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SimBoost: a read-across approach 
for predicting drug–target binding a�nities 
using gradient boosting machines
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Abstract 

Computational prediction of the interaction between drugs and targets is a standing challenge in the field of drug 
discovery. A number of rather accurate predictions were reported for various binary drug–target benchmark data-
sets. However, a notable drawback of a binary representation of interaction data is that missing endpoints for non-
interacting drug–target pairs are not differentiated from inactive cases, and that predicted levels of activity depend 
on pre-defined binarization thresholds. In this paper, we present a method called SimBoost that predicts continuous 
(non-binary) values of binding affinities of compounds and proteins and thus incorporates the whole interaction 
spectrum from true negative to true positive interactions. Additionally, we propose a version of the method called 
SimBoostQuant which computes a prediction interval in order to assess the confidence of the predicted affinity, thus 
defining the Applicability Domain metrics explicitly. We evaluate SimBoost and SimBoostQuant on two established 
drug–target interaction benchmark datasets and one new dataset that we propose to use as a benchmark for read-
across cheminformatics applications. We demonstrate that our methods outperform the previously reported models 
across the studied datasets.
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Background

Finding a compound that selectively binds to a particu-

lar protein is a highly challenging and typically expen-

sive procedure in the drug development process, where 

more than 90% of candidate compounds fail due to cross-

reactivity and/or toxicity issues. It is therefore an impor-

tant topic in drug research to gain knowledge about the 

interaction of compounds and target proteins through 

computational methods. Such in silico approaches are 

capable of speeding up the experimental wet lab work by 

systematically prioritizing the most potent compounds 

and help predicting their potential side effects.

Recent studies [1] have demonstrated that machine 

learning-based approaches have the potential to predict 

compound-protein interactions on a large scale by learn-

ing from limited interaction data supplemented with 

information on the similarity among compounds and 

among proteins. Incorporating the similarity between 

drugs and between targets to infer the interaction of 

untested drug–target pairs is the essence of the read-

across methodology [2].

�e datasets commonly used for the training and 

evaluation of such machine learning-based prediction 

methods are the Enzymes, Ion Channels, Nuclear Recep-

tor, and G Protein-Coupled Receptor datasets [3]. �ese 

datasets contain binary labels Y(i,j) = 1 if drug–target 

pair (di, tj) is known to interact (as shown by wet lab 

experiments) and Y(i,j) = 0 if either (di, tj) is known to 

not interact or if the interaction of (di, tj) is unknown. 

�e datasets tend to be biased towards drugs and tar-

gets that are considered to be more important or easier 
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to test experimentally. As elaborated in [4], the use of 

such binary datasets has two major limitations: (1) true-

negative interactions and missing values are not differ-

entiated, and (2) a given compound-target interaction 

is treated as a binary on–off relationship, although it is 

more informative to use a continuous value that quanti-

fies how strongly a compound binds to a target.

�e study of [4] introduces two continuous interaction 

datasets and the continuous evaluation metric CI and 

presents a read-across method KronRLS which predicts 

continuous binding affinities. �e prediction in Kron-

RLS is based on a similarity score for each drug–target 

pair, where the similarity of drug–target pairs is defined 

through the Kronecker product of a drug–drug similar-

ity matrix and a target–target similarity matrix. Another 

method that has previously been shown to achieve high 

performance in drug target interaction prediction is 

Matrix Factorization (MF) [5–7], which in its simplest 

formulation learns to predict drug target interaction just 

from the given binding values without incorporating sim-

ilarity information among drugs and among targets.

Intuitively both KronRLS and MF share the limitation 

of capturing only linear dependencies in the training 

data. To the best of our knowledge, no non-linear meth-

ods for drug–target interaction prediction have been 

presented in the literature. Furthermore, we believe that 

due to the biased nature of the training datasets it is nec-

essary to assign a confidence score to a prediction. As 

emphasized in [8] it is important to address the uncer-

tainty of the predictions of read-across approaches, but 

previous methods have neglected this need.

In this paper, we propose a novel non-linear method, 

SimBoost, for continuous drug–target binding affinity 

prediction, and a version SimBoostQuant, using quantile 

regression to estimate a prediction interval as a meas-

ure of confidence. Given a training dataset of continuous 

binding affinities and the similarities among drugs and 

among targets, SimBoost constructs features for drugs, 

targets, and drug–target pairs, and uses gradient boost-

ing machines to predict the binding affinity for a drug–

target pair and to generate a prediction interval. Besides 

gradient boosting, another non-linear method that can 

predict the value of some dependent variable and gener-

ate a prediction interval is random forests [9]. We have 

two reasons for choosing gradient boosting over ran-

dom forests. First, all the trees in a random forest can be 

seen as identically distributed. �us, if their prediction is 

biased then the average of the prediction is also biased, 

which may lead to a less accurate final result. Second, the 

random forest algorithm for quantile regression intro-

duced in [9] produces the same tree structure as the usual 

random forest algorithm and only changes the way in 

which predictions are generated for the leaf nodes. �is 

implies that the trees are not grown in a shape optimized 

for quantile regression. Our proposed gradient boosting 

method overcomes both limitations.

Gradient boosting machines have been employed in 

previous QSAR studies [10, 11]. Svetnik et  al. [11] com-

pares the performance of gradient boosting machines 

against commonly used QSAR methods such as support 

vector machines for regression and classification prob-

lems involving only compounds. Singh and Shikha [10] 

utilizes gradient boosting machines to predict toxic effects 

of nanomaterials. In both studies, gradient boosting 

machines show promising results in terms of prediction 

performance, speed and robustness. A major difference of 

our work compared to these previous studies is the prob-

lem formulation: In [10, 11] a prediction is made for a sin-

gle entity (nanomaterial or compound), and descriptors 

for the compounds/nanomaterials are given. In the drug–

target setting, on the other hand, we make predictions for 

pairs of entities, i.e. one drug and one target. �erefore, 

we present a novel feature engineering step on which our 

method relies in the learning and prediction phases.

Related work

Traditional methods for drug target interaction predic-

tion typically focus on one particular target of interest. 

�ese approaches can again be divided into two types 

which are target-based approaches [12–14] and ligand-

based approaches [15–18]. In target-based approaches 

the molecular docking of a candidate compound with the 

protein target is simulated, based on the 3D structure of 

the target (and the compound). �is approach is widely 

utilized to virtually screen compounds against target pro-

teins; however this approach is not applicable when the 

3D structure of a target protein is not available which is 

often the case, especially for G-protein coupled receptors 

and ion channels. �e intuition in ligand-based methods 

is to model the common characteristics of a target, based 

on its known interacting ligands (compounds). One inter-

esting example for this approach is the study [4] which 

utilizes similarities in the side-effects of known drugs 

to predict new drug–target interactions. However, the 

ligand-based approach may not work well if the number 

of known interacting ligands of a protein target is small.

To allow more efficient predictions on a larger scale, 

i.e. for many targets simultaneously, and to overcome 

the limitations of the traditional methods, machine 

learning based approaches have attracted much atten-

tion recently. In the chemical and biologicals sciences, 

machine learning-based approaches have been known as 

(multi-target) Quantitative structure–activity relation-

ship (QSAR) methods, which relate a set of predictor 
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variables, describing the physico-chemical properties of 

a drug–target pair, to the response variable, representing 

the existence or the strength of an interaction.

Current machine learning methods can be classified into 

two types, which are feature-based and similarity-based 

approaches. In feature-based methods, known drug–target 

interactions are represented by feature vectors generated 

by combining chemical descriptors of drugs with descrip-

tors for targets [19–23]. With these feature vectors as input, 

standard machine learning methods such as Support Vec-

tor Machines (SVM), Naïve Bayes (NB) or Neural Net-

works (NN) can be used to predict the interaction of new 

drug–target pairs. Vina et al. [24] proposes a method tak-

ing into consideration only the sequence of the target and 

the chemical connectivity of the drug, but without relying 

on geometry optimization or drug–drug and target–tar-

get similarities. Cheng et al. [25] introduces a multi-target 

QSAR method that integrates chemical substructures and 

protein sequence descriptors to predict interactions for 

G-protein coupled receptors and kinases based on two 

comprehensive data sets derived from the ChEMBL data-

base. Merget et al. [26] evaluates different machine learning 

methods and data balancing schemes and reports that ran-

dom forests yielded the best activity prediction and allowed 

accurate inference of compound selectivity.

In similarity-based methods [3, 27–32], similarity 

matrices for both the drug–drug pairs and the target–tar-

get pairs are generated. Different types of similarity met-

rics can be used to generate these matrices [33]; typically, 

chemical structure fingerprints are used to compute the 

similarity among drugs and a protein sequence align-

ment score is used for targets. One of the simplest ways 

of using the similarities is a Nearest Neighbor classifier 

[28], which predicts new interactions from the weighted 

(by the similarity) sum of the interaction profiles of the 

most similar drugs/targets. �e Kernel method proposed 

in [27] computes a similarity for all drug–target pairs (a 

pairwise-kernel) using the drug–drug and target–tar-

get similarities and then uses this kernel of drug–target 

pairs with known labels to train an SVM-classifier. �e 

approaches presented in [28–30] represent drug–target 

interactions by a bipartite graph and label drug–target 

pairs as +1 if the edge exists or −1, otherwise. For each 

drug and for each target, a separate SVM (local model) is 

trained, which predicts interactions of that drug (target) 

with all targets (drugs). �e similarity matrices are used 

as kernels for those SVMs, and the final prediction for a 

pair is obtained by averaging the scores for the respective 

drug SVM and target SVM.

All of the above machine-learning based methods for 

drug–target interaction prediction formulate the task as 

a binary classification problem, with the goal to classify 

a given drug–target pair as binding or non-binding. As 

pointed out in [4], drawbacks of the binary problem for-

mulation are that true-negative interactions and untested 

drug–target pairs are not differentiated, and that the 

whole interaction spectrum, including both true-positive 

and true-negative interactions, is not covered well. Pahik-

kala et al. [4] introduces the method KronRLS which pre-

dicts continuous drug–target binding affinity values. To 

the best of our knowledge, KronRLS is the only method in 

the literature which predicts continuous binding affinities, 

and we give a detailed introduction to KronRLS below, 

since we use it as baseline in our experiments. Below, we 

also introduce Matrix Factorization as it was used in the 

literature for binary drug–target interaction prediction 

and as it plays an important role in our proposed method.

KronRLS

Regularized Least Squares Models (RLS) have previously 

been shown to be able to predict binary drug target inter-

action with high accuracy [31]. KronRLS as introduced in 

[4] can be seen as a generalization of these models for the 

prediction of continuous binding values. Given a set {di} 

of drugs and a set {tj} of targets, the training data consists 

of a set X = {x1, . . . , xm} of drug–target pairs (X is a sub-

set of {di × tj}) and an associated vector y = y1, . . . , ym of 

continuous binding affinities. �e goal is to learn a pre-

diction function f (x) for all possible drug–target pairs 

x ∈ {di × tj}, i.e. a function that minimizes the objective:

In the objective function, ||f ||2k is the norm of f , which 

is associated to a kernel function k (described below), 

and � > 0 is a user defined regularization parameter. A 

minimizer of the above objective can be expressed as

�e kernel function k is a symmetric similarity meas-

ure between two of the m drug–target pairs, which can 

be represented by an m × m matrix K . For two individ-

ual similarity matrices Kd and Kt for the drugs and tar-

gets respectively, a similarity matrix for each drug–target 

pair can be computed as Kd ⊗ Kt, where ⊗ stands for the 

Kronecker product. If the training set X contains every 

possible pair of drugs and targets, K  can be computed as 

K = Kd ⊗ Kt and the parameter vector a can be learnt by 

solving the following system of linear equations:

where I is the di × tj identity matrix. If only a subset of 

{di × tj} is given as training data, the vector y has missing 

J (f ) =

m∑

i=1

(yi − f (xi))
2 + �||f ||2k

f (x) =

m∑

i=1

aik(x, xi)

(K + �I)a = y
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values. To learn the parameter a, [4] suggests to use con-

jugate gradient with Kronecker algebraic optimization to 

solve the system of linear equations.

Matrix factorization

�e Matrix Factorization (MF) technique has been 

demonstrated to be effective especially for personalized 

recommendation tasks [34], and it has been previously 

applied for drug–target interaction prediction [5–7]. 

In MF, a matrix M ∈ R
d×t (for the drug–target predic-

tion task, M represents a matrix of binding affinities of 

d drugs and t targets) is approximated by the product of 

two latent factor matrices P ∈ Rk×d and Q ∈ Rk×t.

�e factor matrices P and Q are learned by minimiz-

ing the regularized squared error on the set of observed 

affinities κ:

�e term (mi,j − qTi pj)
2 represents the fit of the learned 

parameters to the observed binding affinities. �e term 

�(||p||2 + ||q||2) penalizes the magnitudes of the learned 

parameters to prevent overfitting, and the constant � 

controls the weight of the two terms. With learned matri-

ces P and Q, a matrix M′ with predictions for all drug–

target pairs can be computed as:

In SimBoost, the columns of the factor matrices P and 

Q are utilized as parts of the feature vectors for the drugs 

and targets respectively and thus Matrix Factorization is 

used as a feature extraction step.

min
Q,P

∑

(di ,tj)∈κ

(mi,j − qTi pj)
2 + �(||p||2 + ||q||2)

M′
= PTQ

Methods

Problem de�nition

We assume input data in the format (M,D,T ), where M 

is a matrix with continuous values where Mi,j represents 

the binding affinity of drug i and target j. D is a similar-

ity matrix of drugs, and T  is a similarity matrix of targets. 

Specifically, we define Mi,· as the i-th row of M, and M
·,j as 

the j-th column of M. Similarly, we define Di,· as the i-th 

row of D, and T
·,j as the j-th row of T . Only a subset of the 

elements of M is observed, and our goal is to predict all the 

non-observed values in M with the given information.

SimBoost and SimBoostQuant

Our proposed method, called SimBoost, constructs fea-

tures for each drug, each target and each drug–target 

pair. �ese features represent the properties of drugs, 

targets and drug–target pairs, respectively. SimBoost 

associates a feature vector with each pair of one drug 

and one target. From pairs with observed binding affini-

ties, it trains a gradient boosting machine model to learn 

the nonlinear relationships between the features and the 

binding affinities. Once the model is trained, SimBoost 

can make predictions of the binding affinities for unob-

served drug–target pairs, based on their known features.

We also propose a version of SimBoost, called Sim-

BoostQuant, which computes the confidence of the pre-

diction by using quantile regression to learn a prediction 

interval for a given drug–target pair as a measure of the 

confidence of the prediction.

Figure 1 illustrates the workflow of SimBoost and Sim-

BoostQuant, consisting of the three steps of feature engi-

neering, gradient boosting trees and prediction interval. 

�ese steps are introduced in the following.

Fig. 1 The workflow of SimBoost and SimBoostQuant
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Feature engineering

We define three types of features to describe the proper-

ties of drugs, targets and drug–target pairs.

Type 1 features: We extract features for each single 

object (i.e. drug or target).

  • Number of observations in M for the object (n.obs).

•  �e number of observations in the corresponding 

row/column of M.

  • Average of all similarity scores of the object (ave.sim).

• For drug i, the average of Di,·.

•  For target j, the average of Tj,·.

  • Histogram of the similarity values of the object (hist.

sim).

•  A vector of frequencies of the similarity values, 

where the number of bins is an input parameter.

  • Average of the observed values for the object in M 

(ave.val).

• For drug i, the average of Mi,·.

•  For target j, the average of M
·,j.

Type 2 features: We build two networks, one for drugs 

and another one for targets, from D and T , respectively. 

�e nodes are drugs or targets, and an edge between two 

nodes exists if their similarity is above a user-defined 

threshold. We define the following features for each node.

  • Number of neighbours (num.nb).

  • �e similarity values of the k-nearest neighbours of 

the node (k.sim).

  • �e average of the Type 1 features among the k-near-

est neighbours of the node (k.ave.feat), simply aver-

aging these vectors from different objects, which 

results in a vector of the same length.

  • �e average of the Type 1 features among the k-near-

est neighbours of the node, weighted by the similarity 

values (k.w.ave.feat).

  • Betweenness, closeness and eigenvector centrality of 

the node as introduced in [35] (bt, cl, ev).

  • PageRank score as described in [36] (pr).

Type 3 features: We build a network for drugs and tar-

gets from M. �e nodes are drugs and targets, and an 

edge connects a drug and a target, with the binding affin-

ity as the edge weight. We define the following features 

for each drug–target pair.

  • Latent vectors from matrix factorization (mf).

•  �e latent vector for the drug or the target, 

obtained by matrix factorization of M.

  • Weighted scores from drug to target’s neighbours (if 

any) (d.t.ave).

•  If drug i has observed affinities with target j‘s 

neighbours, average the values.

  • Weighted scores from target to drug’s neighbours (if 

any) (t.d.ave).

•  If target j has observed affinities with drug i‘s 

neighbours, average the values.

  • Betweenness, closeness and eigenvector centrality of 

the node (d.t.bt, d.t.cl, d.t.ev).

  • PageRank score (d.t.pr).

For each drug and target we build Type 1 and Type 2 

feature vectors, and for each drug–target pair we build a 

Type 3 feature vector. For each drug–target pair (di, tj), 

we build a feature vector by concatenating the Type 1 and 

Type 2 feature vectors for di and tj, and the Type 3 feature 

vector for (di, tj), as illustrated in Table 1.

Gradient boosting regression trees

To predict the continuous binding affinity for drug–tar-

get pairs, we train a supervised learning model based on 

the features defined in the Feature Engineering section. 

We choose the gradient boosting machine as our model, 

which was originally proposed in [37], because of its fol-

lowing benefits [38, 39]:

  • Accuracy: the boosting algorithm is an ensemble 

model, which trains a sequence of “weak learners” to 

gradually achieve a good accuracy.

  • Efficiency: the training process can be parallelized, 

greatly reducing the training time.

In the following, we provide a brief introduction to a 

variant of this model, gradient boosting regression trees, 

which we use in our methods. �e details are described in 

[38, 39]. In the common supervised learning scenario, the 

data set can be represented by a set containing n paired 

feature vectors and labels: D = {(xi, yi)} (|D| = n). In the 

context of our task, xi ∈ Rd is the vector of features of the 

i-th drug–target pair, while yi ∈ R is its binding affinity.

In the gradient boosting regression trees model, the 

score ŷi predicted for input xi is given by the following 

functional form:

Table 1 Structure of feature vector for (di , tj)

Type 1 of di Type 1 of tj Type 2 of di Type 2 of tj Type 3 of (di , tj)
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where K  is the number of regression trees and F  is the 

space of all possible trees.

To learn the set of trees {fk}, we define the following 

regularized objective function:

where l is a differentiable loss function that evaluates the 

prediction ŷi with regard to the known binding affinity 

yi. �e second term Ω measures the complexity of the 

model (i.e., the set of trees) to avoid overfitting. With this 

objective function, a simple and predictive set of boosted 

trees will be selected as the best model.

Because the model includes trees as parameters, we 

cannot directly use traditional optimization methods in 

Euclidean space to find the solution. Instead, we train the 

model additively: at each iteration t, F  is searched to find 

a new tree ft that optimizes the objective function, which 

is then added to the ensemble. Formally, let ŷ
(t)
i  be the 

prediction for the i-th pair at the t-th iteration, the model 

finds ft that optimizes the following objective.

�is objective means that the model adds the best func-

tion to the set. In the general setting, the above objective 

is still hard to optimize, and we approximate the objec-

tive using the second order Taylor expansion.

where gi = ∂ŷ(t−1) l(yi, ŷ
(t−1)
i ) and hi = ∂2

ŷ(t−1) l(yi, ŷ
(t−1)
i ). 

We can remove the constant terms to obtain the follow-

ing approximate objective at step t:

A gradient boosting algorithm iteratively adds trees that 

optimize L̃(t) for a number of user-specified iterations.

Usually in supervised learning tasks for continuous 

data, we use the squared loss function L = (y − ŷ)2 to 

compute the error. �e first and second order gradient of 

this loss function are:

ŷi = φ(xi) =

K∑

k=1

fk(xi), fk ∈ F

L(φ) =
∑

i

l(ŷi, yi) +
∑

k

Ω(fk)

L(t)
=

n∑

i=1

l(yi, ŷ
(t)
i ) +

t∑

i=1

Ω(fi)

=

n∑

i=1

l(yi, ŷ
(t−1)
i + ft(xi)) +

t∑

i=1

Ω(fi)

L(t)
≃

n
∑

i=1

[

l(yi, ŷ
(t−1)
i ) + gift(xi) +

1

2
hif

2
t (xi)

]

+

t
∑

i=1

Ω(fi)

L̃(t)
=

n
∑

i=1

[

gift(xi) +
1

2
hif

2

t (xi)

]

+ Ω(ft)

We define Ω as follows:

where T is the number of trees, w2

j  is the prediction score 

for data corresponding to the j-th leaf from ft and γ and � 

are two weight parameters.

Prediction intervals

We extend gradient boosting regression trees by the 

concept of quantile regression to characterize the confi-

dence of the prediction. Suppose the model can predict 

the quantile given the quantile parameter α. To obtain the 

interval, we need to train the model twice to calculate the 

α quantile and the (1 − α) quantile to get the boundary of 

the prediction interval. To make a prediction for binding 

affinity, we use the median of the interval.

To perform quantile regression, we use the following 

loss function instead of the squared loss:

where α is the quantile parameter, yi is the true binding 

affinity, and ui is the prediction.

Within the framework of gradient boosting trees, the 

new loss function can be optimized with stochastic gra-

dient descent. �e gradient for each data sample is

�e second order gradient is not applicable here, there-

fore we will set it to 1.

Since we care more about drug–target pairs with high 

binding affinities, the model weights these drug–target 

pairs more. To achieve that, we weight the prediction 

error by the true affinity, i.e. the larger the true affinity is 

the more weight the prediction error gets. �e resulting 

loss function and the gradient are as follows:

Experiments

Data

We evaluated the performance of the proposed methods 

on three drug–target binding affinity datasets. We used 

the two large-scale biochemical selectivity assays for clin-

ically relevant kinase inhibitors from the studies by [40, 

41] that were already used to evaluate the performance 

of KronRLS in the original paper [4]. �ese two datasets 

gi = 2(ŷ − y)

hi = 2

Ω
(

ft
)

= γT +
1

2
�

T
∑

j

w2

j

li = α(yi − ui)Iyi>ui + (1 − α)(yi − ui)Iyi<ui

gi = αIyi>ui − (1 − α)Iyi<ui

li = yi[α(yi − ui)Iyi>ui + (1 − α)(yi − ui)Iyi<ui ]

gi = yi[αIyi>ui − (1 − α)Iyi<ui ]
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will be referred to as the Davis and the Metz dataset. 

�e Davis dataset is fully populated with binding affini-

ties observed for all pairs of 68 drugs and 442 targets, 

measured by the Kd value (kinase dissociation constant). 

�e Metz dataset consists of 1421 drugs and 156 targets, 

and for 42% of the drug–target pairs the binding affinity 

is given as the pKi value (log transformed kinase inhibi-

tion constant). Kd values in the Davis dataset were trans-

formed into logspace (pKd) as:

�e Davis and Metz datasets are suitable for the eval-

uation of predictive models for drug–target interac-

tion because data heterogeneity is not an issue. We can 

assume that the experimental settings for the measured 

drug–target pairs in each dataset were the same and the 

binding affinities are comparable. When working with 

experimental results that come from multiple sources 

the data might be heterogeneous: In one case the binding 

affinity might be measured by Ki, in another case by Kd 

and in a third case by IC50. Another source of data heter-

ogeneity are different experimental settings. An approach 

to integrate observations from different sources, named 

KIBA, and a corresponding dataset are presented in [42]. 

In this work the authors integrated the experimental 

results from multiple databases into a bioactivity matrix 

of 52,498 compounds and 467 targets, including 246,088 

observations. �e binding affinities in this matrix are 

given as KIBA-values. We used this dataset to obtain a 

third evaluation dataset, which we call the KIBA dataset, 

by removing all drugs and targets with less than 10 obser-

vations from the original dataset (downloaded from the 

supplementary materials of [42]), resulting in a dataset of 

2116 drugs and 229 targets with a density of 24%.

pKd = −log10

(

Kd

1e9

)

For the evaluation of the model we also include a per-

formance evaluation for the classification of drug–tar-

get pairs into binding or non-binding, using the metrics 

AUC and AUPR. For these experiments, we used ver-

sions of the datasets binarized by applying thresholds as 

done in [4]. For the Metz dataset we used the threshold 

of pKi ≥ 7.6 as suggested in [4] to assign a label of 1, i.e. 

binding. For the Davis dataset we used a threshold of 

pKd ≥ 7.0 which is a bit less stringent than the thresh-

old suggested in [4]. In the KIBA dataset, the lower the 

KIBA-score, the higher the binding affinity, and [42] sug-

gests a threshold of KIBA value ≤3.0 to binarize the data-

set. In an additional preprocessing step, we transformed 

the KIBA dataset by taking the negative of each value and 

adding the minimum to all values in order to obtain a 

threshold where all values above the threshold are classi-

fied as binding. �e KIBA threshold of 3.0 in the untrans-

formed dataset then becomes 12.1. Table 2 lists the sizes 

and densities of the datasets, and Fig. 2 illustrates the dis-

tributions of the affinity values for the three datasets.

In the original Davis dataset a large fraction of the val-

ues is given as “>10,000Kd”, meaning no binding affinity 

was detected in the wet lab experiment. �ese values 

were transformed to 10,000Kd (5pKd) in the preprocessed 

dataset, which explains the high bar at value 5pKd.

As drug–drug and target–target similarity matrices for 

the Davis and Metz dataset we used the precomputed 

Table 2 The statistics of the three datasets

Dataset Number of drugs Number of targets Density (%)

Davis 68 442 100

Metz 1421 156 42.1

KIBA 2116 229 24.4

Fig. 2 Distribution of values in the three datasets (Davis, Metz and KIBA from left to right) and binarization thresholds (vertical red line)
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matrices that are provided on the website of [4]. Here, 

the drug–drug similarity was computed based on the 2D 

chemical structure of the compounds, using the structure 

clustering server at PubChem. �is tool clusters the com-

pounds based on the structure similarity using the single 

linkage algorithm [44] and allows to download a similar-

ity matrix containing the similarity for each drug–drug 

pair. �e target–target similarity was computed based 

on the protein sequences, using the normalized Smith-

Waterman score [3]. For the KIBA dataset we obtained 

the drug–drug similarity matrix through the compound 

clustering tool of PubChem as done by the authors of [4] 

for the Davis and Metz datasets. �e given ChEMBL IDs 

of the compounds were first matched to their PubChem 

CIDs which were then used as input to the PubChem 

web interface.

�e web tool allows to download a similarity matrix for 

the compounds as described above (similarly as for the 

drug–drug similarity of the Metz and David datasets). For 

the KIBA dataset we downloaded the protein sequences 

from NCBI and computed the normalized Smith Water-

man similarity for each pair by aligning the sequences 

using the Biostrings R package.

Results

�e baselines evaluated in our experiments are matrix 

factorization trained on continuous data (referred to as 

MF), and the KronRLS method trained on both continu-

ous (referred to as Continuous KronRLS) or binarized 

data (referred to as Binary KronRLS). For MF, we use the 

implementation libmf as described in [43]. For KronRLS, 

we use the original code from the author of [4].

We also compare the performance of the two models 

we proposed. �e difference lies in the loss function, the 

first one employs the usual squared loss (SimBoost), the 

second one employs the quantile regression loss (Sim-

BoostQuant). We use the library xgboost to train the 

model [38].

We perform fivefold cross validation. To ensure that 

no target is used only for training or only for testing, 

we build the folds in a way such that every target has an 

observation in at least two folds. To test the variance of 

the performance scores, we repeat the cross validation 

ten times for each model on each dataset, and report the 

mean and standard deviation for each metric.

�e evaluation metrics used are Root Mean Squared 

Error (RMSE), Area Under the Curve (AUC), Area Under 

the Precision-Recall curve (AUPR) and Concordance 

Index (CI). �e RMSE is a commonly used metric for 

the error in continuous prediction. �e binary metrics 

AUC and AUPR are commonly used in the related work 

on drug–target interaction prediction, measuring the 

ranking error of the predictions. �e AUPR is commonly 

used in these types of studies because it punishes more 

false positive predictions in highly unbalanced data sets 

[45]. �e CI is a ranking metric for continuous values that 

was suggested by [4]. �e CI over a set of paired data is the 

probability that the predictions for two randomly drawn 

drug–target pairs with different label values are predicted 

in the correct order.

KronRLS determines the optimal regularization param-

eter by an inner cross validation step, and the parameter 

which gives the best performance on the desired metric 

is selected to predict the test fold. �e prediction of Kro-

nRLS might therefore depend on the used metric. Spe-

cifically, when the classification metrics AUC or AUPR 

are applied, KronRLS learns and predicts binary labels, 

meaning that the datasets are binarized according to the 

cutoff threshold before the training step.

Our methods in contrast only predict continuous val-

ues, and the binarization threshold is applied after the 

prediction step to calculate the AUC and AUPR metrics. 

We argue that, given two models A and B, where A learns 

to predict continuous values and model B learns to pre-

dict binary values, and the performance of model A in 

terms of AUC and AUPR is as good as the performance 

of model B, model A is advantageous because it does not 

need to be retrained when the threshold for the dataset 

is changed. For a fair comparison we also list the per-

formance of KronRLS in terms of AUC and AUPR when 

continuous values were predicted and the threshold was 

applied after the prediction step.

Discussion

�e results with respect to the four performance metrics 

are presented in Table  3 (Davis dataset), Table  4 (Metz 

dataset) and Table 5 (KIBA dataset). For every metric, the 

value for the best-performing method is highlighted in 

bold font.

We observe that SimBoost consistently outperforms 

all baselines on all datasets in terms of all performance 

metrics. Based on the standard deviation obtained from 

10 repetitions, the improvement is significant (Table 4).

In particular, for the Davis dataset, SimBoost reduces 

the RMSE of MF by 51% and improves the AUPR of Con-

tinuous KronRLS by 12%. For the Metz dataset, SimBoost 

reduces the RMSE of MF by 45%, improves the AUPR of 

Binary KronRLS by 11% and improves the CI of MF by 

8%. For the KIBA dataset, SimBoost reduces the RMSE of 

the MF by 47%, improves the AUPR of Binary KronRLS 

by 2% and improves the CI of MF by 7%.

SimBoostQuant achieves the second best performance 

in terms of RMSE, AUC and CI. While this model is not 

as good as SimBoost in terms of prediction performance, 
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it has the advantage of quantifying the confidence of the 

predicted value.

To provide further insight into the performance of Sim-

Boost, Figs.  3, 4 and 5 plot the predictions of SimBoost 

against the actual values on the three datasets.

Figure  6 illustrates the prediction intervals from Sim-

BoostQuant for all drugs for two targets from the KIBA 

dataset.

�e highest dash-dot green line corresponds to the upper 

quantile, the lowest dashed red line corresponds to the 

lower quantile. �e dotted blue line in the middle is the 

average of the quantiles, used as our prediction. �e solid 

black line is the true value in the training dataset. �e drugs 

are listed on the x-axis, sorted by the predicted value.

�e numbers of observations for drugs in the two plots 

from left to right are 37 and 1136, and the average inter-

val width is 1.51 and 0.75. We observe that the width 

decreases as the number of observations increases, which 

is demonstrated in Fig. 7.

�is is because generally the more observations, the 

more information has the model. For a given target, the 

width of the prediction interval varies a lot for differ-

ent compounds, therefore among the compounds with 

high predicted affinities we choose those with narrower 

intervals.

Figure 8 plots the relative importance of the features, as 

computed by the xgboost package with feature names as 

introduced in the “Methods” section.

We note that the most important features are the aver-

age affinity of the drug and the target, as well as the latent 

factors obtained from matrix factorization. �e average 

affinity of a drug/target captures their typical binding 

behavior, which is valuable to predict the binding affinity 

with a specific target/drug. While SimBoost substantially 

outperforms matrix factorization, arguably because of 

its ability to discover non-linear relationships, the latent 

factors learnt by MF do provide important features for 

SimBoost.

Table 3 Results on the Davis data set, with the mean and standard deviation from 10 repetitions

RMSE AUC AUPR CI

MF 0.509 ± 0.010 0.876 ± 0.004 0.499 ± 0.017 0.816 ± 0.004

Continuous KronRLS 0.608 ± 0.002 0.942 ± 0.001 0.679 ± 0.003 0.860 ± 0.001

Binary KronRLS – 0.931 ± 0.001 0.686 ± 0.006 –

SimBoost 0.247 ± 0.003 0.956 ± 0.001 0.758 ± 0.005 0.884 ± 0.001

SimBoostQuant 0.36 ± 0.001 0.942 ± 0.002 0.680 ± 0.002 0.871 ± 0.004

Table 4 Results on the Metz data set, with the mean and standard deviation from 10 repetitions

RMSE AUC AUPR CI

MF 0.303 ± 0.005 0.895 ± 0.003 0.358 ± 0.011 0.788 ± 0.001

Continuous KronRLS 0.562 ± 0.001 0.943 ± 0.001 0.518 ± 0.003 0.789 ± 0.001

Binary KronRLS – 0.932 ± 0.001 0.565 ± 0.004 –

SimBoost 0.166 ± 0.001 0.958 ± 0.001 0.629 ± 0.003 0.851 ± 0.001

SimBoostQuant 0.249 ± 0.002 0.942 ± 0.002 0.523 ± 0.004 0.813 ± 0.020

Table 5 Results on the KIBA data set, with the mean and standard deviation from 10 repetitions

RMSE AUC AUPR CI

MF 0.382 ± 0.003 0.831 ± 0.002 0.631 ± 0.004 0.792 ± 0.001

Continuous KronRLS 0.620 ± 0.001 0.884 ± 0.001 0.735 ± 0.001 0.792 ± 0.001

Binary KronRLS – 0.904 ± 0.001 0.7660 ± 0.001 –

SimBoost 0.204 ± 0.001 0.907 ± 0.001 0.782 ± 0.001 0.847 ± 0.001

SimBoostQuant 0.299 ± 0.001 0.875 ± 0.001 0.708 ± 0.002 0.796 ± 0.001
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Fig. 3 Prediction from SimBoost against the real values on Davis

Fig. 4 Prediction from SimBoost against the real values on Metz
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Fig. 5 Prediction from SimBoost against the real values on KIBA

Fig. 6 The prediction intervals of two targets from KIBA
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Fig. 7 The relationship between the number of observations and the average width of the prediction intervals, in the KIBA dataset

Fig. 8 Relative feature importance in Davis
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Conclusions

�e majority of the existing cheminformatics methods 

for predicting drug–target interactions perform binary 

classification into binding and non-binding. In this paper 

we proposed the novel read-across method SimBoost 

for the problem of predicting continuous, as opposed 

to binary, drug–target binding affinities. As discussed 

above, continuous values allow the distinction between 

true negatives and missing values, and provide more 

information about the actual strength of protein-com-

pound binding. To the best of our knowledge, SimBoost 

is the first non-linear method for continuous drug–tar-

get interaction prediction, and the first method that also 

computes a prediction interval as a measure of the confi-

dence of the prediction.

In our experiments we compared SimBoost with Kro-

nRLS, the state-of-the-art method for this task, on 

the Davis, Metz, and KIBA datasets. To the best of our 

knowledge, this is the first study where the KIBA data-

set was used for the evaluation of drug–target interac-

tion predictions, and we believe that it should be used in 

future studies as a benchmark set, because of its hetero-

geneous and well-balanced nature.

In summary, our contributions are as follows:

  • We proposed the first non-linear read-across method 

SimBoost for continuous drug–target binding affinity 

prediction. SimBoost takes informative features from 

the drug and target similarities and from a matrix 

factorization model, and trains a gradient boosting 

tree model.

  • We proposed a version of SimBoost, called SimBoost-

Quant, which, using the same features, predicts bind-

ing affinities as well as prediction intervals as a meas-

ure of the confidence of the prediction.

  • We performed extensive experiments on three data-

sets evaluating four performance metrics. �e results 

demonstrate that SimBoost and SimBoostQuant con-

sistently outperform state-of-the-art methods.

It should be noted that while SimBoost is a more accu-

rate method, SimBoostQuant provides important infor-

mation on the confidence of a prediction and, thus, 

explicitly address the Applicability Domain challenge. 

In our opinion, the choice between the two methods is 

essentially a trade-off between slightly more accurate ver-

sus somewhat more informative predictions.
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