
Electronic Journal of Statistics

Vol. 3 (2009) 318–348
ISSN: 1935-7524
DOI: 10.1214/08-EJS341

SIMEX and standard error estimation

in semiparametric measurement error

models

Tatiyana V. Apanasovich

Division of Biostatistics, Thomas Jefferson University
Philadelphia, PA 19107

Raymond J. Carroll

Department of Statistics,Texas A&M University
College Station, TX 77843

and

Arnab Maity

Department of Biostatistics, Harvard School of Public Health
Boston, MA 02115

Abstract: SIMEX is a general-purpose technique for measurement error
correction. There is a substantial literature on the application and the-
ory of SIMEX for purely parametric problems, as well as for purely non-
parametric regression problems, but there is neither application nor theory
for semiparametric problems. Motivated by an example involving radiation
dosimetry, we develop the basic theory for SIMEX in semiparametric prob-
lems using kernel-based estimation methods. This includes situations that
the mismeasured variable is modeled purely parametrically, purely non-
parametrically, or that the mismeasured variable has components that are
modeled both parametrically and nonparametrically. Using our asymptotic
expansions, easily computed standard error formulae are derived, as are the
bias properties of the nonparametric estimator. The standard error method
represents a new method for estimating variability of nonparametric esti-
mators in semiparametric problems, and we show in both simulations and
in our example that it improves dramatically on first order methods.

We find that for estimating the parametric part of the model, standard
bandwidth choices of order O(n−1/5) are sufficient to ensure asymptotic
normality, and undersmoothing is not required. SIMEX has the property
that it fits misspecified models, namely ones that ignore the measurement
error. Our work thus also more generally describes the behavior of kernel-
based methods in misspecified semiparametric problems.
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1. Introduction

Regression models with measurement errors arise frequently in practice and
have attracted attention in the statistics literature. A semiparametric regression
model with errors in variable has been considered by several authors in the
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attempt to develop a measurement error calibration when the errors are in
the linear part of linear regression [17], or generalized linear regression [18].
[43] used a method of moments and deconvolution to construct the calibration
for the case of partially linear models when the mismeasured covariate appears
in parametric and nonparametric parts. SIMEX has considered only in the case
of partially linear model and when the measurement errors are in the linear part
[13]. However, we are after very general results, and are not restricting attention
to simple partially linear models.

Indeed, the purpose of this paper is to derive the general theory for a pop-
ular alternative to regression-calibration, a simulation-extrapolation method
(SIMEX) in the situations where the mismeasured variable is modeled purely
parametrically, purely nonparametrically, or that the mismeasured variable has
components that are modeled both parametrically and nonparametrically.

The SIMEX method [8, 37] is a general-purpose, widely applicable method for
correcting parameter estimates for the biases induced by measurement error in
covariates. It is a functional method, in the sense that it makes no assumptions
about the distribution of the unobserved true covariate.

A major strength of SIMEX is that it is extremely easy to implement: it
requires only a program for computing estimates in the absence of measure-
ment error, and the ability to simulate adding additional measurement error
to the process. A brief description of the method is given in Section 2: many
more details are available in [4]. There is a suite a programs for implementing
SIMEX in Stata, as well as in R at http://cran.r-mirror.de/src/contrib/
Descriptions/simex.html.

SIMEX has found many applications in parametric modeling, e.g., biostatis-
tics and epidemiology [10, 25, 26], ecology [11, 12, 14, 36], data confidentiality
[16] and longitudinal modeling [19, 41, 42]. SIMEX has also found application
in local polynomial nonparametric regression and in spline-based methodology
[2, 3, 9, 38].

While SIMEX is well-studied in purely parametric and purely nonparametric
problems, to the best of our knowledge, SIMEX was considered only in the case
of partially linear model and when the measurement errors are in the linear part
[13]. In this paper we derive the general theory of SIMEX in semiparametric
problems and describe a simple method to estimate standard errors for both
the parametric and the nonparametric parts of the model. We also describe the
first order bias properties of the nonparametric estimators. We show using our
example that the standard error method improves dramatically on first order
methods for estimating standard errors of the nonparametric components, and
is thus of importance even when there is no measurement error.

An outline of this paper is as follows. In Section 2, we briefly define the
SIMEX method. Section 3 briefly describes well-known standard estimation
algorithms appropriate to semiparametric estimation. Sections 4 and 5 state
the main results for the cases that the variable measured with error is mod-
eled nonparametrically and parametrically, respectively. In the latter section
we also add a brief discussion of what happens when the mismeasured variable
is in both parts of the model. Importantly, both these sections describe sim-

http://cran.r-mirror.de/src/contrib/Descriptions/simex.html
http://cran.r-mirror.de/src/contrib/Descriptions/simex.html
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ple methods for constructing standard error estimates of both parametric and
nonparametric components, ones that in our example and simulations improve
greatly upon first order methods. Section 6 presents a simulation study to eval-
uate the performance of SIMEX itself and more importantly our approach to
variance estimation in semiparametric problems. In Section 7, we describe an
important, complex problem in radiation epidemiology involving measurement
error. Section 8 gives concluding remarks. All technical details are sketched in
an Appendix.

2. SIMEX

The SIMEX method is both well-known and straightforward. Suppose we have
a problem in which the predictor X cannot be observed, but we observe W =
X + U , where U = Normal(0, Σu). Some components of U may equal zero
indicating no measurement error in that component. Consider a set of values
0 = λ1 < λ2 · · · < λJ .

• In the simulation step, additional independent measurement errors with
covariance matrix λjΣu are generated and added to the original W data,
thereby creating data sets with successively larger measurement error
variances. For the jth data set, the total measurement error variance is
Σu + λjΣu = (1 + λj)Σu.

• Next, estimates are obtained from each of the generated contaminated
data sets, using an algorithm that would have been used if there were no
measurement error, i.e., one’s favorite method.

• The simulation and estimation steps are repeated a large number B times,
and the average value of the estimate for each level of contamination λj

is calculated. These averages are plotted against the λ values and a re-
gression technique, for example, polynomial least squares, is used to fit an
extrapolant function to the averaged, error-contaminated estimates.

• Extrapolation to the ideal case of no measurement error (λ = −1) yields
the SIMEX estimate.

Remark 1 In general parametric problems, the “favorite method” will be equiv-
alent to solving an estimating function. Because of the measurement error in X,
the estimating function is biased because the underlying model is misspecified.
This causes no difficulty, since it is well-known what happens to estimating func-
tion methods for misspecified models. Similarly, in nonparametric regression, the
“favorite method” will be equivalent to solving a local estimating equation, and
the same general remarks apply.

Remark 2 Semiparametric problems, in contrast, combine global and local es-
timating equations, and their properties under misspecified models are not well-
understood. For example, see Ai and Chen (2007), for a sieve-based approach
to this general issue. Our work can be looked at as addressing the problem is
misspecified semiparametric models within the kernel framework, which is then
applied to the SIMEX algorithm itself.
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3. Likelihood functions and estimators

This paper considers a wide class of semiparametric problems with some co-
variates modeled parametrically and one covariate entering the model through
a nonparametric function. Important examples of such model are the partially
linear model and partially linear logistic model considered in Section 6. For ex-
ample, with X measured with error and Z measured exactly, and H(·) being the
logistic distribution function, the partially linear logistic models with response
Y can take either of two forms:

pr(Y = 1|X, Z) = H{XTβ + θ(Z)};

pr(Y = 1|X, Z) = H{ZTβ + θ(X)}.

In the first model, the variable measured with error is modeled parametrically,
while in the second model it is modeled nonparametrically. We will derive results
for both cases, and of course for much more general models.

SIMEX is based on repeatedly adding more measurement error and then
calculating a standard estimator on this remeasured data set. In this section,
we describe the well-known standard basic profile algorithm when estimation
in the no-measurement error context is based upon maximization of a crite-
rion function, e.g., a loglikelihood function. We will phrase things in terms of
loglikelihoods, but as in [20], the case of any criterion function is similar.

Let K(·) be a smooth symmetric density function with bounded support, let
h be a bandwidth, and let Kh(z) = h−1K(z/h). Define φk =

∫
zkK(z)dz and

Gh(z) = (1, z/h)T.
Here we follow a traditional notation from the measurement error literature,

where Y denotes the response, X denotes the covariate(s) measured with er-
ror and Z denotes the other covariate(s). Likelihood problems take two forms,
depending on whether X is modeled parametrically or nonparametrically. In
the former case, the loglikelihood is L{Y, X, θ(Z), β}, while in the latter the
loglikelihood is L{Y, Z, θ(X), β}.

To handle both of these cases, we define generic random variables (A,D),
and consider the loglikelihood as L{Y,A, θ(D), β}, where D is scalar. For our
notation about derivatives, make the following definitions:

Lθ{Y,A, θ(D), β} = (∂/∂v)L(Y,A, v, β)|v=θ(D);

Lβ{Y,A, θ(D), β} = (∂/∂β)L{Y,A, θ(D), β};

Lθθ{Y,A, θ(D), β} = (∂2/∂v2)L(Y,A, v, β)|v=θ(D),

etc. Then, for any β∗, we estimate θ(·) by θ̂(z0, β∗) via standard local likelihood
estimation [5]. We consider a local linear estimator, which is (1, 0) × α, where
α solves the local loglikelihood score equation

0 = n−1
n∑

i=1

Kh(Di − z0)G
T
h (Di − z0)Lθ{Yi,Ai, G

T
h (Di − z0)α, β∗}. (1)



T.V. Apanasovich et al./SIMEX in semiparametric models 323

In general, θ̂(z0, β∗) converges to θ(z0 , β∗), where

0 = E [Lθ{Y,A, θ(z0, β∗), β∗}|D = z0] . (2)

By differentiation of (2), the derivative of θ(z0 , β∗) with respect to β∗, call it
θβ(z0, β∗), satisfies

θβ(z0, β∗) = −
E [Lθβ{Y,A, θ(z0, β∗), β∗}|D = z0]

E [Lθθ{Y,A, θ(z0, β∗), β∗}|D = z0]
. (3)

The profile method maximizes
∑n

i=1 L{Yi,Ai, θ̂(Di, β), β} in β. Let θ̂β(z0, β) be

the derivative of θ̂(z0, β) with respect to β. Then profiling is equivalent to solving
the equation

0 = n−1
n∑

i=1

[
Lβ{Yi,Ai, θ̂(Di, β), β} + θ̂β(Di, β)Lθ{Yi,Ai, θ̂(Di, β), β}

]
.

The solution, β̂, converges to βPF, which satisfies

0 = E [Lβ{Y,A, θ(D, βPF), βPF} + θβ(D, βPF)Lθ{Y,A, θ(D, βPF), βPF}] ,

and because of (2), this means that βPF , satisfies

0 = E [Lβ{Y,A, θ(D, βPF), βPF}] . (4)

Remark 3 For estimating βPF, it is known that the profile estimate of βPF is
asymptotically normally distributed when the bandwidth h ∝ n−a for 1/5 ≤
a ≤ 1/3, and that the optimal rate for estimating θ(·) is h ∝ n−1/5. See [20] for
an definition and discussion of an alternative backfitting approach.

4. SIMEX when X is modeled nonparametrically

4.1. Introduction and theoretical development

In the SIMEX problem, we have a response Y , predictors Z measured without
error and a predictor X measured with error. The loglikelihood or criterion
function for the case considered in this section is L{Y, Z, θ(X), β}. In what
follows, we will simply state the results, which follow from Results 3 and 4 in
the Appendix, see also Sections A.6 and A.7. The basic conditions for these
results are stated in Section A.2.

In SIMEX, for b = 1, . . . , B with B fixed but large, we observe Wib(λ) =
Wi + λ1/2Uib, where Wi = Xi + Ui, Ui = Normal(0, Σu) and the simulated
random variables Uib = Normal(0, Σu). We then apply profile likelihood for
each b and each λ where we replace Xi by Wib(λ).

Let fW (x0, λ) be the density function of Wb(λ). Define β(λ) and θ{x0, β(λ), λ}
as the solutions to

0 = E (Lβ[Y, Z, θ{Wb(λ), β(λ), λ}, β(λ)]) ; (5)

0 = E (Lθ[Y, Z, θ{x0, β(λ), λ}, β(λ)]|Wb(λ) = x0) .
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In the SIMEX algorithm, for any λ and for b = 1, . . . , B, let the parameter
and function estimates be denoted as β̂b(λ) and θ̂b(·, β̂b(λ), λ), respectively. Then

average these estimators to form β̂(λ) = B−1
∑B

b=1 β̂b(λ) and, in a slight abuse

of notation, θ̂{·, β̂(λ), λ} = B−1
∑B

b=1 θ̂b{·, β̂b(λ), λ}.
For convenience, we phrase the result as based on polynomial extrapolation,

with more general cases requiring only changes in notation. In this case, we set
up a grid of λ values, say (0 = λ1 < λ2 < · · · < λJ), and it is obvious that
extrapolating a polynomial regression back to -1 makes the SIMEX estimators
take the form

β̂simex =

J∑

j=1

sj β̂(λj); θ̂simex(x0) =

J∑

j=1

sj θ̂{x0, β̂(λj), λj} (6)

for some fixed constants sj , and these have limiting values

βsimex =

J∑

j=1

sjβ(λj); θsimex(x0) =

J∑

j=1

sjθ{x0, β(λj), λj}. (7)

For example, suppose that J = 5 and that the λ-values are (0.0, 0.5, 1.0, 1.5, 2.0).

If we fit a quadratic model β̂(λ) = a0 + a1λ + a2λ
2, the SIMEX extrapolant at

λ = −1 is a0−a1 +a2, and the values (s1, . . . , sJ) = (3.0,−0.4,−1.8,−1.2, 1.4).
Also define

θβ{x0, β(λ), λ} = −
E (Lθβ[Y, Z, θ{x0, β(λ), λ}, β(λ)]|Wb(λ) = x0)

E (Lθθ[Y, Z, θ{x0, β(λ), λ}, β(λ)]|Wb(λ) = x0)
;

Σ(λ) = E
[
E {Lββ(•)|Wb(λ)}

+ E {Lβθ(•)|Wb(λ)} θT
β {Wb(λ), β(λ), λ}

]
;

ΩW {x0, β(λ), λ} = E {Lθθ(•)|Wb(λ) = x0} ,

where here the argument (•) = [Y, Z, θ{Wb(λ), β(λ), λ}, β(λ)]. Make the further
definitions

{•ib(λ)} = [Yi, Zi, θ{Wib(λ), β(λ), λ}, β(λ)];

ξi,B(λ) = −B−1
B∑

b=1

[Lβ{•ib(λ)} + θβ{Wib(λ), β(λ), λ}Lθ{•ib(λ)}] ;

χi,B(λ) = B−1
B∑

b=1

Lθ{•ib(λ)}.

Result 1 For fixed B and as n → ∞, we have the asymptotic expansion

β̂simex = βsimex − n−1
n∑

i=1

J∑

j=1

sjΣ
−1(λj)ξi,B(λj) + op(n

−1/2). (8)
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The nonparametric estimator differs from θsimex(x0) with large sample bias given
as

bias = (φ2h
2/2)

J∑

j=1

sjθ
(2){x0, β(λj), λj}.

Finally, since B can be made as large as we want, terms of order O{(Bnh)−1 +
n−1} are much smaller than terms of order O{(nh)−1}. Ignoring these terms,
the limiting variance is given as

variance =

∫
K2(z)dz

nhfW (x0, 0)
s2
1var

[
χi,B(0)

ΩW {x0, β(0), 0}

∣∣∣∣W = x0

]
. (9)

4.2. Standard error estimation

4.2.1. Estimation for the nonparametric part

At first glance, estimating the variance in (9) is quite easy, because its form
only depends on the case that λ = 0 through s2

1, and standard techniques apply.
This unique result is a generalization of a result found by [3] for the Gaussian
nonparametric case. Asymptotically, the variance of the SIMEX estimate is just
a factor s2

1 larger than the variance of nonparametric regression that ignores
measurement error. As described above, with quadratic extrapolation and the
λ-values (0.0, 0.5, 1.0, 1.5, 2.0), s1 = 3 and the SIMEX estimate is asymptotically
9 times more variable than the estimate that ignores measurement error.

However, as we demonstrate numerically in Sections 6 and 7, this asymptotic
result, while interesting, is not useful in finite samples.

In the case of classical nonparametric regression, [38] recognized that the
SIMEX estimator is linear in the (Yi), so that an explicit expression of its vari-
ance is available if var{Y |Wb(λ)} is known: they then estimate var{Y |Wb(λ)}.
In our case, not only do we have the issue of the parametric component, but
also there is no closed-form formula for the variance of the SIMEX estimator.

In order to get roughly believable standard errors, we turn to the theory,
particularly to equations (8) and (A.6) of the appendix, the former being an
asymptotic expansion for the parametric part, the latter for the nonparametric
part. The estimate of the nonparametric function is just

θ̂simex(x0) =
∑

j

sjB
−1

B∑

b=1

θ̂b{x0, β̂b(λj), λj},

and to create reasonable standard error estimates we need to account for the
variability in β̂b(λj) via (8), the variability in θ̂b{x0, β(λj), λj} via (A.6) and the

fact that the number of SIMEX steps B is finite. Define β̂(λj) = B−1
∑B

b=1 β̂b(λj).

Using a Taylor series involving β̂b(λj), these formulae imply that for fixed B,
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a consistent estimate of the variance of the estimator θ̂simex(x0) (see appendix
A.6.1 for details) is n−1 times the sample variance of the terms

J∑

j=1

sj
B−1

∑B
b=1 Kh{Wib(λj) − x0}Lθ(•̂ib)

(nB)−1
∑n

r=1

∑B
b=1 Kh{Wrb(λj) − x0}Lθθ(•̂rb)

(10)

+

J∑

j=1

sj θ̂
T
β (x0, β̂(λj), λj}Σ̂

−1(λj)ξ̂i,B(λj),

where •̂ib is the estimated version of •ib and Σ is estimated by its sample coun-
terpart Σ̂. Asymptotically, if B = ∞ and there are only a finite number of
λ-values, only the first term with j = 1 contributes to the first order variance,
but we found in both the simulations of Section 6 and the empirical example in
Section 7 that ignoring the other terms causes an underestimation of standard
error by as much as 50%. In our numerical work we estimate the variance as an
average of squares of terms from (10).

4.2.2. Estimation for the parametric part

Define Tjk = cov{ξi,B(λj), ξi,B(λk)}. Then the asymptotic covariance matrix for

β̂simex is just n−1
∑J

j,k=1 sjskΣ−1(λj)TjkΣ
−1(λk), so that we need to estimate

Σ(λ) and Tjk. Estimation of these two terms is relatively straightforward via
plug-in methods. For example, constituent terms such as E{Lββ(•ib)|Wib(λ)}
can be estimated by pooling across b = 1, . . . , B and using nonparametric regres-
sion of Lββ [Yi, Zi, θ{Wib(λ), β̂(λ), λ}, β̂(λ)] on the Wib(λ). In practice, to save
storage requirements, one can use only a few of the SIMEX samples, do the
parametric regression on a wide grid, and then interpolate for the other SIMEX
samples. Having estimated the terms ξi,B(λj), then Tjk can be estimated via
the sample covariance of ξi,B(λj) and ξi,B(λk)

In practice, there is often little need to adjust the standard errors for the
estimation of the nonparametric component. The reason is that the semipara-
metric profile algorithm involves a projection similar to that which occurs in
parametric problems.

5. SIMEX when X is modeled parametrically

5.1. Introduction and theoretical development

Here we consider the case that X is modeled parametrically and scalar Z is
modeled nonparametrically. The loglikelihood or criterion function then takes
the form L{Y, X, θ(Z), β}.

For any λ, define β(λ) and θ{z0 , β(λ), λ} as the solutions to

0 = E (Lβ[Y, Wb(λ), θ{Z, β(λ), λ}, β(λ)]) ;

0 = E (Lθ[Y, Wb(λ), θ{z0, β(λ), λ}, β(λ)]|Z = z0) ,
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the values to which the profile likelihood estimates converge for given λ. Also
define

θβ{z0, β(λ), λ} = −
E {Lθβ(•)|Z = z0}

E {Lθθ(•)|Z = z0}
;

Σ(λ) = E
[
E {Lββ(•)|Z} + E {Lβθ(•)|Z} θT

β {Z, β(λ), λ}
]
;

ΩZ{z0, β(λ), λ} = E {Lθθ(•)|Z = z0} ,

where here the argument (•) = [Y, Wb(λ), θ{Z, β(λ), λ}, β(λ)]. Further, make
the definitions

{•ib(λ)} = [Yi, Wib(λ), θ{Zi, β(λ), λ}, β(λ)] ;

ξi,B(λ) = −B−1
B∑

b=1

[Lβ{•ib(λ)} + θβ{Zi, β(λ), λ}Lθ{•ib(λ)}] ;

χi,B(λ) = B−1
B∑

b=1

Lθ{•ib(λ)}.

By definition, ξi,B(λ) has mean zero, while χi,B(λ) has mean zero conditional
on Zi.

Let the estimators for any b and any λ be denoted as β̂b(λ) and θ̂b{z0, β̂b(λ), λ},

respectively. Average these estimators across b = 1, . . . , B to form β̂(λ) =

B−1
∑B

b=1β̂b(λ) and θ̂{z0, β̂(λ), λ} = B−1
∑B

b=1θ̂b{z0, β̂b(λ), λ}. The estimators
and their limit values again take the forms (6) and (7), respectively.

Result 2 For fixed B and as n → ∞, we have the asymptotic expansion

β̂simex = βsimex − n−1
n∑

i=1

J∑

j=1

sjΣ
−1(λj)ξi,B(λj) + op(n

−1/2). (11)

The nonparametric estimator differs from θsimex(z0) with large sample bias and
variance

bias = (φ2h
2/2)

J∑

j=1

sjθ
(2){z0, β(λj), λj};

variance =

∫
K2(z)dz

nhfZ(z0)
var

[
J∑

j=1

sj
χi,B(λj)

ΩZ{z0, β(λj), λj}
|Z = z0

]
. (12)

5.2. Standard error estimation

Result 2 and the expansions given in the Appendix make it easy to construct
asymptotically correct variance and standard error estimates.
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5.2.1. Estimation for the nonparametric part

Calculation of an asymptotic variance estimate for θsimex(z0) follows a simi-
lar strategy as in Section 4.2.1. In the form of the variance given in (12), the
density function fZ(·) can be estimated by any kernel density estimate. To es-
timate ΩZ{z0, β(λ), λ}, first form the averages over b = 1, . . . , B of the terms

Lθθ[Yi, Wib(λ), θ{Zi, β̂(λ), λ}, β̂(λ)] and then regress these averages on Z via
nonparametric regression. Let χ̂i,B(λ) being the obvious estimate of χi,B(λ).

As in the technical arguments in Section A.6, the analogue of Section 4.2.1 is
to estimate the variance of θ̂simex(z0), while taking into account the estimation
of the parametric part, as the sample variance of the following terms:

J∑

j=1

sj
Kh(Zi − z0)χ̂i,B(λj)

n−1
∑n

p=1 Kh(Zp − z0)Ω̂Z{z0, β̂(λj), λj}

+

J∑

j=1

sj θ̂
T
β {z0, β̂(λj), λj}Σ̂

−1(λj)B
−1

×

B∑

b=1

[
Lβ{•̂ib(λj)} + θ̂β{z0, β̂(λj), λj}Lθ{•̂ib(λj)}

]
.

5.2.2. Estimation for the parametric part

First consider β̂simex and define Tjk = cov{ξi,B(λj), ξi,B(λk)}. Then the asymp-

totic covariance matrix for β̂simex is just n−1
∑J

j,k=1 sjskΣ−1(λj)TjkΣ
−1(λk),

so that we need to estimate Σ(λ) and Tjk. The former can be done by simple
plug-in methods which we describe next. For any λ, use the averages of the
B SIMEX replicates to form Lββ(•), Lβθ(•) and Lθθ(•), then do nonparamet-
ric regression on each to form E{Lββ(•)|Z}, E{Lβθ(•)|Z} and θβ{Z, β(λ), λ},
form E{Lββ(•)|Z}−E{Lβθ(•)|Z}θT

β {Z, β(λ), λ}, and average over Z to get the
estimate of Σ(λ).

The terms Tjk are also readily estimated via plug-in rules. Let ξ̂i,B(λj) is the
obvious estimate of ξi,B(λj). Then Tjk can be estimated as the sample covariance

matrix between ξ̂i,B(λj) and ξ̂i,B(λk).

5.3. When both X and Z are mismeasured

Our results also apply to the case that both X and Z are subject to measurement
error. Consider the problem in Section 4 that Z is modeled parametrically,
and that X is modeled nonparametrically. Suppose that instead of observing
X we observe W = X + U , instead of Z we observe V = Z + V , and that
(V T, U)T = Normal(0, Σvu). Let {VT

ib(λ), Wib(λ)} = (VT
i , Wi) + λ1/2(V T

ib , Uib),
where (V T

ib , Uib)
T = Normal(0, Σvu). Then all the results in Section 4, including
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standard error estimation, go through if Z is replaced everywhere by Vb(λ).
Thus, for example, we replace (5) by

0 = E (Lβ[Y,Vb(λ), θ{Wb(λ), β(λ), λ}, β(λ)]) .

Similar substitutions are made everywhere else.

6. Simulations

6.1. The partially linear model

We generated data following the partially linear model

Yi = ZT
i β0 + θ0(Xi) + ǫi.

We take the true values as β0 = (1, 1)T and θ0(x) = 0.5 ∗ cos(2 ∗ x). In addition
ǫ = Normal(0, 1) and X = Uniform(0, π). We generated Z = (Z1, Z2)

T from
a Normal distribution with identity covariance matrix and conditional mean
E(Z1 |X) = E(Z2|X) = X. We assumed that the nonparametrically modeled
variable X is measured with error, that is, we observe W = X + U with U =
Normal(0, σ2

u) with σ2
u = 0.16. The sample size was n = 200. Nonparametric

regression was performed using the Epanechnikov kernel with bandwidth h =
σ̂wn−1/5, where σ̂w is the standard deviation of the observed predictors W .
We generated 1, 000 data sets and for each of the generated data sets, we used
B = 200 SIMEX simulated data sets and used (λ1, . . . , λ5) = (0.0, 0.5, . . . , 2.0).
We considered both quadratic and cubic extrapolants with similar results: only
the quadratic extrapolant results are given here as the same general conclusions
applied in the cubic case.

Of course, in this context the SIMEX estimates are linear in the responses,
and it is possible to create estimated standard errors for the nonparametric
component estimation using this fact. However, here the purpose is to test the
general method described in Section 4.2.1, and not to see whether ad hoc meth-
ods work well.

The estimated pointwise standard errors of SIMEX fits for θ(x) are given in
Figure 1 for quadratic extrapolation. The solid line is our new method of stan-
dard error estimation, the dot-dashed line is the usual pointwise standard error
estimates using our method to account for finite B but ignoring the asymptot-
ically negligible variability of the parametric part (that is, the sample variance
of the first term of (10)), and the dashed line represents the pointwise standard
error across 1,000 simulations. The conclusion is clear: ignoring the variability
of the parametric part leads to a badly biased estimated standard error for the
SIMEX procedure. In contrast, our new method of estimating standard error
gives results more in line with reality.

We have not displayed the “large-B, known β” asymptotic formula (9). How-
ever, that method gave standard error estimates whose mean was grossly too
large, more than double the actual standard errors. See Figure 5 for an example
of this over-estimation in the empirical context of Section 7.
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Fig 1. Results from the simulation study in Section 6.1 for the partially linear model with
measurement error in the covariate modeled nonparametrically. Displayed are the pointwise
estimated standard errors of SIMEX estimate of θ(x) using quadratic extrapolation. Solid
line: our method as described in Section 4.2.1. Dot-dashed line: standard errors when the
variability of the parametric part is not taken into account. Dashed line: pointwise standard

errors of θ̂(z) over 1,000 simulations.

In results not reported here, we also considered standard error estimation for
the parametric part. Our standard error estimates were in very close agreement
with the actual standard deviations from the simulation, and coverage probabil-
ities for the SIMEX limiting value of β also gave very close to nominal coverage
probabilities.

6.2. Partially linear logistic model

We generated data following the logistic model

pr(Y = 1|X, Z) = H{Zβ1 + Z2β2 + θ0(X)},

where H(·) denotes the logistic distribution function. We took the true val-
ues of β1 = β2 = 0.5 and θ0(x) = 0.5 ∗ cos(2 ∗ x) − 1. We generated X from
Uniform(0, π) and Z from a Normal distribution with variance 1.0 and con-
ditional mean E(Z|X) = −X. We assume that the nonparametrically mod-
eled variable X is measured with error, that is, we observe W = X + U with
U = Normal(0, σ2

u) with σ2
u = 0.16. We use sample size n = 500. Nonparametric

regression was performed using the Epanechnikov kernel and we used bandwidth
h = σ̂wn−1/5, where σ̂w is the standard deviation of the observed predictors W .
We generated 2, 000 data sets and for each of the generated data sets, we used
B = 200 SIMEX simulated data sets and took (λ1, . . . , λ5) = (0.0, 0.5, . . . , 2.0).
We considered both quadratic and cubic extrapolants: only the quadratic results
are reported here as the same general conclusions applied in the cubic case.

The estimated pointwise standard errors of SIMEX fits for θ(x) are given in
Figure 2 for quadratic extrapolation. The solid line is our new method of stan-
dard error estimation, the dot-dashed line is the usual pointwise standard error
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Fig 2. Results from the simulation study in Section 6.2 for the logistic partially linear model
with measurement error in the covariate modeled nonparametrically. Displayed are the point-
wise estimated standard errors of SIMEX estimate of θ(x) using quadratic extrapolation. Solid
line: our method as described in Section 4.2.1. Dot-dashed line: standard errors when the vari-
ability of the parametric part is not taken into account. Dashed line: pointwise standard errors

of θ̂(z) over 2,000 simulations.

estimates ignoring the variability of the parametric part (that is, the sample
variance of the first term of (10)), and the dashed line represents the pointwise
standard error across 1,000 simulations. The conclusion is clear: ignoring the
variability of the parametric part leads to a noticeable biased estimated stan-
dard error for the SIMEX procedure, although the bias is not as serious as in
the linear case. In contrast, our new method of estimating standard error gives
results more in line with reality.

In results not reported here, we also considered standard error estimation
for the parametric part. Our standard error estimates were again in very close
agreement with the actual standard deviations from the simulation, and cov-
erage probabilities for the SIMEX limiting value of β also gave very close to
nominal coverage probabilities.

6.3. Why SIMEX?

This section gives some brief numerical evidence of the power of SIMEX in
semiparametric problems. We performed a simulation of a semiparametric model
in which the variable measured with error, X, was modeled parametrically. In
the parametric simulation, we had Z = Uniform [0, π], X = Normal(−1.0, 1.0),
n = 500, β1 = β2 = 0.7, σ2

u = 0.16, var(Y |X, Z) = 0.5 and the model was that
E(Y |X, Z) = g(X, β1, β2)+θ(Z) = −1+β1X +β2X

2 +0.5∗cos(2∗Z). We used
(λ1, . . . , λ5) = (0.0, 0.5, 1.0, 1.5, 2.0), with B = 100 SIMEX simulated data sets
for each λ. Both the quadratic and the cubic extrapolant were considered. For
purposes of mean squared error analysis, we evaluated the estimated function
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Table 1

Results of the simulation for the model
E(Y |X,Z) = g(X, β1, β2) + θ(Z) = −1 + β1X + β2X2 + 0.5 ∗ cos(2 ∗ Z), where X is
measured with error. Here Quadratic and Cubic refer to SIMEX extrapolation via the
quadratic and cubic functions. MSE Efficiency is mean squared error efficiency of the

methods relative to the naive method that ignores measurement error

β1 β2 θ(·)
Mean Absolute Bias Naive 0.250 0.184 0.039

Quadratic 0.030 0.024 0.023
Cubic 0.002 0.004 0.025

MSE Efficiency Quadratic 5.26 10.08 0.85
Cubic 9.69 9.98 0.65

on an equally spaced grid from 0.10 to π − 0.10. Nonparametric regression was
performed using the Epanechnikov kernel function. There were 200 simulated
data sets.

For bandwidth selection, we used two algorithms. First, at each calculation
of the nonparametric function for fixed (β1, β2), we used the DPI bandwidth
selection method of Ruppert, Sheather and Wand (1995). We also did a separate
analysis with the bandwidth fixed globally at σ̂wn−1/5, where σ̂w is the standard
deviation of the observed error-prone predictors W . The results were in rough
agreement, with the former reported here.

Because in this simulation X and the measurement error U are normally
distributed, and X is independent of Z, it follows that the distribution of X
given (Z, W ) is also normal, i.e., Normal(α0 + α1W, σ2

x|w), where with a =

1/1.16, α0 = −(1 − a), α1 = a and σ2
x|w = 0.16a, see [4](Chapter 3). It then

follows that the observed data in (W, Z) have the mean E(Y |W, Z) = β1(α1 +
2α0α1σ

2
x|w)W +β2α

2
1W

2 +β2σ
2
x|w +θ(Z). Thus, the naive estimate that ignores

measurement error should be biased downward by the amount 0.22 for β1 and
by 0.18 for β2. The bias in the estimated function is the constant β2σ

2
x|w = 0.10.

Table 1 basically confirms what the theory says. The simulated mean bias of
the naive estimator for both β1 and β2 is very nearly the large sample value,
and both the quadratic and cubic extrapolants largely remove this bias. With
n = 500, this translates into a sizeable gain in mean squared error efficiency.
For estimating θ(·), there is little bias even theoretically in the naive estimator,
relative to the variability of nonparametric regression kernel estimators, and we
see little difference between the naive and SIMEX estimators.

7. Nevada test site thyroid disease study

7.1. Introduction

An important example of the types of semiparametric problems that SIMEX
is able to address is the following. In the 1950’s, the United States conducted
above-ground nuclear testing, and in the 1980’s the University of Utah con-
ducted the Nevada Test Site (NTS) Thyroid Disease Study. In the Nevada study,
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2, 491 individuals who were exposed to radiation as children were examined for
thyroid disease. The primary radiation exposure to the thyroid glands of these
children came from the ingestion of milk and vegetables contaminated with ra-
dioactive isotopes of iodine. The idea of the study was to relate various thyroid
disease outcomes to radiation exposure to the thyroid. The original version of
this study was described by [15, 39] and [34]. Recently, the dosimetry for the
study was redone [35], and the study results were reported [22].

The estimation of individual radiation dose that occurred 50 years in the
past is well-known to be subject to large uncertainties, especially when math-
ematical models are employed due to the absence of direct measurements of
the concentrations of radioactivity in foods or within the thyroid gland of in-
dividuals. There are many references on this subject, a good introduction to
which is given by [29] and the many statistical papers in that volume. Various
statistical papers [21, 24, 26, 28, 32, 33, 40] describe measurement error prop-
erties and analysis in this context. What is typical in these studies is to build
a large dosimetry model that attempts to convert the known data, e.g., about
the above-ground nuclear tests, to radiation actually absorbed into the thyroid.
Dosimetry calculations for individual subjects were based on age at exposure,
gender, residence history, whether as a child the individual was breast-fed, and
a diet questionnaire filled out by the parent focusing on milk consumption and
vegetables. The data were then input into a complex model and for each indi-
vidual, the point estimate of thyroid dose (the arithmetic mean of a lognormal
distribution of dose estimates) and an associated measurement error term (the
geometric standard deviation) were reported.

Generally, authors engaged in dose reconstruction using mathematical models
conclude that radiation doses are estimated with a combination of Berkson
measurement error and the classical type of measurement error. This type of
model, see [28], in the log-scale of dose says that true log-dose T is related to
observed or calculated log-dose W by a latent intermediate X via

T = X + Uberk; (13)

W = X + Uclass, (14)

where Uberk is the Berkson uncertainty with variance σ2
u,berk depending on the

individual, and Uclass is the classical uncertainty with variance σ2
u,class depend-

ing on the individual. In the NTS data, the total uncertainty σ2
u,class +σ2

u,berk is
known, but not the relative contributions. Various of the references given above
do sensitivity analysis with different amounts of relative contributions: in our il-
lustration, we will consider two situations, one with 50% of the total uncertainty
being Berkson and the other with all the uncertainty being classical.

It is typical to assume that the Berkson error Uberk is normally distributed. If
X could be observed, it is typical to use the total mean dose exp(X +σ2

u,berk/2)
as the main predictor of risk, and we take this as the target.

Let Y , the response, be the incidence of thyroiditis (inflammation of the
thyroid gland), and consider in addition a variable measured without error, Z,
the sex of the patient. A typical model relating total mean dose and gender to
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disease is the excess relative risk model

pr(Y = 1|X, Z) = H [β0 + β1Z + log{1 + γ exp(X + σ2
u,berk/2)}], (15)

where H(·) is the logistic distribution function and γ is called the excess relative
risk. Because the amount of Berkson uncertainty depends upon the individual,
the term σ2

u,berk/2 in the excess relative risk model may be thought of as an
offset.

There is some doubt as to what the correct dose-response model should be,
and indeed some researchers use linear dose-response models. It thus makes
sense to consider a semiparametric model that allows the dose-response to be
flexible. The semiparametric model of interest here is the partially linear logistic
model:

pr(Y = 1|X, Z) = H{βZ + θ(X + σ2
u,berk/2)}, (16)

where θ(·) is an unknown function. This is an example when the variable that
is known exactly, Z, is modeled parametrically but the variable measured with
error, X, is modeled nonparametrically.

7.2. Data analysis

In our analysis, we fit models (15) and (16). We used quadratic extrapolation,
set the λ-values as (0.0, 0.5, 1.0, 1.5, 2.0), used B = 100 SIMEX simulated data
sets, and employed the Epanechnikov kernel function. We assumed 50% of the
measurement error was Berkson and the rest was of the usual additive form.
We also redid the analysis with all the measurement error being of the classical
form. The bandwidth chosen was 1.5, but similar results were obtained for 1.0
and 2.0.

Profiling was used in the semiparametric model calculations: it was simple to
implement because the nonparametric regressions done used standard software
for logistic regression with weights and an offset. That is, in model (16), for any
given β, θ(·) can be estimated by logistic regression with the offset Zβ and with
the weights given by the kernel weights.

Standard errors were estimated as described in Section 4.2.1. In addition, we
ran 1000 bootstrap samples, and recalculated the estimates.

7.2.1. Various fits

Because X and Z are essentially independent in the data, the estimate of β1

is not much affected by the measurement error. Indeed, in either the mixture
of Berkson and classical errors, or when there is no Berkson error, and using
either the excess relative risk model (15), a naive semiparametric fit that ignores
the measurement error, or using the SIMEX semiparametric fit, the estimate
of β1 ≈ 1.75 with a standard error (s.e.) ≈ 0.25. There were only very slight
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Fig 3. Logits of the effects of dose in the Nevada Test Site thyroiditis data. Solid lines are
the fits that ignore measurement error, dashed as those that account for measurement error.
Left two panels: the mixture of Berkson errors model using parametric (top) and semipara-
metric (bottom) fits. Right two panels: the no Berkson error model using parametric (top)
and semiparametric (bottom) fits. In the bottom two panels, the dashed lines are the SIMEX
fits.

differences in any of these cases. The result is plausible: β1 indicates that women
are at higher risk for thyroiditis.

Figure 3 shows the results of various fitting methods. In all cases, the solid
lines are the fits that ignore measurement error, while the dashed lines account
for measurement error. The left two panels give results for the mixture of Berk-
son errors model using parametric (top) and semiparametric (bottom) fits. The
right two panels give fits when no Berkson errors is assumed using parametric
(top) and semiparametric (bottom) fits. In the bottom two panels, the dashed
lines are the SIMEX fits. The overall conclusion is that there is some change in
the logits when the classical error is accounted for, and if all the error is clas-
sical, a substantial change is seen. The excess relative risk parameter estimates
for the naive and measurement error analysis are, respectively, 6.24 and 7.75 for
the mixture error model, and 7.83 and 12.60 for the no Berkson error model.

7.2.2. Standard Errors

Figures 4 and 5 show the power of our asymptotic theory for estimating standard
errors. All analyses concern the mixture of Berkson and classical errors.

In Figure 4, we consider the naive semiparametric fits, i.e., s1 = 1 and sj = 0
for j > 1. The solid line is the usual estimated pointwise standard errors that
ignore the estimation of β1: these estimates ignore the second term in (10).
The dashed line is our new method based upon equation (10), while the dot-
dashed line is the pointwise standard error from 1000 bootstrap simulations.
The result is clear: ignoring the estimation of β1 produces standard errors for
the nonparametric fit that are badly biased.
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Fig 4. Estimated standard errors of the nonparametric fits in the in the Nevada Test Site
thyroiditis data ignoring measurement error when the errors are a mixture of Berkson and
Classical errors. Solid line: the ordinary estimated pointwise standard errors when the vari-
ability of the parametric part is not taken into account. Dashed line: our new method for
estimating standard errors as in equation (10). Dot-dashed line: bootstrap standard errors
based on 1,000 bootstrap replicates.
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Fig 5. Estimated standard errors of the nonparametric SIMEX fits in the in the Nevada Test
Site thyroiditis data when the errors are a mixture of Berkson and Classical errors. Solid
line: the formal estimated pointwise standard errors using the formal asymptotic theory of
equation (9). Dashed line: our new method for estimating standard errors as in equation
(10). Dot-dashed line: bootstrap standard errors based on 1,000 bootstrap replicates. Dotted
line: pointwise standard errors when the variability of the parametric part is not taken into
account.

In Figure 5, we consider the SIMEX semiparametric fits. The solid line is
the usual estimated pointwise standard errors based upon the formal theory
in Result 1 and equation (9). The dashed line is our new method based upon
equation (10), while the dot-dashed line is the pointwise standard error from
1000 bootstrap simulations. Also, the dotted line is estimated pointwise standard
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errors when the variability of the parametric part is not taken into account. The
result is also clear: the formal asymptotic theory is not very useful, and it is
only our asymptotic expansions that give sensible results.

Remark 4 For SIMEX, it is worth pointing out that bootstrapping is partic-
ularly time-consuming, and thus having workable standard errors via (10) is
practically very important. With B = 100 and four non-zero λ values, our stan-
dard error formulae requires B = 401 semiparametric fits. The bootstrap with
1000 bootstrap samples requires 401, 000 semiparametric fits.

8. Discussion

The main point of this paper is to derive the limiting distribution of SIMEX in
semiparametric problems, when the variable X subject to measurement error
is modeled parametrically, nonparametrically or a combination of both, and to
give computable asymptotically correct standard error estimates that improve
upon first-order methods in empirical applications. In the case that the variable
measured with error is modeled nonparametrically, our standard error formula
is new, and was vastly superior to the asymptotic formula in both simulations
and in our empirical analysis. Our method of estimating standard errors has not
previously been discussed in the literature, as far as we know, and was facilitated
by our asymptotic expansions.

It is useful to point out that the standard error estimates are also applica-
ble to cases that there is no measurement error. Indeed, in simulations that
are the no measurement error versions of the problems in Sections 6.1 and 6.2,
the same basic phenomenon happens, namely that the standard errors for the
nonparametric function obtained ignoring the asymptotically negligible variabil-
ity in the parametric parts considerably underestimated the actual simulated
standard errors, while our methods were able to reproduce them rather well.

There are two issues that we have not addressed in detail.

• We have not discussed the issue of bandwidth selection in detail, with
our numerical results using ad hoc bandwidth choices. However, based on
our results, at least in principle this is straightforward. As in [38], but
modified to the semiparametric case, the idea is to use our expansions and
EBBS [30] to estimate the bias, while our new variance estimates of the
nonparametric part given in Section 4.2.1 and 5.2.1 are used to derived
more precise estimated standard errors, from which the estimated mean
squared errors can then be calculated and minimized.

• It is seemingly straightforward although notationally tedious and alge-
braically complex to extend the results of Section 4–5 to the case that the
covariance matrix of the measurement errors is unknown and needs to be
estimated. In the case that the mismeasured X is modeled parametrically,
this is a relatively simple combination of our work and that of [3]. The
more difficult case occurs when the mismeasured X is modeled nonpara-
metrically: the technical issue is that the arguments in the kernel weights
will now depend on the estimated measurement error variance.
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Appendix A: Sketch of technical arguments

A.1. Outline of the Appendix

As in Section 3, we first deal with generic random variablesA and D in a possibly
misspecified model context, so that only equations (2), (3) and (4) are used. In
Section A.2 we give the main assumptions. In Section A.3 we give asymptotic
expansions for the generic problem. These results are then applied to SIMEX
in Sections A.6 and A.7.

A.2. Assumptions

Our calculations require little more than uniform expansions in z, to order
op(n−1/2), of local linear kernel regressions. These kinds of expansions are well
known, see for example [7] and [6]. Except for smoothness and boundedness
conditions that are necessary to justify Taylor expansions, conditions that we
simply assume although details can be given, there are really only four essential
conditions.

(C.1) The kernel function K is a symmetric, continuously differentiable pdf on
[−1, 1] taking on the value zero at the boundaries. The design density f(·)
of D is differentiable on B = [b1, b2], the derivative is continuous, and
infz∈B f(z) > 0. The function θ(·, β) has 2 continuous derivatives on B
and is also thrice differentiable with respect to β. We also assume that the
same calculations done by [6] can be applied to our context.

(C.2) The value βPF is the unique maximizer of E[L{Y,A, θ(D, β), β}]: this is
the misspecified model version of the idea of a least favorable curve. In
addition, if d/dβ denotes the total derivative, then uniformly in a neigh-
borhood of βPF ,

−E

[
d2

dβdβT
L{Y,A, θ(D, β), β}

]

is positive definite. Finally, the parameter β is restricted to a compact set.
(C.3) We can apply the results of [7] (CVK) as needed. In particular, their as-

sumptions imply that uniformly in z0, for random variables Ri possessing
sufficient moments, then if

Cn = n−1
n∑

i=1

Kh(Di − z0)(Di − z0)
jRi{θ(z0) + (Di − z0)θ

(1)(z0)};

Dn = n−1
n∑

i=1

Kh(Di − z0)(Di − z0)
jRi{θ(Di)},

then

supz0
|Cn − E(Cn)| = Op[h

j{log(n)/(nh)}1/2];

supz0
|Dn − E(Dn)| = Op[h

j{log(n)/(nh)}1/2].
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(C.4) The bandwidth h ∼ n−a with 1/3 ≤ h ≤ 1/5, this latter meaning that
λ > 3 in condition (R2) of CVK.

A.3. Results for general models

The basic issue here is that measurement error induces a misspecified model for
the observed data, and the general topic of properties of misspecified semipara-
metric models has only recently been a topic of research, see for example Ai and
Chen (2007) who make exactly this point. Our paper thus can be thought of as
a general description of what happens with misspecified semiparametric models
in the kernel regression area, with an application to SIMEX.

This section states the main results for misspecified models. In what follows,
we focus on the profile estimator. Sketches of proofs follow later in the Appendix.

A.3.1. Nonparametric regression expansions

Standard large-sample approximations for nonparametric regression using esti-
mating equations are given in [5], with rigorous theory about rates of conver-
gence given by [7].

Consider the local linear estimator θ̂(z0, β∗) defined in (1). Let θ(j)(·) be the
jth derivative of θ(·) with respect to z0. Let fD(z0) be the density function of
D. Make the definitions

Ω(z0, β∗) = E[Lθθ{Y,A, θ(D, β∗), β∗}|D = z0];

T (z0, β∗) = fD(z0)Ω(z0, β∗), φk =

∫
vkK(v)dv.

Result 3 Use the short-hand notation Liθ(c, β∗) = Lθ(Yi,Ai, c, β∗). Under the
conditions stated in Section A.2, uniformly in z0, for any β∗,

θ̂(z0, β∗) − θ(z0 , β∗)

= (φ2h
2/2)θ(2)(z0, β∗) − n−1

n∑

i=1

Kh(Di − z0)Liθ{θ(Di, β∗), β∗}/T (z0, β∗)

+ Op

{
h4 + log(n)/(nh)

}
. (A.1)

In addition,

h{θ̂(1)(z0 , β∗) − θ(1)(z0, β∗)}

= −n−1
n∑

i=1

Kh(Di − z0)Liθ{θ(Di, β∗), β∗}{(Di − z0)/h}/T (z0, β∗)

+ φ4h
3T (1)(z0, β∗){θ

(2)(z0, β∗)/2 + θ(3)(z0, β∗)/6}/T (z0, β∗)

+ Op

{
h4 + log(n)/(nh)

}
. (A.2)



T.V. Apanasovich et al./SIMEX in semiparametric models 340

A.3.2. Semiparametric Models

We now turn to the estimation of βPF . Define

Σ = E
[
Lββ{Y,A, θ(D, βPF), βPF} + Lβθ{Y,A, θ(D, βPF), βPF}θ

T
β (D, βPF)

]
;

G = cov [Lβ{Y,A, θ(D, βPF), βPF} + Lθ{Y,A, θ(D, βPF), βPF}θβ(D, βPF)] .

Result 4 Make the assumptions stated in Section A.2. If the bandwidth is of
order h ∝ n−a with 1/5 ≤ a ≤ 1/3, then the profiled estimate β̂ satisfies

−Σ
{

n1/2(β̂ − βPF)
}

= n−1/2
n∑

i=1

{Lβ(•i) + θβ(Di, βPF)Lθ(•i)}+op(1), (A.3)

so that n1/2(β̂ − βPF) ⇒ Normal{0, Σ−1G(ΣT)−1}.

A.4. Sketch of Result 3

For notational simplicity we will drop the dependence on β∗. Using Theorem
2.1 of CVK, for j = 0, 1,

supz0
hj| θ̂(j)(z0) − θ(j)(z0)| = Op

[
h2 + {log(n)/(nh)}1/2

]
.

Then a second order Taylor series of (1) shows that

0 = n−1
n∑

i=1

Kh(Di − z0)Gh(Di − z0)Liθ{θ(z0) + θ(1)(z0)(Di − z0)}

+ n−1
n∑

i=1

Kh(Di − z0)Gh(Di − z0)G
T
h (Di − z0)

×Liθθ{θ(z0) + θ(1)(z0)(Di − z0)}

[
θ̂(z0) − θ(z0)

h{θ̂(1)(z0) − θ(1)(z0)}

]

+ Op

[
h4 + {log(n)/(nh)}

]
,

uniformly in z0. Define

Sn(z0) = n−1
n∑

i=1

Kh(Di − z0)Gh(Di − z0)G
T
h (Di − z0)

× Liθθ{θ(z0) + θ(1)(z0)(Di − z0)}.

Using calculations similar to equation (5.1) of CVK,

supz0
| Sn(z0) − E{Sn(z0)}| = Op

[
h2 + {log(n)/(nh)}1/2

]
.
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Then, via standard calculations, supz0
| E{Sn(z0)}−diag(1, φ2)T (z0)| = O(h2).

The result is that uniformly in z0,

−T (z0)
{
θ̂(z0) − θ(z0)

}

= n−1
n∑

i=1

Kh(Di − z0)Liθ{θ(z0) + θ(1)(z0)(Di − z0)}

+ Op

[
h4 + {log(n)/(nh)}

]

= n−1
n∑

i=1

Kh(Di − z0)Liθ{θ(Di)}

− n−1
n∑

i=1

Kh(Di − z0)
[
Liθ{θ(Di)} − Liθ{θ(z0) + θ(1)(z0)(Di − z0)}

]

+ Op

[
h4 + {log(n)/(nh)}

]
.

Using tedious, detailed Taylor series expansions, it is straightforward to show
that the second term in the last equation Op[h

4 + {log(n)/(nh)}] so that uni-
formly in z0, (A.1) holds.

By the same arguments, uniformly to z0,

T (z0)h{θ̂
(1)(z0) − θ(1)(z0)}

= −n−1
n∑

i=1

Kh(Di − z0){(Di − z0)/h}Liθ{θ(z0) + (Di − z0)θ
(1)(z0)}

+ Op{h
4 + log(n)/(nh)}

= −n−1
n∑

i=1

Kh(Di − z0){(Di − z0)/h}Liθ{θ(Di)}

+ n−1
n∑

i=1

Kh(Di − z0){(Di − z0)/h}

×
[
Liθ{θ(Di)} − Liθ{θ(z0) + (Di − z0)θ

(1)(z0)}
]

+ Op{h
4 + log(n)/(nh)}.

By techniques similar to those used to show (A.1), the last term is

= n−1
n∑

i=1

Kh(Di − z0){(Di − z0)/h}Liθθ{θ(Di)}θ
(2)(z0)(Di − z0)

2/2

+ n−1
n∑

i=1

Kh(Di − z0){(Di − z0)/h}Liθθ{θ(Di)}θ
(3)(z0)(Di − z0)

3/6

+ Op{h
4 + log(n)/(nh)}.

These two terms, minus their expectations, are of order Op{h
4 + log(n)/(nh)}.

Their expectations are clearly (φ4h
3/2)T (1)(z0)θ

(2)(z0) and (φ4h
3/6)T (1)(z0)×

θ(3)(z0), completing the argument for (A.2)
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A.5. Sketch of Result 4

Let d/dβ denote the total derivative. Then, we have that

0 =
d

dβ
n−1

n∑

i=1

L{Yi,Ai, θ̂(Di, β̂), β̂}

=
d

dβ
n−1

n∑

i=1

L{Yi,Ai, θ̂(Di, βPF), βPF}

+
d2

dβdβT
n−1

n∑

i=1

L{Yi,Ai, θ̂(Di, β∗), β∗}(β̂ − βPF), (A.4)

where β∗ is between β̂ and βPF . It is easily shown that the last term in (A.4) is

Σ(β̂ − βPF) + op(n
−1/2). Thus, we must show that

d

dβ
n−1/2

n∑

i=1

[
L{Yi,Ai, θ̂(Di, βPF), βPF} − L{Yi,Ai, θ(Di, βPF), βPF}

]
= op(1).

Using Result 3 repeatedly, this is a straightforward but extremely detailed cal-
culation, along the same lines as in [20].

A.6. SIMEX when X is modeled nonparametrically

In order to use the general theory of Section A.3 in the Appendix, we make the
identifications D  X and A Z.

For any given b and λ, call the estimators for β̂b(λ) and θ̂b{x0, β(λ), λ}, and

call the average of the latter over b as θ̂{x0, β(λ), λ}. First, again from Result 3,

θ̂b{x0, β(λ), λ} = θ{x0, β(λ), λ} + (φ2h
2/2)θ(2){x0, β(λ), λ}

− n−1
n∑

i=1

KT
h {Wib(λ)− x0}

Lθ[Yi, Zi, θ{Wib(λ), β(λ), λ}, β(λ)]

fW (x0, λ)ΩW {x0, β(λ), λ}

+ op(n
−1/2).

Also from Result 4,

−Σ(λ) n1/2{β̂b − β(λ)}

= n−1/2
n∑

i=1

[Lβ{•ib(λ)} + θβ{Zi, β(λ), λ}Lθ{•ib(λ)}] + op(1).

Since B is fixed, this implies that

n1/2{β̂(λ) − β(λ)} = −Σ−1(λ)n−1/2
n∑

i=1

ξi,B(λ) + op(1). (A.5)
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The first part of Result 1 follows from (A.5). We also have that

θ̂{x0, β(λ), λ}

= θ{x0, β(λ), λ} + (φ2h
2/2)θ(2){x0, β(λ), λ}

− n−1
n∑

i=1

B−1
B∑

b=1

Kh{Wib(λ) − x0}
Lθ{•ib(λ)}

[
2pt]fW (x0, λ)ΩW {x0, β(λ), λ}

+ op(n
−1/2). (A.6)

As in [3], from (A.6), for λ > 0,

var[θ̂{x0, β̂(λ), λ}] = O{(nBh)−1 + n−1},

while for λ = 0, var[θ̂{x0, β̂(0), 0}] = O{(nh)−1}. Thus, for B sufficiently large,

the variability of θ̂(·, λ) is negligible for λ > 0 compared to λ = 0, completing
the argument.

A.6.1. Justification of (10)

Since we are concerned here strictly with variability, we ignore the bias term in
(A.6). Note then that the SIMEX estimator satisfies

θ̂simex(x0) − θsimex(x0)

=

J∑

j=1

sjB
−1

B∑

b=1

[
θ̂b{x0, β̂b(λj), λj} − θ{x0, β(λj), λj}

]

=

J∑

j=1

sjB
−1

B∑

b=1

[
θ̂b{x0, β(λj), λj} − θ{x0, β(λj), λj}

+ θT
β {x0, β(λj), λj}{β̂b(λj) − β(λj )}

]
+ op(n

−1/2)

= −

J∑

j=1

sjn
−1

n∑

i=1

B−1
B∑

b=1

Kh{Wib(λj) − x0}
Lθ{•ib(λj)}

fW (x0, λj)ΩW {x0, β(λj), λj}

+ θT
β {x0, β(λj), λj}

J∑

j=1

sj{β̂(λj) − β(λj)} + op(n
−1/2)

= −n−1
n∑

i=1

J∑

j=1

sjB
−1

B∑

b=1

Kh{Wib(λj) − x0}
Lθ{•ib(λj)}

fW (x0, λj)ΩW {x0, β(λj), λj}

− n−1
n∑

i=1

J∑

j=1

sjθ
T
β {x0, β(λj), λj}Σ

−1(λ)ξi,B(λ) + op(n−1/2).
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The term fW (x0, λj)ΩW {x0, β(λj), λj} can be estimated as (nB)−1
∑n

r=1 ×∑B
b=1 Kh{Wrb(λj) − x0}Lθθ{•̂rb(λj)} leading to our suggested variance esti-

mator.

A.7. SIMEX when X is modeled parametrically

In order to use the general theory of Section A.3 in the Appendix, we make the
identifications A  X and D  Z. We have the expansions for β̂b,PF(λ) and

θ̂b{z0, β(λ), λ} as follows. First, from Result 3,

θ̂b{z0, β(λ), λ} = θ{z0, β(λ), λ} + (φ2h
2/2)θ(2){z0, β(λ), λ}

− n−1
n∑

i=1

KT
h (Zi − z0)

Lθ{Yi, Wib(λ), θ(Zi, β(λ), λ), β(λ)}

fZ(z0, λ)ΩZ{z0, β(λ), λ}

+ op(n
−1/2),

and, from Result 4,

−Σ(λ) n1/2{β̂b,PF − β(λ)}

= n−1/2
n∑

i=1

[
Lβ{•ib(λ)} + θβ{Zi, β(λ), λ}Lθ{•ib(λ)}

]
+ op(1),

where {•ib(λ)} = [Yi, Wib(λ), θ{Zi, β(λ), λ}, β(λ)]. Since B is fixed, this implies
that

n1/2{β̂(λ) − β(λ)} = −Σ−1(λ)n−1/2
n∑

i=1

ξi,B(λ) + op(1). (A.7)

Also,

θ̂{z0, β(λ), λ} = θ{z0 , β(λ), λ} + (φ2h
2/2)θ(2){z0, β(λ), λ}

− n−1
n∑

i=1

Kh(Zi − z0)
χi,B(λ)

fZ(z0, λ)ΩZ{z0, β(λ), λ}

+ op(n−1/2). (A.8)

Result 2 follows immediately from (A.7) and (A.8).
Justification of the standard error formulae in Section 5.2.1 is similar to that

given in Section A.6.1.
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