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ABSTRACT

Discrete Event Simulation (DES) allows the modelling of ever more complex systems in a variety of domains

ranging from biological systems to road networks. The increasing need to model larger systems stresses

the demand for efficient parallel implementations of DES engines. Recently, Graphics Processing Units

have emerged as an efficient alternative to Central Processing Units for the computation of some problems.

Although substantial speedups can be achieved by using GPUs, writing an efficient implementations of

given suitable problems often requires in-depth knowledge of the architecture. We present a new framework

integrated in the Simian engine, which allows to make efficient use of GPUs for computationally intense

sections of code. This framework allows modellers to offset some or all handlers to the GPU by efficiently

grouping and scheduling these handlers. As a case-study, we implement a population activity simulation

that takes into account evolving traffic conditions in a simulated urban area.

1 INTRODUCTION AND MOTIVATION

GPUs are perhaps the most challenging among all hardware acceleration technologies that have started to

emerge after traditional hardware scaling laws, such as Moore’s Law, have broken down. Because they are

nearly universally available in commodity hardware and relatively cheap, GPUs have the potential to offer

computing power in terms of the traditional floating point operations (FLOP) measure that a few years ago

was reserved for actual supercomputers and the inevitable HVAC systems and costs that come with them.

Alas, discrete event simulation appears overall ill-equipped to exploit GPUs efficiently because of

a traditional focus on applications, such as communication network simulation, that place a focus on

communication across entities and what little computation happens is mostly pointer chasing: neither focus

ressembles the GPU paradigm of executing the identical operation on many different data elements. On

the other hand, there are DES application areas, particularly agent-based simulation that are better suited

for the GPU paradigm.

The DES community realized early on that exploiting the potential of GPUs would be challenging.

A number of heroic efforts to include GPUs in DES applications have come out of the DES community.

They are mostly application specific and we describe some of them in the related work section.

Our focus in this paper is to develop a general-purpose framework of how to use GPUs in DES and PDES

systems. The framework is implemented in the Python-based parallel discrete simulation engine Simian,

using PYCuda – the Python version of the GPU programming language Cuda. Our goals for the PDES

GPU framework are (i) to make the PDES GPU framework accessible to novice programmers, domain

scientists, and other users who do not enjoy writing near machine-level code that is sometimes required for
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GPUs, and (ii) to enable a quickly implemented GPU solution for most application domains that achieves

about 90% of the benefit that a completely customized and application specific GPU implementation could.

We achieve the general-purpose nature of our GPU simulation framework by making the event handlers

the units of computation that can be – but do not have to be – sent to the GPU. The event scheduler in the

main loop of the simulation engine provides support for the integration of GPU-handled and CPU-handled

events. Thus, the user simply needs to implement an event handler code in PyCUDA if it is to be sent to

the GPU.

We illustrate our framework first on a few small examples. We then describe a slightly more involved

implementation of an agent-based activity simulation, in which agents optimize their daily schedules, in

terms of activity types, such as work, sleep, eating, and leisure, and locations where these activities are

to be performed. Based on traffic congestion, these agents may arrive late to their activities and then

require re-planning of their schedules. The application includes a road network model with traffic, where

congestion occurs if too many agents are trying to use a road link at the same time. Both the routing

computations as well as the schedule planning optimization can be done on the GPU. Our GPU version

of the application is written in less than 500 lines of Python and PyCuda code, whereas the corresponding

CPU-only version is 300 lines of Python code – both easily manageable code complexity. We compare

the running time of the two versions, clearly illustrating the benefit of GPUs in a parallel discrete event

simulation for similar development times.

1.1 Related Work

Parallel discrete event simulations have already been shown to benefit from the use of GPUs for some types

of computations. Perumalla and Aaby (2008) showed that, in some cases, GPUs could be used efficiently

for PDES but also raised some concerns about modularity, ease of programmability and reusability. We

aim to address some of these limitations in our framework.

Among GPU PDES implementations, a certain number implemented data structures for event queues

directly on the GPU as well as methods to sort and insert events in those queues (Park and Fishwick

2009, Sang, Lee, Rego, and King 2013, Wenjie, Yiping, and Feng 2013, Andelfinger and Hartenstein 2014,

Ventroux, Peeters, Sassolas, and Hoe 2014). We chose not to implement event queues on GPUs for two main

reasons. First, event queues do not fit well with the GPU paradigm: for event queues to provide sufficient

data locality for a GPU, they need to be contiguously allocated in memory, which makes inserting new

elements less efficient. Second, not all computations are suitable for a GPU - accesses to the file system,

inherently sequential tasks, tasks with random memory access patterns or high branch divergence etc.; in

order to target a larger spectrum of simulations, we want to allow mixed GPU/CPU computations where

only suitable handlers are offset to the GPU. In this context, maintaining and synchronizing event lists on

both the CPU and the GPU would prove too cumbersome. Instead, we see the GPU as a co-processor that

can be used to relieve the CPU of some of the computations; asynchronous GPU computations allow for

concurrent event handling in this hybrid context.

Liu et al. (2014) proposed to use the GPU as a co-processor for network traffic models. Our framework

can be seen as a generalization of this approach to any type of simulation where some handlers would

benefit from execution on a GPU. In Kunz et al. (2012), the approach draws parallelism from the concurrent

execution of multiple independent simulations. We aim to show that a single simulation may also benefit

from GPUs. In Perumalla (2009), Aaby, Perumalla, and Seal (2010), authors propose several prototype

implementations that demonstrate the tremendous potential offered by modern hybrid clusters, which we

also aim to target.

2 METHODS

Conservative approaches to PDES allow the computation of events in a given time window to be executed

concurrently. This time window is defined by the current simulation time - typically the timestamp of the
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last processed event - and a minimum delay or lookahead value. Events, whose timestamps lie within this

window can safely be executed in any order and therefore concurrently because they may not generate new

events in this time window and will not break causality.

Each individual handler associated to such safe-to-process-in-any-order events may not be enough

work to efficiently exploit the parallel capabilities of a GPU. However, when offset simultaneously to the

GPU, they have a better chance at providing a sufficient amount of independent tasks for a GPU. However,

grouping these handlers and efficiently offsetting their computation to a GPU requires knowledge of the

GPU hardware .

In this section, we first describe Simian, our PDES engine. We then describe our Simian integrated

framework for offsetting PDES event handlers to one or more available GPUS. Two approaches are possible,

depending on the nature of the handler: if the handler provides enough work for multiple threads, they can

be scheduled on the GPU as a single computation block - we later refer to such handlers as multithreaded

handlers - and asynchronous computations allows our framework to run these handlers simultaneously on

the GPU; if the handler only provides work for a single thread, these handlers need to be batched into a

GPU blocks - we later refer to such handlers as batched handlers.

2.1 Simian Just In Time Parallel Discrete Event Simulation (JIT PDES) Engine

Simian (Santhi 2015) is a general purpose; process oriented, Just In Time (JIT) compiled, conservative Parallel

Discrete Event Simulator (PDES). Simian aims to introduce JIT compilation techniques to the already

mature PDES community in order to speed up simulations. Simian simultaneously introduces a structured

form of distributed memory parallelism to the JIT community. It is written in a mix of the scripting languages

Lua and Python. It extensively uses the C Foreign Function Interface (CFFI) to interface with external

code such as the Message Passing Interface (MPI) library. Simian has been written from the start with

JIT compilers in mind, so that it works very well with LuaJIT, PyPy, etc., in addition to regular non-JIT

capable cPython. The current design of Simian puts heavy emphasis on low complexity for the code base,

which makes it easy for beginners to pick up and modify. The event loop and queuing mechanism are

minimal; yet offer a completely general-purpose PDES functionality. Simpler event handling code is also

considerably more JIT compiler friendly.

With Simian, the user defines a discrete event simulation model at an appropriate level of abstraction

for any complex system they wish to evaluate. The PDES model is usually represented as a graph of

Entity nodes, which communicate with each other by sending information packets at discrete time epochs.

The entities themselves reside on logical processes on individual compute nodes. In Simian, each Entity

is represented as a Class. The packets are sent to user-defined methods on entity classes, which are

called Service Methods (or just Services). In addition, one can have Processes running locally on the

entities, which are special methods called co-routines or micro-threads that can yield and restart at arbitrary

states within the method. The processes can further be started and stopped in response to either local or

remote requests. Every event is processed at discrete simulated time epochs, making the overall simulation

a DES.

Simian can operate in a serial fashion without MPI support; in fact this is usually the preferred operating

mode at the initial modeling stage. For scalability however, it is often required that the user-defined model

be able to run on distributed memory clusters unaltered. This is especially useful when the simulation

model has millions of entity nodes. Simian can make use of MPI libraries to run on distributed memory

computers without any change in the user-defined model. This is as easy as changing a user-provided flag

to the simulation engine initialization call.

Another notable feature of the Simian engine is the ability to speed up PDES simulations by making

effective use of JIT compilers. JIT compilers are able to perform additional optimizations at runtime by

virtue of being aware of the dynamic data dependencies, which a static compiler cannot hope to make use

of. By relying on proven JIT compiler optimization techniques, Simian event loop and data structures can

afford to be significantly simpler. This is because specially coded cases, which can often speed up event
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Algorithm 1 Main processing event loop on each LP for CPU only events.

1 whi le now < e n d _ o f _ s i m u l a t i o n :

2 b a s e _ t i m e = now

3 whi le ! empty ( eventQueue ) and eventQueue [ 0 ] < b a s e _ t i m e + l o o k _ a h e a d :

4 ( t ime , e v e n t ) = eventQueue . pop ( ) # Get n e x t e v e n t

5 now = t i me # Advance t i m e

6 e v e n t . h a n d l e ( ) # C a l l e v e n t h a n d l e r

7 r e c e i v e _ e v e n t s ( ) # R e c e i v e e v e n t s from o t h e r LPs

8 now = M P I a l l r e d u c e ( eventQueue [ 0 ] ) # S e t now t o l o w e s t t i m e s t a m p

processing when static-compiled, may simply be auto-discovered at runtime by well-designed tracing JIT

compilers. As a result, the JIT compiled version of Simian is typically more than 20 times faster in serial

mode over the non-JIT interpreted version, even while written in a scripting language such as Python or

Lua.

Simian has been designed to speed up the development of application simulators, by being user friendly

and minimalistic in approach. Typical application codes are often much shorter and easier to code in dynamic

scripting languages. By allowing for JIT compilation, code written in these dynamic languages can even

approach the execution efficiency of statically compiled code in languages such as C and FORTRAN.

While only recently developed, Simian has already been successfully used to model various computational

physics, social network modeling and performance prediction codes at LANL.

2.2 Offsetting Handlers to the GPU

Each Logical Process (LP) is represented as an MPI rank in Simian. As a conservative PDES engine,

Simian allows events, whose timestamps lie in the interval [now,now + look_ahead] (where now is the

current simulation time and look_ahead is the minimum delay after which an event is able to generate a

new event), to be processed in parallel. These events are later referred to as safe events. On a single LP

however, these events are processed sequentially - lines 2 to 5 in algorithn 1. Parallelism at this point occurs

by running multiple LP in parallel. Once all safe events in a given time window have been processed on

all LPs, a rendez-vous is performed between MPI ranks in the form of an MPI allreduce call - line 7 of

algorithm 1 - to determine the remaining event with lowest timestamp accross all LPs.

CPU and GPU handlers are treated the same way but in order to overlap computations on both processing

units, GPU computations are made asynchronous. This way, handling a GPU event does not block the

processing of remaining safe events until the result is obtained. We however need to make sure that GPU

computations are completed before the MPI rendez-vous with other LPs as GPU events may in turn generate

new events - see line 6 of algorithm 2.

In order to also overlap the computation of multiple GPU events, successive events are queued in

different streams. A stream in the Nvidia Cuda terminology is defined as a sequence of operations that

need to be processed in order. Two streams can however be computed in parallel if the hardware permits

it - ie. if computational resources are available.
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Algorithm 2 Main processing event loop on each LP for CPU only events.

1 whi le now < e n d _ o f _ s i m u l a t i o n :

2 b a s e _ t i m e = now

3 whi le ! empty ( eventQueue ) and eventQueue [ 0 ] < b a s e _ t i m e + l o o k _ a h e a d :

4 ( t ime , e v e n t ) = eventQueue . pop ( ) # Get n e x t e v e n t

5 now = t i me # Advance t i m e

6 e v e n t . h a n d l e ( ) # C a l l e v e n t h a n d l e r

7 w a i t _ f o r _ g p u _ c o m p u t a t i o n s ( )

8 r e c e i v e _ e v e n t s ( ) # R e c e i v e e v e n t s from o t h e r LPs

9 now = M P I a l l r e d u c e ( eventQueue [ 0 ] ) # S e t now t o l o w e s t t i m e s t a m p

Each GPU handler will therefore generate the following sequence in a stream:

1. Asynchronous transfer of input data from host to device;

2. Kernel call;

3. Asynchronous transfer of results from device to host.

A Cuda event is used to determine when results for a given handler are ready to be used. To avoid the

overhead of creating a new stream for every event, streams are statically created during an initialization

phase. The total number of streams is computed as follows nb_sm∗max_block_per_sm, where nb_sm is

the number of available streaming processors on the GPU and max_block_per_sm is the maximum number

of blocks that can run concurrently on a single streaming processor. This ensures that in the case where

each GPU event generates the smallest possible task of one GPU block - with limited number of threads,

register use, shared memory use etc. - maximum occupancy of the GPU can potentially be achieved. If

multiple GPUs are available, the total number of streams is increased accordingly and context switches

occur to allow both GPUs to work simultaneously. Though possible, using multiple GPUs with a single LP

is not the preferred approach. When manual load balancing of the GPUs is achievable - ie. the amount of

computation required for each task can be reasonably estimated, it is preferable to assign a single GPU to a

given LP in order to avoid the overhead of a context switch to another GPU. In the case where heterogenous

GPUs are available on a single node, load balancing can still be achieved by assigning different numbers

of entities to each GPU.

Multiple LPs can also be assigned to the same GPU. GPU tasks from different LPs will also be able to

execute concurrently on the device - see figure 1. The order in which GPU tasks are executed is undefined

and determined by the internal scheduler of the device.
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Figure 1: An example of two LPs offsetting some handlers to the same GPU. Events that generate GPU

tasks are represented in green in each LP’s event list.

2.3 Multithreaded vs. Batched Handlers

Our framework is written in python and uses Pycuda (Klöckner, Pinto, Lee, Catanzaro, Ivanov, and Fasih

2012) for GPU computations. Pycuda is a python package that creates a python interface for Cuda. Pycuda

provides a higher level of abstraction than Cuda and yet also gives access to most of the functionalities

offered by the low-level driver api from Nvidia. Some functionalities from Pycuda, in particular the

elementwise kernel approach, were particularly useful to us in order to aggregate multiple handlers into a

single GPU task.

We define two types of GPU handlers. In case where sufficient parallelism can be drawn for the task to

offset to the GPU, users can define what we refer to as multithreaded handlers. Though not a requirement,

such handlers should provide work for a number of threads at least equal to the size of a warp. In Nvidia

Cuda terminology a warp is a group of threads that execute concurrently on a single streaming processor.

The current size of a warp on Nvidia GPUs is 32. To achieve the best performance, the number of threads

declared in such a handler should be a multiple of the size of a warp.

Algorithm 1 shows an example of a multithreaded handler. In order to define such a handler, the

user must first write the Cuda code to be executed on the GPU - lines 1 to 7 of algorithm 1. The user

then provides a brief description of the arguments for the GPU kernel - lines 12 to 14. “IN” and “OUT”

parameters are used to determine how arguments are to be transferred to and from the device or if they

simply need to be allocated. The callback function passed at line 15 is called once the results are available.

By default, the block size is set to the size of a warp and the grid is composed of a single GPU block;

users can however specify different values for more specific cases.

When no parallelism can be drawn from a single handler, multiple handlers can be batched together to

provide sufficient work for the GPU. Algorithm 4 shows an example of a batched handler. Note that the

GPU code defined at lines 3 to 7 only provides work for a single thread. When describing the parameters -

lines 12 to 14 - the “element” attribute is used to determine whether the argument should be aggregated or
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Algorithm 3 Example of a multithreaded handler. This example simply squares each item of an array source

and writes the results in array dest.

1 s r c = " " "

2 _ _ g l o b a l _ _ vo id squa re _ them ( f l o a t ∗a , f l o a t ∗ d e s t )

3 {

4 c o n s t i n t i = t h r e a d I d x . x ;

5 f l o a t tmp = a [ i ] ;

6 d e s t [ i ] = tmp ∗ tmp ;

7 } " " "

8

9 d e f h a n d l e r ( ) :

10 a = numpy . random . randn ( s i z e ) . a s t y p e ( numpy . f l o a t 3 2 )

11 d e s t = numpy . z e r o s _ l i k e ( a )

12 a = { ’ name ’ : " a " , ’ da t a ’ : a , ’ IN ’ : True , ’OUT’ : F a l s e }

13 d e s t = { ’ name ’ : " d e s t " , ’ da t a ’ : d e s t , ’ IN ’ : F a l s e , ’OUT’ : True }

14 a r g s = [ a , d e s t ]

15 send_MT_handler ( a rgs , s r c , " squa re _ them " , c a l l _ b a c k )

16

17 d e f c a l l _ b a c k ( r e s u l t s ) :

18 # Th i s f u n c t i o n i s c a l l e d when r e s u l t s a r e a v a i l a b l e

Algorithm 4 Example of a batched handler. This example takes the sin of each element of an array multiple

times.

1 n _ i t e r = numpy . i n t ( 1 0 0 0 0 )

2 d e c l = " i n t n _ i t e r , f l o a t ∗a "

3 s r c = " " "

4 f o r ( i n t n = 0 ; n < n _ i t e r ; n ++)

5 {

6 a [ i ] = s i n ( a [ i ] ) ;

7 } " " "

8 ke rne l_name = " g p u _ s i n " " "

9

10 d e f h a n d l e r ( ) :

11 a = numpy . random . r an d ( )

12 a = { ’ name ’ : " a " , ’ da t a ’ : a , ’ IN ’ : True , ’OUT’ : True , ’ e lement ’ : True }

13 n i t e r = { ’ name ’ : " n _ i t e r " , ’ da t a ’ : n _ i t e r , \

14 ’ IN ’ : True , ’OUT’ : F a l s e , ’ e lement ’ : F a l s e }

15 a r g s = [ n i t e r , a ]

16 s e n d _ b a t c h e d _ h a n d l e r ( a rgs , dec l , s r c , kerne l_name , c a l l _ b a c k )

17

18 d e f c a l l _ b a c k ( r e s u l t s ) :

19 # Th i s f u n c t i o n i s c a l l e d wi th each d a t a i t em

20 # when r e s u l t s a r e a v a i l a b l e
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is simply a scalar that should hold the same value for each thread. In the case of algorithm 4, “n_iter” is

a scalar whereas “a” is to be aggregated. Each handler provides a single piece of data for array “a”; once

a sufficient number of calls to this handler have been made (or the last safe event has been processed),

values for array “a” are aggregated and transfers and computations are asynchronously launched. Once the

results are available, each callback function is called with its associated data item.

3 CASE-STUDY: POPULATION ACTIVITY SIMULATION WITH ROAD TRAFFIC

In order to test our GPU framework for PDES, we provide a case-study for agent-based activity simulation

that also includes a road network for a simulated urban area. Each simulated agent plans his daily activities

as a combination of four activity types: eating, sleeping, working and leasure. Each agent is randomly

assigned a home location and a work location in the graph representing the urban area. Agents always sleep

at their home location and always work at their work location. Eating and leasure activities are performed

at random locations.

3.1 Activity Planning

Activity planning is presented as an optimization problem. The overall score of planning a given activity is

the sum of a positive effect for performing a given activity, represented as a utility function, and a negative

effect for not performing other activities in the form of a priority function. These functions depend on the

time these activities have last been performed and are described in Galli et al. (2009).

A daily schedule is composed of four activities chosen among the four activity types. Each activity

is assigned a duration. Optimizing a daily schedule is done using a simple genetic-like algorithm - see

algorithm 5. We first generate a population of random schedules - line 5. Then, at each generation, each

random schedule undergoes two types of mutations. The first type of mutation is swapping two random

activities and their associated durations. the second type of mutation consists in changing a random activities

and assigning it a new random duration. At the end of a generation iteration, a new generation is created

consisting of copies of the best schedule found so far.

Algporithm 5 is implemented on the GPU by having each GPU thread handle an individual in the

schedule population. Communication between threads is performed using on device shared memory. once

an agent has planned a new schedule, the first activity is performed. A new planning event is created at

simulation time now + transport + duration, where now is the current simulation time, transport is the

time it takes to travel from the agent’s current location to the location for the activity - this time takes

traffic conditions into account - and duration is the duration of the planned activity. After each activity,

agents thus replan their schedules as varying traffic conditions may have affected their previous schedules.

3.2 Road Traffic Simulation

The simulated urban area is represented as a random planar graph, where vertices correspond to possible

locations and edges correspond to road links. Each road link possesses a random weight that correpsonds

to the time it takes to travel through it under optimal traffic conditions and a random capacity to describe

how much it is affected by potential traffic; ie. road links with higher capacity can support a larger number

of cars. Each LP has a traffic controller entity that collects traffic information for agents belonging to

the same LP. Road traffic conditions are updated at regular simulation time intervals by a single traffic

controller. The main traffic controller computes on the GPU the All-Pairs Shortest Path problem in the

planar graph using the FLoyd-Warshall algorithm (Floyd 1962). Each road link receives a weight equal

to its initial weight under optimal traffic conditions plus an additional weight depending on the number

of cars that have used the road link in the previous interval and the capacity of the road link. The results

of this operation are a routing matrix used to retrieve the shortest path between any two locations in the

graph and a distance matrix to retrieve the transport duration of such a path. These results are transmitted

to all LPs via event messages.
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Algorithm 5 Algorithm for optimizing a daily schedule.

1 INPUT : Timestamps a t which a c t i v i t i e s were l a s t pe r fo rmed

2 ( l a s t _ p e r f o r m e d ) , s i z e o f t h e s c h e d u l e p o p u l a t i o n ( p o p _ s i z e ) ,

3 number o f g e n e r a t i o n s t o run ( n b _ g e n e r a t i o n s ) .

4 d e f p l a n _ a c t i v i t i e s ( l a s t _ p e r f o r m e d , p op _s i z e , n b _ g e n e r a t i o n s ) :

5 s c h e d u l e s = g e n e r a t e _ r a n d o m _ s c h e d u l e s ( p o p _ s i z e )

6 f o r i i n r a n g e ( n b _ g e n e r a t i o n s ) :

7 f o r each s c h e d u l e i n s c h e d u l e s :

8 s c o r e = e v a l u a t e ( s c h e d u l e )

9 new_schedu le = s w a p _ 2 _ a c t i v i t i e s ( s c h e d u l e )

10 new_score = e v a l u a t e ( new_schedu le )

11 i f new_score > s c o r e :

12 s c h e d u l e = new_schedu le

13 s c o r e = new_score

14 new_schedu le = c h a n g e _ r a n d o m _ a c t i v i t y ( s c h e d u l e )

15 new_score = e v a l u a t e ( new_schedu le )

16 i f new_score > s c o r e :

17 s c h e d u l e = new_schedu le

18 s c o r e = new_score

19 s c h e d u l e s = c o p y _ b e s t ( s c h e d u l e s )

20 r e t u r n b e s t ( s c h e d u l e s )

Whenever an agent travels between two locations, the number of cars on each road link composing

the current shortest path between these locations is incremented. This information is sent and reset at

regular intervals from traffic controllers on all LPs to the main traffic controller. This way, the shortest

path between two given locations may change at different time intervals depending on traffic conditions.

4 EXPERIMENTS AND RESULTS

In order to test both our GPU framework and our proposed case-study, we design three experiments. All

runs simulate a total of 48 hours, with traffic updates every simulated half-hour; activity planning handlers

generate a population of 32 schedules over a 100 generations. Experiments 1 and 2 are executed on three

nodes with an Intel Xeon E5-2660 @2.2GHz and an NVIDIA Tesla K40c each. Experiment 3 is executed

on a cluster of nodes with an Intel Xeon E5-2670 8C @2.6GHz and two NVIDIA 2090 cards each.

The first experiment aims at assessing the influence on the total execution time of the size of the graph

representing the simulated urban area. In this experiment, the population size if fixed to 500 agents and

the graph size varies from 256 to 1024; a comparaison is given with a CPU implementation of the same

case-study. Note that neither the CPU nor GPU implementations have been carefully optimized; the given

speedups should therefore not be interpreted as a fair comparison between a CPU and a GPU. Instead, we

aim to show that with the same programming time for both implementations, our framework allows us to

obtain a substantial speedup for a given problem that fits the GPU paradigm.

Figure 2 shows the run times for the first experiment. Updating traffic induces an unbalanced task

that consists in computing the shortest paths in the entire graph. We can see that the CPU version is

most affected by the change in graph size. Increasing the graph size renders traffic updates computations

more dominant on the CPU. Since these computations are performed by a single CPU thread, remaining

resources are mostly idle for larger graphs.
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Figure 2: Results for the first experiment. GPU run times are to be read on the left y-axis; CPU run-times

on the right y-axis. The CPU run time for the largest urban area is not given here as computations exceeded

the time limit.

In a second experiment, we aim to assess the influence on the total execution time of the population

size. In this second experiment, the graph size is fixed to 1024 and the population increases from 500

to 4000. Figure 3 shows the results for this experiment. Results indicate that optimal performances are

obtained with a population size of 4000 and more, as events per second reaches a plateau. This indicates

that about 1300 agents per GPU (4000 for three GPUs) are required to fully exploit the devices. Finally,

a third experiment aims at determining the scalability of our GPU example. For this last experiment, we

compute a fixed size problem of 32000 agents with a graph size of 1024 on an increasing number of nodes

ranging from 6 to 16. Figure 4 shows the results for this experiment. This simulation scales well up to

12 cluster nodes and thus 24 GPUs as this experiment was run on a cluster of nodes each equipped with

two devices. Although the GPUs used in experiments 2 and 3 are different, both experiments indicate that

performances are suboptimal when the number of agents per GPU is less than about 1300. Simulations

with larger populations would most likely benefit from additional GPUs.
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Figure 3: Evolution of run times and events per

second with increasing population size. The av-

erage number of handled events per second (in

orange) reaches a plateau after 4000 agents.
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Figure 4: Evolution of run times and events per

second with increasing number of cluster nodes.

This simulation scales up to 12 cluster nodes (ie.

24 GPUs on this cluster).

Figure 5 shows traffic conditions at various simulated times, from lightest (left) to heaviest (right)

traffic. Congestion is indicated by the color of road links - from green, least congested, to red, heavy traffic.
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Figure 5: Traffic conditions at various simulation times (12am left, 10:30am center, and 9am right). The

color of a road link indicates the amount of traffic in the previous time interval (from lightest traffic in green

to heaviest traffic in red). The slight variation in vertex positioning is induced by the plotting algorithm

used.

5 CONCLUSION

We proposed a new framework for PDES on GPUs. This framework allows modellers to quickly exploit

the potential of GPUs for PDES with event handlers that fit the GPU paradigm. Two types of approaches

are offered: an approach where parallelism can be extracted from a single handler and a second approach

where sequential handlers can be aggregated to fit the SIMT GPU paradigm. Our agent-based simulation

case-study shows that in very few lines of code, complex simulations can be developed and can benefit

from computations on GPUs. The comparison between a GPU version and a CPU version of our case-study

shows that for the same programming time, our GPU version offers a substantial speedup.

Our future work includes improving our framework in order to allow for a broader range of simulations

to exploit GPU computations as well as offer easier ways to automatically balance tasks between devices.
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