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Fluorescence imaging is a powerful method for monitoring dynamic signals in the nervous

system. However, analysis of dynamic fluorescence imaging data remains burdensome,

in part due to the shortage of available software tools. To address this need, we have

developed SIMA, an open source Python package that facilitates common analysis

tasks related to fluorescence imaging. Functionality of this package includes correction

of motion artifacts occurring during in vivo imaging with laser-scanning microscopy,

segmentation of imaged fields into regions of interest (ROIs), and extraction of signals

from the segmented ROIs. We have also developed a graphical user interface (GUI) for

manual editing of the automatically segmented ROIs and automated registration of ROIs

across multiple imaging datasets. This software has been designed with flexibility in mind

to allow for future extension with different analysis methods and potential integration with

other packages. Software, documentation, and source code for the SIMA package and

ROI Buddy GUI are freely available at http://www.losonczylab.org/sima/.
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1. INTRODUCTION

Two-photon fluorescence imaging of neuronal populations has

proven to be a powerful method for studying dynamic signals in

neural circuits. For example, imaging of genetically-encoded flu-

orescent Ca2+ indicators (Looger and Griesbeck, 2012) has been

widely applied to simultaneously monitor the activity in large

populations of spatially, morphologically, or genetically identi-

fied neurons. These methods can be implemented in vivo in

awake rodents (Dombeck et al., 2007; Komiyama et al., 2010;

Lovett-Barron et al., 2014), providing the potential to study

the molecular, anatomical, and functional properties of neurons

responsible for behavior (Kerr and Denk, 2008; O’Connor et al.,

2010). Relative to the electrophysiological approaches tradition-

ally used to study neuronal activity in vivo, two-photon imaging

provides the advantages of recording activity in entire local popu-

lations without spike-sorting ambiguities or bias toward highly

active neurons, imaging activity in subcellular compartments

such as axons or dendrites, and tracking the same neurons across

experiments spanning multiple days. Additionally, fluorescence

imaging can be used to measure other signals, such as membrane

potentials and neurotransmitter release (Looger and Griesbeck,

2012).

To facilitate the analysis of data from dynamic fluorescence

imaging experiments, we have developed two software tools: the

Sequential IMaging Analysis (SIMA) Python package, and the

ROI Buddy graphical user interface (GUI). The SIMA package

can be used for motion correction, automated segmentation, and

signal extraction from fluorescence imaging datasets. The ROI

Buddy GUI allows for editing and annotating ROIs within a

given imaging session, as well as registering ROIs across imaging

sessions acquired at different times. The output data resulting

from analysis with SIMA can either be directly analyzed using the

NumPy/SciPy tools for scientific computing (Jones et al., 2001;

Oliphant, 2007), or can be exported to common formats allowing

for subsequent analysis with other software. The SIMA package

and ROI Buddy GUI can be run on Linux, Windows, and MacOS

operating systems, have been made freely available under an open

source license, and require only other freely available open source

software.

This manuscript provides an overview of the SIMA package

and ROI Buddy GUI. Section 2 explains the capabilities of these

software tools and how they can be used. Section 3 explains details

of the algorithms that have been implemented to provide this

functionality. Finally, Section 4 compares this software with other

available resources and discusses potential future developments.

2. FUNCTIONALITY

The SIMA package and ROI Buddy GUI provide a variety of

functionality outlined in Figure 1. To give an overview of this

functionality, we provide sample code for typical use in the case

in which the raw imaging data is contained in two NumPy arrays

named channel_A and channel_B, (other possibilities for

input data formats are discussed in Section 2.1), and in which the

output data is to be stored in the location /save/path.sima.

Throughout our code examples, we assume that the SIMA

package has been imported with the import sima Python

command.

With just a few lines of code, the user can correct

motion artifacts in the data, and then segment the resulting

ImagingDataset object to identify ROIs:
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FIGURE 1 | Workflow supported by SIMA. (1) An ImagingDataset

object is first created either directly from the raw data or from the output of

the motion correction algorithm. (2) ROIs are generated by automatic

segmentation. (3) The ROI Buddy GUI can be used to edit the automatically

generated ROIs and to automatically register ROIs across multiple

datasets. (4) Dynamic fluorescence signals are extracted from the imaging

data and ROIs.

dataset = sima.motion.hmm(

[[channel_A, channel_B]],

’/save/path.sima’)

dataset.segment()

If the data lack motion artifacts (e.g., in the case of fluorescence

imaging in ex vivo brain slices), the motion correction step can

be replaced with direct initialization of an ImagingDataset

object. The full set of commands in this case is an follows:

dataset = sima.ImagingDataset(

[[channel_A, channel_B]],

’/save/path.sima’)

dataset.segment()

In either case, the result of these commands is an

ImagingDataset object containing the raw or motion-

corrected imaging data and the automatically generated

ROIs. This object is permanently stored in the location

/save/path.sima so that it can be reloaded at a later time.

Following automated segmentation, the generated ROIs can

be manually edited with the ROI Buddy graphical user interface

(GUI). This GUI can be used to delete erroneous ROIs, add miss-

ing ROIs, merge ROIs that have been incorrectly split, and adjust

the shapes and positions of existing ROIs. The ROI Buddy GUI

can also be used to register ROIs across multiple datasets acquired

at different times, allowing for assessment of long-term changes in

neural activity.

Once the ROIs have been edited and registered, the

ImagingDataset object can be loaded in Python again, and

then dynamic fluorescence signals can be extracted from the ROIs

as follows:

dataset = sima.ImagingDataset.load(

’/save/path.sima’)

dataset.extract()

The extracted signals are permanently saved with the

ImagingDataset object and can be accessed at

any time with the command dataset.signals().

If further analysis is to be performed with external

software, the signals can be exported using the command

dataset.export_signals(’/export/path.csv’).

The remainder of this section contains more detailed dis-

cussion of each of the stages of this workflow. This discussion

complements the API documentation that is available online at

http://www.losonczylab.org/sima.

2.1. OBJECT CLASSES AND INPUT FORMATS

The SIMA package follows an object-oriented design. The cen-

tral object class around which the package is structured is the

ImagingDataset. Objects of this class can be created either

by direct initialization or as the output of the motion correc-

tion function call. Direct initialization of an ImagingDataset

object requires two mandatory arguments: (1) the raw imaging

data formatted according to the requirements discussed below,

and (2) the path where the ImagingDataset object is to be

saved. Names for the channels may be specified as an optional

argument. Once created, ImagingDataset objects are auto-

matically saved to the designated location and can be loaded at a

later time with a call to the ImagingDataset.load method.

A single ImagingDataset object can contain imaging data

from multiple simultaneously recorded optical channels, as well

as from multiple cycles (i.e., continuous imaging epochs/trials)

acquired at the same imaging location during the same imaging

session. To allow for this flexibility, the raw imaging data used to

initialize the ImagingDataset object must be packaged into a

list of lists, whose first index runs over the cycles and whose sec-

ond index runs over the channels. For example, if the raw data is

stored in an object called data, then the element data[i][j]

corresponds to the jth channel of the ith cycle.

The formatting requirements for each such element of the

aforementioned list of lists are designed to allow for flexible use of

SIMA with a variety of data formats. The sole requirement is that

each element be specified as a Python iterable object satisfying

the following properties: (1) the iterable may not be its own iter-

ator, i.e., it should be able to spawn multiple iterators that can be

iterated over independently; (2) each iterator spawned from the

iterable must yield image frames in the form of two-dimensional

NumPy arrays; and (3) the iterable must survive Python’s pickling

and unpickling methods for saving and loading objects.

A simple example of an object that satisfies these requirements

is a three-dimensional NumPy array, with the first index corre-

sponding to the frame, the second to the row, and the third to

the column. Therefore, data in any format can be analyzed with

SIMA following conversion to a NumPy array object. We have

also implemented the sima.iterables.MultiPageTIFF

object class for creating SIMA-compatible iterables from multi-

page TIFF files, and the sima.iterables.HDF5 object
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class for creating iterables from HDF5 files. For example, a

two-channel dataset can be initialized from TIFF files as follows:

from sima.iterables import MultiPageTIFF

iterables = [[

MultiPageTIFF(’channel1.tif’),

MultiPageTIFF(’channel2.tif’)

]]

dataset = sima.ImagingDataset(

iterables, ’/save/path.sima’,

channel_names=[’GCaMP’, ’tdTomato’])

Compared to converting data from TIFF or HDF5 files to NumPy

arrays, use of these custom iterables is advantageous because there

is no need to duplicate the data for separate storage in a second

format. Furthermore, less data need be held in memory at any one

time because the MultiPageTIFF or HDF5 iterables allow for

imaging data to be loaded one frame at a time on an as-needed

basis.

Importantly, the SIMA package has been designed to allow for

flexible extension with additional custom iterable classes anal-

ogous to the MultiPageTIFF class. Such extensions can be

developed to allow SIMA to use data from any required input

format. Therefore, users wishing to use SIMA with other data for-

mats have two options: (1) to convert the data to a format already

supported such as a TIFF stack or NumPy array, or (2) to extend

SIMA by creating a new iterable type to support the desired data

format.

2.2. MOTION CORRECTION

During awake in vivo laser-scanning microscopy, the animal’s

movements cause time-dependent displacements of the imaged

brain region relative to the microscope and thus introduce

substantial artifacts into the imaging data. These artifacts are

especially problematic when attempting to extract transient flu-

orescence signals from very small structures, such as dendritic

branches and synaptic boutons (e.g., Kaifosh et al., 2013). Since

individual pixels are acquired at different times during laser scan-

ning microscopy, motion artifacts can occur within a single frame

and cannot be corrected by simple frame alignment methods. To

allow for correction of these within-frame motion artifacts, the

SIMA package includes line-by-line motion correction software

(Figure 2) that we developed (Kaifosh et al., 2013) by extend-

ing upon the hidden Markov model (HMM) approach used by

Dombeck et al. (2007).

A call to the motion correction function sima.motion.

hmm returns a motion-corrected ImagingDataset object.

This function takes the same arguments used to directly initialize

an ImagingDataset object, as well as additional arguments

for specifying parameters for the motion correction procedure.

One optional argument allows for specification of the num-

ber of states retained at each step of the Viterbi algorithm

(see Section 3.1.1 for details). Retaining a larger number of

states may in some cases result in more accurate displace-

ment estimates, though at the expense of longer run-times.

The maximum allowable displacement in the horizontal and

vertical directions can also be specified. Use of this restric-

tion can improve the quality of the estimated displacements

by ruling out unreasonably large estimates. Optionally, a sub-

set of the channels can be selected for use in estimating the

displacements, which will then be used to correct artifacts in

all channels. This option is useful in cases where there is a

sparse or highly dynamic channel with signals of interest, and an

additional static channel providing a stable reference for motion

correction.

Once the motion artifacts are corrected, the frames of the

resulting ImagingDataset show static imaged structures, but

a field of view that moves from frame to frame (Figure 2B).

Typically, a frame size larger than that of the original images is

required to display the full spatial extent that was imaged during

the session. Relatedly, the area imaged during all frames is smaller

than that of the original images. To determine the spatial extent

of the corrected image series that will be retained for further anal-

ysis, the hmm function takes an additional optional argument, the

trim_criterion, which specifies the fraction of frames for

which a location must be within the field of view in order to be

retained for further analysis. By default, the edges of the corrected

images are conservatively trimmed to retain only the rectangular

region that remains within the field of view during all imaging

frames.

FIGURE 2 | Line-by-line correction of within-frame motion artifacts.

(A) Schematic diagram showing a single imaging frame before (left) and after

(right) line-by-line motion correction. A separate displacement is calculated for

each sequentially acquired line from the laser scanning process. As a result,

some pixel locations may be accounted for multiple times (darker blue), while

others may not be imaged in a given frame (white gap). (B) Overlay of

different regions imaged by different frames due to motion. The light gray

region indicates the maximum frame-size that can be selected for the motion

correction output, such that all pixels locations that were ever imaged are

within the frame. The dark gray region indicates the default and minimum

frame-size that can be selected for the motion correction output, such that all

pixels locations within the frame are within the field of view at all times.

Frontiers in Neuroinformatics www.frontiersin.org September 2014 | Volume 8 | Article 80 | 3

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Kaifosh et al. SIMA: fluorescence imaging analysis software

2.3. SEGMENTATION AND ROIs

The SIMA package allows for automated segmentation with a call

to the ImagingDataset.segment method. The segment

method takes arguments that allow for specification of the

approach to be used and an optional label for the resulting set of

ROIs, which are saved with the ImagingDataset. Arguments

specific to the particular method can also be passed into this

method call. The SIMA package currently contains two imple-

mented segmentation methods, ’normcut’ and ’ca1pc’,

both of which are based on the normalized cuts approach (Shi and

Malik, 2000). Further details on these particular segmentation

approaches are provided in Section 3.2.

A call to the segment method returns an ROIList object,

which contains the segmented ROI objects. As well, ROI objects

can be initialized independently in one of four ways: (1) with a

mask, typically a NumPy array, indicating the weight of each pixel

(see Section 3.4), (2) with a list of polygons, each consisting of

a list of vertices, (3) using ROI Buddy (see Section 2.4), or (4)

by importing a set of ROIs created in ImageJ (Schneider et al.,

2012). Masks can either be binary, to select a subset of pixels,

or real-valued, as in the case of weights resulting from principal

or independent component analysis. Polygons are treated equiva-

lently to binary masks. ROIs typically consist of a single polygon,

however multiple polygons are useful for marking structures that

leave and re-enter the imaging plane.

Additionally ROI objects have the following optional

attributes: id, label, and tags. The label attribute is a

descriptor for the ROI used for referencing the region within one

imaging session. The id of an ROI object is an identifier used

to track the region over multiple imaging sessions, such that two

ROI objects from different experiments that have the same id are

understood to correspond to the same neuron/dendrite/bouton.

The id values are automatically set during ROI registration with

the ROI Buddy GUI. The tags attribute is a set of strings asso-

ciated with the ROI, used for sorting or marking the ROIs based

on morphological, genetic, or other criteria. These tags can also

be modified from within the ROI Buddy GUI or during analysis

of fluorescence signals to aid in the selection and sorting of ROIs

during subsequent analysis.

2.4. MANUAL ROI EDITING

The ROI Buddy GUI can be used to view and edit the automated

segmentation results or to manually draw new ROIs (Figure 3).

When the user loads an ImagingDataset object, the time-

averaged images are displayed as a static background on which

ROI objects are displayed. The underlying static image can be

toggled between each of the imaged channels, and optionally

a contrast-enhanced “processed” image can be displayed. Each

ROI object, consisting of one or more polygons, is displayed

with a unique color over this background. If multiple ROIList

objects are associated with an ImagingDataset (automati-

cally generated and manually edited sets, for example), the active

set is selectable via a drop-down menu. The user can also tog-

gle between simultaneously loaded ImagingDataset objects,

which is useful for rapidly switching between multiple imaging

sessions of the same field of view in order to verify the ROIs

during editing.

Once the ImagingDataset and ROI objects are loaded in

the GUI, the user can edit, delete, and add new ROIs as polygons

while in the GUI’s “Edit” mode. All ROIs are directly editable,

allowing for the user to adjust individual vertices or translate the

entire ROI. In addition, separate polygons can be merged either

into a single multiple-polygon ROI or, if the polygons are over-

lapping, into a single polygon ROI. The interface also allows the

user to directly set the label and tags properties of each ROI

described in Section 2.3.

2.5. ROI REGISTRATION

To track the same structures over multiple imaging sessions of

the same field of view (Figure 4), the ROI Buddy GUI also sup-

ports the registration of ROIs from different ImagingDataset

objects. In the GUI’s “Align” mode, affine transformations

are estimated to align the time-averaged images of the cur-

rently active ImagingDataset with each of the other loaded

sets. These transformations are then applied to the respec-

tive ROI objects to transform them all into the space of the

active ImagingDataset (Figure 4C). This allows ROIs to be

imported from one set on to the active ImagingDataset

or for all of the ROIs to be viewed simultaneously over the

time-averaged image of a single ImagingDataset. The ROIs

are then automatically identified across imaging datasets based

on their degree of overlap following transformation. The id

attributes of co-registered ROI objects are set to be equal, thus

allowing for tracking of the same regions over multiple imaging

sessions.

When displayed in the GUI, co-registered ROI objects are

colored identically for easy visual inspection of the registra-

tion results (Figure 4D). Groups of co-registered ROIs can be

manually modified by removing and adding ROI objects to

correct any errors in the automated registration. The tags

can also be propagated across co-registered ROIs from different

ImagingDataset objects.

2.6. SIGNAL EXTRACTION

Signal extraction is accomplished by the ImagingDataset.

extract method. This extract method can take several

optional arguments. The ROIList to be used can be specified

in cases where there are multiple ROIList objects (e.g., one that

has an automatically generated and another that has been manu-

ally edited) associated with the ImagingDataset. If multiple

optical channels are present, the channel to be used for extraction

can be specified. If the ROIs are either polygons or a binary masks,

the extract method can optionally exclude pixels that overlap

between ROIs in order to reduce artifactual correlations between

adjacent ROIs.

The output of the extract method is a Python dic-

tionary, which is also automatically saved as part of the

ImagingDataset object. This dictionary contains (1) the raw

extracted signals, (2) a time-averaged image of the extracted

channel, (3) a list of the overlapping pixels, (4) a record of

which ROIList and channel were used for extraction, and

(5) a timestamp. Additionally, a verification image is saved as

a PDF file showing the extracted ROIs and overlapping pix-

els overlaid on the time-averaged image. Once the signals are
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FIGURE 3 | The ROI Buddy graphical user interface. (A) Image viewing

panel with ROI editing tools. During typical use this panel is expanded to

occupy the majority of the screen. (B) Panel for toggling between “Edit” and

“Align” modes, loading imaging datasets, and registering ROIs across

datasets. (C) Panel for selecting, creating, saving, and deleting sets of ROIs

associated with the active imaging dataset. In “Align” mode, ROIs from all

loaded datasets can be viewed simultaneously. (D) List of ROIs in the

currently selected set, and tools for tagging, merging, unmerging, and

re-coloring ROIs. (E) Contrast adjustment for the underlying base image.

(F) Panel for selection of the underlying base image.

FIGURE 4 | Registration of ROIs across imaging sessions acquired on

two different days. (A) ROIs (red) and time-averaged image for the first

imaging session. (B) ROIs (green) and time-averaged image for the second

imaging session, with ROIs for the first imaging session (red) shown for

comparison. (C) Same as (B) but with an affine transformation applied to

align the time-averaged image and ROIs from day 2 to those of day 1. (D)

Same as (C) but with the ROIs colored by their automatically determined

shared identities across both imaging sessions.
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extracted, they can be accessed at any time with a call to the

ImagingDataset.signals method.

2.7. EXPORTING DATA

The SIMA package is intended to provide support for early stages

of data analysis, such that subsequent analysis of the extracted

signals can be performed with separate software. In cases where

all analysis is performed using Python, no exporting is necessary,

since the SIMA objects can be used in conjunction with other

Python code. In other cases, data from SIMA objects can be easily

exported into standard formats, including TIFF images and CSV

text files.

Such exporting of data can be performed at various stages

of data processing with the SIMA package. For example,

those wishing to use SIMA solely for motion correction can

export the motion-corrected time series with a call to the

ImagingDataset.export_frames method. This method

takes as its argument the filenames with which the exported

data will be saved, formatted as a list of lists of strings orga-

nized similarly to the input data (see Section 2.1). Additional

optional arguments can be used to specify the output file format,

whether to scale the intensity values to the full range allowed by

the output file format, and whether to fill in unobserved rows

(Figure 2A) of motion corrected images with values from adja-

cent frames. Time-averaged images can similarly be exported with

the ImagingDataset.export_averages method.

If SIMA is also used for signal extraction, then the

extracted signals can be exported to a CSV file with the

ImagingDataset.export_signals method. The result-

ing CSV file contains the id, label, and tags for each

ROI, and the extracted signal from each ROI at each frame

time.

3. SOFTWARE DETAILS

3.1. MOTION CORRECTION

We have previously described the HMM formulation and param-

eter estimation procedures that we have implemented for correc-

tion of within-plane motion during laser scanning microscopy

(Kaifosh et al., 2013). Here we provide some additional details

about the software implementation.

3.1.1. Viterbi-based algorithm

The Viterbi algorithm computes the maximum a posteriori

sequence of states for a HMM. For a general HMM with S hidden

states and T timesteps, the Viterbi algorithm has time complex-

ity O(S2T). When used for motion correction, the hidden states

are the possible displacements, with one state per pair of x and

y integer displacements in pixel units. By restricting state tran-

sitions to those between nearest neighbors in two dimensions,

we reduce the complexity of the algorithm implemented in SIMA

to O(ST). This restriction is justified by the same assumption—

that negligible motion occurs during the time required to image

a row—by which we justify applying the same displacement to all

pixels in the same row. Some of the datasets from our laboratory

exhibit substantial displacements in two dimensions, resulting in

the number of states S being rather large; however, at any one

time-step, the probability is typically concentrated in a much

smaller number of states. Our software exploits this concentration

of probability by retaining only the N ≪ S most probable states

at each time-step. This approximation of the Viterbi algorithm

reduces the computational complexity to O(NT).

Further increases in speed have been achieved by storing pre-

computed results for a number of transformations applied to the

reference image and the image being aligned. These transforma-

tions include scaling by the estimated gain factor (see Kaifosh

et al., 2013) to convert intensity values to estimated photon

counts, and computation of the logarithm and gamma functions

applied to these scaled values. Repeated computations have also

been avoided by using lookup tables for the indices of overlapping

pixels between the image and the reference frame, for the possible

transitions between hidden states, and for the probabilities of the

transitions.

3.2. SEGMENTATION

Although SIMA is designed to be extended to allow for multiple

approaches to segmentation, the initial release includes only two

segmentation methods, both using the normalized cuts approach

(Shi and Malik, 2000). Specifically, we have implemented a basic

normalized cuts segmentation (’normcut’), as well as a variant

designed for segmentation of pyramidal cell nuclei in hippocam-

pal area CA1 (’ca1pc’). Here, we describe first how we use

the normalized cuts approach to partition the field of view, and

then how, in the case of the ’ca1pc’ variant, these regions are

post-processed to create ROIs (Figures 5A–F).

3.2.1. Normalized cut formation

The normalized cut segmentation algorithm (Shi and Malik,

2000) partitions the imaged field of view through an iterative pro-

cess. At each stage, a subset of the image pixels is split into two

new subsets in such a way as to minimize a penalty that depends

on a set of connection weights between the pixels. The result-

ing normalized cuts are uniquely determined by two factors: (1)

the connection weights between pixels, and (2) the termination

criterion for the iterative splitting procedure.

For the standard normalized cuts procedure implemented in

SIMA, the weight wij between each pair of pixels i and j is

calculated as follows:

wij = ekccij ·

⎧

⎨

⎩

e
−

||xi − xj ||
2

σ2
x if ||xi − xj|| < r

0 otherwise

, (1)

where cij is an estimate of the correlation between the pixels’

intensity signals, ||xi − xj|| is the Euclidean distance between the

positions xi, xj of the pixels, and σ 2
x specifies the decay of weights

with distance up to a maximum distance r. We set the param-

eter kc = 9 based on empirical observations of segmentation

accuracy.

For the ’ca1pc’ variant, we use a different set of weights

wCA1PC
ij , which are calculated by multiplying the weights wij

from Equation (1) by a factor depending on the maximum pixel

intensity along a line connecting the two pixels. Specifically, the

modified weights are defined as

wCA1PC
ij = wij · exp

(

−kI max
s ∈ [0,1]

I∗
avg

(

(1 − s)xi + sxj

)

)

, (2)
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where I∗
avg(x) is the intensity at location x of the time-averaged

image, processed with Contrast Limited Adaptive Histogram

Equalization (CLAHE) and an unsharp mask in order to correct

intensity inhomogeneities and enhance the contrast (Figure 5B).

Based on empirical observations of segmentation accuracy, we

set kI = 3/( max I∗
avg − min I∗

avg), with the maximum and mini-

mum taken over the entire image. The effect of this modification

is to increase the weights between two pixels within the same low-

intensity pyramidal cell nucleus relative to the weights between

other pixels.

The termination criterion for the iterative partitioning of

the image depends on the number of pixels in the region and

the normalized cut penalty for the next potential partitioning.

Specifically, partitions containing fewer than a minimum num-

ber of pixels (cut_min_size) do not undergo further par-

titioning, whereas partitions with greater than a maximum of

pixels (cut_max_size) always undergo further partitioning.

For partitions with an intermediate number of pixels, further

partitioning occurs only if the penalty associated with the par-

titioning would be below a given threshold. For populations

of uniformly sized neurons, such as those in the pyramidal

layer of CA1, suitable termination is achieved when the val-

ues for cut_max_size and cut_min_size are chosen as

upper and lower bounds on the typical cell size. An example set

of partitions obtained with the ’ca1pc’ variant is shown in

Figure 5C.

3.2.2. Post-processing of partitions

In contrast to the basic ’normcut’ segmentation method,

which simply returns the partitions as the ROIs, the ’ca1pc’

variant applies a series of post-processing steps to these partitions

to isolate the darker pixels corresponding to the putative CA1

pyramidal cell nuclei. First a threshold is calculated for each par-

tition based on Otsu’s method (Otsu, 1979) for cluster-based

thresholding, allowing for the rough separation of light and dark

pixels (Figure 5D). Following this step a series of morphological

operations, consisting of a binary opening followed by a binary

closing, are applied to each identified region to regularize the

ROI shapes by filling in gaps and smoothing the borders of each

region (Figure 5E). Finally a minimum size and circularity cri-

terion is applied to each region to reject small and irregularly

shaped regions (Figure 5F).

We evaluated this ’ca1pc’ segmentation algorithm

on two-photon fluorescence imaging data from GCaMP6f-

expressing pyramidal cells in hippocampal area CA1 (see

Lovett-Barron et al., 2014 for methodological details). Each

of the 37 datasets consisted of 4575 frames of size 128 ×

256 pixels acquired at 7.6 Hz with a 40× Nikon immer-

sion objective at optical zoom 2×. We ran the segmentation

algorithm with the following parameters: num_pcs=50,

max_dist=(3, 6), spatial_decay=(3, 6), cut_

max_pen=0.10, cut_min_size=50, cut_max_size=

150, x_diameter=14, y_diameter=7, circularity_

threhold=0.5, min_roi_size=20, min_cut_size=

40. We compared the automatically segmented ROIs

with manually curated segmentation. With a minimum

Jaccard index of 0.25 as the criterion for a match between

ROIs, the automatic segmentation had a false nega-

tive rate of 12 ± 2% and a false positive rate of 20 ± 5%

(mean ± SD).

FIGURE 5 | Segmentation steps or identifying pyramidal cell nuclei

with the ’ca1pc’ variant of the normalized cuts segmentation

approach. (A) The time-averaged image of the time-series to be

segmented. (B) Application of CLAHE and unsharp mask image

processing to (A). (C) Disjoint regions identified by iterative partitioning

with the normalized cuts algorithm. (D) Local Otsu thresholding of each

region in (C). (E) Cleanup of the Otsu thresholded regions in (D) with

opening and closing binary morphology operations. (F) Resulting ROIs

after rejection of regions in (E) that failed to satisfy minimum size and

circularity requirements.
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3.3. ROI REGISTRATION

To estimate affine transformations between pairs of time-

averaged images, we used the getAffineTransform func-

tion from OpenCV. Once ROIs are transformed into the same

reference space, the ROI Buddy GUI can automatically estimate

the degree of similarity between each pair of ROIs from differ-

ent ImagingDataset objects by calculating the Jaccard index,

defined as the area of the intersection divided by the area of the

union. ROIs are then clustered with the unweighted pair group

method with arithmetic mean (UPGMA) hierarchical clustering

algorithm (Sokal and Michener, 1958), with distances between

ROIs given by the reciprocal of the Jaccard index for that pair. ROI

pairs from the same ImagingDataset are assigned infinite

distance to prevent co-clustering of ROIs from the same imag-

ing session. The termination criterion for clustering is set such

that pairs of ROIs in a cluster have a minimum Jaccard index

of 0.25. The objects of each cluster are then assigned a common

id attribute, allowing for identification of the same region over

multiple imaging sessions.

3.4. SIGNAL EXTRACTION

In discussing the extraction procedures, we use the notation wip to

denote the weighting of the pth pixel by the ith ROI. For polygon

or binary mask ROIs, created with SIMA’s automated segmen-

tation or the ROI Buddy GUI, or imported from ImageJ, wip is

defined as 1
Ni

for pixels p within the ROI and 0 elsewhere, where

Ni is the number of pixels in the ith ROI.

The simplest case for extraction occurs when the same pixel

locations are imaged in every frame. In this case, we calculate the

signal by a simple weighting of the normalized fluorescence inten-

sities from each pixel. Specifically, the signal of the ith ROI at time

t is calculated as

sit =
∑

p

wip ·
fpt

fp
, (3)

with fpt denoting the intensity of the pth pixel in the frame at time

t, and fp denoting the average intensity across all frames at pixel

location p.

When extracting signals following correction of within-frame

motion artifacts, the situation is complicated by the fact that not

all pixel locations are observed in each frame. To derive a method

for extracting these signals, we first note that the simple extraction

method (Equation 3) reduces to the least-squares error estimate

for a simple linear model in which the pixel intensities are related

to the underlying ROI signals as follows:

fpt − fp

fp
=

∑

i

api(sit − s∗i ),

with the coefficients api defined as the entries of the pseudoinverse

of the matrix with entries given by the weights wip, and with s∗i set

as
∑

p wip. Given this model, when a subset Pt of the pixels are

imaged in the frame taken at time t, the least squares estimate of

the signal is given by

sit =
∑

p

wipt ·
fpt − fp

fp
+

∑

p

wip.

Here, the time-dependent coefficients wipt are defined as the

entries of the pseudo-inverse of the matrix with entries api for

all pixels p in Pt .

A few special cases are worth mentioning. For non-

overlapping ROIs, this formula reduces to

sit =

∑

p w2
ip

∑

p ∈ Pt
w2

ip

·
∑

p ∈ Pt

wip
fpt − fp

fp
+

∑

p

wip.

In cases of binary mask or polygon ROIs, the above formula

simplifies to

sit =
1

Nit
·

∑

p ∈ Pit

fpt

fp
,

where Pit is the set of pixels in the ith ROI that were imaged at

time t, and Nit the number of pixels in this set. In cases in which

no pixels of a given ROI are imaged in a given frame, a not-a-

number (numpy.NaN) value is recorded in place of that ROI’s

signal at that time.

3.5. REQUIREMENTS AND DEPENDENCIES

The SIMA package and ROI Buddy GUI depend only upon freely

available open source software. In particular, the NumPy and

SciPy packages (Jones et al., 2001; Oliphant, 2007) for numeri-

cal and scientific computing are relied upon heavily throughout.

The extraction functionality uses Matplotlib (Hunter, 2007) to

generate verification images. The Shapely Python package is used

for geometric calculations relating to polygon ROIs. Automated

segmentation relies upon Scikit-image (van der Walt et al., 2014)

and the Open Source Computer Vision Library (OpenCV), the

latter which is also used for ROI registration. The ROI Buddy

user interface uses guiqwt (http://code.google.com/p/guiqwt/).

HDF5 files are manipulated with the h5py interface (http://

www.h5py.org/). These packages are available with a standard

scientific Python installation. Since the libtiff C library and

its Python bindings enable more memory-efficient handling of

multi-page TIFF files, their installation is strongly recommended

if SIMA is to be used with large TIFF files containing many

frames.

4. DISCUSSION AND FUTURE DEVELOPMENTS

As a freely available open source software package, SIMA provides

a variety of tools to facilitate common steps of dynamic fluores-

cence imaging analysis, including correction of motion artifacts,

segmentation of the field of view into ROIs, and extraction of the

fluorescence time-series for each ROI. Data can be imported or

exported at various stages of processing with SIMA, so that the

package can be used for all stages of analysis, or for any combi-

nation of the motion correction, segmentation, and signal extrac-

tion. The SIMA package can thus be used flexibly in conjunction

with other analysis software. We have thoroughly documented the
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SIMA package to facilitate use and future collaborative develop-

ment of this open source project (project hosted on GitHub at

https://github.com/losonczylab/sima).

Some of the functionality contained in the SIMA package

complements other existing fluorescence imaging acquisition

and analysis tools, such as Micro-Manager (Edelstein et al.,

2010) and ACQ4 (Campagnola et al., 2014). The TurboReg

plug-in for ImageJ (Thevenaz et al., 1998) is capable of cor-

recting motion artifacts that produce mis-aligned frames, but

does not allow for correction of within-frame motion arti-

facts that occur during laser scanning microscopy. The nor-

malized cuts approach to segmentation (Shi and Malik, 2000)

is a novel technique for the segmentation of dynamic flu-

orescence imaging data and is complementary to existing

approaches, such as spatio-temporal independent complement

analysis (Mukamel et al., 2009), convolutional sparse block cod-

ing (Pachitariu et al., 2013), and other methods implemented

in ImageJ or CalTracer (http://www.columbia.edu/cu/biology/

faculty/yuste/methods.html). In addition to providing this addi-

tional approach to segmentation, we have also created a graphical

user interface, ROI Buddy, for manual editing of automati-

cally generated ROIs, and for automated registration of ROIs

across multiple datasets. ImageJ also provides the ability to

draw ROIs and extract signals from image timeseries, but lacks

the ability to handle missing data. Overall, a major advantage

of SIMA is the integration of these various processing stages

into a single tool-kit, allowing for seamless execution of the

early stages of analysis of time series laser-scanning microscopy

data.

We plan to extend the SIMA package, hopefully in collab-

oration with the neuroinformatics community, so that future

versions have greater functionality. A major need is to extend

SIMA with additional methods for automated segmentation.

Since the optimal segmentation approach is dependent on the

neural structures recorded, the imaging conditions, and the goals

of the analysis, we have structured the SIMA module such that

additional approaches can be easily implemented and applied to

ImagingDataset objects. Integration of other existing seg-

mentation approaches into the SIMA package is an area of active

development.

A second avenue for future development is to general-

ize the applicability of the SIMA package to imaging data

acquired by methods other than two-dimensional laser scan-

ning microscopy. In particular, we are interested in extending

SIMA to work with newer technologies allowing for three-

dimensional imaging within a volume of neural tissue. Such

technologies include temporal focusing (Schrödel et al., 2013),

light sheet imaging (Verveer et al., 2007), light field imag-

ing (Levoy et al., 2006), and resonance scanning in com-

bination with a piezoelectric crystal. The extension of our

software to these technologies should support their broader

application.
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