy assigns probability to the words of the unknown entity

using the attention values of the input words. For example,

the cumulative attention value of “cupboard” becomes 0.2

when it appears in the input story and its word-level attention

value is 0.2. Due to this trick, the decoder can output “cup-

board” as the answer, even if “cupboard” does not appear in

the training dataset, i.e., the virtual world.

Finally, the decoder outputs next answer word a based on

the final distribution:

Pfinal(a) = gPvocab(a) + (1− g)Pcopy(a), (8)

where g is a generation probability g ∈ [0, 1] that decides

whether the decoder generates a word from the vocabulary

from Pvocab or uses a word from word attention distribution

Pcopy . Generation probability g is given by

g = σ(wT
h ht + wT

u ut + wT
a at + bg), (9)

where vectors wu, ws, wa, and bg are learnable parameters,

at ∈ R
dw is a word embedding of a generated answer word at

the previous step t− 1, and σ is the sigmoid function. There-

fore, g is computed based on the input context, the current

decoding state, and the decoder input. Distribution Pfinal

produces unknown entities based on the word attention distri-

bution of source Pcopy . We assume that this pointer-generator

mechanism is helpful for producing answers, including the

unknown entities caused by the differences between the real

and virtual worlds.

Unfortunately, this pointer-generator mechanism only uses

word-level attention for copying words; it ignores the rela-

tions between story events and a question, i.e., event-level

attention. We assume the encoder’s event-level attention indi-

cates the important events in which users are interested. Since

the words in these events are worth copying, we integrate the

word-level and event-level attentions for decoding.

2) Cross attention

To identify suitable words for copying, we extend word-level

attention α for using input words in the events (Eq. 7) using

event-level attention β (Eq. 1). Extended word-level attention

α′

j of the jth word in the input text is defined:

α′

j =
αj × β[j]∑
i αi × β[i]

, (10)

where [j] is the index of the story event that contains the

jth word. The definition holds. When both word-level at-

tention αj and event-level attention β[j] are high, new α′

j

VOLUME 4, 2016 11

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3080275, IEEE Access

Miyanishi et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

becomes high. Thereby, we can incorporate the user intention

described by a question sentence in the pointer-generator de-

coder. We use this extended word-level attention distribution

α′ for Pcopy instead of the original one, α, in Eq. 7.

V. EXPERIMENTS

We evaluated our Sim2RealQA framework using real-

and virtual-world QA datasets. First, we investigated how

well our model performed in a Sim2RealQA setting and

ascertained what components of QA models contribute

to Sim2RealQA. Then we investigated the capability of

Sim2RealQA with our model and baselines.

A. EXPERIMENTAL SETUP

1) Methods

We conducted our empirical investigation using the following

models, each of which has different modules. By comparing

them, we can ascertain what components determine the gen-

eralizations when using Sim2RealQA:

• RNN is a standard neural QA model based on sequence-

to-sequence (Seq2Seq) [88] that encodes the story and a

question and then decodes answer words.

• RNN-AT is the Seq2Seq-based QA model, which uses a

word-level attention mechanism [89], [90]. This mech-

anism considers the input context for predicting answer

words at each decoding step in addition to the above

RNN method.

• RNN-PG uses the pointer-generator decoder [80] for

predicting answers in addition to RNN-AT. The method

can use input word distribution using word-level at-

tention to generate or copy words from inputs in the

decoding phase.

• DMN uses the dynamic memory module for encoding a

story and a question relation with their mutual relevance

using event-level attentions, which is a special case of

the dynamic memory network [78], [79]. The model

uses the same decoder as RNN.

• DMN-PG uses the pointer-generator decoder in addi-

tion to the above DMN. Moreover, this method uses the

relevance between story events and a question with the

event-level attention distribution to find useful words for

copying in the important event for a question.

DMN-PG is our proposed model. We assumed that the

pointer-generator decoder and the relevance information

between story events and questions further improves the

Sim2RealQA performance by addressing the gap between the

virtual and real worlds.

In addition to these baselines, we prepared a frequent

answer baseline and question-only baselines to check the

biases of the real-world and virtual-world QA datasets be-

cause question-only methods are competitive in some QA

tasks [91], [92]. We prepared the following baselines:

• Q-Prior uses the most popular answer per task de-

scribed in Table 2. We used the frequent answers in the

source domain (virtual-world) for predicting answers in

the test phase.

• RNN (Q), RNN-AT (Q), and RNN-PG (Q) are almost

identical to the RNN, RNN-AT, and RNN-PG methods,

but they use questions only for decoding answer words.

2) Parameter settings

We trained all the methods with Adam [93] using a learning

rate of 0.0001 and a batch size of 20 until 32 epochs were

reached. We used early stopping if the accuracy of the val-

idation split in the source domain did not increase for 10

epochs. A null symbol was used to pad them all to a fixed

size. We did not update the word vectors during training. The

embedding of the null symbol was constrained to zero. For

all the RNN encoders and decoders, we used a GRU [82]

with a single hidden layer. For the RNN encoders, we used

a bidirectional GRU. For all the methods, we selected the

following dimensions: 128 word embeddings and 256 hidden

states. We set a dropout [94] value of 0.5.

3) Evaluation settings

To assess our proposed framework, we compared the pre-

pared methods with two real-world and virtual-world QA

datasets. For training, we divided the virtual-world QA

dataset into 169K, 21.1K, and 21.1K examples for the train-

ing/valid/test data. For evaluation, we divided the real-world

QA dataset into 17.6K, 2.2K, and 2.2K examples for the

training/valid/test data. For Sim2RealQA, we trained all the

models using the virtual-world training data and evaluated

them with the test data from the real world. In this case, the

labels in the target domain (real-world) were withheld. We

evaluated all the methods under the ParlAI framework [95]

with an accuracy measure as an evaluation metrics that

computed the exact matches between the predicted answer

words and the ground truth. This report describes the QA

performances by averaging the results of five training runs

based on different initialization values.

B. RESULTS AND ANALYSIS

In this section, we evaluated the performance of the prepared

methods over two worlds and explored the generalization

of the models trained on a virtual-world dataset to a target

real-world dataset. Models learned with virtual-world data,

which hold high generalization ability, need to show high

performance even when being tested with real-world data.

1) What factors fuel generalization in the real world?

First, we investigated how well our model performed in a

Sim2RealQA setting and ascertained what components im-

proved Sim2RealQA’s performance. In Table 3 (bottom), we

show the Sim2RealQA performance of the prepared meth-

ods over all the QA tasks on average. The learning-based

approaches (RNN, RNN-AT, RNN-PG, DMN, and DMN-

PG) significantly outperformed a simple frequency-based ap-

proach, Q-Prior, which uses the most popular answers in the

source domain for each task. Moreover, these methods using

both stories and questions for QA significantly outperformed

RNN (Q), RNN-AT (Q), and RNN-PG (Q), all of which only

12 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3080275, IEEE Access

Miyanishi et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 3. Accuracies of methods over 22 QA tasks. The best result per row is marked in bold typeface.

Task Q-Prior RNN (Q) RNN-AT (Q) RNN-PG (Q) RNN RNN-AT RNN-PG DMN DMN-PG

1 0.510 0.648 0.626 0.692 0.860 0.938 0.916 0.908 0.938

2 0.430 0.576 0.570 0.568 0.642 0.684 0.782 0.628 0.834

3 0.730 0.590 0.590 0.564 0.554 0.784 0.896 0.888 0.934

4 0.540 0.534 0.516 0.534 0.488 0.532 0.596 0.534 0.606

5 0.600 0.248 0.402 0.430 0.780 0.854 0.996 0.880 1.000

6 0.560 0.610 0.562 0.588 0.638 0.716 0.742 0.668 0.796

7 0.150 0.146 0.158 0.172 0.240 0.724 0.850 0.370 0.880

8 0.200 0.144 0.116 0.158 0.236 0.764 0.752 0.496 0.920

9 0.000 0.328 0.302 0.282 0.366 0.402 0.492 0.398 0.520

10 0.000 0.454 0.424 0.404 0.522 0.558 0.540 0.560 0.578

11 0.000 0.000 0.000 0.000 0.000 0.000 0.996 0.000 1.000

12 0.000 0.000 0.000 0.000 0.000 0.000 0.994 0.000 1.000

13 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000

14 0.610 0.640 0.628 0.604 0.666 0.718 0.730 0.648 0.722

15 0.040 0.140 0.130 0.136 0.148 0.150 0.270 0.148 0.364

16 0.000 0.000 0.000 0.000 0.016 0.030 0.142 0.006 0.264

17 0.000 0.000 0.002 0.002 0.020 0.238 0.810 0.026 0.754
18 0.000 0.042 0.046 0.046 0.036 0.056 0.116 0.040 0.164

19 0.000 0.014 0.016 0.014 0.024 0.032 0.088 0.018 0.220

20 0.360 0.360 0.290 0.360 0.370 0.352 0.236 0.312 0.320
21 0.850 0.824 0.816 0.830 0.842 0.838 0.842 0.820 0.838
22 0.410 0.276 0.314 0.306 0.414 0.432 0.444 0.318 0.364

all 0.272 0.299 0.296 0.304 0.357 0.446 0.647 0.394 0.683

use questions. These results indicate that training on a virtual-

world QA dataset for reasoning over story events in response

to a question effectively and accurately solves real-world QA

problems. In addition, RNN-PG and DMN-PG significantly

outperformed RNN, RNN-AT, and DMN, which do not use

the pointer-generator decoder, suggesting that the pointer-

generator mechanism further improves the Sim2RealQA per-

formance. Note that our DMN-PG outperformed the other

methods, indicating the benefit of integrating the word- and

event-level attentions for the pointer-generator mechanism.

We also compared our model’s QA performance for each

task to the others in Table 3. Across most tasks, RNN-PG and

DMN-PG significantly outperformed the others. In particular,

RNN-PG and DMN-PG achieved success in tasks 11, 12,

and 13, which require answering questions about the names

of people; Q-Prior, RNN (Q), RNN-AT (Q), and RNN-PG

(Q), RNN, RNN-AT, and DMN failed because no real-world

people appeared in the virtual world (i.e., training dataset).

The models with the pointer-generator decoder extracted

such unknown persons from the given real-world story events

and produced them as answers, but the others could not.

For example, task 11’s results in Fig. 7 (center left) show

that DMN-PG and RNN-PG predicted the correct answer

“David” who only appears in the real world, but RNN could

not. For task 13 in Fig. 7 (center right), RNN also predicted

incorrect answer “Howard” who only appears in the virtual

world. In addition, the models without the pointer-generator

decoder failed to predict unknown places that do not appear

in the virtual world. Both RNN-PG and DMN-PG output

them as an answer. For example, task 5’s results in Fig. 7

(top left) show that DMN-PG and RNN-PG predicted the

correct answer “washroom”, which only exists in the real

world; RNN incorrectly output “bathroom”. Both RNN-PG

and DMN-PG significantly outperformed Q-Prior, RNN (Q),

RNN-AT (Q), RNN-PG (Q), RNN, RNN-AT, and DMN in

task 17, which requires answers about activities because

they are often different between worlds. The models without

the pointer-generator decoder failed to provide answers. For

example, task 17’s results in Fig. 7 (bottom right) show

that DMN-PG and RNN-PG predicted the correct answer,

“poured hot water into the cup”, which only took place in

the real world, and RNN incorrectly output “close to the

ice cream maker” that took place only in the virtual world.

These results posit compelling evidence that the pointer-

generator mechanism is necessary for handling unknown

entities caused by the gap that separates the virtual and

real worlds. Moreover, the proposed DMN-PG outperformed

RNN-PG in difficult tasks 7, 8, 16, 18, and 19, where the

models have to answer by referring to multiple events in a

long story. DMN-PG has the ability to find multiple relevant

events to a question for predicting answers in contrast to

RNN-PG. For example, task 8’s results in Fig. 7 (top right),

which require understanding the context of the place, show

that DMN-PG predicted the correct answer, but not RNN-

PG. That is because it does not have an event-level attention

mechanism that helps it find important clues about the correct

answer in a long story. For task 16, which requires multiple

events to answer questions, DMN-PG predicted the correct

answer, “bedroom, entrance, kitchen, living room”, while

RNN-PG predicted an incorrect answer: “bedroom, kitchen,

living room”. This is because the word-level attention in the

RNN-PG is difficult to find and memorize answer words,

VOLUME 4, 2016 13

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3080275, IEEE Access

Miyanishi et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

895

896

897

898

899

900

901

902

903

904

905

906

907

908

Task 5: Where is [person]?

Story: · · ·

Lisa sat down on the bed in the bedroom.

Lisa wiped the table with the duster in the bedroom.

Lisa read the book in the bedroom.

Lisa stood up from the bed in the bedroom.

Lisa looked at the wristwatch in the bedroom.

Lisa turned o� the light in the bedroom.

Lisa moved to the washroom from the bedroom.

Question:Where is Lisa?

Ground truth: washroom

Prediction:

7 RNN: bathroom

3 RNN-PG: washroom

3 DMN-PG: washroom

Task 11: Who is in [place]?

Story: · · ·

David ate the cracker sand in the living room.

David drank co�ee in the living room.

David turned o� the television in the living room.

David turned o� the air conditioner in the living room.

David stood up from the sofa in the living room.

David held the cup in the living room.

David held the plate in the living room.

Question:Who is in the living room?

Ground truth: David

Prediction:

7 RNN: Sheldon

3 RNN-PG: David

3 DMN-PG: David

909

910

911

912

913

914

915

916

917

918

919

920

921

Task 13: Who [activity]?

Story: · · ·

Matt put the co�ee bottle in the cupboard in the kitchen.

Matt put the cracker pack in the cupboard in the kitchen.

Matt closed the cupboard in the kitchen.

Matt turned o� the electric kettle in the kitchen.

Matt poured hot water into the cup in the kitchen.

Matt poured o� the hot water in the kitchen sink in the kitchen.

Matt stirred the co�ee with the spoon in the kitchen.

Question:Who closed the cupboard?

Ground truth: Matt

Prediction:

7 RNN: Howard

3 RNN-PG: Matt

3 DMN-PG: Matt

kitchen.

kitchen.

the kitchen.

Task 17: What did [person] do just now?

Story: · · ·

Matt held the co�ee bottle in the kitchen.

Matt held the cracker pack in the kitchen.

Matt put the co�ee bottle in the cupboard in the kitchen.

Matt put the cracker pack in the cupboard in the kitchen.

Matt closed the cupboard in the kitchen.

Matt turned o� the electric kettle in the kitchen.

Matt poured hot water into the cup in the kitchen.

Question:What did Matt do just now?

Ground truth: poured hot water into the cup

Prediction:

7 RNN: closed the ice cream maker

3 RNN-PG: poured hot water into the cup

3 DMN-PG: poured hot water into the cup

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

Task 8: Where was [person] after [place]?

Story: · · ·

Jennifer read the book in the bedroom.

Jennifer looked at the wristwatch in the bedroom.

Jennifer stood up from the bed in the bedroom.

Jennifer turned o� the light in the bedroom.

Jennifer moved to the bathroom from the bedroom.

Jennifer turned on the light in the bathroom.

· · ·

Jennifer washed her hands in the bathroom.

Jennifer turned o� the water in the bathroom.

Jennifer wiped her hands with the towel in the bathroom.

Jennifer turned o� the light in the bathroom.

Jennifer moved to the living room from the bathroom.

Jennifer mopped the �oor with the mop in the living room.

Jennifer moved to the kitchen from the living room.

Jennifer turned on the water in the kitchen.

· · ·

Question: Where was Jennifer after the bedroom?

Ground truth: bathroom

Prediction:

7 RNN: kitchen

7 RNN-PG: living room

3 DMN-PG: bathroom

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 37, No. 4,

om.

oom.

Task 16: Which rooms did [person] go?

Story:

Courteney removed the shoes in the entrance.

Courteney put on the slippers in the entrance.

Courteney moved to the bedroom from the entrance.

Courteney turned on the light in the bedroom.

Courteney sat down on the bed in the bedroom.

Courteney wiped the table with the duster in the bedroom.

Courteney read the book in the bedroom.

· · ·

Courteney stood up from the bed in the bedroom.

Courteney turned o� the light in the bedroom.

Courteney moved to the living room from the bedroom.

Courteney turned on the light in the living room.

Courteney moved to the kitchen from the living room.

Courteney turned on the water in the kitchen.

Courteney washed her hands in the kitchen.

· · ·

Question: Which rooms did Courteney go?

Ground truth: bedroom, entrance, kitchen, living room

Prediction:

7 RNN: bedroom, kitchen, living room

7 RNN-PG: bedroom, kitchen, living room

3 DMN-PG: bedroom, entrance, kitchen, living room

chnol., Vol. 37, No. 4, Article 111. Publication date: August 2018.

FIGURE 7. Comparison of Sim2RealQA results of RNN, RNN-PG, and DMN-PG.

compared to the event-level attention in DMN-PG. These

findings suggest that the integration of the pointer-generator

decoder and event-level attention is effective for further im-

proving our Sim2RealQA framework.

2) How well can models trained with the virtual-world data

be generalized to the real-world data?

To assess the generalization of our proposed Sim2RealQA

framework, we compared the methods, which used only a

virtual-world dataset for training, to the methods trained on

the target, which used a real-world dataset. Those trained

on the target results revealed ideal performance, but the

target real-world answer labels are actually unavailable. By

comparing the Sim2RealQA and ideal Train on target perfor-

mances, we can quantitatively investigate how well models

trained with the virtual-world data generalize to the real-

world data. The results are presented in Fig. 8 (left). Hori-

zontal lines show the Sim2RealQA performance because it

did not use any target examples for training. As we antici-

pated, the performance of the methods trained on the target

14 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3080275, IEEE Access

Miyanishi et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

100 1000 10000
Number of target examples

0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Sim2RealQA
Train on target
RNN
RNN-AT
RNN-PG
DMN
DMN-PG

1000 10000 100000
Number of source examples

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

RNN
RNN-AT
RNN-PG
DMN
DMN-PG

0 10 20 30
Epoch

0.3

0.4

0.5

0.6

0.7

Ac
cu
ra
cy

RNN
RNN-AT
RNN-PG
DMN
DMN-PG

FIGURE 8. Sim2RealQA performance of baselines and proposed model: Sim2RealQA performance and oracle supervised QA performance over a number of

examples in real-world dataset used for training (left); Sim2RealQA performance over number of examples in virtual-world dataset used for training (center);

learning curves and accuracies (right).

improved with an increase in the proportion of real-world

examples. Compared to the oracle methods that were trained

with all the target examples, the methods using Sim2RealQA

still have room for improvement. However, these oracle

methods achieved lower accuracy in cases that involved an

inadequate amount of training data because the performance

of the neural QA models relies heavily on many labeled

training datasets. Note that all the RNN, RNN-AT, RNN-

PG, DMN, and DMN-PG methods on the Sim2RealQA

framework outperformed the oracle methods with a small

real-world training dataset. The DMN-PG of Sim2RealQA

significantly outperformed all the methods trained with a

target of 1,000 examples, a number that we cannot realis-

tically collect. The result indicates the effectiveness of the

proposed Sim2RealQA framework in the absence of real-

world answers. This finding is useful because making real-

world QA datasets is extremely difficult and laborious due to

privacy reasons.

3) Does generalization to real-world data improve with more

virtual-world data?

To validate the generalization ability of the proposed meth-

ods when the training set size increases, we explored the

models’ performances with the virtual-world QA datasets of

several training data sizes. In Fig. 8 (center), the RNN, RNN-

AT, RNN-PG, DMN, and DMN-PG performances steadily

improved as the virtual-world training data size increased.

DMN-PG outperformed the other methods when using a

large amount of examples for training. The results suggest

that using a large amount of virtual-world QA datasets is ef-

fective for more accurately solving real-world QA problems.

This finding is fruitful because we can obtain diverse daily

life stories from simulators and compile a large amount of

virtual-world QA datasets without breaching privacy.

4) Do the pointer-generator mechanism and event-level

attention quickly improve the Sim2RealQA performance?

Next we studied how the number of training epochs affected

the Sim2RealQA performance. Fig. 8 (right) shows the ac-

curacy of RNN, RNN-AT, RNN-PG, DMN, and DMN-PG

over the {1, 2, 4, 8, 16, 32} epochs with the Sim2RealQA

framework. With an increase of the training epochs, the

performance of all the QA methods also improved. In ad-

dition, the models with a pointer-generator decoder (DMN-

PG and RNN-PG) dramatically outperformed those without

it (RNN, RNN-AT, and DMN), despite many fewer training

epochs. DMN-PG outperformed the other methods over all

the training epochs, indicating the pointer-generator mech-

anism’s effectiveness for quick learning. A combination of

pointer-generator decoder and relevance matching between

question and story events (i.e., event level attention) more

quickly improved the generalization to the real-world data.

VI. CONCLUSION

We proposed a novel simulation to a real QA (Sim2RealQA)

framework that trains a neural QA model with many QA

datasets produced in a life simulator and used it for solving

real-word QA problems. To evaluate our framework, we

developed real-world and virtual-world QA datasets using

an actual house and a pre-made life simulator. We validated

our proposed approach with a neural QA model that can

address different entities between both worlds by combin-

ing the pointer-generator decoder with relevance matching

between question and story events. From the experiments,

we found that our method accurately solved real-world QA

problems with the aid of virtual-world QA datasets. More-

over, our model, which was completely trained with the

virtual-world QA dataset, significantly outperformed models

trained with 1,000 examples in a target domain. In addition,

the Sim2RealQA performance improved with an increas-

ing number of examples from virtual-world QA datasets

that can be created while protecting privacy. Furthermore,

Sim2RealQA’s quick learning was achieved by the integra-

tion of a pointer-generator mechanism and relevance match-

ing (i.e., event-level attention). These findings support that

using life simulations is a promising approach for solving

real-world QA problems when no real-world answers are

available.

In future work, we will refine our model to detect the tem-

poral intention of the user’s question and answer questions

about events that occurred at specific dates and times in a

long daily life. In this study, we created textual questions

VOLUME 4, 2016 15

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3080275, IEEE Access

Miyanishi et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

with the template-based approach to purely investigate the

models trained with virtual-world data and generalize to

real-world data with fewer noise settings. In more realistic

situations, natural language questions are composed by a per-

son seeking complicated real-world information, which offer

multiple ways to say the same things. Another aspect of our

future work will create datasets that include more natural and

complex questions. Such diverse questions will be beneficial

for robust and accurate real-world QA answering.

ACKNOWLEDGMENTS

This work was supported by JST ACT-I Grant Number JP-

MJPR18UT, JST CREST Grant Number JPMJCR15E2, and

JSPS KAKENHI Grant Number JP18KK0284.

REFERENCES

[1] L. Bao and S. S. Intille, “Activity recognition from user-annotated accel-

eration data,” in Pervasive, 2004, pp. 1–17.

[2] H. Lu, W. Pan, N. D. Lane, T. Choudhury, and A. T. Campbell, “Sound-

Sense: scalable sound sensing for people-centric applications on mobile

phones,” in MobiSys, 2009, pp. 165–178.

[3] P. Lukowicz, J. A. Ward, H. Junker, M. Stäger, G. Tröster, A. Atrash, and

T. Starner, “Recognizing workshop activity using body worn microphones

and accelerometers,” in Pervasive, 2004, pp. 18–32.

[4] T. Maekawa and S. Watanabe, “Unsupervised activity recognition with

user’s physical characteristics data,” in International Symposium on Wear-

able Computers (ISWC), 2011, pp. 89–96.

[5] T. Maekawa, Y. Yanagisawa, Y. Kishino, K. Ishiguro, K. Kamei, Y. Saku-

rai, and T. Okadome, “Object-based activity recognition with heteroge-

neous sensors on wrist,” in Pervasive, 2010, pp. 246–264.

[6] R. Want, A. Hopper, V. Falcão, and J. Gibbons, “The active badge location

system,” ACM Transactions on Information Systems, vol. 10, no. 1, pp.

91–102, 1992.

[7] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan, “The cricket

location-support system,” in MobiCom, 2000, pp. 32–43.

[8] M. Fan, A. T. Adams, and K. N. Truong, “Public restroom detection

on mobile phone via active probing,” in International Symposium on

Wearable Computers (ISWC), 2014, pp. 27–34.

[9] Y.-C. Tung and K. G. Shin, “EchoTag: accurate infrastructure-free indoor

location tagging with smartphones,” in MobiCom, 2015, pp. 525–536.

[10] Y. Wang, X. Yang, Y. Zhao, Y. Liu, and L. Cuthbert, “Bluetooth positioning

using RSSI and triangulation methods,” in IEEE CCNC, 2013, pp. 837–

842.

[11] A. LaMarca, Y. Chawathe, S. Consolvo, J. Hightower, I. Smith, J. Scott,

T. Sohn, J. Howard, J. Hughes, F. Potter et al., “Place lab: Device

positioning using radio beacons in the wild,” in Pervasive, 2005, pp. 116–

133.

[12] D. Taniuchi and T. Maekawa, “Robust Wi-Fi based indoor positioning with

ensemble learning,” in WiMob, 2014, pp. 592–597.

[13] C. Gurrin, H. Joho, F. Hopfgartner, L. Zhou, V.-T. Ninh, T.-K. Le,

R. Albatal, D.-T. Dang-Nguyen, and G. Healy, “Overview of the NTCIR-

14 lifelog-3 task,” in NTCIR, 2019, pp. 14–26.

[14] C. Gurrin, A. F. Smeaton, and A. R. Doherty, “Lifelogging: Personal big

data,” Foundations and Trends in Information Retrieval, vol. 8, no. 1, pp.

1–125, 2014.

[15] S. Hodges, L. Williams, E. Berry, S. Izadi, J. Srinivasan, A. Butler,

G. Smyth, N. Kapur, and K. Wood, “Sensecam: A retrospective memory

aid,” in Ubicomp, 2006, pp. 177–193.

[16] F. Hopfgartner, C. Gurrin, and H. Joho, “Rethinking the test collection

methodology for personal self-tracking data,” in MMM. Springer, 2020,

pp. 463–474.

[17] T. Maekawa, Y. Yanagisawa, Y. Kishino, K. Kamei, Y. Sakurai, and

T. Okadome, “Object-blog system for environment-generated content,”

IEEE Pervasive Computing, vol. 7, no. 4, pp. 20–27, 2008.

[18] T. Miyanishi, J. Hirayama, A. Kanemura, and M. Kawanabe, “Answering

mixed type questions about daily living episodes,” in IJCAI, 2018, pp.

4265–4271.

[19] F. Hill, A. Bordes, S. Chopra, and J. Weston, “The goldilocks principle:

Reading children’s books with explicit memory representations,” in ICLR,

2016.

[20] T. Kočiský, J. Schwarz, P. Blunsom, C. Dyer, K. M. Hermann, G. Melis,

and E. Grefenstette, “The NarrativeQA reading comprehension challenge,”

Transactions of the Association for Computational Linguistics, vol. 6, pp.

317–328, 2018.

[21] J. Weston, A. Bordes, S. Chopra, and T. Mikolov, “Towards AI-complete

question answering: A set of prerequisite toy tasks,” in ICLR, 2016.

[22] T. Linjordet and K. Balog, “Impact of training dataset size on neural

answer selection models,” in ECIR, 2019, pp. 828–835.

[23] C. Sun, A. Shrivastava, S. Singh, and A. Gupta, “Revisiting unreasonable

effectiveness of data in deep learning era,” in ICCV, 2017, pp. 843–852.

[24] M. Blum, A. S. Pentland, and G. Tröster, “Insense: Interest-based life

logging,” IEEE Multimedia, vol. 13, no. 4, pp. 40–48, 2006.

[25] J. Lester, T. Choudhury, and G. Borriello, “A practical approach to recog-

nizing physical activities,” in Pervasive, 2006, pp. 1–16.

[26] P. Lukowicz, H. Junker, M. Stager, T. V. Buren, and G. Tröster, “Wearnet:

A distributed multi-sensor system for context aware wearables,” in Ubi-

comp, 2002, pp. 361–370.

[27] D. Castro, S. Hickson, V. Bettadapura, E. Thomaz, G. Abowd, H. Chris-

tensen, and I. Essa, “Predicting daily activities from egocentric images

using deep learning,” in International Symposium on Wearable Computers

(ISWC), 2015, pp. 75–82.

[28] M. Ma, H. Fan, and K. M. Kitani, “Going deeper into first-person activity

recognition,” in CVPR, 2016, pp. 1894–1903.

[29] M. Perkowitz, M. Philipose, K. Fishkin, and D. J. Patterson, “Mining

models of human activities from the web,” in WWW, 2004, pp. 573–582.

[30] M. Philipose, K. P. Fishkin, M. Perkowitz, D. J. Patterson, D. Fox,

H. Kautz, and D. Hähnel, “Inferring activities from interactions with

objects,” IEEE Pervasive Computing, vol. 3, no. 4, pp. 50–57, 2004.

[31] E. M. Tapia, S. S. Intille, and K. Larson, “Activity recognition in the home

using simple and ubiquitous sensors,” in Pervasive, 2004, pp. 158–175.

[32] T. Van Kasteren, A. Noulas, G. Englebienne, and B. Kröse, “Accurate

activity recognition in a home setting,” in Ubicomp, 2008, pp. 1–9.

[33] H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of wireless indoor

positioning techniques and systems,” IEEE Transactions on Systems, Man,

and Cybernetics, Part C: Applications and Reviews, vol. 37, no. 6, pp.

1067–1080, 2007.

[34] M. Tachikawa, T. Maekawa, and Y. Matsushita, “Predicting location

semantics combining active and passive sensing with environment-

independent classifier,” in UbiComp, 2016, pp. 220–231.

[35] M. Li, X. Zhu, and S. Gong, “Unsupervised tracklet person re-

identification,” IEEE Transactions on Pattern Analysis and Machine In-

telligence, 2019.

[36] P. Anderson, Q. Wu, D. Teney, J. Bruce, M. Johnson, N. Sünderhauf,

I. Reid, S. Gould, and A. van den Hengel, “Vision-and-language naviga-

tion: interpreting visually-grounded navigation instructions in real envi-

ronments,” in CVPR, 2018, pp. 3674–3683.

[37] W. Hao, C. Li, X. Li, L. Carin, and J. Gao, “Towards learning a generic

agent for vision-and-language navigation via pre-training,” in CVPR,

2020.

[38] S. Kurita and K. Cho, “Generative language-grounded policy in vision-

and-language navigation with bayes’ rule,” in ICLR, 2021.

[39] D. Misra, A. Bennett, V. Blukis, E. Niklasson, M. Shatkhin, and Y. Artzi,

“Mapping instructions to actions in 3D environments with visual goal

prediction,” in EMNLP, 2018, pp. 2667–2678.

[40] A. Das, S. Datta, G. Gkioxari, S. Lee, D. Parikh, and D. Batra, “Embodied

question answering,” in CVPR, 2018, pp. 1–10.

[41] D. Gordon, A. Kembhavi, M. Rastegari, J. Redmon, D. Fox, and

A. Farhadi, “IQA: Visual question answering in interactive environments,”

in CVPR, 2018, pp. 4089–4098.

[42] E. Wijmans, S. Datta, O. Maksymets, A. Das, G. Gkioxari, S. Lee, I. Essa,

D. Parikh, and D. Batra, “Embodied question answering in photorealistic

environments with point cloud perception,” in CVPR, 2019, pp. 6659–

6668.

[43] X. Puig, K. Ra, M. Boben, J. Li, T. Wang, S. Fidler, and A. Torralba,

“VirtualHome: Simulating household activities via programs,” in CVPR,

2018, pp. 8494–8502.

[44] X. Puig, T. Shu, S. Li, Z. Wang, Y.-H. Liao, J. B. Tenenbaum, S. Fidler,

and A. Torralba, “Watch-and-help: A challenge for social perception and

human-AI collaboration,” in ICLR, 2021.

16 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3080275, IEEE Access

Miyanishi et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[45] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and

A. Farhadi, “Target-driven visual navigation in indoor scenes using deep

reinforcement learning,” in ICRA, 2017, pp. 3357–3364.

[46] K. Rao, C. Harris, A. Irpan, S. Levine, J. Ibarz, and M. Khansari, “Rl-

cyclegan: Reinforcement learning aware simulation-to-real,” in CVPR,

2020.

[47] A. Bewley, J. Rigley, Y. Liu, J. Hawke, R. Shen, V.-D. Lam, and

A. Kendall, “Learning to drive from simulation without real world labels,”

in ICRA, 2019, pp. 4818–4824.

[48] F. Sadeghi and S. Levine, “CAD2RL: real single-image flight without a

single real image,” in RSS, 2017.

[49] M. Andrychowicz, B. Baker, M. Chociej, R. JA3zefowicz, B. McGrew,

J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray, J. Schneider,

S. Sidor, J. Tobin, P. Welinder, L. Weng, and W. Zaremba, “Learning

dexterous in-hand manipulation,” The International Journal of Robotics

Research, vol. 39, no. 1, pp. 3–20, 2020.

[50] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bohez,

and V. Vanhoucke, “Sim-to-real: learning agile locomotion for quadruped

robots,” in RSS, 2018.

[51] S. R. Richter, V. Vineet, S. Roth, and V. Koltun, “Playing for data: Ground

truth from computer games,” in ECCV, 2016, pp. 102–118.

[52] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100,000+

questions for machine comprehension of text,” in EMNLP, 2016, pp.

2383–2392.

[53] P. Rajpurkar, R. Jia, and P. Liang, “Know what you don’t know: Unan-

swerable questions for SQuAD,” in ACL, 2018, pp. 784–789.

[54] M. Richardson, C. J. Burges, and E. Renshaw, “MCTest: A challenge

dataset for the open-domain machine comprehension of text,” in EMNLP,

2013, pp. 193–203.

[55] J. Yin, X. Jiang, Z. Lu, L. Shang, H. Li, and X. Li, “Neural generative

question answering,” pp. 2972–2978, 2016.

[56] Y. Fu and Y. Feng, “Natural answer generation with heterogeneous mem-

ory,” in NAACL-HLT, 2018, pp. 185–195.

[57] S. He, C. Liu, K. Liu, and J. Zhao, “Generating natural answers by

incorporating copying and retrieving mechanisms in sequence-to-sequence

learning,” in ACL, 2017, pp. 199–208.

[58] S. Reddy, D. Raghu, M. M. Khapra, and S. Joshi, “Generating natural

language question-answer pairs from a knowledge graph using a RNN

based question generation model,” in EACL, 2017, pp. 376–385.

[59] B. Liu, H. Wei, D. Niu, H. Chen, and Y. He, “Asking questions the human

way: Scalable question-answer generation from text corpus,” in The Web

Conference, 2020, p. 2032–2043.

[60] J. E. Weston, “Dialog-based language learning,” in NeurIPS, D. Lee,

M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, Eds., 2016.

[61] J. Wu, X. Wang, and W. Y. Wang, “Self-supervised dialogue learning,” in

ACL, 2019, pp. 3857–3867.

[62] Y. Deng, Y. Shen, M. Yang, Y. Li, N. Du, W. Fan, and K. Lei, “Knowl-

edge as a bridge: Improving cross-domain answer selection with external

knowledge,” in COLING, 2018, pp. 3295–3305.

[63] S. Min, M. Seo, and H. Hajishirzi, “Question answering through transfer

learning from large fine-grained supervision data,” in ACL, 2017, pp. 510–

517.

[64] B. Dhingra, D. Danish, and D. Rajagopal, “Simple and effective semi-

supervised question answering,” in NAACL-HLT, 2018, pp. 582–587.

[65] Z. Yang, J. Hu, R. Salakhutdinov, and W. Cohen, “Semi-supervised QA

with generative domain-adaptive nets,” in ACL, 2017, pp. 1040–1050.

[66] Y.-A. Chung, H.-y. Lee, and J. Glass, “Supervised and unsupervised

transfer learning for question answering,” in NAACL-HLT, 2018, pp.

1585–1594.

[67] D. Golub, P.-S. Huang, X. He, and L. Deng, “Two-stage synthesis net-

works for transfer learning in machine comprehension,” in EMNLP, 2017,

pp. 835–844.

[68] K. Sun, D. Yu, D. Yu, and C. Cardie, “Improving machine reading

comprehension with general reading strategies,” in ACL, 2019, pp. 2633–

2643.

[69] A. Talmor and J. Berant, “MultiQA: An empirical investigation of gener-

alization and transfer in reading comprehension,” in ACL, 2019, pp. 4911–

4921.

[70] A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niessner, M. Savva,

S. Song, A. Zeng, and Y. Zhang, “Matterport3D: Learning from RGB-D

data in indoor environments,” in 3DV, 2017.

[71] F. Xia, A. R. Zamir, Z.-Y. He, A. Sax, J. Malik, and S. Savarese, “Gibson

env: real-world perception for embodied agents,” in CVPR, 2018, pp.

9068–9079.

[72] M. Shridhar, J. Thomason, D. Gordon, Y. Bisk, W. Han, R. Mottaghi,

L. Zettlemoyer, and D. Fox, “ALFRED: A Benchmark for Interpreting

Grounded Instructions for Everyday Tasks,” in CVPR, 2020, pp. 10 740–

10 749.

[73] M. Shridhar, X. Yuan, M.-A. Cote, Y. Bisk, A. Trischler, and

M. Hausknecht, “ALFWorld: Aligning text and embodied environments

for interactive learning,” in ICLR, 2021.

[74] N. Mostafazadeh, N. Chambers, X. He, D. Parikh, D. Batra, L. Vander-

wende, P. Kohli, and J. Allen, “A corpus and cloze evaluation for deeper

understanding of commonsense stories,” in NAACL-HLT, 2016, pp. 839–

849.

[75] M. Tapaswi, Y. Zhu, R. Stiefelhagen, A. Torralba, R. Urtasun, and

S. Fidler, “MovieQA: Understanding stories in movies through question-

answering,” in CVPR, 2016, pp. 4631–4640.

[76] J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei, C. L. Zitnick, and

R. Girshick, “CLEVR: A diagnostic dataset for compositional language

and elementary visual reasoning,” in CVPR, 2017, pp. 2902–2910.

[77] D. A. Hudson and C. D. Manning, “Gqa: A new dataset for real-world

visual reasoning and compositional question answering,” in CVPR, 2019,

pp. 6700–6709.

[78] A. Kumar, O. Irsoy, P. Ondruska, M. Iyyer, J. Bradbury, I. Gulrajani,

V. Zhong, R. Paulus, and R. Socher, “Ask me anything: Dynamic memory

networks for natural language processing,” in ICML, 2016, pp. 1378–

1387.

[79] C. Xiong, S. Merity, and R. Socher, “Dynamic memory networks for visual

and textual question answering,” in ICML, 2016, pp. 2397–2406.

[80] A. See, P. J. Liu, and C. D. Manning, “Get to the point: Summarization

with pointer-generator networks,” in ACL, 2017, pp. 1073–1083.

[81] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for

word representation,” in EMNLP, 2014, pp. 1532–1543.

[82] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation

of gated recurrent neural networks on sequence modeling,” in NeurIPS

Workshop, 2014.

[83] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,”

Transactions on Signal Processing, vol. 45, no. 11, pp. 2673–2681, 1997.

[84] V. Nair and G. E. Hinton, “Rectified linear units improve restricted

boltzmann machines,” in ICML, 2010, pp. 807–814.

[85] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in NeurIPS,

2015, pp. 2692–2700.

[86] S. Merity, C. Xiong, J. Bradbury, and R. Socher, “Pointer sentinel mixture

models,” in ICLR, 2016.

[87] C. Gulcehre, S. Ahn, R. Nallapati, B. Zhou, and Y. Bengio, “Pointing the

unknown words,” in ACL, August 2016, pp. 140–149.

[88] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning

with neural networks,” in NeurIPS, 2014, pp. 3104–3112.

[89] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by

jointly learning to align and translate,” in ICLR, 2015.

[90] T. Luong, H. Pham, and C. D. Manning, “Effective approaches to

attention-based neural machine translation,” in EMNLP, 2015, pp. 1412–

1421.

[91] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L. Zitnick, and

D. Parikh, “VQA: Visual question answering,” in ICCV, 2015, pp. 2425–

2433.

[92] A. Anand, E. Belilovsky, K. Kastner, H. Larochelle, and A. Courville,

“Blindfold baselines for embodied QA,” in ViGIL, 2018.

[93] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in

ICLR, 2015.

[94] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-

dinov, “Dropout: A simple way to prevent neural networks from overfit-

ting,” Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929–

1958, 2014.

[95] A. Miller, A. Fisch, J. Dodge, A.-H. Karimi, A. Bordes, and J. We-

ston, “Key-value memory networks for directly reading documents,” in

EMNLP, 2016, pp. 1400–1409.

VOLUME 4, 2016 17

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3080275, IEEE Access

Miyanishi et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TAIKI MIYANISHI received the B.S. degree from

the Department of Computer Science and Systems

Engineering, Kobe University in 2009, the M.S

degree from the Graduate School of Engineer-

ing, Kobe University in 2011, and the Ph.D. de-

gree from Graduate School of System Informatics,

Kobe University, Hyogo Japan, in 2014.

Since 2014, he has been a Researcher in the

Department of Dynamic Brain Imaging, Advanced

Telecommunications and Research Institute Inter-

national, Kyoto, Japan. His research interests include ubiquitous computing,

natural language processing, and computer vision.

TAKUYA MAEKAWA is an Associate Professor

in the Graduate School of Information Science

and Technology, Osaka University. He received

his bachelor degree from School of Engineering,

Osaka University in 2003. In 2004, he received his

master degree from Graduate School of Informa-

tion Science and Technology, Osaka University. In

2006, he received his doctor degree (Information

Science and Technology) from Graduate School

of Information Science and Technology, Osaka

University. After that he worked for NTT Communication Science Lab-

oratory for six years. He was awarded the IPSJ/IEEE Computer Society

Young Computer Researcher Award on the topic of zero-shot and few-

shot unobtrusive context recognition for pervasive computing in 2019. His

research interest includes sensor-based context recognition techniques for

pervasive/ubiquitous computing and animal behavior understanding.

MOTOAKI KAWANABE received the Master’s

degree in 1992, and the Ph.D. degree in mathemat-

ical statistics in 1995, both from the Department of

Mathematical Engineering, University of Tokyo,

Tokyo, Japan. After receiving the Ph.D. degree, he

became an Assistant Professor at the University of

Tokyo. He joined the Fraunhofer Institute FIRST,

Berlin, Germany in 2000 as a Senior Researcher.

Until fall 2011, he led the group for the THESEUS

project on image annotation and retrieval there. He

is currently a department head of Advanced Telecommunications Research

Institute International (ATR), and a team leader of the RIKEN Center for

Advanced Intelligence Project (AIP), Kyoto, Japan. His research interests

include computer vision, biomedical data analysis, statistical signal process-

ing, and machine learning.

18 VOLUME 4, 2016

