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ABSTRACT

SIMD (single instruction multiple data) vector instructions, such as
Intel’s SSE family, are available on most architectures, but are diffi-
cult to exploit for speed-up. In many cases, such as the fast Fourier
transform (FFT), signal processing algorithms have to undergo ma-
jor transformations to map efficiently. Using the Kronecker product
formalism, we rigorously derive a novel variant of the general-radix
Cooley-Tukey FFT that is structured to map efficiently for any vector
length ν and radix. Then, we include the new FFT into the program
generator Spiral to generate actual C implementations. Benchmarks
on Intel’s SSE show that the new algorithms perform better on prac-
tically all sizes than the best available libraries: Intel’s MKL and
FFTW.

1. INTRODUCTION

Most current off-the-shelf and many embedded computing platforms
offer SIMD (single instruction multiple data) vector instructions. A
prominent example is Intel’s SSE family, which enables parallel op-
eration on 2-way double precision, 4-way single-precision, or 8-way
16-bit and 16-way 8-bit fixed-point data types. The potential speed-
up is considerable, so these instructions should be used if highest
performance is desired.

Unfortunately, achieving the possible speed-up with these in-
structions is difficult for all but the simplest computational problems
since many constraints have to be obeyed to get performance. This
includes proper data alignment during computation and the mini-
mization of vector shuffle operations. As a consequence, existing
fast algorithms often cannot be used directly but need to be restruc-
tured to map efficiently to vector architectures. This is certainly true
for fast Fourier transform algorithms (FFTs) that possess a complex
structure and pose a challenge even on platforms without special in-
structions.

In this paper we derive a novel variant of the general-radix
Cooley-Tukey FFT, called general short-vector Cooley-Tukey FFT
that has a structure that maps efficiently onto vector architectures.
The new FFT applies to all radices, i.e., factorizations N = mn of
the input size and for all vector lengths ν. The derivation is done
rigorously using the Kronecker product formalism [1]. In previ-
ous work [2] we had derived a vectorized FFT under the condition
ν2 | N . The extension to arbitrary N is non-trivial.

Further, we included the new FFT into the program generation
and optimization system Spiral [3, 4] to produce actual code for
benchmarking. The benchmarks are against the best available li-
braries FFTW [5, 6] and Intel’s Math Kernel Library (MKL). Both
libraries offer vectorized code but the underlying algorithm is not
(fully) reported in the literature. The results show that our generated
code, based on the new vectorized FFT, outperforms these libraries
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for most sizes. Further, we show that we can successfully (i.e, with
obtaining speed-up) vectorize a larger class of sizes than FFTW.

Organization. Section 2 provides the necessary background on
the FFT, the Kronecker product formalism, and Spiral. The main
contribution of this paper, the new vectorized FFT, is derived in Sec-
tion 3. Benchmarks with generated code conclude the paper in Sec-
tion 4.

2. BACKGROUND

SIMD vector instructions. SIMD extensions like Intel’s MMX
and SSE, Motorola’s AltiVec, and IBM’s VMX (available on the
Cell BE processor) operate on vector registers (64-bit to 128-bit
wide) that are broken into ν-way vectors of smaller data types.
For instance, SSE supports (among other data types) 4-way single-
precision (ν = 4) and 8-way 16-bit integer arithmetic (ν = 8).
SIMD extensions operate most efficiently if data is loaded and stored
in full vectors that are naturally aligned (i.e., loading 16-byte aligned
128-bit words for SSE). Loading and storing of unaligned data and
partial vectors incurs considerable overhead. To make things worse,
loading or storing k out of the ν elements inside a vector, as required
for handling arbitrary FFTs, requires the optimization of each com-
bination of k and ν separately for each architecture.

Discrete Fourier transform. Computing the discrete Fourier
transform (DFT) of an input signal x of length N is equivalent to the
matrix-vector multiplication y = DFTN x, where

DFTN = [ωk`
N ]0≤k,`<N , ωN = e−2πj/N .

Fast Fourier transforms. Various fast Fourier transforms
(FFTs) are available that enable the computation of the DFT with
O(N log(N)) operations for all sizes N . The most important one
is the Cooley-Tukey FFT. It can be expressed as a factorization of
the DFTN into a product of structured sparse matrices provide that
N = mn factorizes. Using the Kronecker, or tensor product nota-
tion [1] this FFT is given by

DFTmn = (DFTm⊗In)Dm,n(Im ⊗DFTn)Lmn
m . (1)

In (1), the stride permutation matrix Lmn
m permutes the input vector

as
in + j 7→ jm + i, 0 ≤ i < m, 0 ≤ j < n.

If x is viewed as an n ×m matrix, stored in row-major order, then
Lmn

m performs a transposition of this matrix. Further, In is the n×n
identity matrix, and the tensor product is defined as

A⊗B = [ak,`B], for A = [ak,`].

Dm,n is a diagonal matrix containing the so-called twiddle factors.
Further matrix notation. For later derivations, we also define

the direct sum of matrices as

A⊕B =

»
A

B

–



and introduce the notation AM = MT AM as well as a generaliza-
tion of In, namely

Im×n =

»
In

Om−n×n

–
, m ≥ n,

Im×n =
ˆ
Im Om×n−m

˜
, m < n.

Here, Om×n is the m× n all-zero matrix. Clearly, In = In×n.
We call any expression that is constructed from the above matri-

ces and operators⊗,⊕, · (product) a formula. For example, the right
hand side of (1) is a formula.

The DFT is a complex transform, but implemented in real arith-
metic. This can be expressed formally using an operator (·). Namely,
if A is a complex m × n matrix, then A is the real 2m × 2n ma-
trix obtained by replacing every entry a = a1 + ja2 with the matrix
[ a1 −a2

a2 a1
]. This way y = Ax becomes equivalent to y′ = Ax′, where

x′, y′ are in the interleaved complex format: x′ contains alternating
the real and imaginary parts of the elements in x. Implementing the
DFT really means implementing y′ = DFTNx′.

Efficient software implementation. When implemented in
software, then, for efficiency, (1) is not performed in the four stages
suggested by the four factors (from right to left: permutation, loop
over smaller DFTs, scaling, loop over smaller DFTs), but instead the
permutation Lmn

m is fused with the subsequent loop, and the scal-
ing by Dm,n as well (as implemented, for example, in the library
FFTW [5]). This increases locality and reduces cache misses.

On parallel or vector architectures, more involved manipulations
of the FFT (1) are necessary to achieve high performance. These
manipulations, and the resulting variants of (1), can also be ex-
pressed using the tensor product notation. Early examples can be
found in [1]. For the latest generation of platforms, [7] optimizes for
shared memory parallelism, and [2] for ν-way vector instructions.
However, [2] requires ν2 | N . The generalization to arbitrary (com-
posite) N is the subject of this paper.

Spiral. Spiral is a program generation and optimization system
for transforms including the DFT [3]. Given a DFT and its size N ,
Spiral expands DFTN recursively using (1) or other FFTs until base
cases (N = 2) are reached. The resulting formula (tensor product
expression) is manipulated as explained in the previous paragraph
and then translated into C code. Based on the runtime of this code,
Spiral changes the initial expansion (e.g., by choosing a different fac-
torization N = mn) and repeats the process. This search eventually
produces an implementation tuned to the given computer.

The derivation of a vectorized FFT in this paper is formalized in
a way that we could include it in Spiral. This way, we could generate
code for this FFT automatically and search over alternatives for the
fastest. More details are in the benchmark Section 4.

3. VECTORIZATION OF NON-TWOPOWER SIZES

Our goal is to derive a vectorized version of the Cooley-Tukey
FFT (1) for any factorization N = mn and vector length ν. Our
approach is as follows:

• We identify basic building blocks, which are formulas that
can be efficiently mapped to vector code. The idea is that
then any formula that consists exclusively of these constructs
can be mapped as well.

• We identify a set of formula identities such that the applica-
tion to (1) transforms the FFT into a vectorized FFT.

• Finally, we show the obtained vectorized FFT and discuss its
structure.

The goals for the final FFT are 1) to make sure all arithmetic is per-
formed using vector instructions on properly aligned data; and 2) to
minimize the required load/store and shuffle instructions.

We remind the reader that implementing or mapping to code of
a matrix A means for the function y = Ax.

Basic building blocks. We list basic formulas that can be easily
mapped to vector code and that are necessary to vectorize (1).

For any matrix A, the formula

A⊗ Iν (2)

can be translated to vector code by generating scalar code for A and
then replacing all scalar operations in that code by the corresponding
vector operations and scalar variables by ν-way vector variables [2].

The permutations

L2ν
2 , L2ν

ν , Lν2

ν (3)

are the only in-register permutations required to vectorize (1). For
example, on Intel’s SSE and ν = 4, the first two require only two
assembly instructions.

The construct

Imν×n, (m− 1)ν < n < mν, (4)

describes the loading of n consecutive values into m vector registers;
the last mν − n entries of the last vector register are set to zero. In
words, this matrix extends the input vector by zeros to make the
length divisible by ν, and, when implemented, performs the actual
load operation.

The corresponding store operation is the construct

Im×nν , (n− 1)ν < m < nν, (5)

which writes m consecutive memory locations from n vector reg-
isters. The last nν − m entries of the last vector register are not
written.

We introduce the operator (.)n,ν to transform complex diagonal
matrices into vectorizable formulas:

Dn,ν
m,n = D

(Im⊗In×νdn/νe)(Imdn/νe⊗L2ν
ν )

m,n . (6)

This somewhat complicated looking transformation first extends D
with zeros to have a size divisible by ν. Then it permutes rows and
columns simultaneously so the non-zero pattern is the same as that of
Im⊗dn/νe⊗A2⊗Iν , which matches (2) and can thus be implemented
using vector operations only.

From the above formulas, we can build more complex ones that
can still be mapped to ν-way vector code. This is captured in the
following definition.

Definition 1 We call a formula vectorized if it is either of the form
(2)–(6), or of the form

Im ⊗A or AB, (10)

where A and B are vectorized.

As examples, consider ν = 4 and a 2 × 2 matrix A2. The
formula A2 ⊗ I3 is not vectorized; the formula (A2 ⊗ I4)L

8
2I8×7 is

vectorized.
Formula identities. We list the necessary formula identities to

vectorize (1). They are divided into 3 classes:

• The vectorization rules (7)–(9) (Table 1) perform the actual
vectorization of formulas.



Am ⊗ In →
`
(Am ⊗ Idn/νe)⊗ Iν

´Im⊗Iνdn/νe×n (7)

(Im ⊗An)Lmn
m →

“
Im×νdm

ν e ⊗ In×νdn
ν e
”
L

ν2dm
ν edn

ν e
νdn

ν e
““

Iνdm
ν edn

ν e×ndm
ν e
`
An ⊗ Idm

ν e
´”⊗ Iν

”“
In ⊗ Iνdm

ν e×m

”
(8)

Lmn
m → `

Lmn/ν
m ⊗ Iν

´`
Imn/ν2 ⊗ Lν2

ν

´`
(In/ν ⊗ Lm

m/ν)⊗ Iν

´
(9)

Table 1. Vectorization rules.

AB → A B (12)

Im ⊗An → Im ⊗An (13)

Am ⊗ Iν →
`
Am ⊗ Iν

´Im⊗L2ν
2 (14)

Dm,n →
`
Dn,ν

m,n

´Im⊗((Idn/νe⊗L2ν
2 )(Iνdn/νe×n)) (15)

Im×n → I2m×2n (16)

L
ν2

ν → `
I2 ⊗ Lν2

ν

´(L2ν
2 ⊗Iν)(Iν⊗L2ν

2 ) (17)

Table 2. Complex arithmetic rules.

(Am ⊗Bn)(Am ⊗ Cn) → Am ⊗BnCn (18)

L2ν
2 L2ν

ν → I2 ⊗ Iν (19)
(Am ⊕On)Im+n×m Im×m+n → (Am ⊕On) (20)

Table 3. Simplification rules.

• The complex arithmetic rules (12)–(17) (Table 2) handle the
data conversion from complex formulas to real formulas op-
erating on vectors in the interleaved complex format and min-
imize the resulting data shuffling.

• The simplification rules (18)–(20) (Table 3) minimize the
number of shuffle operations and partial vector loads/stores.

As a simple example of formula vectorization, consider again
ν = 4 and DFT2⊗I3, which expresses a loop with 3 iterations
(here, DFT2 is considered as a operating on a real input). We use
(7) to vectorize:

DFT2⊗I3 → (I2 ⊗ I3×4)(DFT2⊗I4)(I2 ⊗ I4×3). (11)

(I2⊗ I4×3) loads two times 3 elements into a 4-way vector, zeroing
the last element. (DFT2⊗I4) adds and subtracts both 4-way vec-
tors. (I2 ⊗ I3×4) stores the first 3 elements of each 4-way vector
consecutively to memory.

Vectorized FFT. We now derive a vectorized Cooley-Tukey
FFT for any ν and factorization N = mn. Due to space limitations,
we only sketch the derivation and spend more time in interpreting
the result.

The starting point is
DFTN . (21)

First, we expand (21) using (1) to expand the larger DFT into smaller
DFTs. In the next step the vectorization rules (7)–(9) vectorize all
factors in (1). Then, rules (12)–(17) translate the complex formula
into its corresponding real version. Finally, rules (18)–(20) simplify
the formula and drop base cases involving loads/stores or shuffles
wherever possible. The result is the FFT in Table 5, which we call
the general short vector Cooley-Tukey FFT algorithm. It is para-
meterized by the vector length ν. Inspection shows that each of the
factors (23)–(30) is indeed vectorized in the sense of Definition 1.
Note, that (23)–(30) is vectorized independent of how the smaller
DFTm and DFTn are further expanded using, for example, again

DFTmn =
`
Im ⊗ I2n×2νdn

ν e
´

(23)
`
Imdn

ν e ⊗ L2ν
ν

´
(24)

`
(DFTm⊗Idn

ν e)⊗ Iν

´
Dn,ν

m,n (25)
“`

Im×νdm
ν e ⊗ I2dn

ν e
´⊗ Iν

”
(26)

Pm,n (27)““
Iνdm

ν edn
ν e×ndm

ν e
`
DFTn ⊗ Idm

ν e
´”⊗ Iν

”
(28)

`
Indm

ν e ⊗ L2ν
2

´
(29)

`
In ⊗ I2νdm

ν e×2m

´
(30)

Table 5. Short-vector Cooley-Tukey FFT for any ν and N = mn.
The permutation Pm,n is shown in Table 4.

(1) or a prime-factor or Rader FFT. In other words, (23)–(30), as (1),
spans an entire set of algorithms that can be searched for the fastest,
which is exactly what Spiral does (see also the discussion below).
Also note that, as in (1), the occurring shuffle operations are never
explicitly performed but converted into readdressing or fused with
vector load and store operations.

We discuss the factors in Table 5 in the order they are performed
from bottom to top. The input vector (of length 2N = 2mn) is ini-
tially in the interleaved format. (30) expands m, and thus the length
of the input vector to be divisible by ν. (29) converts into vector
interleaved format (ν real parts followed by ν imaginary parts and
so on). (28) performs a perfect vectorized computation on aligned
vectors and in its last step expands n to be divisible by ν. (27) is
a permutation that operates on entire vectors except for Lν2

ν at its
core. (26) contracts m. (25) performs a perfect vectorized compu-
tation on aligned vectors. (24) converts from vector interleaved to
interleaved format. (23) extracts and stores the relevant parts of the
results, contracting n.

Spiral. For implementations purposes, the main task was to
identify the transformations in Tables 1–3. We included them into
Spiral’s formula rewriting system, so Spiral derives autonomously
the vectorized FFT in Table 5, further expands the smaller DFTs in
different ways, generates the actual C code including vector instruc-
tions, and searches for the fastest implementation. Benchmarks with
the generated code using our new vectorized FFT are shown next.

4. EXPERIMENTAL RESULTS

Benchmark setup. We evaluated our vectorization method on a 3.6
GHz Intel Pentium 4 running Windows XP, and were using the Intel
C++ compiler 8.1 with options “-O3 -QxKWP”. We evaluated both
the 4-way single-precision float and the 8-way 16-bit integer mode
of the SSE vector instruction set.

All Spiral DFT programs are automatically generated and



Pm,n =
““

L
νdm

ν edn
ν e

νdm
ν e ⊗ I2

”
⊗ Iν

”“
Idm

ν edn
ν e ⊗

`
(L2ν

ν ⊗ Iν)
`
I2 ⊗ Lν2

ν

´
(L2ν

2 ⊗ Iν)
´”““`

Idn
ν e ⊗ L

νdm
ν e

dm
ν e

´⊗ I2

”
⊗ Iν

”
(22)

Table 4. Intermediate shuffle in the general short-vector Cooley-Tukey FFT (Table 5).

(a) Performance: 4-way single-precision floating-point SSE (c) Performance: 8-way 16-bit integer SSE
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(b) Speed-up: 4-way single-precision floating-point SSE (d) Speed-up: 8-way 16-bit integer SSE
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Fig. 1. Complex DFT on a 3.6 GHz Pentium 4: (a) and (c) Performance of scalar (x86/x87) and vectorized (SSE) Spiral-generated code,
FFTW 3.1.0, and Intel MKL 8.1 (the latter two are not available for integer code); (b) and (d) Speed-up of SSE version over scalar version
for Spiral-generated code and FFTW 3.1.0 (in (b) only). Higher is better in all plots.

adapted through Spiral’s search mechanism. Specifically for SSE,
this means that Spiral first chooses a split (1), then rewrites into
the form in Table 5, and then has further freedom in expanding the
smaller DFTs in (25) and (28) using also prime-factor and Rader
FFTs.

We compare our generated programs to the SSE version of
FFTW 3.1.0 (pre-built Windows library available at fftw.org), and
to the vendor library Intel Math Kernel Library (MKL) 8.1. Both
libraries only provide vectorized floating-point code (except two-
power sizes in MKL). We report performance in “pseudo Mflop/s”
(float) and “pseudo Mfpop/s” (integer). Both are computed for
DFTN by (5N log2 N)/t, where t is the runtime in microseconds.
Speed-up is computed by tscalar/tvector. Thus, in all performance met-
rics, higher is better.

Fig. 1 summarizes the results. We evaluated all composite prob-
lem sizes N ≤ M , where M = 64 for float and M = 100 for 16-bit
integer, with all prime factors p < 16.

Comparison to FFTW and MKL. Spiral-generated 4-way vec-
tor code is faster than FFTW and MKL for almost all considered
sizes (Fig. 1(a)) and achieves a speed-up over the scalar (x87) code
for all expect the smallest sizes. The same holds for the integer code
(Fig. 1(c)). Thus, our vectorization methods works in general.

The actual speed-up obtained through vectorization over the
scalar code is shown in Figs. 1(b) and (d). Again, they show a speed-
up for Spiral for all except the smallest sizes. FFTW, for 4-way float,
achieves a vectorization speed-up only for even sizes and is roughly
comparable to Spiral only for sizes divisible by 4.
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