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Abstract

Background: Simulation of populations with specified characteristics such as allele frequencies, linkage
disequilibrium etc., is an integral component of many studies, including in-silico breeding optimization. Since the
accuracy and sensitivity of population simulation is critical to the quality of the output of the applications that use
them, accurate algorithms are required to provide a strong foundation to the methods in these studies.

Results: In this paper we present SimBA (Simulation using Best-fit Algorithm) a non-generative approach, based on a
combination of stochastic techniques and discrete methods. We optimize a hill climbing algorithm and extend the
framework to include multiple subpopulation structures. Additionally, we show that SimBA is very sensitive to the
input specifications, i.e., very similar but distinct input characteristics result in distinct outputs with high fidelity to the
specified distributions. This property of the simulation is not explicitly modeled or studied by previous methods.

Conclusions: We show that SimBA outperforms the existing population simulation methods, both in terms of
accuracy as well as time-efficiency. Not only does it construct populations that meet the input specifications more
stringently than other published methods, SimBA is also easy to use. It does not require explicit parameter adaptations
or calibrations. Also, it can work with input specified as distributions, without an exemplar matrix or population as
required by some methods. SimBA is available at http://researcher.ibm.com/project/5669.
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Background
In many studies, it is important to work with an artificial
population to evaluate the efficacy of different methods
or simply generate a founder population for an in sil-
ico breeding regimen. The reader is directed to [1] for a
review of computer simulations for population and evolu-
tionary genetics. The populations are usually specified by
a set of characteristics such as minimum allele frequency
(MAF) distribution, linkage disequilibrium (LD) distribu-
tion and population fixation indices (FST or GST ) (see [2]
for detailed descriptions). For instance, in the context
of optimizing marker assisted strategies in breeding, the
founder population (collection of germplasm lines) could
be simulated. Similarly, population of elite lines of small
biparental families as in small grain cereals could be simu-
lated for early yield trials, i.e. the stage at which the largest
number of individuals with phenotype data are available.
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Applications of simulation in plant and animal breeding
are discussed by [3]. A generative model to simulate the
population, i.e., evolving a population over time, is usu-
ally rather difficult since the different parameters (such as
selection, ancestor population sizes, mutation and recom-
bination rates etc), as well as the “breeding” regimens,
are not well understood and almost impossible to esti-
mate effectively. Examples of such methods include those
by [4,5]. The non-generative models, on the other hand,
do not evolve the population, and the methods often start
with a sample population having the desired characteris-
tics and perturb it, either by a regimen of recombinations
between the samples or local perturbations. Examples of
such methods include [6-8].
EASYPOP [4] and simuPOP [5] are examples of simula-

tors based on an underlying generative model. EASYPOP
provides a variety of mating systems and migration and
mutation models, while simuPOP can be used to simu-
late arbitrary non-random mating models. In contrast to
these, HapSim [6], SIMLD [7], and epiSIM [8] software are
based on non-generative models and simulate the given
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LD distributions through perturbations. HapSim perturbs
an existing haplotype matrix, provided as input, as fol-
lows. It models a haplotype as a multivariate random
variable with known marginal distributions and pairwise
correlation coefficients. First it computes the covariance
matrix from an existing sample, and then draws simu-
lated haplotypes from a multivariate normal distribution
with that covariance matrix. SIMLD starts with an initial
population with the highest possible LD, decaying it over
generations through recombinations to fit a desired pro-
file. EpiSIM introduces a notion of Average of Adjacent LD
Levels for generating LD patterns, and employs a Markov
Chain process to simulate a chromosome. The reader is
directed to [9] for a fairly comprehensive list of genetic
simulator software systems. The problem we address in
this paper is precisely defined as:

Problem 1. The task is to generate a stratified population
(i.e., with d subpopulations) of n diploids (or 2n haploids)
with m SNPs that satisfy the following specified character-
istics: MAF distribution p, LD distribution r2 and FST or
GST (stratification) values.

Here we discuss SimBA which is a non-generative
approach that has both stochastic and combinatorial
components. We model the task as an optimization
problem. Based on an algorithm presented in an ear-
lier work [10], we adapt the solution to include mul-
tiple simultaneous steps, and introduce the population
stratification component. The use of discrete methods
enables SimBA to be optimized even in run-time, i.e.,
the algorithm is linear in the size of the output, thus
extremely time-efficient. Additionally, the use of dis-
crete problem-modeling lends unprecedented sensitivity
to the algorithms. Subtle changes in the input distribu-
tions are observed as corresponding, accurate changes
in the output distributions of allele frequency, linkage,
and stratification values. Such sensitivity is hard to obtain
in perturbation-based non-generative modeling as well
as in generative modeling, since the biological processes
that give rise to the resulting distributions are generally
not well understood. We demonstrate this sensitivity by
comparing with results from similar systems from litera-
ture. Also, SimBA does not require extensive population-
specific parameter tuning or exemplar populations as
starting points, unlike most non-generative methods.

Methods
Background
To keep the paper self-contained, we recall some basic def-
initions. Let p1 and p2 be the MAF at locus 1 and locus
2 and let r2 be the LD between the two loci. Then D is
defined as follows [11,12]:

D = ±r
√
p1(1 − p1)p2(1 − p2). (1)

With a slight abuse of notation we callD the LD of the two
loci, with the obvious interpretation. Equivalently, the LD
table of the pairwise patterns, 00, 01, 10, 11, of the two
loci, is written as:

0 1
0 (1 − p1)(1 − p2) + D (1 − p1)p2 − D 1 − p1
1 p1(1 − p2) − D p1p2 + D p1

1 − p2 p2 1

(2)

At marker j, let HT be the probability that two random
marker values within a substructure are different (without
the need for the two to be on the homologous chromo-
somes of an individual). I.e., the expected heterozygosity
at locus j for the whole population (T), with MAF p, is
HT = 2p(1−p). Wright’s Fixation Index, FST , for subpop-
ulation S is defined as FST = HT−HS

HT
= 1 − HS

HT
. For each

subpopulation sk , k = 1, 2,, .., d,

Hsk = HT (1 − FskT )

= p̄(1 − p̄)(1 − FskT )

= 2psk (1 − psk ). (3)

Thus 0 ≤ psk = 1±√
1−2Hsk
2 ≤ 1. Note that 0 ≤ Hsk ≤ 1/2.

Constructing stratified populations with given MAF p, LD
r2 & FST ’s
Our approach to building the stratified populations with
the given constraints, is to decompose the problem into
subproblems, where each subproblem constructs a deme
with the desired MAF and LD distribution. The term
deme and subpopulation are here used interchangeably.
An overview of our method is presented in Figure 1.
INPUT:

1. n, the total population size and d demes with the
subpopulation (sk) sizes N1, N2, . . . , Nd .

2. MAF p and LD r2 distributions for the total
population.

3. Wright’s Fixation Index FST for d − 1 demes as
Fs1T , Fs2T , . . . , Fsd−1T . FsdT is dependent on the
specified d − 1 values, hence not specified as input.

OUTPUT: Matrix M where each row is a haplotype and
each column is a (bi-allelic) marker.
ALGORITHM OUTLINE:

1. Construct the d demes separately as follows.

(a) For deme k = 1, 2, .., (d − 1), compute psk :

psk = min
(
1 − √

1 − 2Hsk
2

,
1 + √

1 − 2Hsk
2

)

= 1 − √
1 − 2Hsk
2

, (4)
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Figure 1 SimBA flowchart. Diagram of the overall SimBA simulation
approach for stratified populations.

where Hsk is p̄(1 − p̄)(1 − FskT ). Then

psd = np̄ − ∑d−1
k=1 Nkpsk
Nd

.

(b) DEME(psk , r2): Construct each deme,
k = 1, 2, .., d, with psk and LD r2.

2. Take the union of the d demes.

Constructing Deme(p, r2)
By convention, the MAF of marker j, pj, is the proportion
of 1’s in column j of M. We first deconstruct the distribu-
tions to obtain MAF pj for each marker j and r2j1j2 for each
pair of markers j1 and j2. Our approach to constructing
the deme is to work with the markers

(1) one at a time and
(2) without any backtracking.

Note that LD is defined as a pairwise constraint, thus a
marker has m − 1 LD characteristics (constraints) with
respect to the otherm − 1 markers. Thus withmmarkers
there are a total of m(m − 1)/2 pairwise LD constraints.
However, to keep the problem tractable, in practice only
up to k << m constraints are considered for each marker.
The LD constraints are captured as follows. The columns
of matrix M are constructed in some order j1, j2, .., jm.

Thus while working on js, columns jl, l < s are not altered,
but provide constraints. It is critical to traverse the sparse
constraint space in a strategic way. Let l be the distance
between a pair of markers a < b, i.e., l = b − a. In our
implementation, the l-distance is picked based on the r2
between the pair a and b, relative to the r2 values for the
other distances from b.
Thus the problem of fitting whittles down to follow-

ing subproblem, which is used iteratively to span the
constraint space and construct the population.

Problem 2. (k-Constrained Marker Problem (k-CMP))
Given markers (columns) j1, j2, ., jk , and r1, r2, . . . , rk ,
and pk+1, the task is to generate column jk+1 with MAF
pk+1 such that the pairwise LD with column jl is rl (as in
Equation 1), l = 1, 2, .., k.

Outline of our approach to solving Problem k-CMP
The 1’s in column jk+1 are assigned at random respect-
ing MAF pk+1. Let Dl(jl, jk+1) denote the LD between
markers jl and jk+1. Then let the expected value, in the
output matrix M, be Dl(·, ·). When both the columns ful-
fill the MAF constraints of pl and pk+1 respectively, let the
observed value be denoted as Dobs

l (·, ·). In other words, if
Q10 is the number of times pattern 10 is seen in these two
markers inM with n rows,

Dobs
l = 1

n
(
npl(1 − pk+1) − Q10

)
. (5)

Next, we move the 1’s in column jk+1, such that it
simultaneously satisfies k conditions, to get a best-fit
of Dobs

l (jl, jk+1) to D(jl, jk+1). To achieve this, we com-
pare column jk+1 with columns jl, l = 1, 2, .., k, that
have already been assigned. Thus, first, for each pair
of markers jl, jk+1, compute the target deviation, Dtarget

l ,
based on input. Then, move the 1’s in column jk+1 of
the output matrix, to get a best-fit to the targets Dtarget

l ,
Dtarget
2 , . . . ,Dtarget

k simultaneously.

Problem k-CMP: Hill Climbing
An algebraic approach to obtain an exact solution to k-
CMP has been discussed earlier [10]. Thus an appropriate
value of k for a specific class of population(s), can be esti-
mated by using the algebraic method. Here we optimize
the hill climbing algorithm presented in [10] by, taking
several best simultaneous steps, instead of a single step.
For l = 1, 2, . . . , k, let Gl = nDtarget

l . Given the input
matrix, number of constraints k, column jk+1 with MAF
pjk+1 and target deviations G1, G2, . . . ,Gk , the hill climb-
ing algorithm is carried out in three steps. For a given k,
a cost graph Gk is built as a pre-processing step. Then, for
a given input, the cost graph is instantiated with the input
and target signs to obtain G0

k . Then in Step 2, s moves
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are made to obtain Gs
k . Finally the output (column jk+1) is

simply read off Gs
k .

Pre-processing: Construct the cost graphGk

This step is independent of the input data. For a given k,
the cost graph Gk is defined as follows.

Nodes. The cost graph has 2k vertices, corresponding to
the distinct binary patterns. For example, when
k = 2, the four distinct patterns (and vertices) Z
are 00, 01, 10, 11.

Edges. A directed edge is introduced between every pair
of vertices. We first give the rationale for the cost
function, which tracks the LD deviations exactly,
for each pair of columns jl and jk+1, l = 1, 2, .., k.
The choice of the cost function is critical in
evaluating the “climb” in hill climbing process.
There are four scenarios as below and the
rationale for the cost is discussed in [10]:

c(0, 1) = −1 (Scenario I)
c(1, 0) = +1 (Scenario II)

c(0, 0) = c(1, 1) = 0. (Scenarios III & IV)

Using the cost function as defined, the directed
edge Z1 → Z2 is labeled with the k-tuple as
follows. Figure 2 gives an example for k = 2.

wtZ1Z2 = (c(Z1[ 1] ,Z2[ 1] ), . . . ,
c(Z1[ k] ,Z2[ k] )) and (6)

wt�Z1Z2 =
k∑

l=1
wtZ1Z2 [ l] . (7)

Step 1: InstantiateGk with input data and target to get
signed cost graphG0

k
Given the data, we instantiate the cost graph Gk , so that
it can be traversed. Note that the number of simultane-
ous constraints being satisfied is k. Since the hill climbing
regimen never uses an edge in the cost graph that has a
negative or zero cost, the signs of the target values deter-
mine which edges remain on G0

k . The cost graph with only

edges that have a strict improvement is called the signed
cost graph. See Figure 3(a) for an example instantiation.

Lemma 1. For any k, a signed cost graph is acyclic.

Proof. For each of the k positions in the k-binary pat-
tern, in the signed cost graph, the following transitions are
associated with the costs.

Zero or −ve cost : 0 0−→ 0 −1−→ 1 0−→ 1,

Zero or +ve cost : 1 0−→ 1 +1−→ 0 0−→ 0.

Clearly, if k = 1, then the signed graph has no cycles. For
k > 1, since the nodes in the signed graph must have dis-
tinct k-patterns, once a transition is made from 0 to 1, for
−ve sign (1 to 0 for + sign respectively), the directed path
can not return back to 0 (1 respectively). Hence, there can
be no cycles.

Step 2: Move at step s, to get toGs
k fromGs−1

k
Let A+=x denote incrementing A by x and A−=x denote
decrementing A by x. Then Move(Z1 → Z2, x) is defined
as follows. For edge Z1 → Z2, 0 ≤ x ≤ min(f (Z1), t(Z2)).
Move(Z1 → Z2, x) transforms Gs

k to G
s+1
k as:

f (Z1), t(Z2)−= x and f (Z2), t(Z1)+=x. (8)
Gt
l+=

(
x × wtZ1Z2 [ l]

)
, l = 1, 2, .., k. (9)

See Figure 3(b)-(c) for an example of moves. f (Z) is the
number of Z0 patterns in the data (shown in red) and t(Z)

is the number of Z1 patterns in the data (shown in green).

Lemma 2. At each step s, Gs
k encodes pjk+1 .

Proof. The following can be verified.

1. Let n be the total number of samples, ni be the
number of samples with i at column j, i = 0, 1. Then
the following holds for each Gs

k :
f (Z), t(Z) ≥ 0,

∑
Z(f (Z) + t(Z)) = n,

∑
Z f (Z) =

n0,
∑

Z t(Z) = n1.
2. For each node Z in Gs

k , the sum f (Z) + t(Z) is
invariant across all s.

Figure 2 Cost table and graphs for k = 2. G2: The cost graph for k=2. To avoid clutter, the k-tuple edge labels are not shown on G2, but on the
edge table in the center. Signed G2 with target (+,+) is shown on the right. Note that G2 is independent of any data.
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(b)

(a)

(c)

Figure 3 Hill climbing algorithm example. The input is shown on the left table in (a). At each step, the two pairwise LD tables are shown on the
right. The target of G1 = 3 and G2 = −2 is exactly met in two moves (b)-(c) as shown. The matrix encoded by G2

2 , in (c), is the output.

Thus it follows that Gs
k encodes pjk+1 at each step s.

Corollary 1. pjk+1 , the MAF at marker jk+1, matches the
input exactly.
In the toy example in Figure 3, n = 22, n0 = 14 and

n1 = 8.

Time complexity
The algorithm has two characteristics that make it effi-
cient in time. Firstly, the algorithm does not backtrack, i.e.,
change the previous j1, j2, .., jk columns, while consider-
ing column jk+1. Also note that |Dtarget

l | ≤ pjk+1n, because
the possible range of the deviation from target, |Dtarget

l |,
for the pair of columns jl, jk+1 is [ 0,min(pjln, pjk+1n)].

Therefore the number of 1’s that are moved (at most once)
is bounded by pjk+1n. Secondly, at each column it uses a
greedy heuristic of only making a move that results in an
improvement in the overall cost. In practice, we observe
that these work very effectively in terms of achieving the
target accuracies of the solution. The pre-processing step
is independent of any data, hence it is computed off-line.
Further, the nodes are sorted, using a hash table, by the
maximum positive weight of the outgoing edges incident
on this node.

Instantiating (Time O(n)). Column jk+1 is scanned
once to instantiate cost graph Gk with the given k
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Figure 4 SimBA simulation results. (a) SimBA hill climbing algorithm for JPT/CHB population with k = 10. LD fit, MAF fit, and heatmap of LD for
each pair of columns (upper left triangle is the target and lower right triangle is the constructed). The LD fit shows the target “o” and constructed “*”
mean r2 per distance, while the black dots show target and cyan dots constructed r2 distribution per distance. (b) Constructing three
subpopulations with Fst constraints Fs1T = 0.2 and Fs2T = 0.1. MAF and r2 constraints from ASW population. Population size n = 400 constructed as
subpopulations with sizes n1 = 200, n2 = 100, n3 = 100. Here k = 7, distances 1–6 and j − 1 are used per column j. Stars denote constructing a
single population without Fst constraints, squares denote the combined population with three subpopulations constructed with Fst constraints.
Each subpopulation is also shown separately.

conditions to obtain G0
k . A node Z in Gs

k is defined to be
active if both t(Z) > 0 and f (Z) > 0. Then:

Observation 1. (a) The number of active nodes in the
initial graph is linear: G0

k ≤ n.
(b) If node Z is not active in the initial graph G0

k , then Z
is not active in any of the subsequent graphs Gs

k , for
all s > 0. Similarly, if node Z is active in G0

k , then Z is
active in Gs

k , for all s > 0.

In the observation, (a) holds since a node is only active
if at least one individual is assigned to it, and there are n
individuals. Additionally, (b) holds since moves are only
made between active nodes, corresponding to the existing
individuals’ 0/1 assignments at columns j1..jk ; a node can
not become active since we are not changing the values at
columns j1 . . . jk in the process of generating column jk+1.
By the above observation, it takes linear time to instantiate

the problem. Additionally, a hash table is used to store the
elements that can be accessed in constant time.

Lemma 3. Each problem instance, handling one marker,
is optimized in timeO(n).

Proof. Since the signed cost graph has no cycles, by
Lemma 1, no move is ever undone in the hill climbing reg-
imen. Each cell in column jk+1 is touched no more than
twice (once as from and once as a to). At each move, the
candidate cell is obtained in O(1) time, since a hash table
is used to store the elements. Thus eachmarker is handled
in timeO(n).

Results and discussion
We implemented the single-step hill climbing method
described in [10], at each step choosing the move from the
space of all possible moves that most improves the target
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Figure 5 SimBA comparison results. (a) Sensitivity comparison with existing methods, comparing the results for two very similar populations
ASW and LWK. SimBA hill climbing was run with k = 6 for ASW, and k = 10 for LWK. (b-e) Comparing existing methods on the JPT/CHB population.
Results from 10 runs are shown as lines, while red “o” are the target and blue “*” are the average values across the runs. Sum of squared distances
between average simulated and target values is shown for each method. SimBA hill climbing was run with k = 10.

fit. Although an individual can potentially be touched sev-
eral times in the process of generating one column, in our
experiments we have found each column to be generated
in fewer than n moves. We also implemented the sub-
population construction described in Methods. Our hill
climbing and subpopulation algorithms are collectively
called SimBA.

Stratified population construction
We evaluated the methods on real human MAF and LD
data provided by the International HapMap Project [13],
in the LD Data collection: African ancestry in Southwest

USA “ASW”, Han Chinese in Beijing, China “CHB”, Luhya
in Webuye, Kenya “LWK”, Japanese in Tokyo, Japan “JPT”
populations. For one set of experiments we used the
phasing data, evaluating the ability of SimBA to recon-
struct a population when a population with those con-
straints is known to exist. For another set of experiments,
we used averaged linkage disequilibrium data, evaluat-
ing the ability of SimBA to deconstruct distributions into
constraints, and then reconstruct a population with those
constraints.
SimBA works by first deconstructing the given LD and

MAF distributions into individual values and then does a
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best-fit of these values. In order to separate the confound-
ing influence of the two, we first evaluated the best-fit
component of the method. For this, we generated the test
cases as follows. For the experiment shown in Figure 4(a)
we applied our algorithm using the HapMap JPT/CHB
phasing data as input, selecting the firstm = 100 biallelic
markers from chr 22, and then using their allele frequen-
cies p as the MAF targets, and their pairwise r2 values as
the LD targets. Using the nearest k = 10 distances gave
excellent results closely fitting the target distributions, as
demonstrated by the figure. Figure 4(a) also shows the
exact target and constructed r2 distributions per distance.
In these figures, the target r2 for each column and each
distance is met with great fidelity, thus demonstrating
not only fitting the average r2 per distance, but the exact
targets, as shown by the heatmap.
In the experiment shown in Figure 4(b), we evaluated

the ability of the algorithm to deconstruct the distribu-
tions and then carry out the best-fit (i.e., it is not clear that
an exact solution matrix exists, due to numerous possibly
conflicting r2 constraints as input). We binned the ASW
population averaged linkage disequilibrium data (physical
distance, r2 pairs) into m = 100 equal size bins, s.t. each
bin corresponds to a range of 2 kb (data only included LD
for marker pairs at most 200 kb apart). The r2 values in
each bin were distributed as targets across them columns
in order, s.t. largest values were assigned to columns with
the largest possible r2 limits (given the columns’ allele
frequencies).
Again, SimBA produced a good fit to the average LD

distribution. The MAF distribution fits exactly, by design
(see Corollary 1) and Fst fits very close to the target values.

Comparison with existing methods
We compared SimBA with existing methods for generat-
ing populations with specific LD and MAF distributions:
epiSIM [8], HapSim [6], and SIMLD [7]. epiSIM only
considers the LD between adjacent markers, therefore its
input consists of r2 specifying the first distance only. Hap-
Sim is a perturbation approach, requiring as input an
existing matrix having the desired distributions. SIMLD
is a non-generative forward-simulator, starting from a
fixed matrix having maximum possible LD and decaying
it over generations. To test the accuracy of SimBA against
the existing methods, we ran all methods simulating the
JPT/CHB data, and we also checked the sensitivity by sim-
ulating the ASW and LWK populations. Let matrix H
denote the first m = 100 biallelic markers in chr 22 of
the respective HapMap population, from which the MAF
and r2 constraints were extracted. Each method was run
as follows.
epiSIM was given as input the minimum and maxi-

mum MAF, the mean r2 for adjacent markers, and MAF
and r2 for the first two markers. HapSim was given as

input the matrix H . SIMLD requires several population-
specific parameters, which the authors have specified for
the JPT/CHB population. Since the setting of their param-
eter values is not well defined and requires knowledge of
population history, we used these same parameters for the
ASW and LWK populations. SIMLD was given the MAF
per marker and average r2 per distance. SimBA was given
as input the MAF per marker and r2 per each pair of
markers.
One of the characteristics of the output of SimBA is

its high sensitivity as demonstrated in Figure 5(a). Note
that two very similar r2 distributions indeed resulted in
distinct, correct distributions by SimBA, while the other
methods fail to correctly match either of the two input
distributions.
The JPT/CHB results across ten independent runs in

Figure 5(b-e) show that only SimBA and HapSim con-
structed populations having LD close to the target values.
SimBA is the most accurate, as measured by the sum of
squared distances from target r2 values. The run time of
SimBA is better than most other methods, only SIMLD
is faster. SIMLD was run with hard parameters specified
for the JPT/CHB data by the authors, and these pre-
tuned parameters produce a fairly accurate fit. epiSIM
only matches the first distance since other distances are
beyond the scope of the algorithm. HapSim results are
only close to the target for the first two distances. The sen-
sitivity comparison in Figure 5(a) shows that SimBA is far
more accurate in distinguishing between the two similar
populations than any other method. The other methods
also produce two slightly different populations, but they
are farther from the target values. HapSim does better on
these populations than on the JPT/CHB data, while still
being farther from the targets than SimBA.
To conclude the comparison study, epiSIM only consid-

ers the first distance, HapSim requires a sample matrix,
and SIMLD requires optimizing several parameter values.
All comparedmethods are less sensitive than SimBA in fit-
ting the specified input distributions. The characteristics

Table 1 Comparison of population simulationmethods

epiSim HapSim SIMLD SimBA

Matches MAF distribution - X X X

Matches r2 distribution - X X X

Number of control parameters 0 0 5 1

Population stratification - - - X

Simulation time 33 12 < 1 5

SimBAmatches the MAF and r2 distributions for each marker, without requiring
an exemplar population, and uses only one control parameter (k). Time
(seconds) is the average time required for one run of the experiment shown in
Figure 5(b-e). Experiments were conducted on the same x86_64 Linux Fedora
system with 4-core 2.9 GHz processor and 16 GB RAM, except epiSim (requiring
Matlab access) on a 64-bit Windows 7 system with 8-core 2.4 GHz processor and
8 GB RAM.
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of SimBA compared to other methods are summarized in
Table 1.

Conclusions
SimBA is a novel non-generative method for simulating
populations with various specified distributions such as
MAF, LD etc. We show that SimBA outperforms the other
methods both in terms of accuracy and efficiency. It runs
in time linear with the size of the output. Furthermore,
similar but distinct input characteristics result in distinct
outputs with high fidelity to the specified distributions.
SimBA does not require extensive population-specific
parameter tuning or exemplar populations as starting
points, unlike most non-generative methods. SimBA exe-
cutable and manual are available at http://researcher.ibm.
com/project/5669.
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